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ABSTRACT
In this paper, a unique approach to the problem of spatio-
temporal pattern detection is discussed in relation to climate
data; this can be understood as discovering dependent cli-
mate events that occur over space. An accurate solution in
this domain will provide climate scientists with highly valu-
able data which can be used to improve climate models and
add to the knowledge base of climate science. This will in
turn be beneficial to policy makers to make better informed
decisions that can be based on improved data. This prob-
lem is one in which their are many valid solutions, which
all must take into account the general problems that arise
when dealing with big data, such as scaling and data com-
plexity among other issues. The approach taken here calls
upon the many concepts from the field of data-mining, and
applies those concepts to the field of climate science to yield
new and interesting knowledge. The concepts that will be
discussed in this paper can also be used to locate and iden-
tify events in climate data-sets, which can be applied to im-
prove the value of the climate data-sets that we have today
by cross-referencing with other knowledge bases and data-
sets.

1. INTRODUCTION
In the past decade, many institutions have attempted to

make climate data from the past century publicly available.
These data include measurements of temperature, precipi-
tation, humidity and more. Some of the data has originated
from hand-written paper records and has gone through rig-
orous levels of digitalization and validation to ensure accu-
racy. Scientists around the world have only recently begun
to analyze this data and to scrape the surface of the knowl-
edge hidden within. However, there is still much, much more
that we can learn of the climate and its processes.

One particular area of interest, and the focus of this pa-
per, is in the detection of spatio-temporal relations in cli-
mate data; these can essentially be described as related cli-
mate processes that take place in multiple locations in the
earth either simultaneously, or sequentially. A greater un-
derstanding of this area will provide climatologists with in-
sight on complex climatic patterns, and help discover new
climatic processes. This new-found logic can then be used to
improve our understanding of the climate and increase the
accuracy of climate models, which are responsible for pre-
dicting climate scenarios many years ahead of time. These
models are vital to policy makers to make informed decisions
to prepare for our planet’s future.

In addition, by improving our pattern matching techniques,

we can perform content-based queries on data-sets, allowing
us to detect all instances of any specified occurrence. Ap-
plying this concept to a data-set such as one containing the
weather history in Canada during the past twenty years, we
will be able to automate the identification of all instances of
user-specified weather occurrences such as extreme-rainfall
or droughts. This will not only improve the value of these
data-sets by adding knowledge, but it will also allow us to
cross-reference other data-sets that have additional data re-
garding these events.

A well-known example of the type of spatio-temporal pro-
cesses we will be mining for, is the La Nina/El Nino phe-
nomenon which occur once every few years. During a La
Nina year, the sea surface temperature across the equatorial
Eastern Central Pacific Ocean becomes 3-5 degrees lower
than the average for that period of time in that year. Soon
after the changes occur in the Eastern Central Pacific Ocean,
there are simultaneous drought conditions in the Northern
Pacific, flooding in northern South America, mild wet sum-
mers in northern North America, drought in the southeast-
ern United States, and a wet period in the western United
States among other climate effects. These events are all in-
terrelated and caused by the initial cooling in the ocean. See
Figure 1 for a visual representation of El Nino/La Nina.

Figure 1: La Nina vs El Nino year. Image credit to
http://sealevel.jpl.nasa.gov

There are many other spatio-temporal processes similar to
La Nina/El Nino that are buried deeply under the complex
layers of climate data. Currently, most of these types of
processes are discovered by a physical observation of the
phenomenon, which can be difficult when it is unknown ex-



actly what is being looked for, and when the data is not fully
understood by even our brightest climate scientists. Occa-
sionally, discovering new patterns can even come down to
pure luck. But what if we were to take a more automated
and scientific approach of discovering these phenomena us-
ing data-mining algorithms and techniques that have been
so successful in many discoveries in other fields such as bio-
informatics and social analytics? The potential to enhance
our knowledge about the inner-workings of the world we live
in is very large.

In this paper, a new scalable data-mining algorithm is
proposed for mining climate data-sets to detect interesting
spatio-temporal patterns. The paper is organized as follows:
in Section 2 we discuss how the algorithm works in its en-
tirety from a relatively high-level perspective. Section 3 dis-
cusses how we can compare two climate regions to each other
with a resultant similarity metric. Section 4 discusses the
approach taken to cluster the climate data-points to reduce
computational complexity. Section 5 discusses some of the
preliminary testing results and how we plan to experiment
on the algorithm in the future. Section 6 discusses related
works and some features of the algorithm that we will be
looking to improve in the near future. Finally, Section 7
provides final remarks and concludes the paper.

