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Abstract

Learning Parts-Based Representations of Data
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Graduate Department of Computer Science
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2003

Many collections of data exhibit a common underlying structure: they consist of a
number of parts or factors, each with a range of possible states. For example, in a
collection of facial images, every image contains eyes, a nose, and a mouth, each of which
has a number of appearances.

We propose a new method, Multiple Cause Vector Quantization, for the unsupervised
learning of parts-based representations of data. Our technique automates the segmenta-
tion of the data dimensions into parts, while simultaneously learning a discrete model of
the range of appearances of each part.

We pose MCVQ as a probabilistic graphical model, and derive an efficient variational-
EM algorithm for learning and inference. We present applications of this model to prob-

lems in image decomposition, collaborative filtering, and document modeling.
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Chapter 1

Introduction

1.1 Parts

Many collections of data exhibit a common underlying structure: they consist of a number
of parts or factors, each with a range of possible states. When data are represented as
vectors, parts manifest themselves as subsets of the data dimensions that take on values in
a coordinated fashion. In the domain of digital images, these parts may correspond to the
intuitive notion of the component parts of objects, such as the arms, legs, torso, and head
of the human body. Prominent theories of computational vision, such as Biederman’s
Recognition-by-Components [3] advocate the suitability of a parts-based approach for
recognition in both humans and machines. Recognizing an object by first recognizing its

constituent parts, then validating their geometric configuration has several advantages:

1. Highly articulate objects, such as the human body, are able to appear in a wide
range of configurations. It would be difficult to learn a holistic model capturing all

of these variants.

2. Objects which are partially occluded can be identified as long as some of their parts

are visible.
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3. The appearances of certain parts may vary less under a change in pose than the
appearance of the whole object. This can result in detectors which, for example,

are more robust to rotations of the target object.

4. New examples from an object class may be recognized as simply a novel combination
of familiar parts. For example a parts-base face detection system could generalize
to detect faces with both beards and sunglasses, having been trained only on faces

containing one, but not both, of these features.

The principal difficulty in creating such systems is determining which parts should
be used, and identifying examples of these parts in the training data.

In the part-based detectors created by Mohan et al. [26] and Heisele et al. [13] parts
were chosen by the experimenters based on intuition, and the component-detectors -
support vector machines - were trained on image subwindows containing only the part
in question. Obtaining these subwindows required that they be manually extracted from
hundreds or thousands of training images.

In contrast, the parts-based detector created by Weber et al. [30] proposed a way to
automate this process. First, potential parts - small subwindows of fixed size - were iden-
tified using the Forstner interest operator. Specifically, this selected regions containing
intersecting lines, corners, or the centres of circular regions. Next, the number of poten-
tial parts was reduced using k-means clustering. Finally, while training the geometric
model, the parts-set was further reduced, by selecting only those which lead to highest
detection performance. The resulting detector relied on a very small number of parts
(e.g. 3) corresponding to very small local features. Unlike the SVMs, which were trained
on a range of appearances of the part, each of these part-detectors could identify only a
single fixed appearance.

Parts-based representations of data can also be learned in an entirely unsupervised

fashion. These parts can be used for subsequent supervised learning, but the models
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constructed can also be valuable on their own. A parts-based model provides an effi-
cient, distributed representation, and can aid in the discovery of causal structure within
data. As an example, parts-based models are widely used by law enforcement agencies
to produce composite sketches. These systems allow a witness to create a likeness of a
suspect’s face by selecting an appearance for each part, from a vocabulary of standard

facial components.

The concept of parts can be applied to other types of data, such as bag-of-words text
data, and preference data. In the former each data vector gives word count information
- one vocabulary word per input dimension - for a single document. Parts, in this case,
would correspond to collections of words with related frequencies. This includes words
that often appear together, as well as words rarely appearing in the same document. In
the latter, the vector contains ratings given by a human subject to a number of books,
movies, et cetera. Parts would be formed from groups of related items, and appearances

of a part would correspond to different attitudes towards the items.

