
SPEC Hashing: Similarity Preserving algorithm for Entropy-based Coding

Ruei-Sung Lin David A. Ross Jay Yagnik
Google Inc.

Mountain View, CA 94043
{rslin, dross, jyagnik}@google.com

Abstract

Searching approximate nearest neighbors in large scale
high dimensional data set has been a challenging problem.
This paper presents a novel and fast algorithm for learning
binary hash functions for fast nearest neighbor retrieval.
The nearest neighbors are defined according to the seman-
tic similarity between the objects. Our method uses the in-
formation of these semantic similarities and learns a hash
function with binary code such that only objects with high
similarity have small Hamming distance. The hash function
is incrementally trained one bit at a time, and as bits are
added to the hash code Hamming distances between dis-
similar objects increase. We further link our method to the
idea of maximizing conditional entropy among pair of bits
and derive an extremely efficient linear time hash learn-
ing algorithm. Experiments on similar image retrieval and
celebrity face recognition show that our method produces
apparent improvement in performance over some state-of-
the-art methods.

1. Introduction
With the advance of Internet, we are inundated with an

abundance of data of images, documents, music, videos,
etc. As the size of the data continues to grow, the density
of similar objects in the data space also increases. These
objects are likely to have similar semantics. As a result, in-
ferences based on nearest neighbors can be more reliable
than ever before.

In this paper, we describe a new learning-based hashing
algorithm for nearest neighbor search in high dimensional
feature space. Our nearest neighbors are objects with sim-
ilar semantics. The trained hash function map objects to
binary vectors such that the neighboring objects have small
Hamming distances between their codes, while irrelevant
objects have large distances. Therefore, we can use these
binary vectors for fast semantic nearest-neighbor retrieval.
Learning our hash function takes time linear to the data size
and is fast. This makes our algorithm feasible to tasks with

an evolving dataset, in which periodically updating or re-
training the hash function is required.

Searching nearest neighbors in sublinear time has been
an ongoing research. Traditional methods such as the KD-
tree [1] works well on data with limited feature dimen-
sionality, but become linear time search as dimensionality
grows. Recently, Locality Sensitive Hashing (LSH) [2, 3]
has been successfully applied to datasets with high dimen-
sional features. It uses random projections to map objects
from feature space to bits, and treats these bits as keys for
multiple hash tables. As a result, the collision of similar
samples in at least one hash bucket has high probability.
This randomized algorithm has tight asymptotic bound, and
provides the foundation to a number of follow-up works.

Parameter sensitive hashing [10] is one such extension.
It chooses a set of weak binary classifiers to generate bits for
the hash keys. The classifiers are selected according to the
criteria that nearby objects are more likely to have the same
class label than more distant objects. Ke et. al. [4] adopt
a similar idea, and formulate the learning problem within
the boosting framework. A major drawback of this type of
approach is the requirement of evaluation on object pairs,
which has size quadratic to the number of objects. Hence,
its scalability to larger scale dataset is limited.

Salakhutdinov et. al. [9] use restricted Boltzmann ma-
chines (RBM) to learn the hash function, and show that the
learned hash codes preserve semantic similarity in Ham-
ming space. This approach is then applied to the task of
similarity search in millions of images [11]. Training RBM
is a computationally intensive process that makes it very
costly to re-train the hash function when data evolve. Spec-
tral Hashing [14] takes a completely different approach to
generate hash code. It first rotates the feature space to sta-
tistically orthogonal axes using PCA. Then, a special basis
function is applied to carve each axis independently to gen-
erate hash bits. As a result, bits in the hash code are all inde-
pendent, which leads to a compact representation with short
code length. Experiments in [14] show it outperforms RBM
and the boosting approach. Spectral Hashing is developed
on the assumption that objects are spread in an Euclidean

space with a particular distribution; either uniform or Gaus-
sian. This is seldom true in real world data set. Ragin-
sky et. al. [7] introduce a distribution free coding method.
It maps features to a low dimensional space using random
Fourier features [8] and then randomly quantizes these pro-
jected features into a binary code. This simple encoding
scheme has good convergence properties and is shown to
outperfrom spectral hashing empirically.

