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• Rule based grammars do not generalize well 
across domains and languages:  
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• machine learning applications are characterized by: 	


- complex structures 	


- potential function that scores these structures	



y = (y1, ..., yn)

• For machine learning we need to efficiently infer from 
distributions over complex structures. 
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X

i2V
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Inference in machine learning

• Interactive annotation:



Gibbs distribution

• MCMC samplers:
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Gibbs distribution

• MCMC samplers: 	


- Gibbs sampling, Metropolis-Hastings, Swendsen-Wang	



• Many efficient sampling algorithms for special cases:	


- Counting bi-partite matchings in planar graphs (Kasteleyn 61) 	


- Ising models (Jerrum 93)	


- Approximating the permanent (Jerrum 04) 	


- Many others… 

p(y1, ..., yn) =
1

Z
exp
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• Nicely behaved distribution 
that is centered around the 
(1,…,1) or (0,…,0)
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• Sampling from the Gibbs 
distribution is provably hard in 
AI applications (Goldberg 05, 
Jerrum 93)

Sampling likely structures

✓i(yi) = log p(yi|xi)

• Recall: sampling from the Gibbs 
distribution is easy in Ising 
models (Jerrum 93)

✓i(yi) = 0

• Data terms (signals) that are important in 
AI applications significantly change the 
complexity of sampling
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Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posterior (MAP) inference.	



• Many efficient optimization algorithms for special cases:	


- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10), 	


- Graph-cuts for image segmentation	


- branch and bound (Rother 09), branch and cut (Gurobi)	


- Linear programming relaxations (Schlesinger 76, Wainwright 05, 

Kolmogorov 06, Werner 07, Sontag 08, Hazan 10, Batra 10, 
Nowozin 10, Pletscher 12, Kappes 13, Savchynskyy13, Tarlow 13, 
Kohli 13, Jancsary 13, Schwing 13)	



- CKY for parsing	


- Many others… 



The challenge

Sampling from the likely high dimensional structures 
(with millions of variables, e.g., image segmentation 
with 12 million pixels) as efficient as optimizing
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• Randomly perturbing the system reveals its complexity	


- little effect when the maximizing structure is “evident”	


- substantial effect when there are alternative high scoring 

structures	



!

• Related work: 	


- McFadden 74 (Discrete choice theory) 	


- Talagrand 94 (Canonical processes)

structures

scores
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Random perturbations



Random perturbations

structures 

scores

y⇤

✓(y⇤)

✓(y)

y

• Notation:

scores (potential) ✓(y)



Random perturbations

structures 

scores

y⇤

✓(y⇤)

✓(y)

y

• Notation:

scores (potential)

perturbed score

✓(y)



Random perturbations

structures 

scores

y⇤

✓(y⇤)

✓(y)

y

• Notation:

�(y)

scores (potential)

perturbed score

perturbations �(y)

✓(y)



Random perturbations

structures 

scores

y⇤

✓(y⇤)

✓(y)

y

• Notation:

�(y)

scores (potential)

perturbed score

perturbations �(y)

✓(y)

✓(y) + �(y)



Random perturbations

structures 

scores

y⇤

✓(y⇤)

✓(y)

y

�(y)

• For every structure y, the perturbation value        is a 
random variable (y is an index, traditional notation is     ).	



�(y)
�y

• Perturb-max models: how stable is the maximal structure 
to random changes in the potential function.
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Perturb-max models

•Theorem	


Let         be i.i.d. with Gumbel distribution with zero mean�(y)

F (t)
def
= P [�(y)  t] = exp(� exp(�t))

then the perturb-max model is the Gibbs distribution

1

Z
exp(✓(y)) = P�⇠Gumbel[y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]



has Gumbel distribution whose mean is 

Let         be i.i.d Gumbel (                                  ).    Then�(y)

logZ

max

y
{✓(y) + �(y)}

P [�(y)  t] = F (t)

Perturb-max models

• Why Gumbel distribution? 	
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• Since maximum of Gumbel variables is a Gumbel variable.
F (t) = exp(� exp(�t))

= exp(�
X

y

exp(�(t� ✓(y)))) = F (t� logZ)

•Proof: P� [max

y
{✓(y) + �(y)}  t] =

Y

y

F (t� ✓(y))

has Gumbel distribution whose mean is 

Let         be i.i.d Gumbel (                                  ).    Then�(y)

logZ

max

y
{✓(y) + �(y)}

P [�(y)  t] = F (t)



Perturb-max models

• Max stability: 

1

Z
exp(✓(y)) = P�⇠Gumbel[y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

• Implications (taking gradients):

log

⇣X

y

exp(✓(y))
⌘
= E�⇠Gumbel

h
max

y
{✓(y) + �(y)}

i
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Perturb-max models

• Representing the Gibbs distribution using perturb-max 
models may require exponential number of perturbations 

P� [y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

• Use low dimension perturbations [Papandreou & Yuille11, 
Tarlow et. al12]

P� [y = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}]
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1

AM

µ
9p(y1, y2, y3) s.t. µ1(y1) =

X

y2,y3

p(y1, y2, y3), ...

