C++4: Static Members

32

Accessing

From inside the class, access static variables
like any other variable.

Two ways to accessing a static member from
outside the class:

e Using an instance of the class:
max = td.DESCR_LENGTH;

e Using the class name:
max = TodoItem::DESCR_LENGTH;

Which is better style?

34

Static Data Members

The idea: Having a single variable, regardless
of how many instances of the class have been
constructed.

Like a C-style global variable, but still part of
a class. Benefits?

Declaring

Static variables are declared in the .h file along
with the instance variables. Use the keyword
static to distinguish them. Must be redeclared
in the .cpp file.

Initializing

e constant static variables: in the .h file, with
an initializer.

e non-constant static variables: in the .cpp
file.

33

Static Functions

Idea: Having a function that is not called on a

particular instance of the class.

Like a C-style function, but still part of a class.
Benefits?

35

Example

// Account.h
ifndef ACCOUNT
define ACCOUNT

class Account {

public:
static const double BONUS = 100.00;

Account();

double deposit(int amount) ;

double withdraw(int amount) ;

double getBalance();

void payInterest();

static void changeRate(double newRate);
static int getNumAccounts();

private:
double balance;
static double interest_rate;
static int numAccounts;

};

endif

36

// Driver.cpp
#include <iostream.h>
#include "Account.h"

int main(void){

Account ail;

cout << "Starting balance: " << al.getBalance() << "\n";

al.deposit(35);

cout << "After deposit: " << al.getBalance() << "\n";

al.payInterest();

cout << "After interest: " << al.getBalance() << "\n";

Account: :changeRate (50) ;

al.payInterest();

cout << "After generous interest: "
<< al.getBalance() << "\n";

Account a2;
a2.payInterest();

cout << "Second account: " << a2.getBalance() << "\n";

cout << "Number of accounts: "

<< Account::getNumAccounts() << "\n";
cout<< "Bonus: " << Account::BONUS << "\n";

return O;

38

// Account.cpp
#include "Account.h"

const double Account::BONUS;
double Account::interest_rate = 4.0;
int Account: :numAccounts = 0;

Account: :Account () {
balance = BONUS;
numAccounts++;
¥
double Account::deposit(int amount){
balance += amount;
return balance;

¥

double Account::withdraw(int amount){
balance —-= amount;
return balance;

}

double Account::getBalance(){
return balance;
}
void Account::payInterest(){
balance += balance * interest_rate / 100;
}
void Account::changeRate(double newRate){
interest_rate = newRate;
}
int Account::getNumAccounts(){
return numAccounts;

}
37