In this paper we present a new hashing algorithm. It
uses the affinity matrix of the training set as the target, and
learns a hash function such that the Hamming distances cor-
relate to the similarities specified in the affinity matrix. Our
hash function is a collection of bit functions, and learning
is a incremental process that incrementally selects bit func-
tions to expand the hash code. We show that our algorithm
adds bits to the hash function to increase the Hamming dis-
tances between dissimilar objects while keeping the Ham-
ming distances between similar objects small. This algo-
rithm has quadratic computational complexity, so we pro-
pose two approximate linear time solutions. These algo-
rithms are based on similar heuristics and can be related to
maximizing conditional entropy between the new bit func-
tion and the existing bits in the hash function, which, there-
fore, minimizes the mutual information between bits. As
a result the learned hash function generates compact hash
codes. Our experiments indicate that our algorithm outper-
forms Spectral Hashing. Our method is related to work on
metric learning [3, 16], but differs in that we commit a priori
to using Hamming distance, then seek to learn an Hamming
embedding that preserves pairwise similairies.

The remainder of the paper is organized as follows. In
section 2, we formalize the learning problem, and describe
our incremental learning algorithm. The proposed algo-
rithm has quadratic complexity, so in section 3 we present
two approximate linear time algorithms and describe their
connections to the idea of maximizing conditional entropy.
In section 4, we describes the implementation details of our
two fast learning algorithms, which followed by the experi-
ments and the conclusion.

2. Similarity-Preserving Hashing
We define our learning problem as follows. Given train-

ing set {xi}i and affinity matrix S of this set, we want
to learn a similarity preserving hash function. This hash
function maps objects from the feature space to a Hamming
space such that only objects with high similarity measures
will have small Hamming distances.

We denote BT as a T -bit hash function. In our
model, it is a collection of T binary functions: BT (x) =
{b1(x), b2(x), . . . , bT (x)} with bk(x) ∈ {0, 1}. dk(i, j) is
the distance based on bk. dk(i, j) = 1, if bk(xi) 6= bk(xj).
Otherwise, dk(i, j) = 0. HT (i, j) is the Hamming dis-
tance between two hash codes generated by BT . Therefore,

HT (i, j) =
∑T
k=1 dk(i, j). In the affinity matrix, Sij is

the semantic similarity between object i and j, Sij ≥ 0.
Sij = 0 indicates that pair (i, j) are dissimilar. We expect
that every object is only related to a small number of ob-
jects. Therefore, S is a sparse matrix.

We formulate the hash learning problem as a distribution
learning process proposed in [5]. First, S is normalized to∑
i,j Sij = 1, and treated as our target distribution. We then

define another distribution W (T) using Hamming distance
HT :

W
(T)
ij =

1
ZT

e−λHT (i,j)

where ZT =
∑
i,j e
−λHT (i,j).

By making distributionW (T) close to the target distribu-
tion, objects with large similarity values will have relatively
small hamming distances, and vice versa. As a result, we
can learn hash function BT by minimizing the Kullback-
Leibler divergence KL(S||W (T)). Because S is fixed, this
is equivalent to minimizing the cross entropy:

min
BT

JT = −
∑
i,j

λSij logW (T)
ij

= λ
∑
i,j

SijHT (i, j) + log
∑
k,l

e−λHT (k,l)

Without loss of generality and to facilitate the descrip-
tion of our method, we set λ to be 1 in the following deriva-
tions.

2.1. Incremental Learning

Directly optimizing (1) is a challenging task, especially
when BT has a large hypothesis space. Here we adopt an
alternative approach. By factorizing (1) into a recursive
equation, we present an sub-optimal algorithm that incre-
mentally learns the hash function one bit at a time.