This thesis describes a new method, Multiple Cause Vector Quantization, for the
unsupervised learning of parts-based representations of data. Our technique automates
the segmentation of the data dimensions into parts, while simultaneously learning a

discrete model of the range of appearances of each part.

1.2 Thesis Organization

In Chapter ] we introduce Multiple Cause Vector Quantization. We propose the model
in 222 and in derive an EM algorithm for learning and inference. In section 224 we
relate MCVQ to similar parts-seeking techniques.

Experimental results using this method appear in Chapter B, including applications
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to image decomposition, collaborative filtering, document modeling, and classification of
facial expressions.

In Chapter Bl we extend our model to handle data with class labels, learning these
labels if they have not been provided.

Finally, in Chapter Bl we summarize our contributions, and suggest directions for

further inquiry.



Chapter 2

Multiple Cause Vector Quantization

2.1 Overview

In this chapter we propose a stochastic generative model that can learn parts-based
representations of high-dimensional data. Our key assumption is that the dimensions of
the data can be separated into several disjoint subsets, or factors, which take on values
independently of each othexH. We assume each factor has a small number of discrete
states, and model it using a vector quantizer. The selected states of each factor represent
the multiple causes of the input. Given a set of training examples, our model learns the
association of data dimensions with factors, as well as the states of each VQ. Inference
and learning are carried out efficiently via variational algorithms.

This representational scheme is powerful due to its combinatorial nature: while a
standard clustering/VQ method containing N states can represent at most N items, if
we divide the N into VQs of J states each, we can represent JV/7 items. MCVQ is also
especially appropriate for high-dimensional data in which many values may be unspecified
for a given input case.

Material from this chapter and from the experiments in chapter Bl originally appeared

!Practically these factors are often not entirely independent, even when parts are involved. We
investigate this situation further in Chapter H
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Figure 2.1: Graphical model representation of MCVQ. We let r —; represent all the
variables r4—1 5, which together select a VQ for ;. Similarly, s;—; represents all s;—; j,
which together select a state of V(Q 1. The plates depict repetitions across the appropriate
dimensions for each of the three variables: the K VQs, the J states (codebook vectors)
per VQ, and the D input dimensions. To extend this model to multiple data cases, we

would include an additional plate over r, x, and s.

in Advances in Neural Information Processing Systems 15 [27].

2.2 Generative Model

In MCVQ we assume there are K factors, each of which is modeled by a vector quantizer
with J states. To generate an observed data example of D dimensions, x € R, we
stochastically select one state for each VQ, and one VQ for each dimension. Given these
selections, a single state from a single VQ determines the value of each data dimension
Zq.

The selections are represented as binary latent variables, S = {sy;}, R = {rax}, for
d=1..D,k=1..K, and j = 1...J. The variable s;; = 1 if and only if state j has been
selected from VQ k. Similarly r4 = 1 when VQ k has been selected for data dimension
d. These variables can be described equivalently as multinomials, s, € 1...J,ry € 1...K;
their values are drawn according to their respective priors, a; and b,;. The graphical

model representation of MCVQ is given in Fig. 21
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Assuming each VQ state specifies the mean as well as the standard deviation of a
Gaussian distribution, and the noise in the data dimensions is conditionally independent,
we have (where 6 = {ftakj, Oar;}):

P(x|R,5,0) = H HN(fd; ks Oakj) ™ *

d k,j

The resulting model can be thought of as a mixture model over J x K possible states
for each data dimension (z4). The single state kj is selected if sg;rqr = 1. Note that
this selection has two components. The selection in the j component is made jointly for
the different data dimensions, and in the £ component it is made independently for each

dimension.

