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Factorial Learning

• data was generated by the actions of a (small) number of independent
unobserved variables

• Eg. 1: pixels of a natural image
→ which objects are present, where they are located in the scene

• Eg. 2: an individual’s ratings for various movies
→ genre, which actors are present

• Goal: learn a model that captures these underlying causes,
infer the values of the unobserved variables for a new example



Learning a Composite Sketch

• Goal: learn a parts-based representation of data vectors

• Motivating Assumptions:

1. data dimensions separable into disjoint subsets (Multiple Causes)

2. each cause has a small number of discrete states (Vector Quantizer)

3. causes take on states independently of each other

• Example: on face image data,
causes could be eyes, nose, and mouth
states could be different appearances of each part

• Win: combinatorial power

– VQ with N states represents N items

– MCVQ with j states per N/j VQs represents jN/j items



Generating an Example x

Select VQs . . .
ri=1 ri=2 ri=3 ri=N

. . .Select States: sk=1 sk=2 sk=K

Observed: x3 xN. . .x1 x2

1. select one state of each VQ k

sjk = 1 ⇔ state j of VQ k is active

2. select one VQ for each data dim. i

rik = 1 ⇔ VQ k relevant for xi

3. value of xi depends on params of
selected state of selected VQ



Learning & Inference

• x ∈ RN data vector

• R = {ri} K-dim. indicator vectors, select one VQ per data dimension

• S = {sk} J-dim. indicator vectors, select one state per VQ

• θ = {µijk, σijk} parameters of dimension i, from jth state of kth VQ

• ai’s and bk’s prior distribution over r’s and s’s

P (x, R, S|θ) = P (R|θ)P (S|θ)P (X|R, S, θ)

=
∏

i,k,j∈k

a
rik
ik b

sjk
jk N (xi ; θ)riksjk



• E-Step: compute P (R, S|x, θ)

• Variational E-Step: approximate posterior with

Q(R, S|x, θ) =
∏

i,k

g
rik
ik

∏

k,j∈k

m
sjk
jk

F(Q, θ) = EQ

[

− logP (x, R, S|θ) + logQ(R, S|x, θ)
]

=
∑

k,j∈k

mjk logmjk +
∑

i,k

gik log gik +
∑

i,k,j

gikmjkdijk

where dijk = log σijk +
(xi−µijk)
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ijk

further constraint: {gc
ik} consistent for any observation Xc → favours

distributions over {ri} that are consistent with other observed data vectors



EM Updates

E Step
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Intuition: one state per VQ, choose one VQ per pixel, that matches input



Experiments 1. Shapes

Data Examples:

gi1

VQ1 VQ2

gi2 gi3

Reconstruction of Example

VQ3

mc
j1

mc
j2

mc
j3

Example



Experiments 1. Shapes: Comparing Methods

VQMCVQOriginal

VQ

NNMF

PCA

MCVQ

RMS Error

NNMFPCA

0.7158 0.2140.153 0.502



Related Models

Cooperative Vector Quantization

– xi is generated by the VQ’s cooperatively (linear combination),
rather than competitively (stochastic selection)

Non-Negative Matrix Factorization

– x ∼ Poisson with mean Wv, where W,v ≥ 0

– non-negativity constraints result in sparse, parts-based,
basis vectors wj

– MCVQ is similar∗, with W = [µjk ∗ gk], and v = concatenation of
sk’s

– NMF doesn’t group related parts

– models differ in what novel examples they can generate



Flexible Sprites in Video Layers

– learns a single appearance for each object
infers location & occlusion ordering

– MCVQ assumes fixed locations,
learns locations & ranges of appearances of objects
infers appropriate appearances



Experiments 2. Faces

ReconstructionOriginal ReconstructionOriginal

RMS Error: 0.289 RMS Error: 0.152



Experiments 3. Text

• Bag of Words - represent document as a word count vector (one
element per vocabulary word)

• each VQ state predicts a document word count

• values of gik provide a segmentation of the vocabulary into subsets of
words with correlated frequencies

• within a particular subset, words can be

– related - tend to appear in the same documents

– contrasting - seldom appear together

• a particular VQ state is characterized by the words whose predicted
count differs most from average



Predictive Sequence Learning in Recurrent Neocortical Circuits
R. P. N. Rao & T. J. Sejnowski

afferent ekf latent ltp
lgn niranjan som gerstner
interneurons freitas detection zador
excitatory kalman search soma
membrane wp data depression

query critic mdp spline
documents stack pomdps tresp
chess suffix prioritized saddle
portfolio nuclei singh hyperplanes
players knudsen elevator tensor