Denote sum(Hk) =
∑
i,j e
−Hk(i,j) and cutS(bl) =∑

i,j Sijdl(i, j) =
∑
i,j;bl(i)6=bl(j)

Sij . This choice of nam-
ings will be explained further in the following section. We
can rewrite JT as:

JT =
∑
i,j

Sij

T∑
t=1

dt(i, j) + log sum(HT)

=
T∑
t=1

cutS(bt) + log sum(HT)

= JT−1 + cutS(bT) + log sum(HT)− log sum(HT−1)
(1)

Let cut(Hk, bl) =
∑
i,j;bl(xi)6=bl(xj)

e−Hk(i,j)=∑
i,j;dl(i,j)=1 e

−Hk(i,j). We can derive:

∑
i,j

dl(i,j)=0

e−Hk(i,j) = sum(Hk)− cut(Hk, bl)

Using this property and HT (i, j) = HT−1(i, j) +
dT (i, j), sum(HT) can be factorized as:

sum(HT) =∑
i,j

dT (i,j)=0

e−HT−1(i,j) +
∑
i,j

dT (i,j)=1

e−(HT−1(i,j)+1) =

sum(HT−1)− cut(HT−1, bT) + e−1cut(HT−1, bT) (2)

Putting (1) and (2) together, we get:

LT = JT − JT−1

= cutS(bT) + log
(

1− (1− e−1)
cut(HT−1, bT)
sum(HT−1)

)
LT represent the ‘improvement’ from adding binary

function bT to the hash function BT−1. If Lt is negative,
adding bT is favorable because it further reduces the cross
entropy defined in (1).

Based on this result, we can learn the hash function by
incrementally selecting new binary function to expand the
hash code. Our learning algorithm is formalized as follows:

1. Start with t = 0, initialize a empty hash function Bo.

2. Find binary function bt+1 that minimizes:

min
bt+1

Lt+1 = cutS(bt+1)+

log
(

1− (1− e−1)
cut(Ht, bt+1)
sum(Ht)

)
(3)

3. Set Bt+1 = {Bt, bt+1} and increment t by one. Re-
peat step 2 until either the desired code length is
reached or no candidate for bt+1 has negative Lt+1.

2.2. Analysis

According to (3), binary function bt+1 must induce small
cutS(bt+1) and large cut(Ht, bt+1). This can be reasoned
as follows. cutS(bt+1) =

∑
i,j;bt+1(i) 6=bt+1(j)

Sij is the to-
tal loss of assigning similar objects to different binary code
in bt+1. This term is minimized when similar objects are
assigned the same binary code. In fact, taken in isolation,
cutS(bt+1) can be trivially minimized by assigning all ob-
jects the same label, collapsing all Hamming distances to
zero.

On the other hand, in order to have large value in
cut(Ht, bt+1) =

∑
i,j;bt+1(xi) 6=bt+1(xj)

e−Ht(i,j), bt+1

should assign different codes to as many pairs (i, j), es-
pecially those with small Hamming distance Ht(i, j). We
refer this countervailing force as the Hamming-distance
spread measured by cut(Ht, bt+1)/sum(Ht). The larger
its value is, the better the spread.

Combining these two, our algorithm incrementally adds
bits to the hash function to increase the Hamming distance
between dissimilar objects while keeping the Hamming dis-
tance between similar objects small.

3. Approximate Algorithms
In Section 2, we describe our approach to incrementally

learn a hash function that preserves similarities between ob-
jects. Our proposed algorithm is simple, but exactly com-
puting (3) has a inherited quadratic cost. It requires com-
puting and constantly updating Ht(i, j) for every possible
(i, j) as t increases. This makes the hash learning algorithm
intractable for large datasets.