2.3 Learning and Inference

The joint distribution over the observed vector x and the latent variables is

P(x, R, S|#) = P(R|A)P(S|0)P(x|R, S, ) = Ha’“dkHbs'wHNxd rakski - (2.1)

k,j d,k,j

Given an input x, the posterior distribution over the latent variables, P(R, S|x, 6),
cannot tractably be computed, since all the latent variables become dependent.

We apply a variational EM algorithm to learn the parameters €, and infer latent
variables given observations. We approximate the posterior distribution using a factored

distribution, where g and m are variational parameters related to r and s respectively:

Q(R, S|x,0) <Hg”’“> <Hms’”) (2.2)
The variational free energy, F(Q,0) = Eq[ —log P(x, R, 5|0) +log Q(R, S|x, )] is

f = EQ [Z Tdk log(gdk/akj) -+ Z Skj log(mkj/bkj) -+ Z Tdkskj log./\f(xd 3 9)]

d.k k,j d;k,j

= Z my; log my; + Z 9ar 10g gar. + Z Gdk Mij Edkj
kg dk d kg
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— )2
where eg; = log og; + % The negative of the free energy —F is a lower bound on
J

the log likelihood of generating the observations. The variational EM algorithm improves
this bound by iteratively improving —F with respect to @ (E-step) and to 6§ (M-step).
Let C be the set of training cases, and Q¢ be the approximation to the posterior
distribution over latent variables given the training case (observation) ¢ € C'. We further
constrain this variational approach, forcing the {gj.} to be consistent across all observa-
tions x°. Hence these parameters relating to the gating variables that govern the selection
of a factor for a given observation dimension, are not dependent on the observation. This
approach encourages the model to learn representations that conform to this constraint.
That is, if there are several posterior distributions consistent with an observed data vec-
tor, it favours distributions over {ry} that are consistent with those of other observed
data vectors. Under this formulation, only the {mg;} parameters are updated during the

E step for each observation c:

J
oty =i () £ 3 50~ i)
d p=1 d

The M step updates the parameters, u and o, from each latent state kj to each input

dimension d, the gating variables {g4}, and the priors {aq} and {by;y:

K
1 1
Gdk = Qdk €XP ( e Z M 53@') / Z adp €XPp ( - Zm% 5fljp>
C,j le C7.j

c .C c c 2
[ - Zc mk‘jxd 0_2 o Zc mk:j(xd - I’Ldkj>
dkj = ~~¢ dkj = c
Zc mk:j Zc mk‘]
1 c
Qg = Yak bij = c E e
c

A slightly different model formulation restricts the selections of VQs, {ra}, to be the
same for each training case. Variational EM updates for this model are identical to those

above, except that the é terms in the updates for g4 disappear. In practice, we obtain
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good results by replacing this é term with an inverse temperature parameter, that is
annealed during learning. This can be thought of as gradually moving from a generative
model in which the r4’s can vary across examples, to one in which they are the same for
each example.

The inferred values of the variational parameters specify a posterior distribution over
the VQ states, which in turn implies a mixture of Gaussians for each input dimension.
Below we use the mean of this mixture, :)53 = Zk i My Gak Hdkj, 1O measure the model’s
reconstruction error on case ¢. (In practice the posterior probability lies almost exclu-
sively on a single choice of state per V@, and a single choice of VQ per data dimension,
thus the resulting mixture of Gaussians has a single predominant mode.)

A variational approximation is just one of a number of possible approaches to perform-
ing the intractable inference (E) step in MCVQ. One alternative would be to approximate
the posterior with a set of samples drawn from the true posterior via Gibbs’ sampling.

Details of this approach for a closely related model can be found in [10].

