Multiple Cause Vector Quantization

David Ross & Richard Zemel

University of Toronto October 22, 2002

Factorial Learning

- data was generated by the actions of a (small) number of independent unobserved variables
- Eg. 1: pixels of a natural image
 → which objects are present, where they are located in the scene
- Eg. 2: an individual's ratings for various movies
 → genre, which actors are present
- Goal: learn a model that captures these underlying causes, infer the values of the unobserved variables for a new example

Learning a Composite Sketch

- Goal: learn a parts-based representation of data vectors
- Motivating Assumptions:
 - 1. data dimensions separable into disjoint subsets (Multiple Causes)
 - 2. each cause has a small number of discrete states (Vector Quantizer)
 - 3. causes take on states independently of each other
- Example: on face image data, causes could be eyes, nose, and mouth states could be different appearances of each part
- Win: combinatorial power
 - VQ with N states represents N items
 - MCVQ with j states per N/j VQs represents $j^{N/j}$ items

Generating an Example ${\bf x}$

- 1. select one state of each VQ k $s_{jk} = 1 \Leftrightarrow$ state j of VQ k is active
- 2. select one VQ for each data dim. *i* $r_{ik} = 1 \iff VQ k$ relevant for x_i
- 3. value of x_i depends on params of selected state of selected VQ

Learning & Inference

- $\mathbf{x} \in \mathbb{R}^N$ data vector
- $\mathbf{R} = {\mathbf{r}_i} K$ -dim. indicator vectors, select one VQ per data dimension
- $S = \{s_k\}$ *J*-dim. indicator vectors, select one state per VQ
- $\theta = \{\mu_{ijk}, \sigma_{ijk}\}$ parameters of dimension *i*, from *j*th state of *k*th VQ
- \mathbf{a}_i 's and \mathbf{b}_k 's prior distribution over r's and s's

$$P(\mathbf{x}, R, S|\theta) = P(R|\theta)P(S|\theta)P(X|R, S, \theta)$$
$$= \prod_{i,k,j \in k} a_{ik}^{r_{ik}} b_{jk}^{s_{jk}} \mathcal{N}(x_i; \theta)^{r_{ik}s_{jk}}$$

- E-Step: compute $P(R, S | \mathbf{x}, \theta)$
- Variational E-Step: approximate posterior with

$$Q(R, S | \mathbf{x}, \theta) = \prod_{i,k} g_{ik}^{r_{ik}} \prod_{k,j \in k} m_{jk}^{s_{jk}}$$

$$\mathcal{F}(Q,\theta) = E_Q \Big[-\log P(\mathbf{x}, R, S|\theta) + \log Q(R, S|\mathbf{x}, \theta) \Big]$$
$$= \sum_{k,j \in k} m_{jk} \log m_{jk} + \sum_{i,k} g_{ik} \log g_{ik} + \sum_{i,k,j} g_{ik} m_{jk} d_{ijk}$$

where
$$d_{ijk} = \log \sigma_{ijk} + \frac{(x_i - \mu_{ijk})^2}{2\sigma_{ijk}^2}$$

further constraint: $\{g_{ik}^c\}$ consistent for any observation $X^c \rightarrow$ favours distributions over $\{\mathbf{r}_i\}$ that are consistent with other observed data vectors

EM Updates

E Step

$$m_{jk}^{c} = \exp\left(-\sum_{i} g_{ik} d_{ijk}^{c}\right) / \sum_{\alpha=1}^{J} \exp\left(-\sum_{i} g_{ik} d_{i\alpha k}^{c}\right)$$

M Step

$$g_{ik} = \exp\left(-\sum_{c,j} m_{jk}^c d_{ijk}^c\right) / \sum_{\beta=1}^K \exp\left(-\sum_{c,j} m_{j\beta}^c d_{ij\beta}^c\right)$$

$$\mu_{ijk} = \sum_{c} m_{jk}^{c} x_{i}^{c} / \sum_{c} m_{jk}^{c} \sigma_{ijk}^{2} = \sum_{c} m_{jk}^{c} (x_{i}^{c} - \mu_{ijk})^{2} / \sum_{c} m_{jk}^{c}$$

Intuition: one state per VQ, choose one VQ per pixel, that matches input

Experiments 1. Shapes

Data Examples:

Experiments 1. Shapes: Comparing Methods

Related Models

Cooperative Vector Quantization

- x_i is generated by the VQ's cooperatively (linear combination), rather than competitively (stochastic selection)

Non-Negative Matrix Factorization

- $\mathbf{x} \sim \text{Poisson}$ with mean $\mathbf{W}\mathbf{v},$ where $\mathbf{W}, \mathbf{v} \geq \mathbf{0}$
- non-negativity constraints result in sparse, parts-based, basis vectors \mathbf{w}_i
- MCVQ is similar*, with $\mathbf{W} = [\mu_{jk} * \mathbf{g}_k]$, and $\mathbf{v} =$ concatenation of \mathbf{s}_k 's
- NMF doesn't group related parts
- models differ in what novel examples they can generate

Flexible Sprites in Video Layers

- learns a single appearance for each object infers location & occlusion ordering
- MCVQ assumes fixed locations, learns locations & ranges of appearances of objects infers appropriate appearances