In this section, we introduce two fast linear time approx-
imate algorithms, neither of which compute Ht. Instead,
the first uses the property Ht(i, j) =

∑t
k=1 dk(i, j), and

measures bt+1 against each dk separately. In contrast, the
second evaluates the conditional entropy of bit bt+1 with
each of the previously-learned bits. Before describing our
approximate algorithms, we first look at the computation of
(3) for the case of two bit hash code, that is bt+1 = b2.

3.1. Case with 2-bit Hash Code

When t + 1 = 2, there exists a efficient algorithm to
compute (3). According to (1),

min
b2

L2 = cutS(b2) + log sum(H2)− log sum(H1) (4)

Denote N the number of total training objects and N1

the number of objects with b1(x) = 1. It can be proved
that,

sum(H1) =
∑
i,j

b1(i)=b1(j)

e0 +
∑
i,j

b1(i) 6=b1(j)

e−1

= N2
1 + (N −N1)2 + 2N1(1−N1)e−1

Now let N11 be the number of samples with b1(x) = 1
and b2(x) = 1, N11 ≤ N1. Similarly N10 is the number of
samples with b1(x) = 0 and b2(x) = 1. sum(H2) can be
computed using only N , N1, N11 and N10:

sum(H2) =
∑
i,j

H2(i,j)=0

e0 +
∑
i,j

H2(i,j)=1

e−1 +
∑
i,j

H2(i,j)=2

e−2

= N2
11 + (N1 −N11)2 +N2

10 + (N0 −N10)2 +
2e−1 (N11(N1 −N11) +N10(N0 −N10)) +
2e−1 (N11N10 + (N1 −N11)(N0 −N10)) +
2e−2 (N11(N0 −N10) +N10(N1 −N11))

Using the equations above, we can compute L2 without
explicitly computing H2(i, j). In addition, because it only
takes linear time to get the counts of N1, N11 and N10, this
method is a linear time algorithm.

Equation (4) can also be written as:

min
b2

L2 = cutS(b2) + log
(

1− (1− e−1)
cut(H1, b2)
sum(H1)

)
(5)

As is pointed out in Section 2.2, cut(H1, b2)/sum(H1)
is the Hamming distance spread that b2 induces to H1. In-
creasing the spread reduces L2.

3.2. Approximate Solution: SPEC-Spread Algo-
rithm

According to (3), selecting bt+1 depends on
cut(Ht, bt+1)/sum(Ht) which has quadratic compu-
tational complexity. Here we propose an approximate
algorithm that avoids this computation. Our algorithm is
based on the result for two-bit hash code, and measure bt+1

against every bit in Ht separately.
For notational convenience, we rewrite sum(Ht) as

sum(Bt). This is valid because Hamming distance Ht

is determined by hash function Bt. Similarly, we denote
sum({bk, bl}) =

∑
i,j e
−(dk(i,j)+dl(i,j)) as the sum of the

2-bit hash function {bk, bl}. Given current hash function
Bt = {b1, . . . , bt}, our algorithm decomposes Bt into a set
of 1-bit hash functions and measures the improvement bt+1

induces on each of these hash function. We select bt+1 that
minimizes L̂t+1:

L̂t+1 = max
bk∈Bt

{
cutS(bt+1)+

log sum({bk, bt+1})− log sum({bk})
}

(6)

Applying (5) to (6), we get

L̂t+1 = cutS(bt+1)+log
(

1− min
bk∈Bt

cut(dk, bt+1)
sum({bk})

)
(7)

cut(dk, bt+1)/sum({bk}) is the measurement of
Hamming-distance spread that bt+1 induces on one of
these 1-bit hash functions. By applying minbk∈Bt we get a
lower bound on the Hamming-distance spread. Therefore,
minbk∈Bt

cut(dk, bt+1)/sum({bk}) is a heuristic approx-
imation to cut(Ht, bt+1)/sum(Ht). Knowing that bt+1

induces certain amount of Hamming-distances spread on
any of the binary function in BT , we expect bt+1 to induce
good quality spread on Hamming distance Ht, which is the
sum of all these one-bit functions.

