
Pricing of cross-currency interest rate derivatives

on

Graphics Processing Units

Duy Minh Dang
Department of Computer Science

University of Toronto
Toronto, Canada

dmdang@cs.toronto.edu

Joint work with Christina Christara and Ken Jackson

Workshop on Parallel and Distributed Computing in Finance
IEEE International Parallel & Distributed Processing Symposium

Atlanta, USA, April 19 – 23, 2010

1 / 18

Outline

1 Power Reverse Dual Currency (PRDC) swaps

2 The model and the associated PDE

3 GPU-based parallel numerical methods

4 Numerical results

5 Summary and future work

2 / 18

Power Reverse Dual Currency (PRDC) swaps

PRDC swaps

• Long-dated swaps (≥ 30 years)

• Two currencies: domestic and foreign (unit zero-coupon bond prices Pd and Pf)

• PRDC coupons in exchange for domestic LIBOR payments (funding leg)

• Two parties: the issuer (pays PRDC coupons) and the investor (pays LIBOR)

• PRDC coupon and LIBOR rates are applied on the domestic currency principal Nd

Tenor structure: T0 < T1 < . . . < Tβ−1 < Tβ , να ≡ ν(Tα−1,Tα) = Tα − Tα−1

At each of the times Tα, α = 1, . . . , β − 1, the issuer

• receives ναNdLd(Tα−1,Tα), where Ld(Tα−1,Tα) =
1− Pd(Tα−1,Tα)

ν(Tα−1,Tα)Pd (Tα−1,Tα)
• pays PRDC coupon amount ναNdCα, where the coupon rate Cα has the structure

Cα = min
(
max

(
cf

s(Tα)

fα
− cd , bf

)
, bc

)

◦ s(Tα) : the spot FX-rate at time Tα

◦ fα: scaling factor, usually is set to the forward FX rate F (0,Tα) =
Pf (0,Tα)

Pd (0,Tα)
s(0)

◦ cd , cf : domestic and foreign coupon rates; bf , bc : a cap and a floor

• In the standard case (bf = 0 and bc = ∞), Cα is a call option on the spot FX rate

Cα = hα max(s(Tα)− kα, 0), hα =
cf

fα
, kα =

fαcd

cf
3 / 18

Power Reverse Dual Currency (PRDC) swaps

Bermudan cancelable PRDC swaps

The issuer has the right to cancel the underlying swap at any of the times {Tα}
β−1
α=1 after

the occurrence of any exchange of fund flows scheduled on that date.

• Observation: terminating a swap at Tα is the same as

i. continuing the underlying swap, and

ii. entering into the offsetting swap at Tα ⇒ the issuer has a long position in an

associated offsetting Bermudan swaption

• Pricing framework: dividing the pricing of a Bermudan cancelable PRDC swap into

i. the pricing of the underlying PRDC swap (a “vanilla” PRDC swap), and

ii. the pricing of the associated offsetting Bermudan swaption

• Notations

◦ ucα(t) and ufα(t): value at time t of the coupon and the LIBOR part scheduled after

Tα, respectively

◦ uhα(t): value at time t of the offsetting Bermudan swaption that has only the dates

{Tα+1, . . . ,Tβ−1} as exercise opportunities

◦ ueα(t): value at time t of all fund flows in the offsetting swap scheduled after Tα

◦ uh
β−1(Tβ−1) = ue

β−1(Tβ−1) = 0

◦ Note: uhα(Tα) is the “hold value” and ueα(Tα) is the “exercise value” of the option at

time Tα

4 / 18

Power Reverse Dual Currency (PRDC) swaps

Backward pricing algorithm

b

T0

b

T1

b b b b

Tβ−3

b

Tβ−2

b

Tβ−1

b

Tβ

5 / 18

Power Reverse Dual Currency (PRDC) swaps

Backward pricing algorithm

b

T0

b

T1

b b b b

Tβ−3

b

Tβ−2

b

Tβ−1

b

Tβ

−NdCβ−1uc
β−2

(Tβ−2) GPU1

solve PDE

0uh
β−2(Tβ−2) GPU2

solve PDE

5/ 18

Power Reverse Dual Currency (PRDC) swaps

Backward pricing algorithm

b

T0

b

T1

b b b b

Tβ−3

b

Tβ−2

b

Tβ−1

b

Tβ

−NdCβ−1uc
β−2

(Tβ−2) GPU1

solve PDE

0uh
β−2(Tβ−2) GPU2

solve PDE

−NdCβ−2 + uc
β−2(Tβ−2)uc

β−3(Tβ−3) GPU1

solve PDE

max
(
u
e
β−2(Tβ−2)

