
Copyright© 2018 Kara Autumn Jiang 

CSCA20  REVIEW SEMINAR

WELCOME



What is the difference between

return() and print()

- You can only return 
from inside a function. 

- You can print anywhere in 
your program. 

- Values that are returned 
can be saved and re-used, 
but are not displayed. 

- Printing a value doesn’t 
save it. It only displays the 
value in the shell. 

- Return is used primarily to 
retrieve data that was 
modified/generated, at the  
end of a function call . 

- Print statements are used 
to display information to 
the shell. This can be  
useful in debugging and 
testing. 

Copyright © Kara Autumn Jiang



Which of these will run?

1 

2 

3 

4 

5 

6 

7 

8

int(“four”)	

int(“4”)	

int(15.39)	

int(“15.39”)	

int(“CSCA20”)	

int(“1.1”)	

float(int(“4”))	

int(float(“5.34”))

Type Conversions

Copyright © Kara Autumn Jiang



Which of these will run?

int(“four”)	

int(“4”)	

int(15.39)	

int(“15.39”)	

int(“CSCA20”)	

int(“1.1”)	

float(int(“4”))	

int(float(“5.34”))

Type Conversions

Copyright © Kara Autumn Jiang

1 

2 

3 

4 

5 

6 

7 

8



What is wrong with this code?

1 

2 

3 

4 

5 

6 

7 

8

def	myFunction(num_1,	num2):	

if	num_1	>	num2	and	==	3:	

print(Tacos!)	

elif	num_1	=	num2:	

print(‘burgers!’)	

else	

print(“pizza”)	

return(“Food!”)

Review

Hint: There are 5 problems!

Copyright © Kara Autumn Jiang



How can we fix it?

def	myFunction(num_1,	num2):	

if	num_1	>	num2	and	==	3:	

print(Tacos!)	

elif	num_1	=	num2:	

print(‘burgers!’)	

else	

print(“pizza”)	

return(“Food!”)

Review

Copyright © Kara Autumn Jiang

1 

2 

3 

4 

5 

6 

7 

8



How can we fix it?

Review

Copyright © Kara Autumn Jiang

def	myFunction(num_1,	num2):	

if	(num_1	>	num2)	and	(num_1	==	3):	

print(“Tacos!”)	

elif	num_1	==	num2:	

print(‘burgers!’)	

else:	

print(“pizza”)	

return(“Food!”)

1 

2 

3 

4 

5 

6 

7 

8



def	myFunction(num_1,	num2):	

if	(num_1	>	num2)	and	(num_1	==	3):	

print(“Tacos!”)	

elif	num_1	==	num2:	

print(‘burgers!’)	

else:	

print(“pizza”)	

return(“Food!”)

What do we expect to see?

result	=	myFunction(3,	1)	

print(result)

1 

2

1 

2

myFunction(3,	1)	

Tacos!	
Food!

Tacos!

Copyright © Kara Autumn Jiang

1 

2 

3 

4 

5 

6 

7 

8



if	condition1:	

#	Perform	action	1	

[if]/[elif]	condition2:	

#	Perform	action	2	

[if]/[elif]	condition3:	

#	Perform	action	3	

else:	

#	Handle	all	other	cases

Conditional Statements

Copyright © Kara Autumn Jiang

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11



Conditional Statements
What is the difference between if and elif?

How many else blocks am I allowed to have?

A: Multiple if blocks can be executed, 
      but only one elif block can be executed. 
 
      AKA: elif blocks are mutually exclusive  
     with if blocks and other elif blocks.

A: Only one at the end to catch every  
      other case that falls through your 
      ifs and elifs.

Copyright © Kara Autumn Jiang



STR  NGS



What is a string?

Strings

Think of it as a word or phrase

In Python, string literals are declared 
with double or single quotes
myString	=	‘CSCA20’	

myString2	=	“CSCA20”	
1 

2

To the interpreter, both strings are equal

A String is a sequence of characters.



Which of these will run?