3.3. Connection with Minimal Conditional En-
tropy: SPEC-Entropy Algorithm

We notice that conditional entropy H(bl|bk) has a
strong correlation with the Hamming distance spread
cut(dk, bl)/sum(dk). As a matter of fact, the binary func-
tion bl that maximizes H(bl|bk) will also be the maximal
solution to cut(dk, bl)/sum({bk}).

Based on this observation, we develop another heuris-
tic based approximate algorithm that uses negative minimal
conditional entropy to approximate the log term in (7):

min
bt+1

L̃t+1 = cutS(bt+1)− η min
bk∈Bt

H(bt+1|bk) (8)

For a given bt+1, minbk∈Bt
H(bt+1|bk) is the lower

bound on the conditional entropies between bt+1 and each
of the binary function inBt. Minimizing the negative of this
bound, in (8), equates with maximizing the minimal condi-
tional entropy. This can be further explained using mutual
information.

Let I(bt+1, bk) be the mutual information between bt+1

and bk. Because H(bt+1|bk) = H(bt+1)− I(bt+1, bk), we
can rewrite (8) as:

min
bt+1

L̃t+1 = cutS(bt+1)−ηH(bt+1) +η max
bk∈Bt

I(bt+1, bk)

(9)
According to this equation, binary function bt+1 should

have small cutS(bt+1), large bit entropy H(bt+1) and
small mutual information with each of the binary func-
tions in Bt, which is measured by the upper bound
maxbk∈Bt

I(bt+1, bk). As a result of this minimal mutual
information constraint, we expect the learned hash function
to produce compact codes.

Using N,N1, N11, N10 defined in Section 3.1, and set-
tingN0 = N−N1,N01 = N1−N11, andN00 = N0−N10,
conditional entropy H(bl|bk) can be computed in linear
time as follows:

H(bl|bk) = −N11

N
log

N11

N1
− N01

N
log

N01

N1

− N10

N
log

N10

N0
− N00

N
log

N00

N0
. (10)

4. Implementation
In this work, following [10, 4], we use decision stumps

as the binary functions for the hash code. A decision stump
performs binary classification by thresholding one input
feature value. Stumps can be evaluated quickly, which
is ideal for nearest-neighbor applications. When training,
the hypothesis space of decision stumps, which we’ll call
H, is bounded. Specifically, for dataset with N objects
and M feature dimensions, the number of hypotheses is

|H| = MN . Using this property together with the spe-
cial structure of our two hashing algorithms defined in (6)
and (8), we can further reduce learning time using dynamic
programming.

Let h ∈ H denote one of the stumps. Because S in fixed,
for each h we can pre-compute cuts(h) and simply look up,
rather than recompute, the value during the learning pro-
cess. Repeatedly evaluating maxbk∈Bt

sum({bk, h}) in (6)
is particularly expensive, and this cost grows as t increases.
However, by using the property

max
bk∈{Bt+1}

sum({bk, h}) =

max
(

max
bk∈Bt

sum({bk, h}), sum({bt+1, h})
)

(11)

for each stump h, we can store the value of
maxbk∈Bt

sum({bk, h}), and update it using the recurrence
above each time a new binary function is added to the
hash function. This reduces the per-bit learning time from
O(tMN) to O(MN). A similar trick can be applied to
compute minbk∈Bt

H(h|bk) in (8).

5. Experiments
We evaluate the performance of our two approximate

learning algorithms on two tasks: retrieving semantically
similar images from the LabelMe image database, and per-
forming nearest-neighbor recognition of celebrity face im-
ages. Results for the algorithm described in section 2.1 are
not presented, since the algorithm is too inefficient for large-
scale experimentation; our most efficient implementation of
it has per-bit learning time O(MN2).