2. PATTERN ANALYSIS

2.1 Overview
Climate data generally comes in the form of sets of lati-

tude and longitude coordinates accompanied with attributes
such as temperature, precipitation, humidity, wind speed
etc, all mapped to a time-stamp. Timestamps can vary
from hours to days to months depending on the data-set.
Many interesting insights can be made by having a compre-
hensive and in-depth understanding of this data-set, but it
is simply too complex to fully comprehend without the aid
of man’s second best friend, the CPU. In order for a data
mining algorithm to properly learn and understand patterns
in a climate data-set, the data-set must (1) be large enough
for patterns to appear frequently (2) have a small enough
time-scale such that the patterns are not overlooked, i.e the
patter does not occur on a time-scale smaller then what the
data-set provides (3) have highly accurate data.

The chosen data-set that the initial implementation of the
algorithm was tested on is publicly available, provided by
the University of Washington. It contains highly accurate
daily climate data from 1949 - 2000 on a 1/8-degree grid.

We will now discuss the algorithm by breaking it into four
key steps:

2.2 First Step: Identifying an Anomaly
The first step in the algorithm is an external one. A cli-

mate scientist that is studying a specific region in the world
may stumble upon a section of climate data that does not
make sense, or one that stands out. He may ask questions
such as ‘why is this happening?’ or ‘what is the cause of
this?’. Currently, his options to answer his questions are
severely limited barring that he cannot extract an answer
based on our current knowledge of climate science. By pro-
viding the region and date range of the anomaly into our
algorithm, he can learn more about its causes and effects,
and perhaps understand the science behind why the anomaly
is occurring.

2.3 Second Step: Identifying Additional Oc-
currences of the Anomaly

What we have from the previous step: An anomaly con-
tained in a region associated with a date range.

We now attempt to identify other regions in the world where
the same anomaly has occurred in any valid time period from
our data-set (years 1949 -2000 for the data-set we are using).
A search is performed using the spatial similarity algorithm
outlined in Section 3. We minimize our search time in two
ways:

1. Focusing on the time of the yearly cycle on which the
first anomaly has occurred

2. Leveraging data ‘tags’ that we have created in the pre-
processing step (discussed in Section 3) to capture re-
curring anomalous and non-anomalous patterns. These
are sequences of events stored in a cyclic data-structure,
quickly found using identifying characteristics of the
anomaly.

2.4 Third Step: Discovering Related Events
What we have from the previous step: A list of regions and

associated dates where a specified anomaly has occurred.

We now wish to discover causes and effects for the given
anomaly to obtain a deeper understanding of it. To accom-
plish this, we search for recurring events that have transpired
adjacent to the region where the anomaly is located on and
around the same time period in the yearly cycle.

Let’s review this with an example. Imagine we have an
anomaly that has occurred in the Toronto region in January
1963 and again in ‘72, ‘88 and ‘96. On and around the
listed dates, we will search for additional recurring events
in adjacent regions, say Waterloo for instance (i.e we will
search in the years ‘63, ‘72, ‘88, ‘96). A positive result could
be be a recurring event in Waterloo in February of 1972 and
‘88.

Adjacent regions are identified using the optimized Mini-
mum Bounding Rectangle. When a positive result is found,
we continue our search, recursively searching through the
newly identified regions until the pattern trail is lost or until
we have completed n iterations of searching (we will prune
the path in Step Four and return later if it is likely that
there are more than n iterations). We make no attempt to
predict the movement of the pattern, to avoid introducing
bias into the algorithm. Predicting the pattern assumes we
understand the relations between them, which often is not
the case.

2.5 Fourth Step: Pruning
What we have from the previous step: A specific anomaly

with the regions and dates in which it has occurred, along
with a set of other events that frequently happen in or
around the same time period as the anomaly. Let these
events be stored in set C.