2.4 Related models

MCVQ falls into the expanding class of unsupervised algorithms known as factorial meth-
ods, in which the aim of the learning algorithm is to discover multiple independent causes,
or factors, that can well characterize the observed data. Its direct ancestor is Cooperative
Vector Quantization [32, [[4, 0], which has a very similar generative model to MCVQ),
but lacks the stochastic selection of one VQ per data dimension. Instead, a data vector
is generated cooperatively - each VQ selects one vector, and these vectors are summed
to produce the data (again using a Gaussian noise model). The contrast between these
approaches mirrors the development of the competitive mixture-of-experts algorithm [[I§]
which grew out of the inability of a cooperative, linear combination of experts to decom-

pose inputs into separable experts.
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Unfortunately CVQ can learn unintuitive global features which include both addi-
tive and subtractive effects. A related model, non-negative matrix factorization (NMF)
[200, 21, 24], proposes that each data vector is generated by taking a non-negative linear
combination of non-negative basis vectors. Since each basis vector contains only non-
negative values, it is unable to ‘subtract away’ the effects of other basis vectors it is
combined with. This property encourages learning a basis of sparse vectors, each cap-
turing a single instantiation of one of the independent latent factors, for example a local
feature of an image. Like NMF, given non-negative data MCVQ will learn a non-negative
basis, taken only in non-negative combinations. Unlike MCVQ, NMF provides no mech-
anism for learning compositional structure - how basis images or parts may be combined
to form a valid whole. Rather, it considers any non-negative linear combination of basis
vectors to be equally suitable, and hence NMF and MCVQ models differ in the range of
novel examples they can generateg. Recent work such as [22] suggests that non-negativity

alone may not be sufficient to ensure the learned basis corresponds to localized parts.

MCVQ also resembles a wide range of generative models developed to address image
segmentation [T, 5], M9]. These are generally complex, hierarchical models designed to
focus on a different aspect of this problem than that of MCVQ: to dynamically decide
which pixels belong to which objects. The chief obstacle faced by these models is the
unknown pose (primarily limited to position) of an object in an image, and they employ
learned object models to find the single object that best explains each pixel. MCVQ
adopts a more constrained solution with respect to part locations, assuming that these
are consistent across images, and instead focuses on the assembling of input dimensions
into parts, and the variety of instantiations of each part. The constraints built into
MCVQ limit its generality, but also lead to rapid learning and inference, and enable it

to scale up to high-dimensional data.

Connections can also be made between MCV(Q and algorithms for biclustering, which

2For a concrete example, refer to the experiments on shape images appearing in Section Bl
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aim to produce a simultaneous clustering of both the rows and the columns of the data
matrix [25]. Biclustering has recently become popular in bioinformatics as a tool for
analyzing DNA microarray data, which presents the expression levels for different genes
under multiple experimental conditions as a matrix [8]. Assuming column-vector data,
the selection of a VQ for each data dimension in MCVQ produces a clustering of the
rows. MCVQ differs from other biclustering methods in that it produces not one but
K clusterings of the columns, one for each of the K VQs. In Chapter Bl we present an
extension that combines the clusterings, allowing MCVQ to produce a single biclustering

of the data.

Finally, MCVQ also closely relates to sparse matrix decomposition techniques, such
as the aspect model [16], a latent variable model which associates an unobserved class
variable, the aspect z, with each observation. Observations consist of co-occurrence
statistics, such as counts of how often a specific word occurs in a document. The latent
Dirichlet allocation model [4] can be seen as a proper generative version of the aspect
model: each document/input vector is not represented as a set of labels for a particular
vector in the training set, and there is a natural way to examine the probability of some
unseen vector. MCVQ shares the ability of these models to associate multiple aspects
with a given document, yet it achieves this in a slightly different manner. The aspect and
LDA models propose that each document — a list of exchangeable words — is generated
by sampling an aspect, then sampling a word from the aspect, for each word in the
document. On the other hand MCVQ models the aggregate word counts of a document.
For each word in the vocabulary, its entire document frequency is generated according
to the dictates of a stochastically-selected aspect (VQ). The stochastic selection leads
to a posterior probability stipulating a soft mixture over aspects for each word. In
the following chapter we present some initial experiments examining whether MCV(Q
can match the successful application of the aspect model to information retrieval and

collaborative filtering problems, after evaluating it on image data.
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As an addendum for the interested reader, two early factorial models of note are the
Harmonium model of Freund and Haussler [9], and the Factorial Hidden Markov Model

of Ghahramani and Jordan [12].