5.1. LabelMe: Semantically-Similar Image Re-
trieval

The ability to quickly retrieve visually or seman-
tically similar images from a large collection given
a query image is becoming increasingly impor-
tant in many visual search systems. (For example
http://similar-images.googlelabs.com/.)
Many sophisticated image similarity measures can be
expensive to compute, thus prompting the interest in
hashing-based approximations [11].

The first experimental dataset, used in [11, 14], consists
of approximately 13,500 image thumbnails from LabelMe
dataset. Each image is represented using a 512-dimensional
Gist feature vector. As in [14], ground truth similarity is
obtained by calculating the L2 distance between these Gist
vectors, and thresholding the values. The dataset was di-
vided into a training set containing 80% of the samples,
and a test set containing the remainder. After training, hash
codes were computed for all samples. For each test sample,
the nearest neighbors (based on Hamming distance between

codes) were found from amongst the training samples, and
performance was evaluated by measuring the precision and
recall.

Performance is compared to two baseline algorithms.
The first is the state of the art Spectral Hashing [14], as
described earlier. The second is a simple yet effective tech-
nique, which we will refer to as PCA Hashing [12, 13].
PCA Hashing computes a k-bit hash code by projecting
each sample to the k principal components of the training
set, then binarizing the coefficients, by setting each to 1 if
it exceeds the average value seen for the training set, and 0
otherwise. We also tried applying our algorithms after first
transforming the input Gist values using PCA.

The results are displayed in Figure 1. Examination of the
precision-recall curve (top left) indicates that each of the
SPEC algorithms outperforms Spectral Hashing and PCA
Hashing by a generous margin. To create the plot, the hash-
ing algorithm were used to obtain 64-bit codes for the all
of the samples. Then for each test sample we located all
samples within a fixed Hamming radius and, based on the
ground truth similarity information, calculated the precision
and the recall. The results are averaged over all test samples,
for a range of different Hamming radiuses.

To help interpret the relative behaviour of the hashing al-
gorithms, precision and recall are also plotted separately, as
they vary by Hamming radius, in Figure 1 (bottom left) and
(bottom right). The plots show that PCA Hashing favours
increased precision at the cost of significantly decreased re-
call, resulting in poor overall performance. Spectral Hash-
ing, SPEC-Spread, and SPEC-Entropy all take more bal-
anced approaches. Interestingly, pre-processing the input
using PCA has a very dramatic effect on SPEC-Entropy,
greatly reducing the precision and increasing the recall, but
the effects on SPEC-Spread are more muted.

Another measure of performance is the precision
amongst the top nearest neighbors as the number of bits in
the hash code is allowed to vary. The result of this met-
ric, for the top 15 neighbors, is plotted in Figure 1 (top
right). Here we can see that for short codes, less than 20
bits, Spectral Hashing outperforms the SPEC algorithms on
the standard features, but again the SPEC algorithms dom-
inate for longer codes. Interestingly, PCA-preprocessing of
the inputs does seem to be advantageous in this setting, par-
ticularly for shorter codes. This makes intuitive sense, since
PCA has the effect of concentrating the largest dimensions
of data variability in a few input features.

5.2. Celebrity Face Recognition

When performing large scale nearest neighbor face
recognition, the computational cost of comparing a test face
to a gallery of known faces can be considerable. One way to
optimize the search for the nearest-neighboring face in the
gallery is to convert all facial feature vectors to binary hash

