Learning Probabilistic Models for Visual Motion

David Ross Ph.D. Thesis

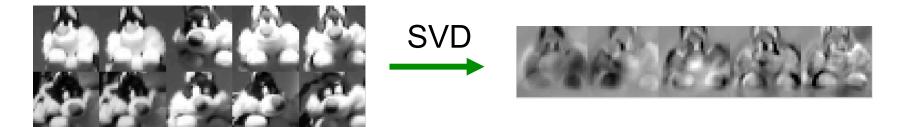
May 23, 2008

Learning for Motion Analysis

- State of the art: human ability is rivaled only in narrow domains, by carefully engineere d systems
 - Tracking a face in video: difficulty with changes in lighting, pose, & occlusions
 - Recovering 3D pose of a human: usually requires detailed kinematic model of human body
- Manual construction limits flexibility & coverage of vision systems
- Machine learning
- Three methods: 2 address training of vis ual trackers, 1 analysis of non-rigid articulated motion

1. Incremental Learning for Visual Tracking

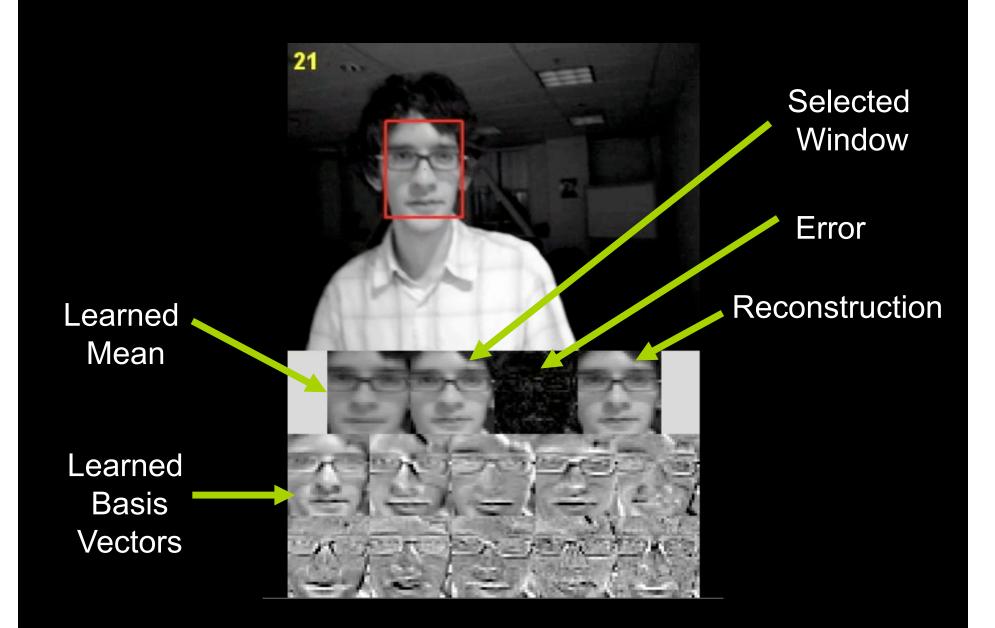
- Tracking requires models of appearance & dynamics
- Principal Components Analysis (PCA) aka Eigentracking