1 

2 

3 

4 

5 

6 

7 

8

print(“4”	+	“0”)	

print(“4”	+	0)	

print(“hello”	*	2)	

print(“hello”	*	“2”)	

print(“hello”	+	2)	

print(“CSCA”	+	“20”)	

print(“CSCA”	+	20)	

print(“CSCA”	+	str(20))

String Operations



Which of these will run?

print(“4”	+	“0”)	

print(“4”	+	0)	

print(“hello”	*	2)	

print(“hello”	*	“2”)	

print(“hello”	+	2)	

print(“CSCA”	+	“20”)	

print(“CSCA”	+	20)	

print(“CSCA”	+	str(20))

1 

2 

3 

4 

5 

6 

7 

8

String Operations



String Operations

Concatenation

String Indexing

“First”	+	“Second”						“FirstSecond”

myString	=	“Hello	World”

myString[4]							“o”
myString[4:-1]						“orl”



String Operations

String Slicing
myString	=	“CSCA20	is	lots	of	fun”

myString[:4]						“CSCA”

myString[4:]						“20	is	lots	of	fun”

myString[4:6]					“20”



String Slicing

String Slicing

myString[a	:	b]

Included

Not	Included



Quiz Time

myString	=	“COMPUTERS”

What is  myString[:4]? 

A)   “COMPU” 

B)   “COM” 

C)   “COMP” 

D)   “UTERS”



Quiz Time

myString	=	“COMPUTERS”

What is  myString[-1]? 

A)   “S” 

B)   “COMPUTERS” 

C)   “C” 

D)   None of the above



Quiz Time

myString	=	“COMPUTERS”

What is  myString[:300]? 

A)   “CO” 

B)   “COMPUTERS” 

C)   “S” 

D)   None of the above



Quiz Time

myString	=	“COMPUTERS”

What is  myString[12]? 

A)   “S” 

B)   “COMPUTERS” 

C)   “C” 

D)   None of the above



Quiz Time

myString	=	“COMPUTERS”

What is  myString[5:]? 

A)   “COMPU” 

B)   “TERS” 

C)   “ERS” 

D)   “T”



Quiz Time

myString	=	“COMPUTERS”

What is  myString[6:6]? 

A)   “TE” 

B)   “E” 

C)   “” 

D)   None of the above



Quiz Time

myString	=	“COMPUTERS”

What is  myString[6:7]? 

A)   “TE” 

B)   “E” 

C)   “” 

D)   None of the above



Quiz Time

myString	=	“COMPUTERS”

What is  len(myString)? 

A)   8 

B)   9 

C)   “COMPUTERS” 

D)   None of the above



Quiz Time

myString	=	“COMPUTERS”

What is  len(myString[6:6])? 

A)   9 

B)   1 

C)   0 

D)   2



Quiz Time

myString	=	“COMPUTERS”

A)   5 

B)   4 

C)   3 

D)   0

What is  len(myString[5:])? 



__

For Loops

for	_______	in	________:	
Perform	some	operation	

An element 
A collection

A for loop iterates over the collection one element at a 
time, performing the operation you defined in the loop 
body.



1 

2

for	num	in	range(4):	

print(num)

0	
1	
2	
3

1 

2

for	num	in	range(len(“hi”)):	

print(num)

0	
1	

For Loops

result	=	1	

for	num	in	range(3):	

result	+=(num)	

print(“num:	”	+	str(num))	

print(“result:	”	+	str(result))

1 

2 

3 

4 

5

num:	0	

Result:	1	

Num:	1	

Result:	2	

Num:	2	

Result:	4	



__

While Loops

While	_______:	
Perform	some	operation	

Loop Condition

A while loop repeatedly performs the operation you 
defined in the loop body so long as the loop condition holds.



0	
1	
2	
3

While Loops
num	=	0	

while	num	<	4:	

print(num)	

num	+=	1

1 

2 

3 

4

num:	0	

Result:	1	

Num:	1	

Result:	2	

Num:	2	

Result:	4	

result	=	1;		

num	=	0	

while	num	<	3:	

result	+=(num)	

print(“num:	”	+	str(num))	

print(“result:	”	+	str(result))	

num	+=	1

1 

2 

3 

4 

5 

6 

7



L   STS



Lists

A list is an ordered collection  
of objects. ie:

[True,		3,		“bob”,	2.39]

[“Sara”,	“Anna”,	“Karen”]

[2,	4,	8,	16,	32,	64]



Lists

We can also slice and index lists 
the way we do with strings

myList	=	[True,		3,		“bob”,	2.39]

myList[:2]							[True,	3]



List Operations

Girls	=	[“Sara”,		“Anna”,		“Karen”]	

Boys		=	[“Billy”,		“John”]

Girls	+	Boys

[“Sara”,	“Anna”,	“Karen”,	“Billy”,	“John”]

We can concatenate two lists  
using the + operator.