We now ensure two things for the elements in set C:

1. They are truly associated with the anomaly, i.e these
same events do NOT occur when the anomaly does not
occur.

2. None of the events are due to the seasonal cycle.



This will prune set C, ensuring that irrelevant events are
removed. Once C is pruned, we return to Step Three, until
no new events are found.

3. SPATIAL SIMILARITY

3.1 Overview
The concept of similarity is paramount in many data-

mining and clustering algorithms. We often need a metric
of how similar or dissimilar two objects are to each other. In
this paper, we require the concept of similarity for cluster-
ing purposes (Section 4) and for identifying sub-paths and
regions with high similarity in climate trends.
Two regions are spatially similar if they exhibit ‘similar’ be-
havior within a specified tolerance in their measured climatic
attributes (temperature, precipitation, humidity, wind speed
etc). Yes, there is the dreaded ‘using the word being defined
in the definition itself’ problem, however in this context, the
meaning should be well understood.
Let us simplify the problem to 2 dimensions for an exam-
ple: time and temperature. Assume our data-set S of tem-
peratures over time consists of daily temperatures for the
Toronto region in the year 2013. We have another much
smaller data-set P that consists of temperatures for the
Toronto region between February 2nd 1992, and February
13th 1992. We wish to find whether set P is contained within
set S with an acceptable level of tolerance ε. To achieve this,
we require some way of comparing P to sections of S. Set P
could be contained within S numerous times (min: 0, max:
length(S) / length(P)). See Figure 2 for an example of a
pattern P being identified in a set S.
While defining an algorithm to detect spatial similarity, we
need to be concerned with a number of things:

1. How do we handle spatial similarity when the event we
are comparing occurs faster or slower during different
years? For example, one year a specific phenomenon
takes place over a 3 day period, however 4 years later,
the same phenomenon takes place over a 6 day period?

2. What if we found a strong matching for P, however
there exists some large outliers in a small portion of
the data? (See Figure 3 for an example)

3. How do we deal with erroneous climate data that may
throw off the algorithm?

4. How do we approach ‘relative’ similarity between the
amplitudes of S and P? As an example (once again
using temperature and time as the two dimensions for
simplicity) if two events had the same spatial curva-
ture, but one event has a mean value that is 10 degrees
higher then the other.

3.2 The Algorithm
The spatial similarity algorithm begins with a preprocess-

ing step in which the two dimensional graphs of all climate
attributes versus time are transformed into linear represen-
tational segments (discussed in Section 3.3). This reduces
the computational complexity of the comparison, while re-
taining the most vital information about the data. Addi-
tionally, this also allows us to incorporate a certain degree
of logic into making the break points of the segments mean-
ingful. See Figure 4 for an example.

Figure 2: Example of pattern matching within a
data-set

Figure 3: A High similarity with large outlier

Figure 4: Moving from the original data-set to a a
linear transformation

This transformation provides us with a clearer image of
minimum and maximum points, and sharp slope changes,
while removing ‘noise’ values that we wish to ignore (how-
ever we still keep track of noise in the event that it proves to
be useful and we need to restore it). We store these values
in the database as sets of slopes and lengths.
Once the transformation is completed on both our data-set
S, and our input pattern P, we can iterate through the en-
tirety of S to identify whether P is contained within. This
is accomplished by sequentially mapping all slopes in P to
slopes in S with a relativistic mapping of slope lengths within
the accepted threshold of ε. We repeat this process across
all dimensions of the data, and optimize by taking note of
the events that highly contrast the base-line (discussed in
Section 3.3) and ensuring these events are found in both set
S and set P.
To further reduce computational complexity, we tag com-
mon sequences of patterns in the data during the prepro-
cessing step so that we can quickly refer to or ignore them.
Additionally, we use a cyclic data-structure that can quickly
identify commonly reoccurring types of anomalies, quickly
found using identifying characteristics of the anomaly.

3.3 Linear Transformation
We would like to have the capability to transform the

graphs of climate attributes versus time into linear segments
that better represent the graph, and in addition create a
moving ‘baseline’ which will represent the most acceptable
value for the attribute at any given moment. See Figure 5



for an example of a graph with two baselines.

