Design Theory for Relational Databases

csc343, fall 2014
Diane Horton
University of Toronto

Originally based on slides by Jeff Ullman
Introduction

◆ There are always many different schemas for a given set of data.
◆ E.g., you could combine or divide tables.
◆ How do you pick a schema? Which is better? What does “better” mean?
◆ Fortunately, there are some principles to guide us.
Database Design Theory

- It allows us to improve a schema systematically.
- General idea:
 - Express constraints on the relationships between attributes
 - Use these to decompose the relations
- Ultimately, get a schema that is in a “normal form” that guarantees good properties, such as no anomalies.
- “Normal” in the sense of conforming to a standard.
- The process of converting a schema to a normal form is called normalization.
Part I:
Functional Dependency Theory
A poorly designed table

<table>
<thead>
<tr>
<th>part</th>
<th>manufacturer</th>
<th>manAddress</th>
<th>seller</th>
<th>sellerAddress</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>Hammers ‘R Us</td>
<td>99 Pinecrest</td>
<td>ABC</td>
<td>1229 Bloor W</td>
<td>5.59</td>
</tr>
<tr>
<td>8624</td>
<td>Lee Valley</td>
<td>102 Vaughn</td>
<td>ABC</td>
<td>1229 Bloor W</td>
<td>23.99</td>
</tr>
<tr>
<td>9141</td>
<td>Hammers ‘R Us</td>
<td>99 Pinecrest</td>
<td>ABC</td>
<td>1229 Bloor W</td>
<td>12.50</td>
</tr>
<tr>
<td>1983</td>
<td>Hammers ‘R Us</td>
<td>99 Pinecrest</td>
<td>Walmart</td>
<td>5289 St Clair W</td>
<td>4.99</td>
</tr>
</tbody>
</table>

 имени

- In any domain, there are relationships between attribute values.
- Perhaps:
 - Every part has 1 manufacturer
 - Every manufacture has 1 address
 - Every seller has 1 address
- If so, this table will have redundant data.
Principle: Avoid redundancy

Redundant data can lead to anomalies.

<table>
<thead>
<tr>
<th>part</th>
<th>manufacturer</th>
<th>manAddress</th>
<th>seller</th>
<th>sellerAddress</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>Hammers ‘R Us</td>
<td>99 Pinecrest</td>
<td>ABC</td>
<td>1229 Bloor W</td>
<td>5.59</td>
</tr>
<tr>
<td>8624</td>
<td>Lee Valley</td>
<td>102 Vaughn</td>
<td>ABC</td>
<td>1229 Bloor W</td>
<td>23.99</td>
</tr>
<tr>
<td>9141</td>
<td>Hammers ‘R Us</td>
<td>99 Pinecrest</td>
<td>ABC</td>
<td>1229 Bloor W</td>
<td>12.50</td>
</tr>
<tr>
<td>1983</td>
<td>Hammers ‘R Us</td>
<td>99 Pinecrest</td>
<td>Walmart</td>
<td>5289 St Clair W</td>
<td>4.99</td>
</tr>
</tbody>
</table>

- **Update anomaly**: if Hammers ‘R Us moves and we update only one tuple, the data is inconsistent.
- **Deletion anomaly**: If ABC stops selling part 8624 and Lee Valley makes only that one part, we lose track of its address.
Definition of FD

- Suppose R is a relation, and X and Y are subsets of the attributes of R.
- X -> Y asserts that:
 - If two tuples agree on all the attributes in set X, they must also agree on all the attributes in set Y.
- We say that “X -> Y holds in R”, or “X functionally determines Y.”
- An FD constrains what can go in a relation.
- [Exercise]
Why “functional dependency”?

◆ “dependency” because the value of Y depends on the value of X.
◆ “functional” because there is a mathematical function that takes a value for X and gives a unique value for Y.
◆ (It’s not a typical function; just a lookup.)
Equivalent sets of FDs

- When we write a set of FDs, we mean that all of them hold.
- We can very often rewrite sets of FDs in equivalent ways.
- When we say S_1 is equivalent to S_2 we mean that:
 - S_1 holds in a relation iff S_2 does.
- [Exercise]
Splitting rules for FDs

- Can we split the RHS of an FD and get multiple, equivalent FDs?

- Can we split the LHS of an FD and get multiple, equivalent FDs?
Coincidence or FD?

- An FD is an assertion about *every* instance of the relation.
- You can’t know it holds just by looking at one instance.
- You must use knowledge of the domain to determine whether an FD holds.
FDs are closely related to keys

- Suppose K is a set of attributes for relation R.

- Our old definition of superkey:
 a set of attributes for which no two rows can have the same values.

- A claim about FDs:
 K is a superkey for R iff
 K functionally determines all of R.

- [Exercise]
FDs are a generalization of keys

- **Superkey:**
 \[X \rightarrow R\]
 Every attribute

- **Functional dependency:**
 \[X \rightarrow Y\]

- A superkey must include *all* the attributes of the relation on the RHS.