List Operations

We can repeat elements within a list 
using the * operator.

[“Sara”]	*	3	

						

														[“Sara”,	“Sara”,	“Sara”]

We can check for membership within a list 
using the in keyword.



Lists and Strings

Both Lists and Strings are Ordered 
Collections 

A String is an array of characters 

A list is an array of objects

“H” “E” “L” “L” “O” “ “ “W” “O” “R” “L” “D”

“Hello” 3.14 True 42 False “bloop”



cmp(list1,	list2)

min(list)

max(list)

len(list)

Compares the two given lists

Returns the minimum in the list

Returns the maximum in the list

Returns the length of the list

List Functions



List.append(obj)
Inserts obj to the end of the list

Returns the number of occurrences of obj

Returns the first index of obj in the list

Inserts obj at the given index in the list

List.count(obj)

List.index(obj)

List.insert(index,obj)

List Methods



List Methods
List.pop()

Removes and returns the last object in list

Removes obj from the list

Reverses the order of objects in the list

List.remove(obj)

List.reverse(obj)



for	i	in	myList:1

myList:

i:

Iterating Through a List



Iterating Through a List

myList:

i:

for	i	in	myList:1



myList:

i:

for	i	in	myList:1

Iterating Through a List



myList:

i:

for	i	in	myList:1

Iterating Through a List



myList:

i:

for	i	in	myList:1

Iterating Through a List



myList:

i:

for	i	in	myList:1

Iterating Through a List



myList:

i:

for	i	in	myList:1

Iterating Through a List



myList:

i:

for	i	in	myList:1

Iterating Through a List



myList:

i:

for	i	in	myList:1

Iterating Through a List



myList:

i:

for	i	in	myList:1

Iterating Through a List



DICTIONARIES



Python Dictionaries

{ }key key key key

value value value value

A dictionary is a collection which is 
unordered, mutable and indexed.  

In Python dictionaries are written with curly 
brackets, and they have keys and values.



Python Dictionaries

{

}

myDict = “Name”	:	“Kara”

“Age”	:	19

“Occupation”	:		“TA”

“Program”	:		“CS”

key value



Setting Up a Dictionary

You know that to create: 
- A new String: 
- A new List:

myStr	=	“”	
myList	=	[]

We know that dictionaries are denoted with 
curly braces {} so, intuitively:

myDict	=	{} myDict	=	dict()OR



Adding Values to a Dictionary

myDict[key]	=	value

To add a new value to a dictionary, we must add 
a key, and give it a value.

For example:
kara	=	dict()	
kara[“name”]	=	“Kara”	
kara[“age”]	=	19	
kara[“job”]	=	“TA”

{“name”:“Kara”,	“age”:19,	“job”:“TA”}



Reading Values from a Dictionary

value	=	myDict[key]

To read an existing value to a dictionary, we 
must reference a key.

For example:

kara[“name”]								“Kara”	
kara[“age”]									19	
kara[“job”]									“TA”	
kara[“address”]					ERROR

{“name”:“Kara”,	“age”:19,	“job”:“TA”}



Removing Values from a Dictionary

myDict.pop(key)

To remove an existing value to a dictionary, we 
must pop the key value pair by referencing a key.

For example:

kara.pop(“job”)

{“name”:“Kara”,	“age”:19,	“job”:“TA”}

{“name”:“Kara”,	“age”:19}



Merging Dictionaries

myDict.update(anotherDict)

For example:

kara.update({“job”:“TA”})

{“name”:“Kara”,	“age”:19}

{“name”:“Kara”,“age”:19,	“job”:“TA”}

To merge two dictionaries, we can use the 
update method to join them into a single dict.