Figure 5: Example of a representative moving base-
line

Once again, we will use temperature versus time to explain
the procedure using an example. Let the set Si = (xi, yi)
represent the amplitudes of the points in our graph. We be-
gin by cycling through each point sequentially and creating
a linear least square fit (represented by f(x)) by minimizing
the following equation:

R2 =

n∑
i=1

(yi − f(xi))
2 (1)

where f(x) = α + βxi is the resulting linear fit. We can
minimize the equation by applying the following conditions:

∂R2

∂α
= 0 where i = 1..n (2)

∂R2

∂β
= 0 where i = 1..n (3)

While we are calculating the best fit, we simultaneously cal-
culate the integral between the best fit line and our graph
(example: shaded area in Figure 6 A).∫ n

i=0

f(x) −
∫ n

j=0

Sj (4)

When the value of the integral exceeds our pre-set thresh-
old of ε we attempt to create a new baseline. However, we
associate a cost with creating new baselines; therefore, this
reduces to a problem of minimizing both the number of base-
lines and the value of the integral between the baseline and
the integral.

Lets take a look at a concrete example to put this into
perspective. In Figure 6 A we have a single baseline repre-
senting the entire length of a graph. While adding additional
baselines would greatly reduce the value of the integrals, the
cost of creating multiple new lines for each peak would be
greater then the cost of having a larger integral value. In
Figure 6 B we have 2 baselines, because by adding a sec-
ond baseline we can greatly reduce the value of the integral
between the baselines and the graph.

4. CLUSTERING
The amount of calculations that are required to be per-

formed to study climatic patterns are vast given the sheer

Figure 6: Example of a representative moving base-
line

number of data-points provided from the weather stations in
which the climate data has been recorded. To simplify this
problem, we create clusters of weather stations with simi-
lar climatic behavior, using the spatial similarity algorithm
from section 3. These clusters will also be referred to as
‘regions’ throughout this paper.
Besides reducing computation complexity, clustering is ben-
eficial for two other reasons:

1. Reducing error - A single station might have erroneous
data for a number of dates due to misreadings, miscali-
brations, disruptive particles in the air etc. Clustering
can help reduce the impact of such erroneous data.

2. Localizing the phenomenons - The spatio-temporal re-
lationships we are seeking with this algorithm are more
likely to exist over regions of space versus single points
in space.

The most applicable algorithms for spatio-temporal clus-
tering are PAM, CLARA, CLARANS, agglomerative clus-
tering and k-means [SK12]. As is common with applying
any clustering algorithm, each choice has advantages and
disadvantages. For the purposes of this paper, we keep the
decision simple with the use of agglomerative clustering as
it does not require initial clusters to be selected to perform
well, or the number of desired clusters; this is beneficial be-
cause it avoids the introduction of user bias into the selection
of cluster locations, which could lead to unexpected results,
and avoids poor selections of clusters such as near areas with
high variance (mountains/flat-land, rivers/land etc).
To perform the clustering, we randomly select initial cluster
seeds (note - the location and number of seeds should have
minimal impact) and then proceed to identify adjacent sta-
tions through the use of an optimized Minimum Bounding
Box search (using R-Tree). Adjacent stations with short dis-
tance and high spatial similarity are merged into the cluster
of the original station. As the cluster grows, the distance
is measured to the center of the cluster, and similarity is
taken to the cluster as a whole. Different combinations are
attempted recursively to optimize the cluster, and minimize
its variance. Given that the variance of the stations in a
cluster becomes too high, we attempt to split the cluster.
Clustering is performed only once, using climate data from
approximately a sixty day period. To increase the accuracy
of the clusters (as they remain constant afterwords), we ran-
domly prod the data-set in other locations (i.e many years
in the future) to ensure cluster similarity persists over time.
This approach has flaws which are discussed in section 6 and
will be improved upon in a future version of this paper.



5. PRELIMINARY RESULTS AND FUTURE
EXPERIMENTATION AND VALIDATION

As this work is currently ongoing as of September 2013,
the experimental results we can express at this point are
limited. The experiment that has been completed at this
time uses a cluster seed located at latitude/longitude points
46, 77 in the first half of January, 1949. A resulting related
cluster was discovered at latitude/longitude points 52, 121.
The temperature comparison can be seen in Figure 7. Of-
course, the other climatic values (precipitation, wind speed
etc) are also highly similar between these two sets of lati-
tude/longitude coordinates. A visual representation of the
latitude/longitude coordinates and their respective clusters
can be viewed in Figure 8.