2.5 Conclusion

We have presented a novel method for learning factored representations of data which can
be efficiently learned, and employed across a wide variety of problem domains. MCVQ
combines the cooperative nature of some methods, such as CVQ, NMF, and LSA, that
use multiple causes to generate input, with competitive aspects of clustering methods.
In addition, it gains combinatorial power by splitting the input into subsets, and can
readily handle sparse, high-dimensional data.

In the following chapter we explore applications of this method to several problem

domalins.



Chapter 3

Experiments

3.1 Parts-based Image Decomposition: Shapes and

Faces

3.1.1 Overview

In this section we demonstrate MCVQ’s ability to learn a parts-based representation
of digital images, using two different data sets. The parts learned by MCVQ are fixed
subsets of the data dimensions, corresponding to fixed regions of the images. MCVQ does
not attempt to compensate for transformations (e.g. translation, rotation, scale) of the
object in the image window, thus is restricted to images that have been normalized for
variations in pose. The first data set consists of artificially generated images of shapes,

while the second consists of approximately normalized human faces.

Reconstruction performance is used to evaluate the quality of the learned models.
By reconstruction we mean, given a data example, using the model to generate a new
example that is as similar as possible to the original. The fidelity with which we can
reconstruct data examples (both training and testing) reveals how well the model captures

the essential features of the data distribution.

13
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Figure 3.1: a) A sample of 24 training images from the Shapes dataset. b) A typical

representation learned by MCVQ with 3 VQs and 5 states per VQ. ¢) Reconstruction of

a test image: original (left) and reconstruction (right).

3.1.2 Shape Images

The first dataset used to test our model consisted of 11 x 11 gray-scale images, as pictured
in Fig. BTh. Each image in the set contains three shapes: a box, a triangle, and a cross.
The horizontal position of each shape is fixed, but the vertical position is allowed to vary,
uniformly and independently of the positions of the other shapes. Using nine possible

locations for each shape, we generated a data set of 9% = 729 shape images.

A model containing 3 VQs, 5 states each, was trained on 100 of the shape images. In
this experiment, and all experiments reported herein, annealing proceeded linearly from
an integer less than C' to 1. The learned representation, pictured in Fig. BIb, clearly

shows the specialization of each VQ to one of the shapes.

The training set was selected so that none of the examples depict cases in which all
three shapes are located near the top of the image. Despite this handicap, MCVQ) is able
to learn the full range of shape positions, and can accurately reconstruct such an image

(Fig. BIc). In contrast, standard unsupervised methods such as Vector Quantization
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(Fig. BZh) and Principal Component Analysis (Fig. B22b) produce holistic representa-
tions of the data, in which each basis vector tries to account for variation observed across
the entire image. Non-negative matrix factorization does produce a parts-based repre-
sentation (Fig. B2k), but captures less of the data’s structure. Unlike MCVQ, NMF does
not group related parts, and its generative model does not limit the combination of parts
to only produce valid images. For example, the NMF model could readily generate an

image with two or more triangles, while the MCVQ model could not.

Cooperative Vector Quantization, trained using the same model size as MCVQ), is
able to capture much of the part-structure. Figure shows an example of a CVQ
model, where each circled set of five images depicts the states learned by one of the three
VQs. As can be seen in the third VQ (the five right-most vectors) the state vectors do
contain additive and subtractive global features, similar to those found by PCA. Unlike
MCVQ), these global effects are not “masked away” by a per-pixel stochastic selection.
When training CVQ using the variational algorithm given in [I0], we have found it to

frequently converge to local minima that poorly describe the parts-based structure.

