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Discriminative deep learning

* Recipe for success
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Discriminative deep learning

e Recipe for success:

Conv Conv Conv Conv
I1x1+1(S) 3x3+1(S) 5x5+1(S) I1x1+1(S)

Conv Conv MaxPool
1x1+1(S) I1x1+1(S) 3x3+1(S)

Google's winning entry
into the ImageNet [K DepthConcat
competition (with extra data).

Conv Conv Conv Conv
I1x1+1(S) 3x3+1(S) 5x5+1(S) I1x1+1(S)

Conv Conv MaxPool
1x1+1(S) I1x1+1(S) 3x3+1(S)

P
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Discriminative deep learning

* Recipe for success:
- Gradient backpropagation.
- Dropout
- Activation functions:
* rectified linear
* maxout
Google's winning entry

into the ImageNet [K
competition (with extra data).
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Generative modeling

* Have training examples X ~ pPdata(X )

* Want a model that can draw samples: X ~

pmodeI(X )

* Where Pmodel ~ Pdata
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Why generative models?

* Condritional generative models

- Speech synthesis: Text = Speech

- Machine Translation: French = English

e French:SI mon tonton tond ton tonton, ton tonton sera tondui.
e English: If my uncle shaves your uncle, your uncle will be shaved

- Image = Image segmentation

* Environment simulator
- Reinforcement learning

- Planning

* Leverage unlabeled data
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Maximum likelihood: the dominant approach

* ML objective function

1 m |
v max - ;:1 ogp |z ;0
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Undirected graphical models

* State-of-the-art general purpose undirected
oraphical model: Deep Boltzmann machines

* Several "hidden layers’ h 1 (3)

1 h(2):

p(h, aj) — Eﬁ(hv aj)

p(h,z) = exp(—E(h,z)) i S

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- lan Goodfellow



Undirected graphical models: disadvantage

* ML Learning requires that we draw samples:

1 (3)|

h(2):

()|

XL

* Common way to do this is via MCMC (Gibbs sampling).
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Boltzmann Machines: disadvantage

* Model is badly parameterized for learning high
quality samples.

* Why!
- Learning leads to large values of the model parameters.
» Large valued parameters = peaky distribution.
- Large valued parameters means slow mixing of sampler.

- Slow mixing means that the gradient updates are
correlated = leads to divergence of learning.
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Boltzmann Machines: disadvantage

* Model is badly parameterized for learning high
quality samples.

* Why poor mixing?

E .D Coordinated

flipping of low-
level features

Hrlols
AFAriEs
NEEI)
Y617

MNIST dataset 1st layer features (RBM)
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Directed graphical models

p(z, h) = p(z | KY)p(hD | ). p(h =Y | RE)p(htE)

7,3)

d 1 d
] = =
40, og p(z) o )d@ip(x) R0 ¢

X

p(x) => plx | h)p(h) KO
h

* [wo problems:

|. Summation over exponentially many states in h

2. Posterior inference, i.e. calculating p(h | X), is intractable.
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Directed graphical models: New approaches

 [he Variational Autoencoder model:

Kingma and Welling, Auto-Encoding Variational Bayes, International
Conference on Learning Representations (ICLR) 2014.

Rezende, Mohamed and Wierstra, Stochastic back-propagation and
variational inference in deep latent Gaussian models. ArXiv.

Use a reparametrization that allows them to train very efficiently
with gradient backpropagation.
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Generative stochastic networks

* General strategy: Do not write a formula for p(x),
just learn to sample incrementally.

e

* Main issue: Subject to some of the same constraints
on mixing as undirected graphical models.
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Generative adversarial networks

Don't write a formula for p(X), just learn to sample
directly.

No summation over all states.

How! By playing a game.
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Two-player zero-sum game

* Your winnings + your opponents winnings = 0

* Minimax theorem: a rational strategy exists for all
such finite games
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Two-player zero-sum game

» Strategy: specification of which moves you make in which
circumstances.

* FEquilibrium: each player’s strategy Is the best possible for

their opponent’s strategy.
Your opponent

* Example: Rock-paper-scissors: Rock  Paper Scissors

- Mixed strategy equilibrium 0 -

Rock

- Choose you action at random

You

Scissors Paper
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Generative modeling with game theory!?

* (Can we design a game with a mixed-strategy
equilibrium that forces one player to learn to generate
from the data distribution!?
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Adversarial nets framework

* A game between two players:

|. Discriminator D
2. Generator G

e D tries to discriminate between:

- A sample from the data distribution.
- And a sample from the generator G.

* G tries to "trick” D by generating samples that are
hard for D to distinguish from data.
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Adversarial nets framework

A D tries to D tries to
. output 1 output O

OO
0O -+ OO

Differentiable Differentiable
function D function D

E x sampled x sampled
- from data from model

Differentiable
function G

Input noise
Z

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- lan Goodfellow



Zero-sum game

* Minimax objective function:

mén max V(D,G) = Egppu(x)log D(x)] + E,pp_(2)log(l — D(G(2)))]

* |n practice, to estimate G we use:

max L zmops () 10g D(G(2))]

Why! Stronger gradient for G when D Is very good.
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Discriminator strategy

» Optimal strategy for any Pmodel(X) is always

pdata(x)

Pdata (LE) + Pmodel ('I)
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Learning process

pp(data) Data distribution
l / Model distribution
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Learning process

pp(data) Data distribution
l / Model distribution
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Poorly fit model After updating D
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Learning process

pp(data) Data distribution
l / Model distribution
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Poorly fit model After updating D After updating G

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- lan Goodfellow



Learning process

pp(data) Data distribution
l / Model distribution
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Poorly fit model After updating D After updating G =~ Mixed strategy
equilibrium
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Theoretical properties

min max V (D, G) = Eorpy, (@) 108 D(@)] + Exnp, (2 [log(1 — D(G(2)))]

* Theoretical properties (assuming infinite data, infinrte
model capacity, direct updating of generator’s
distribution):

Unigue global optimum.
Optimum corresponds to data distribution.

Convergence to optimum guaranteed.
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Quantitative likelihood results

* Parzen window-based log-likelihood estimates.

- Density estimate with Gaussian kernels centered on
the samples drawn from the model.

Model MNIST TFD
DBN [3] 138 £+ 2 1909 4
Stacked CAE [3] | 121 £1.6 | 2110 -
Deep GSN [6] 214+ 1.1 | 1890 4
Adversarial nets 225 +2 | 2057 -

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- lan Goodfellow



Visualization of model samples
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Learned 2-D manifold of MNIST
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Visualizing trajectories
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Visualization of model trajectories
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Visualization of model trajectories
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Extensions

e Conditional model:
Learn p(X | V)
Discriminator is trained on (X,Yy) pairs

Generator net gets Y and Z as input

Useful for: Translation, speech synth, image
segmentation.

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- lan Goodfellow



Extensions

e |nference net:

- Learn a network to model p(z | X)

- Infinite training set!
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Extensions

Take advantage of high amounts of unlabeled data
using the generator.

rain G on a large, unlabeled dataset

rain G’ to learn p(z|x) on an infinite training set

Add a layer on top of (&, train on a small labeled
training set
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Extensions

* Take advantage of unlabeled data using the
discriminator

* Train G and D on a large amount of unlabeled data

- Replace the last layer of D

- Continue training D on a small amount of labeled
data
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Questions?