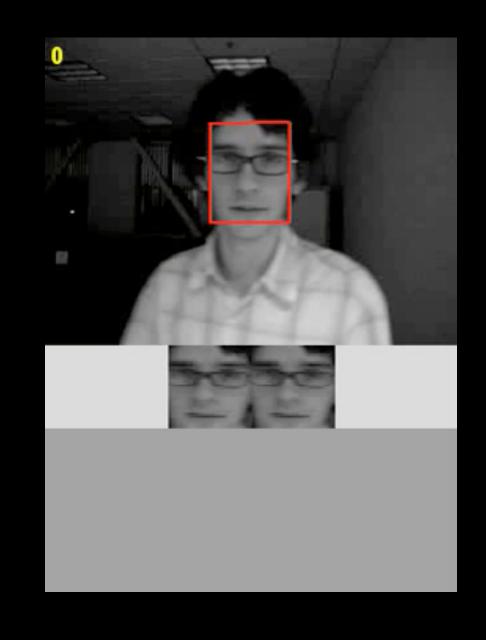


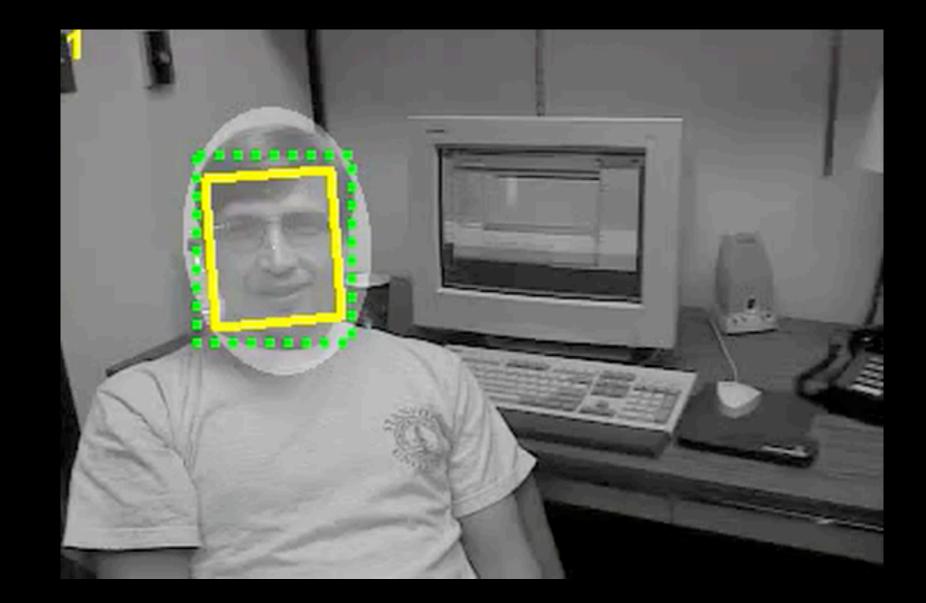
 Drawbacks: requires training data, can't adapt to appearance changes

Incremental PCA

- Incrementally learn PCA model online, from appearances obtained during tracking
- Naïve batch fitting via SVD does not scale
- New algorithm for incremental updates:
 - Fast: constant time updates, constant storage
 - Exact: same result as batch update
 - Correctly updates subspace mean
 - "Forgetting Factor" places more emphasis on recent appearances, improves performance







2. Combining Discriminative Features

- Previously: Learn PCA
 - → not the only appearance model available
- Given a new tracking task, how to select most-appropriate appearance & dynamics models?

- Data driven approach: Learn selection of models + parameters from labeled video sequence.
- Flexible Combination: aggregate tracker more reliable than constituent models

Discriminative Conditional Model

- Model Pr(state|observations) as a (log-linear) combination of dynamics & appearance features
- "Pile on" features
 - Include any features that might be relevant
 - Decide which are useful via learned weights
 - Switch features on and off dynamically

Discriminative Features

• Dynamics features:

$$f_j(\mathbf{x}_{t-1}, \mathbf{x}_t)$$

 $g_k(\mathbf{x}_t, \mathbf{Y}, t)$

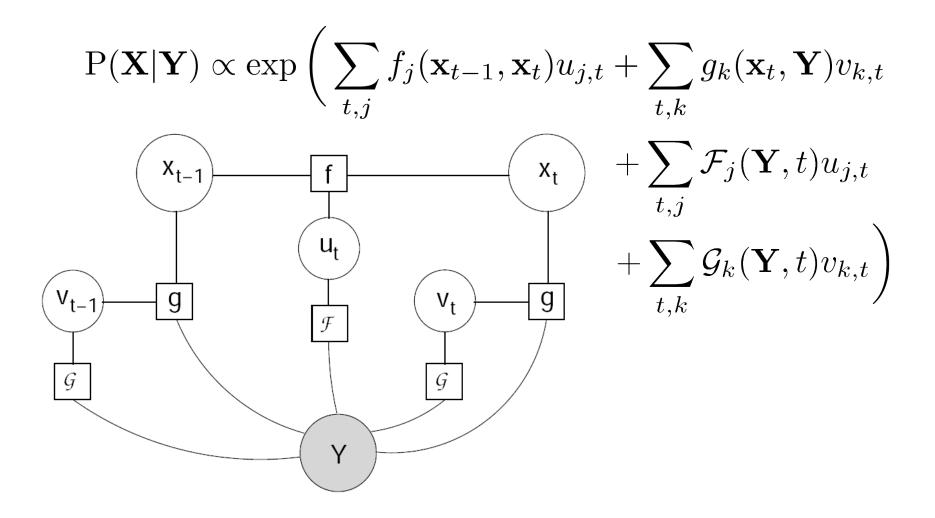
- How well do two states match?
- Li near dynamical models (fly, hold, roll, bounce)
- Observation features:
 - Is the target at x_t ?
 - Can include information from the entire observation sequence
 - PCA, templates, background subtraction
- Robustify by switching features on and off
 - Hidden switch variables

$$u_{jt}$$
 v_{kt}

Features & Switch Potentials

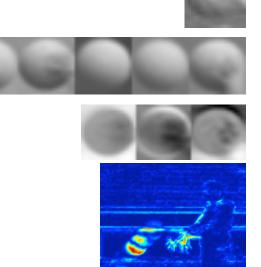
- Weighted distance between state and prediction $f_j(\mathbf{x}_{t-1}, \mathbf{x}_t) = -\frac{1}{2} \left(\mathbf{x}_t - \phi_j(\mathbf{x}_{t-1}) \right)^T \boldsymbol{\alpha}_j \left(\mathbf{x}_t - \phi_j(\mathbf{x}_{t-1}) \right)$ $g_k(\mathbf{x}_t, \mathbf{Y}) = -\frac{1}{2} \left(\mathbf{x}_t - \gamma_k(\mathbf{Y}, t) \right)^T \boldsymbol{\beta}_k \left(\mathbf{x}_t - \gamma_k(\mathbf{Y}, t) \right)$ $\phi_j(\mathbf{x}_{t-1}) = \mathbf{T}_j \mathbf{x}_{t-1} + \mathbf{d}_j$
 - Switch Potentials: extra features help decide if switches should be on or off
 - Any classifier (logistic / softmax regression)

Probability Model

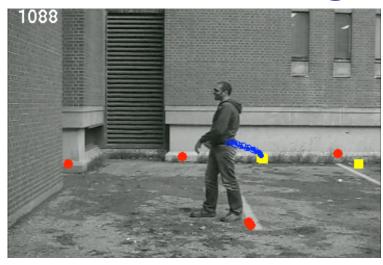


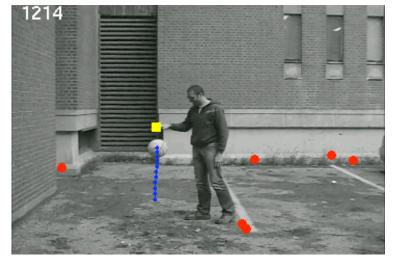
Features Used

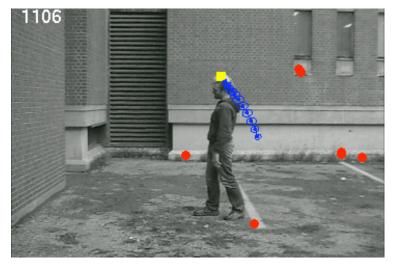
- Template from one frame
- Template from K-Means
- PCA, 3 components
- Local background subtraction
- 4 Linear dynamics (fly, hold, bounce:ground, bounce:wall)