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision vs. Recall − Vary Hamming Distance

recall

p
re

c
is

io
n

PCA

Spectral

SPEC−Spread

SPEC−Entropy

SPEC−Spread on PCA

SPEC−Entropy on PCA

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Precision @15

code length in bits

p
re

c
is

io
n

PCA

Spectral

SPEC−Spread

SPEC−Entropy

SPEC−Spread on PCA

SPEC−Entropy on PCA

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision vs. Hamming Distance

Hamming distance

p
re

c
is

io
n

PCA

Spectral

SPEC−Spread

SPEC−Entropy

SPEC−Spread on PCA

SPEC−Entropy on PCA

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Recall vs. Hamming Distance

Hamming distance

re
c
a

ll

PCA

Spectral

SPEC−Spread

SPEC−Entropy

SPEC−Spread on PCA

SPEC−Entropy on PCA

Figure 1. A comparison of hashing algorithms on the LabelMe
image retrieval task. (top left) This plot shows the precision vs.
recall for the different hashing algorithms, using 64-bit hash codes.
(top right) A plot of precision within the top 15 nearest neighbors
averaged over test images, as the code length in bits increases from
2 to 100 bits. (bottom left) Precision vs. Hamming radius and
(bottom right) Recall vs. Hamming radius plotted separately for
64-bit codes.

codes. Then, assuming Hamming distance between codes
preserves semantic similarity—faces of the same subjects
map to nearby codes—quick retrieval of a small collection
of likely candidates is possible.

To evaluate the feasibility of learning such hashing func-
tions, we collected a set of approximately 276,436 face im-
ages, each labelled with the name of the celebrity it depicts,
using the method of [15, 17]. Each face is represented us-
ing a vector of 1000 real-valued features, obtained by ap-
plying Gabor filters at various facial landmark points, then
performing LDA-style dimensionality reduction.

The dataset contained 3703 celebrities, each with be-
tween 5 and 500 faces. The celebrities were split into two
sets: a training set of 2001 celebrities, and a held-out set of
1702, with no intersection between the two. Each of these
sets were further subdivided into a gallery, containing 80%
of the faces, and a test set, containing the remaining 20%.
We trained the hash function using the top performing algo-
rithm from the LabelMe experiment, SPEC-Entropy, on the
gallery portion of the training celebrities (totalling 174,747
faces from 2001 celebrities), and computed hash codes for
all faces. Our gallery set includes the training set and an
additional 45,933 faces from the 1702 held-out celebrities
not in the training set.

For this experiment the ground truth similarity matrix
was determined from the label information attached to each
face. Specifically, two faces labelled with different celebrity
names were assigned zero similarity. For faces belonging
to the same celebrity, the similarity score was computed by
the state of the art Neven vision face recognition system [6].
Finally, to compensate for label noise, small Neven similar-
ities were truncated to zero. It is important to note that the
target similarity matrix in this experiment is semantic (do
two faces belong to the same person?) rather than metric
(e.g. L2 distance between feature vectors).

63,398 test faces (44,212 faces from training celebri-
ties and 11,544 faces from hold-out celebrities) were recog-
nized by returning the label of the nearest gallery sample,
based on the Hamming distances between hash codes, and
recognition accuracy was averaged across all testing sam-
ples. The baseline Neven Vision face recognition system
on the test set was able to have accuracy 96.22% on train-
ing celebrities and 96.23% on hold-out celebrities. The re-
sults of our model with 1200 bits had accuracy 95.76% on
training celebrities and 95.59% on hold-out celebrities. The
detailed results are shown in figure 2.

Thus it is possible using our algorithm to achieve parity
in recognition performance using a fraction of the number
of bits used by the original feature vector. This provides
benefits in terms of reduced storage, as well as greatly re-
ducing the cost of nearest neighbor lookups from a large
gallery.

100 200 300 400 500 600 700 800 900 1000 1100 1200
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

number of bits

a
c
c
u

ra
c
y

Neven training celeb

Neven hold−out celeb

SPEC training celeb

SPEC hold−out celeb

Figure 2. Celebrity face recognition result.

6. Conclusion

In this paper, we presented two efficient algorithms for
learning hash functions that produce binary codes. We
first described a general incremental learning algorithm that
learns the hash function bit-by-bit. Binary functions that
assign similar objects bit code and induce large Hamming
distance spread are selected and incrementally added to the
hash function. This method takes quadratic learning time,
so we proposed two approximate linear time algorithms.