︸ ︷︷ ︸

−

(
uc
β−2

(Tβ−2)+uf
β−2

(Tβ−2)
)

, uh
β−2(Tβ−2)

)
uh
β−3(Tβ−3) GPU2

solve PDE

5/ 18

Power Reverse Dual Currency (PRDC) swaps

Backward pricing algorithm

b

T0

b

T1

b b b b

Tβ−3

b

Tβ−2

b

Tβ−1

b

Tβ

−NdCβ−1uc
β−2

(Tβ−2) GPU1

solve PDE

0uh
β−2(Tβ−2) GPU2

solve PDE

−NdCβ−2 + uc
β−2(Tβ−2)uc

β−3(Tβ−3) GPU1

solve PDE

max
(
u
e
β−2(Tβ−2)

︸ ︷︷ ︸

−

(
uc
β−2

(Tβ−2)+uf
β−2

(Tβ−2)
)

, uh
β−2(Tβ−2)

)
uh
β−3(Tβ−3) GPU2

solve PDE

b b b

b b b

5 / 18

Power Reverse Dual Currency (PRDC) swaps

Backward pricing algorithm

b

T0

b

T1

b b b b

Tβ−3

b

Tβ−2

b

Tβ−1

b

Tβ

−NdCβ−1uc
β−2

(Tβ−2) GPU1

solve PDE

0uh
β−2(Tβ−2) GPU2

solve PDE

−NdCβ−2 + uc
β−2(Tβ−2)uc

β−3(Tβ−3) GPU1

solve PDE

max
(
u
e
β−2(Tβ−2)

︸ ︷︷ ︸

−

(
uc
β−2

(Tβ−2)+uf
β−2

(Tβ−2)
)

, uh
β−2(Tβ−2)

)
uh
β−3(Tβ−3) GPU2

solve PDE

b b b

b b b

−NdC1 + uc2 (T1)uc0 (T0) GPU1

solve PDE

max
(

u
e
1 (T1)

︸ ︷︷ ︸

−

(
uc
2
(T2)+uf

2
(T2)

)

, uh1 (T1)
)

uh0 (T0) GPU2

solve PDE

• uf
α(Tα): obtained by the “fixed notional” method, not by solving a PDE

• Price of the underlying PRDC swap: uf
0(T0) + uc

0(T0)

• Price of the Bermudan cancelable PRDC swap: (uf
0(T0) + uc

0(T0)) + uh
0(T0)

5 / 18

The model and the associated PDE

The pricing model

Consider the following model under domestic risk neutral measure

ds(t)

s(t)
=(rd(t)−rf (t))dt+γ(t,s(t))dWs(t),

drd(t)=(θd(t)−κd (t)rd(t))dt + σd(t)dWd(t),

drf (t)=(θf (t)−κf (t)rf (t)−ρfs(t)σf (t)γ(t,s(t)))dt + σf (t)dWf (t),

• ri (t), i = d , f : domestic and foreign interest rates with mean reversion rate and

volatility functions κi (t) and σi (t)

• s(t): the spot FX rate (units domestic currency per one unit foreign currency)

• Wd(t),Wf (t), and Ws(t) are correlated Brownian motions with

dWd(t)dWs(t) = ρdsdt, dWf (t)dWs(t) = ρfsdt, dWd(t)dWf (t) = ρdf dt

• Local volatility function γ(t, s(t)) = ξ(t)
(
s(t)

L(t)

)ς(t)−1

- ξ(t): relative volatility function

- ς(t): constant elasticity of variance (CEV) parameter

- L(t): scaling constant (e.g. the forward FX rate F (0, t))