Important Dictionary Methods

Dictionary.copy()
Returns a copy of the dictionary

Dictionary.clear()
Removes all elements from the dictionary

Dictionary.keys()
Returns a list of the dictionary’s keys

Dictionary.values()
Returns a list of the dictionary’s values



Old Friends We Can Rely On

in
Is a key in our dictionary?

len()
How many keys are in our dictionary?

type()
Is our variable a dictionary?

del
Clears the value of a variable 

[KEYWORD]

[KEYWORD]



Combining Dictionary Methods

sorted(dict.keys())
Returns a list of sorted keys in the dictionary

sorted(dict.get(key))
Returns a sorted list of the values at the key

type(dict.get(key))
Tells us the type of value at the key

… And many more!



Looping Through a Dictionary

{ }key key key key

value value value value

for	i	in	dictionary:

When we use a for loop with a dictionary the way we’re 
used to doing it, we’re iterating through the keys.



Looping Through a Dictionary

{ }key key key key

value value value value

for	i	in	dictionary:

When we use a for loop with a dictionary the way we’re 
used to doing it, we’re iterating through the keys.



Looping Through a Dictionary

{ }key key key key

value value value value

for	i	in	dictionary:

When we use a for loop with a dictionary the way we’re 
used to doing it, we’re iterating through the keys.



Looping Through a Dictionary

{ }key key key key

value value value value

for	i	in	dictionary:

When we use a for loop with a dictionary the way we’re 
used to doing it, we’re iterating through the keys.



Looping Through a Dictionary

{ }key key key key

value value value value

for	i	in	dictionary:

When we use a for loop with a dictionary the way we’re 
used to doing it, we’re iterating through the keys.



F  LES



with	open(file)	as	myFile:

Store the file 
into a variable

Now we can do something with our 
file inside the with block. 
 
When the block finishes executing, 
the file will be closed automatically.

Opening files

Open a file by name  
(In the same directory)



myFile	=	open(file)

Open a file by name  
(In the same directory)

myFile will be the variable that holds the 
open file. We can work with it the same way 
we would in a with block, except we must 
remember to close the file when we’re done.

Opening files

Store the file 
into a variable



myFile	=	open(file,	mode)

Indicate what we want 
to do with the file

We can (and should) indicate what we intend to 
do with our open file: 
“r”: read.           Read the contents of the file only 
“w”: write         Clears the file for writing into 
“a”: append      Write into the file after its content

Opening files

Open a file by name  
(In the same directory)



myFile.close()

If we opened a file manually, as was shown 
on the previous slide, we must ensure that 
we close it before the program exits.  
This is very important! 

Closing files

We need to make sure that  
the file we indicate is currently open



Why do you shut your computer down instead of 
pulling the power cord out? 

We don’t want to cause conflicts with other 
applications that might use the file later. 

We don’t want to hog more memory (RAM) than we 
need. 

It’s like clicking “eject” before pulling out a flash drive. 

Why Should I Close A File?



Which way is better?
with  Block Manually

You don’t need to worry 
about closing files

It’s easy to forget to 
close open files

If your code causes an 
error, the file will close 

automatically

If your code causes an 
error, your program will 

crash

You have to remember 
to indent the block

No indenting is needed. 
(Yay?)



Looping Through a File

for	_____	in	myFile:

Line in you open file  
(In the same directory)

myFile is an 
open file

When we loop through a file by element, we 
read one line at a time; up to each newline 
(“\n”) character — what you get when you  
hit the enter key on your keyboard



Important File Methods:

File.readline()
Reads the next unread line in the file.  
(This tracks your place in the file)

File.readlines()
Returns a list containing all the lines in the file.

File.write(text)
Writes the  given text to the open file.  
Like print, except the output goes into the file.



CSV Files

CSV stands for Comma Separated Values. 

A CSV file is a translation of a table into text. 
Programs like MS Excel, and Numbers read 
and generate CSVs out of spreadsheets. 

Values in the table are separated with 
commas, without spaces. Think of these 
commas as dividers in a table. 



CSV Files

Name Age Gender

Linda 34 F

Joseph 8 M

Name,Age,Gender	
Linda,34,F	
Joseph,8,M



Databases
Introduction to

Copyright© 2018 Kara Autumn Jiang 



Why talk about databases?

Databases are one of the most important  
topics in computer sciences!

Almost all organizations, whether private or 
public, use databases in one way or another

You use databases every single day without  
even realizing it!

Copyright© 2018 Kara Autumn Jiang 



What is a Database?

A database is just a well-structured  
 collection of data.