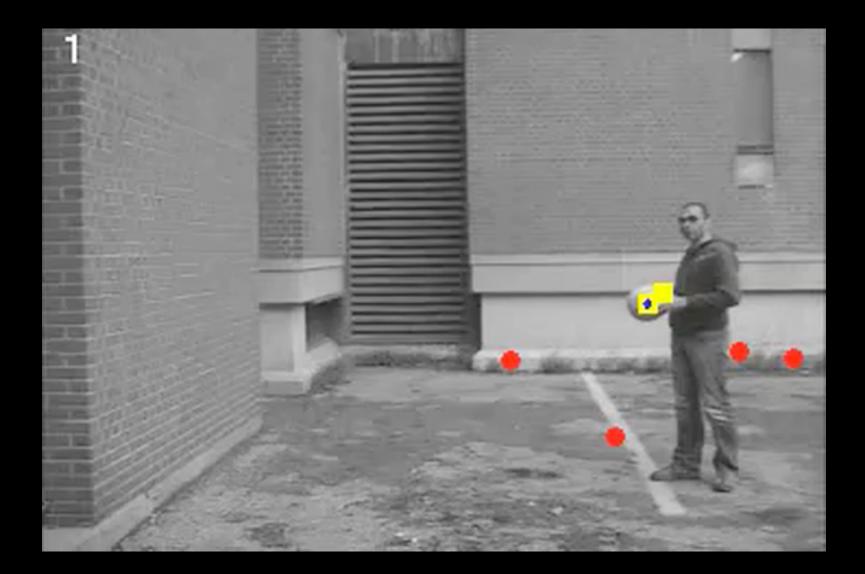
Tracking Performance







- expected ball position (last 10 frames)
- observation features
 - switched on
 - switched off



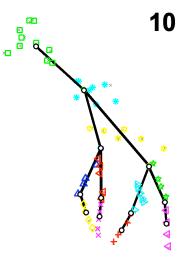


3. Learning Articulated Structure & Motion

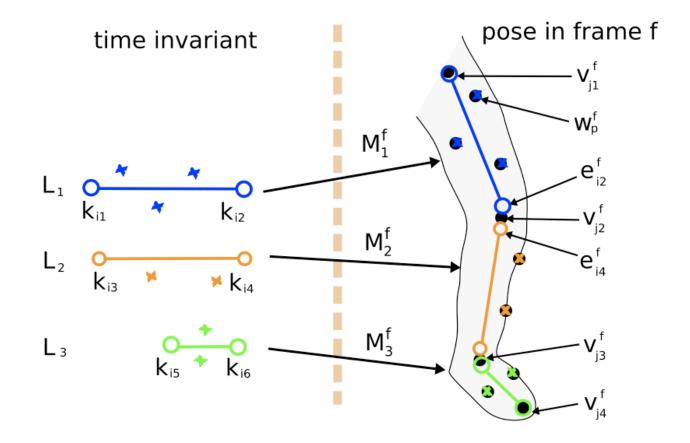
- Most interesting objects are non-rigid
- Humans better-described as articulated figures - rigid parts connected by joints
- Advantages of higher-level model
 - Infer locations of occluded body parts
 - "Joint angles" between parts better representation for describing motion
- Challenge: parsing articulated motion typically requires a detailed hand-built physical model