Experiments 2. Faces

Experiments 3. Text

- Bag of Words represent document as a word count vector (one element per vocabulary word)
- each VQ state predicts a document word count
- values of g_{ik} provide a segmentation of the vocabulary into subsets of words with correlated frequencies
- within a particular subset, words can be
 - related tend to appear in the same documents
 - contrasting seldom appear together
- a particular VQ state is characterized by the words whose predicted count differs most from average

Predictive Sequence Learning in Recurrent Neocortical Circuits R. P. N. Rao & T. J. Sejnowski

afferent	ekf	latent	Itp
Ign	niranjan	som	gerstner
interneurons	freitas	detection	zador
excitatory	kalman	search	soma
membrane	wp	data	depression
query	critic	mdp	spline
documents	stack	pomdps	tresp
chess	suffix	prioritized	saddle
portfolio	nuclei	singh	hyperplanes
players	knudsen	elevator	tensor

_	The Relevance Vector Machine Michael E. Tipping					
	svms	hme	similarity	extraction		
	svm	svr	classify	net		
	margin	svs	classes	weights		
	kernel	hyperparameters	classification	functions		
	risk	kopf	class	units		
	jutten	chip	barn	mdp		
	pes	ocular	correlogram	pomdps		
	cpg	retinal	interaural	littman		
	axon	surround	epsp	prioritized		
	behavioural	cmos	bregman	pomdp		

Missing Data

- model naturally handles case of unobserved data
- all data dimensions are leaves in the graphical model, so unobserved values play no role in learning or inference
- collaborative filtering application EachMovie dataset
- active approach to learning VQ responsibilities indicate relationships between data elements

Experiments 4. EachMovie

The Fugitive 5.8 (6) **Terminator 2** 5.7 (5) **Robocop** 5.4 (5)

Kazaam 1.9 (-) Rent-a-Kid 1.9 (-) Amazing Panda Adventure 1.7 (-) Pulp Fiction 5.5 (4) The Godfather: Part II 5.3 (5) The Silence of the Lambs 5.2 (4)

The Brady Bunch Movie 1.4 (1) Ready to Wear 1.3 (-) A Goofy Movie 0.8 (1) Cinema Paradiso 5.6 (6) Touch of Evil 5.4 (-) Rear Window 5.2 (6)

Jean de Florette 2.1 (3) Lawrence of Arabia 2.0 (3) Sense & Sensibility 1.6 (-)

Best of Wallace & Gromit 5.6 (-)	Tank Girl 5.5 (6)	Mediterraneo 5.3 (6)
The Wrong Trousers 5.4 (6)	Showgirls 5.3 (4)	Three Colors: Blue 4.9 (5)
A Close Shave 5.3 (5)	Heidi Fleiss: Hollywood Madam 5.2 (5)	Jean de Florette 4.9 (6)
Robocop 2.6 (2)	Talking About Sex 2.4 (5)	Jaws 3-D 2.2 (-)
Dangerous Ground 2.5 (2)	Barbarella 2.0 (4)	Richie Rich 1.9 (-)
Street Fighter 2.0 (-)	The Big Green 1.8 (2)	Getting Even With Dad 1.5 (-)

Current Directions

- 1. model selection
- 2. relaxing ownership restriction
- 3. sequential/incremental learning

Cross-Validation on Shapes Data

Model Selection

- quality of learned representation depends strongly on selecting correct # of factors, K
- Goal: want to determine best K (and J)
- compare likelihood estimates for various K's
 - ML doesn't penalize for model complexity
- cross-validation
 - computationally expensive
 - explicitly trains & tests all possible models under consideration

Variational Bayesian Learning

select model, *M*, with highest evidence, integrating over choice of parameters, *θ*:

$$P(X|\mathcal{M}) = \int P(X|\theta) P(\theta|\mathcal{M}) d\theta$$

- penalizes models with more degrees of freedom
- avoids overfitting, since parameters are not fit to the data
- requires computing a difficult integral
- use a variation approximation, $Q(\theta)$ to $P(\theta|X, \mathcal{M})$ \rightarrow optimize a lower bound, $\mathcal{L}(Q)$, on the log-evidence
- Variational EM: maximize $\mathcal{L}(Q)$ wrt Q (E-Step), then $\mathcal{M}(M$ -Step)

VB Mixture of Gaussians (Corduneanu & Bishop)

 $m{\mu} \sim \mathcal{N}(0, aI) \ \mathbf{T} \sim \mathsf{Wishart} \ \mathbf{s} \sim \mathsf{Discrete}(m{\pi})$

$$\mathcal{L}(Q) = \int Q(\mu)Q(T)Q(s) \ln \frac{P(D,\theta|\pi)}{Q(\mu)Q(T)Q(s)} d\theta$$

- start with a fixed number of potential components (the maximum # considered)
- optimize using variational EM
 - \rightarrow causes priors of unwanted components (π 's) to go to zero

VB MCVQ

- remove VQ k when $\alpha_k \approx \mathbf{0}$
- remove state j of VQ k, when $\pi_{jk} \approx 0$

Overlapping Causes

- with current implementation, g_{ik} 's always binary
- would like non-binary g's in some cases,
 e.g. at object borders in natural images
- Sample Data:

• Results: still binary!

Incremental MCVQ

- learn causes one at a time, as per Williams & Titsias
- train model with one (or more) ordinary VQ's, and one VQ with fixed, high variance
- hopefully ordinary VQ's will learn one cause each, high variance VQ will learn the remainder
- Results:

- Issue: choosing variances?
- Next: try this on text data
- Alternatively: a single low variance VQ, collects static data dimensions