µ1,2(y1, y2) =
X

y3

p(y1, y2, y3), ...
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[Wainwright & Jordan 08]
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Outline

• Random perturbation - why and how? 	


- Sampling likely structures as fast as finding the most likely one.	



• Connections and Alternatives to Gibbs distribution: 	


- the marginal polytope	


- non-MCMC sampling for Gibbs with perturb-max	



• Application: interactive annotation.	


- New entropy bounds for perturb-max models.	





Non-MCMC sampling

• Perturb-max sample from tree-shaped Gibbs distribution 
[Gane, H, Jaakkola 14].	



• Perturb-max + rejections sample from the Gibbs 
distribution on general graphs [H, Maji, Jaakkola 13]. 	



• In practice, perturb-max marginals approximate the Gibbs 
marginals for general graphs [Papandreou & Yuille 11].	





Outline

• Random perturbation - why and how? 	


- Sampling likely structures as fast as finding the most likely one.	



• Connections and Alternatives to Gibbs distribution: 	


- the marginal polytope	


- non-MCMC sampling for Gibbs distributions with perturb-max	



• Application: interactive annotation.	


- New entropy bounds for perturb-max models.	





Image annotation

• Image annotation is a time consuming (and tedious) task. 
Can computers do it for us? 



Image annotation
• Why not to use the most likely annotation instead? 



Image annotation

• Most likely annotation is inaccurate around 	


- “thin” areas	
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Image annotation

• Most likely annotation is inaccurate around 	


- “thin” areas	


- clutter	



• Why not to use the most likely annotation instead? 



Interactive image annotation

• Perturb-max models show the boundary of decision.



Interactive image annotation

• Perturb-max models show the boundary of decision.



Interactive image annotation

• Interactive annotation directs the human annotator to 
areas of uncertainty - significantly reduces annotation time 
[Maji, H., Jaakkola 14].   

• Perturb-max models show the boundary of decision.



Uncertainty 

• Entropy H(p✓) = �
X

y

p✓(y) log p✓(y)

• Entropy = uncertainty	


- It is a nonnegative function over probability distributions. 	


- It attains its maximal value for the uniform distribution. 	


- It attains its minimal value for the zero-one distribution.

• Computing the entropy requires summing over 
exponential many configurations  y = (y1, ..., yn)

• Can we bound it with perturb-max approach? 
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ŷ
{✓(ŷ) +
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• Perturb-max entropy bound:          
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• Standard entropy independence bound:
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• Perturb-max entropy bound requires less samples since 
sampled average tail decreases exponentially.

Uncertainty 

• How does it compare to standard entropy bounds? 



Perturb-max entropy bounds
• Spin glass, 5x5 grid
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�i(ŷi)}

Uncertainty* 

H(p✓)  E
hX

i

�i(y
⇤
i )
i

• Proof idea: conjugate duality

H(p) = min

✓̂

n

logZ(

ˆ✓)�
X

y

ˆ✓(y)p(y)
o



• Theorem: 

y⇤ = argmax

ŷ
{✓(ŷ) +
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Sample complexity*

• The upper bounds hold in expectation. 

• The distance between the sampled average and the 
true expectation decays exponentially 
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[Orabona, H., Sarwate, Jaakkola 14], [Nguyen 14]

Sample complexity*



• Why is it hard to get exponential decay? 
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• Why it is hard to get exponential decay? 

moment generating function

• Measure concentration requires to bound the moment 
generating function	


- Hoeffding concentration requires bounded perturbations.	


- McDiarmid concentration requires bounded differences.	


- Our perturbations are unbounded with exponential tail.
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• The exponential tail of Gumbel distribution

q(�i(yi)) ! exp(��i(yi))

⇠ exp(�i(yi))

exponential tail
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• A function concentrates around its expectation if it does 
not change too much. 	
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• A function concentrates around its expectation if it does 
not change too much. 	


- Use tensorization to deal with one dimension at a time	



!

- Bound any dimension’s variance with its perturb-max 
probability (a Poincare inequality) 	
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Outline

• Random perturbation - why and how? 	


- Sampling likely structures as fast as finding the most likely one.	



• Connections and Alternatives to Gibbs distribution: 	


- the marginal polytope	


- non-MCMC sampling for Gibbs distributions with perturb-max	



• Application: interactive annotation.	


- New entropy bounds for perturb-max models.	





Open problems
• Perturb-max models: 	



- How do perturb-max models generalize - Follow the Perturbed 
Leader [Manfred Warmuth, Jacob Abernethy]	



- Adversarial learning objective [Ian Goodfellow]	


- Perturb-max models stabilize the prediction. Do they connect 

computational and statistical stability  [Yury Makarychev]? 	


- Perturb-max models in continuous space [Maddison et. al 14]	


- When does fixing variables in the max-function amount to statistical 

conditioning?	


- When do perturb-max models preserve the most likely assignment? 	


- How do the perturbations dimension affect the model properties?  	


- How to encourage diverse sampling? 



Thank you