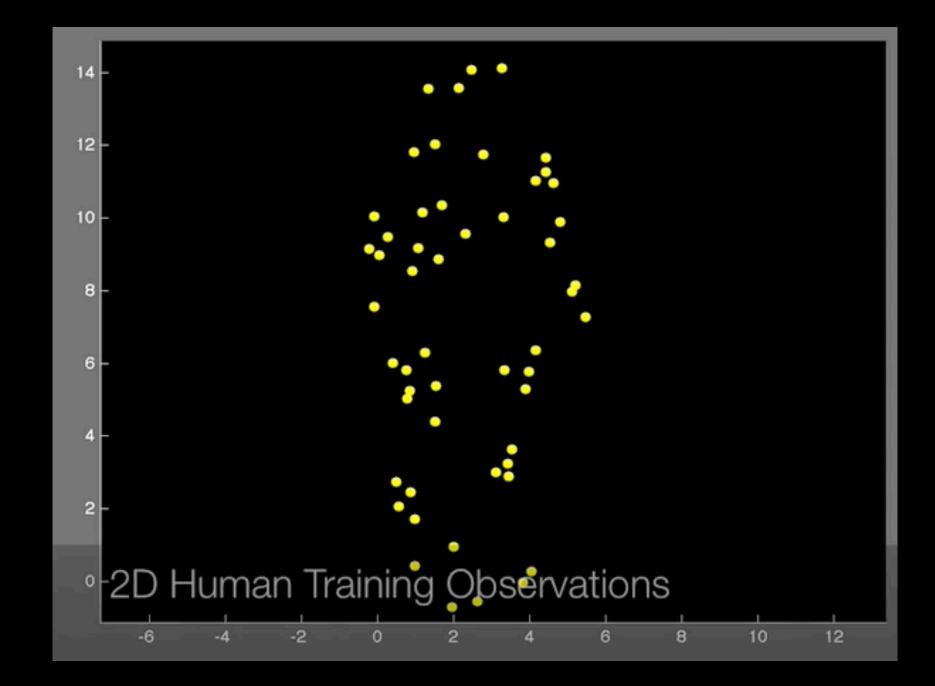
Probabilistic Stick Figures

- Entirely-unsupervised recovery of 3D articulated structure and pose from 2D observations
- Probabilistic model for stick figure
- Begin from fully-disconnected structure (SFM)
- Fit parame ters using EM, resample segmentation
- Incrementally merge joints to greedily optimize data log-likelihood
- Model selection by locating maximum in objective function



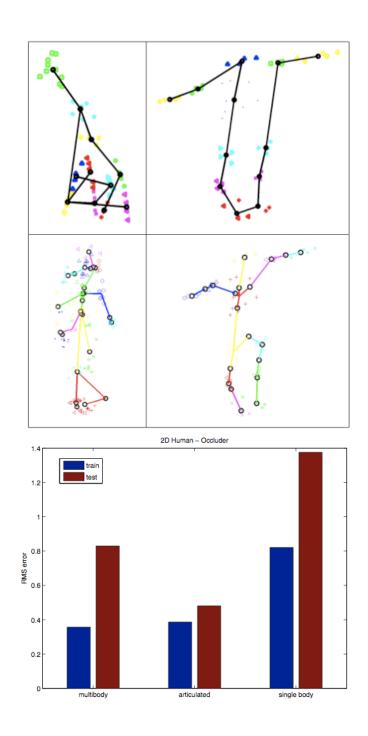
Probabilistic Model





Contributions

- Robustly recover 3D structure from 2D, handling structured occlusions
- An explicit objective function
- Quantitative evaluation



Future Directions

- Incremental Tracking
 - Robustify to uncertainty in position & loss of track
- Combining Discriminative Features
 - Learn from partially-labeled data
- Articulated Structure
 - Integrate tracking of feature points, knowledge of structure can solve occlusions
- Broader goals
 - Performance that improves with amount of data and # of machines, End-to-end learning

Acknowledgements

Incremental Learning for Visual Tracking:

• Ming-Hsuan Yang, Jongwoo Lim, Ruei-sung Lin

Combining Discriminative Features

• Simon Osindero, Rich Zemel

Articulated Structure & Motion

• Danny Tarlow, Rich Zemel