6 / 18

The model and the associated PDE

The 3-D pricing PDE

Let u = u(s, rd , rf , t) be the value of a security at time t, with a terminal payoff
measurable with respect to the σ-algebra at maturity time Tend and without intermediate
payments. On R

3
+ × [Tstart ,Tend), u satisfies the PDE

∂u

∂t
+Lu≡

∂u

∂t
+(rd−rf)s

∂u

∂s

+
(
θd(t)−κd(t)rd

) ∂u

∂rd
+

(
θf (t)−κf (t)rf −ρfSσf (t)γ(t, s(t))

) ∂u

∂rf

+
1

2
γ2(t, s(t))s2

∂2u

∂s2
+

1

2
σ2
d(t)

∂2u

∂r2d
+

1

2
σ2
f (t)

∂2u

∂r2f

+ ρdSσd(t)γ(t, s(t))s
∂2u

∂rd∂s

+ ρfSσf (t)γ(t, s(t))s
∂2u

∂rf ∂s
+ ρdf σd(t)σf (t)

∂2u

∂rd∂rf
− rdu = 0

• Derivation: Multi-dimensional Itô’s formula

• Boundary conditions: Dirichlet-type “stopped process” boundary conditions

• Backward PDE: the change of variable τ = Tend − t

• Difficulties: High-dimensionality, cross-derivative terms

7 / 18

GPU-based parallel numerical methods

Discretization

• Space: Second-order central finite differences on uniform mesh

• Time: ADI technique based on Hundsdorfer and Verwer (HV) approach

◦ um: the vector of approximate values

◦ Am
0 : matrix of all mixed derivatives terms; Am

i , i = 1, . . . , 3: matrices of the

second-order spatial derivative in the s-, rd -, and rs - directions, respectively

◦ gm
i
, i = 0, . . . , 3 : vectors obtained from the boundary conditions

◦ Am =
∑3

i=0 A
m
i
; gm =

∑3
i=0 g

m
i

Timestepping HV scheme from time tm−1 to tm:

Phase 1:

v0 = um−1 +∆τ (Am−1um−1 + gm−1),

(I−
1

2
∆τAm

i)
︸ ︷︷ ︸

Âm
i

vi = vi−1 −
1

2
∆τAm−1

i um−1 +
1

2
∆τ (gm

i − gm−1
i)

︸ ︷︷ ︸
v̂i

, i = 1, 2, 3,

Phase 2:

ṽ0 = v0 +
1

2
∆τ (Amv3 − Am−1um−1) +

1

2
∆τ (gm − gm−1),

(I−
1

2
∆τAm

i)ṽi = ṽi−1 −
1

2
∆τAm

i v3, i = 1, 2, 3,

um = ṽ3. 8 / 18

GPU-based parallel numerical methods

Parallel algorithm overview

• Focus on the parallelism within one timestep via a parallelization of the HV scheme

• With respect to the CUDA implementation, the two phases of the HV scheme are

essentially the same. Hence, we focus on describing the parallelization of the first

phase.

• Main steps of Phase 1:

◦ Step a.1: computes the matrices Am
i , i = 0, 1, 2, 3, the matrices Âm

i , i = 1, 2, 3, the

products Am
i
um−1, i = 0, 1, 2, 3, and the vector v0;

◦ Step a.2: computes v̂1 and solves Âm
1 v1 = v̂1;

◦ Step a.3: computes v̂2 and solves Âm
2 v2 = v̂2;

◦ Step a.4: computes v̂3 and solves Âm
3 v3 = v̂3;

• Steps a.2, a.3, and a.4 are inherently parallelizable (block-diagonal, with tridiagonal

blocks)

• Step a.1, on the other hand, the computation of the products Am
i u

m−1 is more

difficult to parallelize efficiently.

9 / 18

GPU-based parallel numerical methods

Phase 1 - Step a.1: Overview
Grid partitioning/assignment of gridpoints to threads

• computational grid of size n × p × q is partitioned

into 3-D blocks of size nb × pb × q, each of which

can be viewed as consisting of q 2-D blocks,

referred to as tiles, of size nb × pb.