The Relevance Vector Machine
Michael E. Tipping

svms hme similarity extraction
svm svr classify net
margin svs classes weights
kernel hyperparameters classification functions
risk kopf class units

jutten chip barn mdp
pes ocular correlogram pomdps
cpg retinal interaural littman
axon surround epsp prioritized
behavioural cmos bregman pomdp



Missing Data

• model naturally handles case of unobserved data

• all data dimensions are leaves in the graphical model, so unobserved
values play no role in learning or inference

• collaborative filtering application - EachMovie dataset

• active approach to learning - VQ responsibilities indicate relationships
between data elements



Experiments 4. EachMovie
The Fugitive 5.8 (6) Pulp Fiction 5.5 (4) Cinema Paradiso 5.6 (6)
Terminator 2 5.7 (5) The Godfather: Part II 5.3 (5) Touch of Evil 5.4 (-)
Robocop 5.4 (5) The Silence of the Lambs 5.2 (4) Rear Window 5.2 (6)

Kazaam 1.9 (-) The Brady Bunch Movie 1.4 (1) Jean de Florette 2.1 (3)
Rent-a-Kid 1.9 (-) Ready to Wear 1.3 (-) Lawrence of Arabia 2.0 (3)
Amazing Panda Adventure 1.7 (-) A Goofy Movie 0.8 (1) Sense & Sensibility 1.6 (-)

Best of Wallace & Gromit 5.6 (-) Tank Girl 5.5 (6) Mediterraneo 5.3 (6)
The Wrong Trousers 5.4 (6) Showgirls 5.3 (4) Three Colors: Blue 4.9 (5)
A Close Shave 5.3 (5) Heidi Fleiss: Hollywood Madam 5.2 (5) Jean de Florette 4.9 (6)

Robocop 2.6 (2) Talking About Sex 2.4 (5) Jaws 3-D 2.2 (-)
Dangerous Ground 2.5 (2) Barbarella 2.0 (4) Richie Rich 1.9 (-)
Street Fighter 2.0 (-) The Big Green 1.8 (2) Getting Even With Dad 1.5 (-)



Current Directions

1. model selection

2. relaxing ownership restriction

3. sequential/incremental learning



Cross-Validation on Shapes Data
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Model Selection

• quality of learned representation depends strongly on selecting correct
# of factors, K

• Goal: want to determine best K (and J)

• compare likelihood estimates for various K ’s
- ML doesn’t penalize for model complexity

• cross-validation
- computationally expensive
- explicitly trains & tests all possible models under consideration



Variational Bayesian Learning

• select model, M, with highest evidence, integrating over choice of
parameters, θ :

P (X|M) =

∫

P (X|θ)P (θ|M)dθ

• penalizes models with more degrees of freedom

• avoids overfitting, since parameters are not fit to the data

• requires computing a difficult integral

• use a variation approximation, Q(θ) to P (θ|X,M)

→ optimize a lower bound, L(Q), on the log-evidence

• Variational EM: maximize L(Q) wrt Q (E-Step), then M(M-Step)



VB Mixture of Gaussians (Corduneanu & Bishop)

. . .

c = 1 . . . C

xc πsc

µ1 µMT1 TM

µ ∼ N (0, aI)

T ∼ Wishart

s ∼ Discrete(π)

L(Q) =

∫

Q(µ)Q(T )Q(s) ln
P (D, θ|π)

Q(µ)Q(T )Q(s)
dθ

• start with a fixed number of potential components
(the maximum # considered)

• optimize using variational EM
→ causes priors of unwanted components (π’s) to go to zero



VB MCVQ
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• remove VQ k when αk ≈ 0

• remove state j of VQ k, when πjk ≈ 0



Overlapping Causes

• with current implementation, gik’s always binary

• would like non-binary g’s in some cases,
e.g. at object borders in natural images

• Sample Data:

• Results: still binary!



Incremental MCVQ

• learn causes one at a time, as per Williams & Titsias

• train model with one (or more) ordinary VQ’s, and one VQ with fixed,
high variance

• hopefully ordinary VQ’s will learn one cause each, high variance VQ will
learn the remainder

• Results:

• Issue: choosing variances?

• Next: try this on text data

• Alternatively: a single low variance VQ, collects static data dimensions