We first presented an heuristic approximate algorithm
that still favors the selection of binary function will large
Hamming distance spread, but takes only linear time. We
related this approximate approach to the conditional entropy
between pair of bits, and derived our second approximate
algorithm. We showed that the second method picks binary
functions that minimizes the Hamming distances between
similar objects with the constraint that the new bit function
should has low mutual information with any of the bit in the
existing hash function. This ensures that the hash learning
will produce compact hash code.

Experiments on similar image retrieval and celebrity face
recognition indicates that our method produce comparable,
or superior, results to some of the state-of-the-art methods.

References

[1] J. Bentley. K-d trees for semidynamic point sets. In SCG
’90: Proceedings of the sixth annual symposium on Compu-
tational geometry, pages 187–197. ACM, 1990.

[2] M. Datar and P. Indyk. Locality-sensitive hashing scheme
based on p-stable distributions. In Proceedings of the twen-
tieth annual symposium on Computational Geometry. ACM
Press, 2004.

[3] P. Jain, B. Kulis, and K. Grauman. Fast image search for
learned metrics. In Computer Vision and Pattern Recogni-
tion, 2008.

[4] Y. Ke, D. Hoiem, and R. Sukthankar. Computer vision for
music identification. In Computer Vision and Pattern Recog-
nition, 2005.

[5] M. Meila and J. Shi. Learning segmentation by random
walks. In In Advances in Neural Information Processing Sys-
tems, pages 873–879. MIT Press, 2001.

[6] P. Phillips, W. Scruggs, A. O’Toole, P. Flynn, K. Bowyer,
C. Schott, and M. Sharpe. FRVT 2006 and ICE 2006 Large-
Scale Results. Technical Report NISTIR 7408, National
Institute of Standards and Technology, Gaithersburg, MD
20899, March 2007. http://www.frvt.org/.

[7] M. Raginsky and S. Lazebnik. Locality-sensitive binary
codes from shift-invariant kernels. In Advances in Neural
Information Processing Systems 22. MIT Press, Cambridge,
MA, 2009.

[8] A. Rahimi and B. Recht. Random features for large scale
kernel machines. In Advances in Neural Information Pro-
cessing Systems 22. MIT Press, Cambridge, MA, 2009.

[9] R. Salakhutdinov and G. Hinton. Semantic hashing. In SI-
GIR workshop on Information Retrieval and applications of
Graphical Models. 2007.

[10] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose es-
timation with parameter-sensitive hashing. In International
Conference on Computer Vision, 2003.

[11] A. Torralba, R. Fergus, and Y. Weiss. Small code and large
image databases for recognition. In Computer Vision and
Pattern Recognition, 2008.

[12] B. Wang, Z. Li, and M. Li. Efficient duplicate image de-
tection algorithm for web images and large-scale database.
Technical report, Microsoft Research, 2005.

[13] X.-J. Wang, L. Zhang, F. Jing, and W.-Y. Ma. Annosearch:
Image auto-annotation by search. In IEEE Conference on
Computer Vision and Pattern Recognition, volume 2, pages
1483–1490, 2006.

[14] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, edi-
tors, Advances in Neural Information Processing Systems 21.
MIT Press, Cambridge, MA, 2008.

[15] J. Yagnik and A. Islam. Learning people annotation from the
web via consistency learning. In Proceedings of the inter-
national workshop on Workshop on multimedia information
retrieval, pages 285–290, 2007.

[16] L. Yang, R. Jin, R. Sukthankar, and F. Jurie. Unifying dis-
criminative visual codebook generation with classifier train-
ing for object category recognition. In Computer Vision and
Pattern Recognition, 2008.

[17] M. Zhao, J. Yagnik, H. Adam, and D. Bau. Large Scale
Learning and Recognition of Faces in Web Videos. In FG,
2008.