• A grid of ceil(n/nb)× ceil(p/pb) threadblocks

is invoked, each of which consists of an nb × pb

array of threads.

• Each threadblock does a q-iteration loop,

processing an nb × pb tile at each iteration, i.e.

each thread does a q-iteration loop, processing

one gridpoint at each iteration

pb = 2nb = 4

q = 10

p = 8 n = 8

rf

s

rd

Computation details of a threadblock at each iteration

• loads from the global memory to its shared memory the components of um−1

corresponding to a tile, and the associated halo values;

• computes the respective rows of matrices Am
i and Âm

i , and respective entries of

Am
i u

m−1 and v0
• copies new rows and new values from the shared memory to the global memory

10 / 18

GPU-based parallel numerical methods

Phase 1 - Step a.1: Computation of v0
During the kth iteration, each threadblock

1. loads from the global memory into its shared

memory the old data (vector um−1) corresponding

to the (k + 1)st tile, and the associated halos (in

the s- and rd -directions), if any,

2. computes and stores new values for the kth tile

using data of the (k − 1)st, kth and (k + 1)st

tiles, and of the associated halos, if any,

3. copies the newly computed data of the kth tile

from the shared memory to the global memory,

and frees the shared memory locations taken by

the data of the (k − 1)st tile, and associated

halos, if any, so that they can be used in the next

iteration.

s

rd

rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs

rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs

rs rs rs rs rs rs rs rs rs rs rs rs
rs rs rs rs rs rs rs rs rs rs rs rs
rs rs rs rs rs rs rs rs rs rs rs rs
rs rs rs rs rs rs rs rs rs rs rs rs
rs rs rs rs rs rs rs rs rs rs rs rs

rs rs rs rs rs rs rs rs rs rs rs rs
rs rs rs rs rs rs rs rs rs rs rs rs
rs rs rs rs rs rs rs rs rs rs rs rs
rs rs rs rs rs rs rs rs rs rs rs rs
rs rs rs rs rs rs rs rs rs rs rs rs

×××××××××××
×××××××××××
×××××××××××
×××××××××××
×××××××××××
×××××××××××
×××××××××××
×××××××××××
×××××××××××
×××××××××××
×××××××××××

rs rs rs rs rs rs rs rs rs rs rs rs
rs rs rs rs rs rs rs rs rs rs rs rs
rs rs rs rs rs rs rs rs rs rs rs rs
rs rs rs rs rs rs rs rs rs rs rs rs
rs rs rs rs rs rs rs rs rs rs rs rs

rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs

rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs

×××××××××××
×××××××××××
×××××××××××
×××××××××××
×××××××××××
×××××××××××

rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs×

×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

rsrsrsrsrsrsrsrsrsrsrsrs
rsrsrsrsrsrsrsrsrsrsrsrs
rsrsrsrsrsrsrsrsrsrsrsrs
rsrsrsrsrsrsrsrsrsrsrsrs
rsrsrsrsrsrsrsrsrsrsrsrs

rsrsrsrsrs
rsrsrsrsrs
rsrsrsrsrs
rsrsrsrsrs
rsrsrsrsrs
rsrsrsrsrs
rsrsrsrsrs

rsrsrsrsrs
rsrsrsrsrs
rsrsrsrsrs
rsrsrsrsrs
rsrsrsrsrs
rsrsrsrsrs
rsrsrsrsrs

×××××××××
×××××××××
×××××××××
×××××××××
×××××××××
×××××××××

rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×

rs rs rs rs rs rs rs
rs rs rs rs rs rs rs
rs rs rs rs rs rs rs
rs rs rs rs rs rs rs
rs rs rs rs rs rs rs

rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs
rs rs rs rs rs

rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rsrsrsrsrsrsrs
rsrsrsrsrsrsrs
rsrsrsrsrsrsrs
rsrsrsrsrsrsrs
rsrsrsrsrsrsrs

rsrsrsrsrs
rsrsrsrsrs
rsrsrsrsrs
rsrsrsrsrs
rsrsrsrsrs
rsrsrsrsrs
rsrsrsrsrs

rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rsrs

rsrs

rs halo rs
× data

South

North

West East

Figure: An example of

nb × pb = 8× 8 tiles with halos.