- An FD can have just a subset of them.
Inferring FDs

- Given a set of FDs, we can often infer further FDs.
- This will come in handy when we apply FDs to the problem of database design.
- Big task: given a set of FDs, infer every other FD that must also hold.
- Simpler task: given a set of FDs, infer whether a given FD must also hold.
Examples

◆ If $A \to B$ and $B \to C$ hold, must $A \to C$ hold?

◆ If $A \to H$, $C \to F$, and $FG \to AD$ hold, must $FA \to D$ hold?
 must $CG \to FH$ hold?

◆ If $H \to GD$, $HD \to CE$, and $BD \to A$ hold, must $EH \to C$ hold?

◆ Aside: we are not generating new FDs, but testing a specific possible one.
Method 1: Prove an FD follows using first principles

- You can prove it by referring back to
 - The FDs that you know hold, and
 - The definition of functional dependency.
- But the Closure Test is easier.
Method 2: Prove an FD follows using the Closure Test

- Assume you know the values of the LHS attributes, and figure out everything else that is determined.
- If it includes the RHS attributes, then you know that LHS -> RHS
- This is called the closure test.
\textit{Y} is a set of attributes, \textit{S} is a set of FDs. \textit{Return the closure of \textit{Y} under \textit{S}.}

\textbf{Attribute_closure(\textit{Y}, \textit{S})}:

Initialize \textit{Y}^{+} to \textit{Y}

Repeat until no more changes occur:

If there is an FD \textit{LHS} \rightarrow \textit{RHS} in \textit{S}

such that \textit{LHS} is in \textit{Y}^{+}:

Add \textit{RHS} to \textit{Y}^{+}

\textbf{Return } \textit{Y}^{+}
Visualizing attribute closure

If LHS is in Y^+ and LHS \rightarrow RHS holds, we can add RHS to Y^+
S is a set of FDs; LHS \rightarrow RHS is a single FD. Return true iff LHS \rightarrow RHS follows from S.

\[
\text{FD_follows}(S, \text{LHS} \rightarrow \text{RHS}):
\]
\[
Y^+ = \text{Attribute_closure}(\text{LHS}, S)
\]
\[
\text{return (RHS is in } Y^+) \]

[Exercise]
Projecting FDs

◆ Later, we will learn how to normalize a schema by decomposing relations. (This is the whole point of this theory.)
◆ We will need to be aware of what FDs hold in the new, smaller, relations.
◆ In other words, we must project our FDs onto the attributes of our new relations.
◆ [Exercise]
S is a set of FDs; L is a set of attributes.

Return the projection of S onto L:
all FDs that follow from S and involve only attributes from L.

Project(S, L):
Initialize T to {}.
For each subset X of L:
 Compute X^+ Close X and see what we get.
 For every attribute A in X^+:
 If A is in L: $X \rightarrow A$ is only relevant if A is in L (we know X is).
 add $X \rightarrow A$ to T.
 Return T.

[Example]
A few speed-ups

- No need to add $X \rightarrow A$ if A is in X itself. It’s a trivial FD.
- These subsets of X won’t yield anything, so no need to compute their closures:
 - the empty set
 - the set of all attributes
- Neither are big savings, but ...
A big speed-up

◆ If we find $X^+ = \text{all attributes}$, we can ignore any superset of X.
 ▶ It can only give use “weaker” FDs (with more on the LHS).

◆ This is a big time saver!
Projection is expensive

- Even with these speed-ups, projection is still expensive.
- Suppose R_1 has n attributes. How many subsets of R_1 are there?
Minimal Bases

- We saw earlier that we can very often rewrite sets of FDs in equivalent ways.
- Example: $S_1 = \{A \rightarrow BC\}$ is equivalent to $S_2 = \{A \rightarrow B, A \rightarrow C\}$.
- Given a set of FDs S, we may want to find a minimal basis: A set of FDs that is equivalent, but has
 - no redundant FDs, and
 - no FDs with unnecessary attributes on the LHS.
S is a set of FDs. Return a minimal basis for S.

Minimal_basis(S):

Repeat until no more changes result:
 Remove FDs that are implied by the rest.
 For each FD with 2^+ attributes on the left:
 If you can remove one attribute from the LHS and get an FD that follows from the rest:
 Do so! (It’s a stronger FD.)

[Exercise]
Some comments on computing a minimal basis

- Often there are multiple possible results, depending on the order in which you consider the possible simplifications.
- After you indentify a redundant FD, you must not use it when computing any subsequent closures (as you consider whether other FDs are redundant).
... and some that are less intuitive

- When you are computing closures to decide whether the LHS of an FD
 \[a_1a_2...a_m \rightarrow b_1b_2...b_n \]
 can be simplified, continue to use that FD.

- When you have tried to eliminate each FD and to reduce each LHS, you must go back and try again