Data should be easily stored and retrieved 

Often data is stored in the form of tables  
where the headers are properties, and 
each row represents an entry

Copyright© 2018 Kara Autumn Jiang 



The format of which data is stored in a  
database is called its schema.

Attributes

En
tr

ie
s

image_name uploader image_size search_tags

“img_1134.png” “mrBubbles123” 30 [“cats”,	“weekend”,	“12”]

“img_6126.jpg” “hanna_mclean” 13 [“beach”,	“sun”,	“trip”]

“dsc_2342.tiff” “ms_skittles” 45 [“baby”,	“weekend”,	“cute”]

“img_4911.jpeg” “space_invader” 35 [“game”,	“fortnite”,	“boy”]

… … … …

Uploads:

What is a Database?

Copyright© 2018 Kara Autumn Jiang 



Does this sound familiar? 
It should! This is how CSV files are formatted!

image_name uploader image_size search_tags

“img_1134.png” “mrBubbles123” 30 [“cats”,	“weekend”,	“12”]

“img_6126.jpg” “hanna_mclean” 13 [“beach”,	“sun”,	“trip”]

“dsc_2342.tiff” “ms_skittles” 45 [“baby”,	“weekend”,	“cute”]

“img_4911.jpeg” “space_invader” 35 [“game”,	“fortnite”,	“boy”]

… … … …

Uploads:

What is a Database?

Copyright© 2018 Kara Autumn Jiang 



Database Example

Suppose that this is the schema that an 
image search platform uses to store data.

image_name uploader image_size search_tags

“img_1134.png” “mrBubbles123” 30 [“cats”,	“weekend”,	“12”]

“img_6126.jpg” “hanna_mclean” 13 [“beach”,	“sun”,	“trip”]

“dsc_2342.tiff” “ms_skittles” 45 [“baby”,	“weekend”,	“cute”]

“img_4911.jpeg” “space_invader” 35 [“game”,	“fortnite”,	“boy”]

… … … …

Uploads:

Copyright© 2018 Kara Autumn Jiang 



Database Example

How do we search for names of images 
that contain the tag “weekend”?

image_name uploader image_size search_tags

“img_1134.png” “mrBubbles123” 30 [“cats”,	“weekend”,	“12”]

“img_6126.jpg” “hanna_mclean” 13 [“beach”,	“sun”,	“trip”]

“dsc_2342.tiff” “ms_skittles” 45 [“baby”,	“weekend”,	“cute”]

“img_4911.jpeg” “space_invader” 35 [“game”,	“fortnite”,	“boy”]

… … … …

Attributes

En
tr

ie
s

Uploads:

Copyright© 2018 Kara Autumn Jiang 



image_name uploader image_size search_tags

“img_1134.png” “mrBubbles123” 30 [“cats”,	“weekend”,	“12”]

“img_6126.jpg” “hanna_mclean” 13 [“beach”,	“sun”,	“trip”]

“dsc_2342.tiff” “ms_skittles” 45 [“baby”,	“weekend”,	“cute”]

“img_4911.jpeg” “space_invader” 35 [“game”,	“fortnite”,	“boy”]

… … … …

Uploads:

	SELECT	image_name	
	FROM	uploads	
	WHERE	search_tags	CONTAINS	“weekend”	

Our query will be something  along the lines of:

Copyright© 2018 Kara Autumn Jiang 



image_name uploader image_size search_tags

“img_1134.png” “mrBubbles123” 30 [“cats”,	“weekend”,	“12”]

“img_6126.jpg” “hanna_mclean” 13 [“beach”,	“sun”,	“trip”]

“dsc_2342.tiff” “ms_skittles” 45 [“baby”,	“weekend”,	“cute”]

“img_4911.jpeg” “space_invader” 35 [“game”,	“fortnite”,	“boy”]

… … … …

	SELECT	image_name	
	FROM	uploads	
	WHERE	search_tags	CONTAINS	“weekend”	

Uploads:

Our query will be something  along the lines of:

Copyright© 2018 Kara Autumn Jiang 



image_name uploader image_size search_tags

“img_1134.png” “mrBubbles123” 30 [“cats”,	“weekend”,	“12”]

“img_6126.jpg” “hanna_mclean” 13 [“beach”,	“sun”,	“trip”]