Figure 7: Temperature pattern comparison

Figure 8: Results from an input cluster in 1949

In a future version of this paper, we will tackle experimen-
tation and validation of results by examining the algorithm’s
accuracy against the initial seed condition of El Nina/La
Nina and ensure that it mines the majority of the pattern.
Next, we will choose 5-10 other well-known spatio-temporal
patterns and compare results.

6. RELATED WORKS AND FUTURE WORKS
Anomaly pattern detection is not a new field, but is seeing

a lot of research recently due to the popularity of the big
data and biomedical fields (among others) that make use
of these techniques. One such example from the biomed-
ical world is from [WMCW02] which uses a Bayesian net-
work to detect recurring anomalous patterns for disease out-
breaks. One of the earlier attempts to mine association

rules from climate data is the Geominer project [HKS97]
from 1997. It unsuccessfully attempted to mine charac-
teristic rules, comparison rules and association rules from
a climate data set. The majority of the more recent pa-
pers on the topic of spatio-temporal pattern detection in
climate data are focused or specialized on a specific area
and cannot detect all type of pattern, just ones they have
been calibrated and setup to understand. [DNK09] for ex-
ample, searches for patterns in extreme rainfall events in
India, however it somewhat simplifies the process by only
studying ’extreme’ events that can be easily identified in
the data. Or [HLDT02], which mines association rules that
are strictly related to drought conditions. [KSnT+01] con-
tains interesting and highly relatable work, however they
only explore patterns that occur in a single region, whereas
in this paper we are focusing on cross-region similarity.
The most vital feature to the accuracy of this paper is the
spatial similarity measure. The algorithm for spatial simi-
larity proposed in Section 3, despite having strong perfor-
mance and accuracy, is not perfect by any means, and can
miss certain cases of similarity. There are a large number
of alternative algorithms and data transformations that are
also applicable, and more work needs to be performed to see
if they should be incorporated into this work in this paper.
However, most of them, if not all have pitfalls of their own.
Some examples include using the Discrete Fourier Trans-
form (DFT) or Independent Component Analysis (ICA) as
discussed in [KSnT+01] and [BST+04] respectively to re-
move seasonal data such that it is easier to detect patterns;
[ZSM+11]’s interesting work on detecting ’sub-patterns’ us-
ing an enumeration and pruning approach defined by an
interest measure, mainly to detect abrupt change; and a
constraint-based similarity query proposed by [GK95]. Per-
haps a dynamic choice of the most accurate similarity algo-
rithm for the scenario at hand could be developed.
One current issue, and the main focus of the next iteration of
this paper is in the way clustering is performed. Clusters are
created using the similarity measure with data from the time
span of a sixty day period (Section 4), while incorporating
adjustments by randomly prodding the rest of the data-set.
As one might imagine, the clusters should evolve over time
as the similarity measures change, but for simplicities sake
and calculation cost, we have assumed that the clusters re-
main constant in time. [NH94] discusses a new and efficient
method for clustering spatial data called CLARANS which
is based of a randomized search and requires a predefined
number of clusters, but it is very fast, meaning its use might
make live clustering a possibility without hindering perfor-
mance to much.
A summary on some of the leading anomaly detection algo-
rithms can be found in [CBK09]. These ideas will be looked
at more in depth for automating the anomaly identification
process (Section 2.2) in a future version of this paper.
More work is also required to incorporate ideas from recent
advances in association rule mining for large data-sets such
as those discussed in [AS94] which uses a modified and very
fast version of the classic Apriori algorithm.

7. CONCLUSIONS
This paper has laid out the groundwork for a novel algo-

rithm in the area of spatio-temporal data mining for climate
patterns by leveraging the sheer amount of climate data that
we have available today. The goal is that this work will aid



climate scientists to improve climate models by discovering
new patterns and learning about patterns that are not well
understood. A second significant usage will be to provide
the capabilities for public and private climate data-sets to
catalog events that are already well understood from a scien-
tific perspective through pattern matching, and have multi-
ple data-sets refer and cross-reference. This will improve the
value and enrich the climate data that we have today. While
this work is still far from proving that interesting results can
be found, the preliminary work shows promise.
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