Memory coalescing: fully coalesced loading for interior data of a tile and halos along the
s-direction (North and South), but not for halos along the rd -direction (East and West)

11 / 18

GPU-based parallel numerical methods

Phase 1 - Steps a.2/a.3/a.4: Tridiagonal solves

• Motivated by the block structure of the tridiagonal matrices Âm
i = I− 1

2
∆τAm

i

• Based on the parallelism arising from independent tridiagonal solutions, rather than

the parallelism within each one

• When solved in one direction, the data are partitioned with respect to the other two

• Assign each tridiagonal system to one of the threads

• Example: (I−
1

2
∆τAm

1)
︸ ︷︷ ︸

Âm
1

v1 = v0 −
1

2
∆τAm−1

1 um−1 +
1

2
∆τ (gm

1 − gm−1
1)

︸ ︷︷ ︸
v̂1

,

i. Partition Âm
1 and v̂1 into pq independent n × n tridiagonal systems

ii. Assign each tridiagonal system to one of pq threads.

iii. Use multiple 2-D threadblocks of identical size rt × ct , i.e. a 2-D grid of threadblocks

of size ceil(p

rt
) × ceil(q

ct
) is invoked.

• Memory coalescence: fully achieved for the tridiagonal solves in the rd - and rf -

directions, but not in the s-direction.

Could be improved by renumbering gridpoints between steps of the first phase.

12 / 18

Numerical results

Market Data

• Two economies: Japan (domestic) and US (foreign)

• Initial spot FX rate: s(0) = 105

• Interest rate curves, volatility parameters, correlations:

Pd(0,T) = exp(−0.02× T)

Pf (0,T) = exp(−0.05× T)

σd(t) = 0.7% κd(t) = 0.0%

σf (t) = 1.2% κf (t) = 5.0%

ρdf = 25%

ρdS = −15%

ρfS = −15%

• Local volatility function:

period period

(years) (ξ(t)) (ς(t)) (years) (ξ(t)) (ς(t))

(0 0.5] 9.03% -200% (7 10] 13.30% -24%

(0.5 1] 8.87% -172% (10 15] 18.18% 10%

(1 3] 8.42% -115% (15 20] 16.73% 38%

(3 5] 8.99% -65% (20 25] 13.51% 38%

(5 7] 10.18% -50% (25 30] 13.51% 38%

• Truncated computational domain:

{(s, rd , rf) ∈ [0, S]× [0,Rd]× [0,Rf]} ≡ {[0, 305] × [0, 0.06] × [0, 0.15]}

13 / 18

Numerical results

Specification
Bermudan cancelable PRDC swaps

• Principal: Nd (JPY); Settlement/Maturity dates: 23 Apr. 2010/23 Nov. 2040
• Details: paying annual PRDC coupon, receiving JPY LIBOR

Year coupon funding
(FX options) leg

1 max(cf
s(1)

F (0, 1)
− cd , 0)Nd Ld(0, 1)Nd

.

29 max(cf
s(29)

F (0, 29)
− cd , 0)Nd Ld(28, 29)Nd

• Leverage level

level low medium high

cf 4.5% 6.25% 9.00%
cd 2.25% 4.36% 8.10%

• The payer has the right to cancel the swap on each of {Tα}
β−1
α=1 , β = 30 (years)

Architectures

• Xeon running at 2.0GHz host system with a NVIDIA Tesla S870 (four Tesla C870
GPUs, 16 multi-processors, each containing 8 processors running at 1.35GHz, and 16
KB of shared memory)

• The tile sizes are chosen to be nb × pb ≡ 16× 4 (for Step a.1), and rt × ct ≡ 16× 4
(for Steps a.2, a.3, a.4), which appears to be optimal on Tesla C870.