“dsc_2342.tiff” “ms_skittles” 45 [“baby”,	“weekend”,	“cute”]

“img_4911.jpeg” “space_invader” 35 [“game”,	“fortnite”,	“boy”]

… … … …

Uploads:

	SELECT	image_name	
	FROM	uploads	
	WHERE	search_tags	CONTAINS	“weekend”	

Our query will be something  along the lines of:

Copyright© 2018 Kara Autumn Jiang 



image_name uploader image_size search_tags

“img_1134.png” “mrBubbles123” 30 [“cats”,	“weekend”,	“12”]

“img_6126.jpg” “hanna_mclean” 13 [“beach”,	“sun”,	“trip”]

“dsc_2342.tiff” “ms_skittles” 45 [“baby”,	“weekend”,	“cute”]

“img_4911.jpeg” “space_invader” 35 [“game”,	“fortnite”,	“boy”]

… … … …

Uploads:

	SELECT	image_name	
	FROM	uploads	
	WHERE	search_tags	CONTAINS	“weekend”	

Our query will be something  along the lines of:

Copyright© 2018 Kara Autumn Jiang 



image_name uploader image_size search_tags

“img_1134.png” “mrBubbles123” 30 [“cats”,	“weekend”,	“12”]

“img_6126.jpg” “hanna_mclean” 13 [“beach”,	“sun”,	“trip”]

“dsc_2342.tiff” “ms_skittles” 45 [“baby”,	“weekend”,	“cute”]

“img_4911.jpeg” “space_invader” 35 [“game”,	“fortnite”,	“boy”]

… … … …

Alternatively, you can think of it this way:

Uploads:

	SELECT	image_name	
	FROM	uploads	
	WHERE	search_tags	CONTAINS	“weekend”	

Copyright© 2018 Kara Autumn Jiang 



image_name uploader image_size search_tags

“img_1134.png” “mrBubbles123” 30 [“cats”,	“weekend”,	“12”]

“img_6126.jpg” “hanna_mclean” 13 [“beach”,	“sun”,	“trip”]

“dsc_2342.tiff” “ms_skittles” 45 [“baby”,	“weekend”,	“cute”]

“img_4911.jpeg” “space_invader” 35 [“game”,	“fortnite”,	“boy”]

… … … …

Uploads:

	SELECT	image_name	
	FROM	uploads	
	WHERE	search_tags	CONTAINS	“weekend”	

Alternatively, you can think of it this way:

Copyright© 2018 Kara Autumn Jiang 



image_name uploader image_size search_tags

“img_1134.png” “mrBubbles123” 30 [“cats”,	“weekend”,	“12”]

“dsc_2342.tiff” “ms_skittles” 45 [“baby”,	“weekend”,	“cute”]

Uploads:

	SELECT	image_name	
	FROM	uploads	
	WHERE	search_tags	CONTAINS	“weekend”	

Alternatively, you can think of it this way:

Copyright© 2018 Kara Autumn Jiang 



image_name

“img_1134.png”

“dsc_2342.tiff”

Uploads:

	SELECT	image_name	
	FROM	uploads	
	WHERE	search_tags	CONTAINS	“weekend”	

Alternatively, you can think of it this way:

Copyright© 2018 Kara Autumn Jiang 



image_name

“img_1134.png”

“dsc_2342.tiff”

Uploads:

	SELECT	image_name	
	FROM	uploads	
	WHERE	search_tags	CONTAINS	“weekend”	

(“img_1134.png”,	“dsc_2342.tiff”)

Alternatively, you can think of it this way:

Copyright© 2018 Kara Autumn Jiang 



A query defines the parameters for the search  
that we want to perform on a database.  

Depending on the version of SQL that you use, the  
exact syntax will vary,  

but the idea is always the same.

	SELECT	[some	attribute	or	column]	
	FROM			[some	table]	
	WHERE		[some	condition	is	true]	
	

Writing A Query

Copyright© 2018 Kara Autumn Jiang 



Writing A Query

Before we can do a SELECT operation,  
we must first indicate which table we  
want SELECT from. 

The FROM block will always be run first so  
that the query has a starting point.

