
CSCA20 Exercise 2
Deadline(s)
There will be a pre-grading run on Friday September 28 at 11:59pm. If you submit your work
before this deadline, you will receive feedback from the automarker on what grade you
would receive on your submission, as well as any errors in your code we've found.

The actual deadline for this exercise will be Sunday September 30 at 11:59pm. The latest
version of e2.py you submit before this deadline (including possibly anything you've
submitted before the pre-grading deadline) will be examined to determine your final grade for
this exercise.

Deadline-related suggestions
I suggest you treat the pre-grading deadline as your actual deadline; ie. try to get all of your
work done before then. If you earn a perfect grade, then you're done! And if you happen to
make any errors, then you'll have two days to correct them in order to increase your final
grade. Not many courses give you this opportunity, so make the best of it.

We will mark the newest version submitted not later than the deadline. Don't submit just
once; instead, submit at least once well in advance, so that you know what you're doing, and
then keep submitting new versions as you do more of the exercise. That way, if you run out
of time on the last function that you just can't do, you'll still get marks for the others.

What you'll be required to do
David is too lazy to do his taxes himself, so he's planning to get his students to do his taxes
for him. In this exercise, you'll be implementing functions to calculate various figures related
to income tax. You can find all necessary taxation information in the following link
https://www.canada.ca/en/revenue-agency/services/tax/individuals/frequently-asked-questio
ns-individuals/canadian-income-tax-rates-individuals-current-previous-years.html in the
section "Federal tax rates for 2018"

You can find (unfinished) definitions for three functions in e2.py alongside docstrings
describing the arguments they take, the value(s) they should return, and anything else they
should do. You will be required to complete the functions by writing code for their bodies.
The areas where you are supposed to write your code are clearly denoted with comments.

The docstring for each function describes what each function is supposed to do and/or
return. It's up to you to implement them to do what their docstrings require. Do not modify
these docstrings. And also, do not modify the format of the functions' arguments.

Note that the last function you'll be required to implement must be done using a single line of
code (not including comments). See the comments within the body of that function for more
details.

Make sure to keep any printing lines inside the if __name__ == '__main__' block at
the bottom of e2.py. Specifically, do not print inside your functions unless specifically
instructed to! Such print statements could mess up the automarker's reports.

https://www.canada.ca/en/revenue-agency/services/tax/individuals/frequently-asked-questions-individuals/canadian-income-tax-rates-individuals-current-previous-years.html
https://www.canada.ca/en/revenue-agency/services/tax/individuals/frequently-asked-questions-individuals/canadian-income-tax-rates-individuals-current-previous-years.html

You can assume that we will be testing your code using sensible values for the arguments of
your functions. For example, we won't be testing with negative incomes. Additionally, you
can assume that the function argument values will be of the correct type; eg. if the docstring
says that an argument is a float, we will only test by giving it floats.

What you should also do
In the comments of e2.py, you'll see that I've given suggestions for testing your functions.
While we won't be grading you on how well you test your functions, we will be grading you
on how well your functions work. And the best way for you to make sure your functions work
is to test them thoroughly.

The guidelines for testing from exercise 1 still hold. In addition, you may have noticed that
your functions should behave differently depending on different income levels. For example,
the calculation for income taxes at an income of $46605.00 is not the same as the one for
$46605.01 . In the discipline of Software Engineering, we call these kinds of values 1

boundary values.

You should try to identify all of the boundary values and, for each boundary, make sure to
test using a pair of incomes; one income higher than the boundary, and one income lower.

Attention to detail
Remember that Python cannot make any intelligent corrections for you. It will only do exactly
what you tell it to. Any typos or logical errors will make your code behave completely
differently from what you want it to! So the best way to make sure you haven't made any of
these errors is to test! (See above)

Style
The adherence of your modified e2.py to the PEP8 style guide will count towards your grade.
After you've implemented and tested your code, run it through the online style-checker
provided in the Resources section of the course website and then fix all of the style errors it
will no doubt find in your code.

It may seem tedious to write according to the PEP8 style guide when Python will understand
non-PEP8-compliant code just as well. But remember that when you're programming, you're
programming for humans as well. Writing code which follows style conventions will help
humans read it. And as you practice following these conventions, they will become habit and
you might eventually find yourself doing it by default.

Thus, the second last thing you should do before you submit is to run your code through the
PEP8 style checker. The last thing you should do is the sanity check (see below).

Sanity check

1 If you don't understand why the calculations will be different, take a look at the link to the tax
information

If nothing else, make sure your code runs without any syntax errors. In lecture, you've seen
how easy it is to forget a bracket and end up with invalid Python code. Even the best
programmers make these mistakes regularly. If the code you eventually submit has these
kinds of errors, you will get a 0 on your exercise grade, no matter how well you did
everything else! So the last thing you should do before you submit is a final sanity check to
make sure you can at least run your code without any errors!

What to hand in
Submit your completed e2.py on MarkUs
https://markus.utsc.utoronto.ca/csca20f18/?locale=en

https://markus.utsc.utoronto.ca/csca20f18/?locale=en