14 / 18

Numerical results

Prices and convergence

underlying swap cancelable swap
leverage m n p q value change ratio value change ratio

(t) (s) (rd) (rf) (%) (%)

4 24 12 12 -11.1510 11.2936
low 8 48 24 24 -11.1205 3.0e-4 11.2829 1.1e-4

16 96 48 48 -11.1118 8.6e-5 3.6 11.2806 2.3e-5 4.4
32 192 96 96 -11.1094 2.4e-5 3.7 11.2801 5.8e-6 4.0

4 24 12 12 -12.9418 13.6638
medium 8 48 24 24 -12.7495 1.9e-3 13.8012 1.3e-3

16 96 48 48 -12.7033 4.6e-4 4.1 13.8399 3.9e-4 3.5
32 192 96 96 -12.6916 1.2e-4 3.9 13.8507 1.1e-4 3.6

4 24 12 12 -11.2723 19.3138
high 8 48 24 24 -11.2097 6.2e-4 19.5689 2.5e-3

16 96 48 48 -11.1932 1.4e-4 3.8 19.6256 5.6e-4 4.4
32 192 96 96 -11.1889 4.3e-5 3.8 19.6402 1.4e-4 3.8

Computed prices and convergence results for the underlying swap and cancelable swap
with the FX skew model

15 / 18

Numerical results

Parallel speedup

underlying swap (one Tesla C870)
m n p q value CPU GPU speed
(t) (s) (rd) (rf) (%) time (s.) time (s.) up

4 24 12 12 -11.1510 2.10 0.89 2.4
8 48 24 24 -11.1205 31.22 2.53 12.3

16 96 48 48 -11.1118 492.51 23.68 20.8
32 192 96 96 -11.1094 7870.27 356.12 22.1

cancelable swap (two Tesla C870)
m n p q value CPU GPU speed
(t) (s) (rd) (rf) (%) time (s.) time (s.) up

4 24 12 12 11.2936 4.35 0.89 4.9
8 48 24 24 11.2828 63.98 2.53 25.2

16 96 48 48 11.2806 1016.33 23.68 42.9
32 192 96 96 11.2802 15796.95 356.12 44.3

Computed prices and timing results for the underlying swap and cancelable swap for the
low-leverage case

16 / 18

Summary and future work

Summary and future work
Summary

• GPU-based algorithm for pricing exotic cross-currency interest rate derivatives under

a FX local volatility skew model via a PDE approach, with strong emphasis on

Bermudan cancelable PRDC swaps
• The parallel algorithm is based on

i. partitioning the pricing of cancelable PRDC swaps into two entirely independent
pricing subproblems in each period of the tenor structure

ii. efficient parallelization on GPUs of the HV ADI scheme at each timestep for the
efficient solution of each of these subproblems

• Results indicate speedup of 44 with two Tesla C870, for the cancellable swap.

Ongoing projects

• Exotic features: knockout, FX-TARN (interesting)

• GPU-based parallel methods for pricing multi-asset American options (penalty +

ADI)

Future work

• Numerical methods: non-uniform/adaptive grids, higher-order ADI schemes

• Modeling: stochastic models/regime switch for the volatility of the spot FX rate,

multi-factor models for the short rates

• Parallelization: extension to multi-GPU platforms
17 / 18

Summary and future work

Thank you!

1 D. M. Dang, C. C. Christara, K. R. Jackson and A. Lakhany (2009)
A PDE pricing framework for cross-currency interest rate derivatives
Available at http://ssrn.com/abstract=1502302

2 D. M. Dang (2009)
Pricing of cross-currency interest rate derivatives on Graphics Processing Units
Available at http://ssrn.com/abstract=1498563

3 D. M. Dang, C. C. Christara and K. R. Jackson (2010)
GPU pricing of exotic cross-currency interest rate derivatives with a foreign exchange
volatility skew model
Available at http://ssrn.com/abstract=1549661

4 D. M. Dang, C. C. Christara and K. R. Jackson (2010)
Parallel implementation on GPUs of ADI finite difference methods for parabolic
PDEs with applications in finance
Available at http://ssrn.com/abstract=1580057

More at http://ssrn.com/author=1173218

18 / 18

	Outline
	Power Reverse Dual Currency (PRDC) swaps
	The model and the associated PDE
	GPU-based parallel numerical methods
	Numerical results
	Summary and future work