	FROM	[The	name	of	the	table	we	examine]	
	

Copyright© 2018 Kara Autumn Jiang 



	SELECT	[some	attribute	or	column]	
	

Writing A Query

When we select from a database, we want 
to make sure that the argument is a  
column or set of columns in our table.

We can also use  SELECT *  to denote that  
we want to select ALL the columns.

Copyright© 2018 Kara Autumn Jiang 



	WHERE	[some	condition	holds	true]	
	

Writing A Query

When we select from a database, we want 
can include a WHERE block to narrow down 
our search results to just a certain entries. 

The WHERE block is technically optional,  
but it’s what gives you the actual search  
functionality. 

Copyright© 2018 Kara Autumn Jiang 



SQL
SQL is a database management system that can 
be integrated into various programs and have 
numerous implementations that work with  
many programming languages. 

In this course, we’ll be using pySQLite using the  
sqlite3  API (This is the module you have to import) 

SQL is not quite like Python: 
Python is used to do general computations,  
SQL is used manipulate tables in a database.

Copyright© 2018 Kara Autumn Jiang 



SQL
SQL is a database management system that can 
be integrated into various programs and have 
numerous implementations that work with  
many programming languages. 

In this course, we’ll be using pySQLite using the  
sqlite3  API (This is the module you have to import) 

SQL is not quite like Python: 
Python is used to do general computations,  
SQL is used manipulate tables in a database.

Copyright© 2018 Kara Autumn Jiang 



Working With A Database

import	sqlite3

connection	=	sqlite3.connect(name	of	database)
cursor	=	connection.cursor()

cursor.close()

connection.commit()

connection.close()

The first thing we need to do is import the sqlite3 module.

Next, we need to connect to our database 
and link to it using a cursor. Now we can do some work.

Once we are done making changes, we need to save.

After all changes have been saved, close all connections.

Copyright© 2018 Kara Autumn Jiang 



Manipulating the Database
The cursor is a link to your database. 

in other words, if you want to do something  
to your database, you must reference it using  

the cursor.

If you want to think of the database as a Object  
like a String, List, Dictionary etc, then the cursor 

is the database object that contains a set of  
database tools.

Copyright© 2018 Kara Autumn Jiang 



.execute()
The database cursor’s execute method isn’t  
a conventional method like those that you’re  
used to seeing. It doesn’t do any one thing… 

 
.execute() does to the database whatever  

you tell it to do in SQL!

In other words,  it’s the bridge between your  
Python code and the SQL that modifies the  

database.

Copyright© 2018 Kara Autumn Jiang 



.execute()

SQL queries are always written and passed 
 to .execute()  as a string. 

The SQL itself specifies the operation that  
.execute()  performs on your database!

Copyright© 2018 Kara Autumn Jiang 



Common Table Tasks 
Here are some common tasks that can be done  

using SQL and  the cursor’s .execute() method:

DROP	TABLE	IF	EXISTS	table_name

If the table already exists, erase it and set it up 
all over again. This should be used inside your  
functions before you create any new table.

Copyright© 2018 Kara Autumn Jiang 



CREATE	TABLE	table_name(columnName	TYPE	…)

Creates a new table with the given name  
and columns.

Columns must indicate the names of each  
column and the type of data that should  

go into that column. These types 
are not the same across Python and SQL!

Python Type SQL Type

Str TEXT

Float REAL

Int INTEGER

Copyright© 2018 Kara Autumn Jiang 



Common Table Tasks 
SELECT	columns	FROM	table	WHERE	condition

SQL queries (Of the format we discussed earlier) 
Can also be passed into .execute(), indicating  
that we want to search the database.

(INSERT	INTO	table	VALUES	(?,	?,	…),	data)

Add an entry (also called a VALUE or row)  
into the table. This is the query that must be  
paired with an actual dataset. Each “?” Is a 
placeholder for an attribute of the actual dataset.

Copyright© 2018 Kara Autumn Jiang 



(INSERT	INTO	table	VALUES	(?,	?,	…),	data)

image_name uploader image_size
“img_1134.png” “mrBubbles123” 30

“img_6126.jpg” “hanna_mclean” 13

“dsc_2342.tiff” “ms_skittles” 45

Suppose we have a table called Uploads:

We want to add this row:

query	=	“INSERT	INTO	uploads	VALUES	(?,	?,	?)”	

data	=	(“dsc_2342.tiff”,	“ms_skittles”,	45)		

cursor.execute(query,	data)

Copyright© 2018 Kara Autumn Jiang 



Table Joins

A B



Sometimes the information we need is 
Spread across more than one table

We need some way to relate this data  
in a way that makes sense, and is still  

easy to access

Solution:
We can combine multiple smaller tables  
into a single larger table that contains all  

the information we want! 