S LEEFETELEENELLT
(AN IS SEEEE
AN IENYDEFEEAENEN
mi!:!lh!ﬂnnmuain

o i E i i i

RMS Error: 0.502 0.716 0.214

Figure 3.2: Other methods trained on shape images: a) VQ, b) PCA, ¢) NMF, and d)

CVQ. e) Reconstruction of a test image by the three methods (cf. Fig. Bk).
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As an empirical comparison, we tested the reconstruction error of each of the afore-
mentioned methods on an independent test set consisting of the remaining 629 images.
Since each method has one or more free parameters (e.g. the # of principal components)
we chose to relate models with similar description lengths. We informally define descrip-
tion length to be the number of bits required to represent the model, plus the number
of bits to encode all the test examples using the model. This metric balances the large
model cost and small encoding cost of VQ/MCV(Q with the small model cost and large
encoding cost of PCA/NMF. Specifically, using V' basis vectors or states, PCA/NMF
models contain V real-valued vectors, while VQ models contain 2V, and MCVQ models
contain 2V + K, where K is the number of VQs. To encode a single example, by indi-
cating the most likely states to have generated it, VQ and MCV(Q require only log, V'
and K log,(V/K) bits respectively. On the other hand, PCA and NMF require a vector
of V' real numbers to encode each example (PCA focuses only on minimizing the cost of

reconstruction errors [14]).

Model Parameters RMS Error
MCVQ 3 VQs, 12 states 0.21
PCA 12 components 0.22
MCVQ 2 VQs, 18 states 0.26
MCVQ 4 VQs, 9 states 0.26
MCVQ 8 VQs, 4 states 0.34
MCVQ 6 VQs, 6 states 0.35
NMF 12 basis vectors 0.35
VQ 38 vectors 0.49

Table 3.1: Average root-mean-squared reconstruction error for various models trained on

the shapes image data.

Using a description length of about 5.9 x 10° bits, and pixel values ranging from -1
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to 1, the average root-mean-squared reconstruction error was calculated, and is shown in
Table Bl Note that this metric may be useful in determining the number of VQs. We
computed the r.m.s. error for various MCV(Q model sizes, keeping the total number of
states (nearly) the same. The model with 3 VQs, the correct number for this data set,

achieves the lowest reconstruction error of all the MCV(Q models.

3.1.3 Face Images

As a more interesting visual application, we trained our model on the face images from
the CBCL Face database #1 [I]. The dataset consists of 19 x 19 gray-scale images,
each containing a single frontal or near-frontal face. An MCVQ model of 6 VQs with 12
states each was trained on 2000 of the training images, requiring 15 iterations of EM to
converge. As with shape images, the model learned a parts-based representation of the

faces.

U =" - W

Taee | =
RN %

Original Reconstruction Original Reconstruction

RMS Error: 0.289 . RMS Error: 0.152

e R | - |

Figure 3.3: The reconstruction of two test images from the Faces dataset. Beside each
reconstruction are the parts—restricted for simplicity to the most active state in each of
the six VQs—used to generate it. Each part j € k is represented by its gated prediction

(gar * my;) for each image pixel 1.



CHAPTER 3. EXPERIMENTS 18

The reconstruction of two test images, along with the specific parts used to generate
each, is illustrated in Fig. B3 It is interesting to note that the pixels comprising a single
part need not be physically adjacent (e.g. the eyes) as long as their appearances are
correlated.

We again compared the reconstruction error of MCV(Q with VQ, PCA, and NMF.
The training and testing sets contained 1800 and 629 images respectivelyd. Using a
description length of 1.5 x 10° bits, and pixel values ranging from -1 to 1, the average
root-mean-squared reconstruction error was 0.12 for PCA, 0.20 for NMF, 0.23 for MCVQ
(both 3 and 6 VQs), and 0.28 for VQ.

3.2 Collaborative Filtering

The application of MCVQ to image data assumes that the images are normalized, i.e.,
that the head is in a similar pose in each image. Normalization can be difficult to
achieve in some image contexts; however, in ma