When Are Joins Useful?



There are many types of joins that we can use  
depending on the data we’re working with:

In lecture, David talked about: 

Types of Joins

Left Joins

Inner Joins

Full Outer Joins (Not In SQLite)

Right Joins (Not In SQLite)

Cross Joins (This one is very different!)



There are many types of joins that we can use  
depending on the data we’re working with:

In lecture, David talked about: 

Types of Joins

Left Joins

Inner Joins

Full Outer Joins (Not In SQLite)

Right Joins (Not In SQLite)

Cross Joins

We’ll talk about 
these today.



Left Join

A B

	SELECT	[some	attribute	or	column]	
	FROM			A	LEFT	JOIN	B	
	ON					A.key	=	B.key	
WHERE		[some	condition	is	true]	

	



Left Join

	SELECT	…	
	FROM			A	LEFT	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	

Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

A =

B =



Left Join

	SELECT	…	
	FROM			A	LEFT	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	

Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

A =

B =



Left Join

	SELECT	…	
	FROM			A	LEFT	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	

Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

A =

B =



Left Join

	SELECT	…	
	FROM			A	LEFT	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	

Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

Movie Year Genre

Titanic 1998 NULL

Avatar 2009 Action

A =

B =



Left Join

	SELECT	…	
	FROM			A	LEFT	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	

Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

Movie Year Genre

Titanic 1998 NULL

Avatar 2009 Action

A =

B =



Right Join

A B

	SELECT	[some	attribute	or	column]	
	FROM			A	LEFT	JOIN	B	
	ON					A.key	=	B.key	
WHERE		[some	condition	is	true]	

	



	SELECT	…	
	FROM			A	RIGHT	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	

Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

A =

B =

Right Join



Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

A =

B =

Right Join

	SELECT	…	
	FROM			A	RIGHT	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	



Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

A =

B =

Right Join

	SELECT	…	
	FROM			A	RIGHT	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	



Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

Movie Genre Year

Avatar Action 2009

Grown Ups Comedy NULL

A =

B =

Right Join

	SELECT	…	
	FROM			A	RIGHT	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	



Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

A =

B =

Right Join

Movie Genre Year

Avatar Action 2009

Grown Ups Comedy NULL

	SELECT	…	
	FROM			A	RIGHT	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	



Inner Join

A B

	SELECT	[some	attribute	or	column]	
	FROM			A	INNER	JOIN	B	
	ON					A.key	=	B.key	
WHERE		[some	condition	is	true]	

	



Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

A =

B =

Inner Join

	SELECT	…	
	FROM			A	INNER	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	



Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

A =

B =

Inner Join

	SELECT	…	
	FROM			A	INNER	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	



Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

A =

B =

Inner Join

	SELECT	…	
	FROM			A	INNER	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	



Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

Movie Genre Year

Avatar Action 2009

A =

B =

Inner Join

	SELECT	…	
	FROM			A	INNER	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	



Full Outer Join

A B

	SELECT	[some	attribute	or	column]	
	FROM			A	FULL	OUTER	JOIN	B	
	ON					A.key	=	B.key	
WHERE		[some	condition	is	true]	

	



Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

A =

B =

Full Outer Join

	SELECT	…	
	FROM			A	FULL	OUTER	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	



Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

A =

B =

Full Outer Join

	SELECT	…	
	FROM			A	FULL	OUTER	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	



Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

A =

B =

Full Outer Join

	SELECT	…	
	FROM			A	FULL	OUTER	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	



Movie Year

Titanic 1997

Avatar 2009

Movie Genre

Avatar Action

Grown Ups Comedy

Movie Genre Year

Titanic 1997 NULL

Avatar 2009 Action

Grown Ups NULL Comedy

A =

B =

Full Outer Join

	SELECT	…	
	FROM			A	FULL	OUTER	JOIN	B	
	ON					A.movie	=	B.movie	
WHERE		…	

	


