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* Complex structures dominate machine learning applications:

- Computer vision

- Natural language processing
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- Computational biology

- and more..
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Inference in machine learning

* machine learning applications are characterized by:
- complex structures Yy = (Y1, ..., Un)

- potential function that scores these structures

Hyla- 7yn Ze yz _|_ Z 9,] yzayj

1€V 1,7€ b

* For machine learning we need to efficiently infer from
distributions over complex structures.



Inference in machine learning

® MATLAB File Edit View Insen

MATLAS 7.12

1) 9 & 1) Jusers/smaji/Research/boundaryAasctation/code

| Shortcuts 2] Howis Add 2] What's New
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»» data = activeAanotatioca(im, [], conf, procPolyge=);
Ploaso draw the inital polygon...39.14s Tlapeed.
Computing iaitial data (Pinel error: #)...5.00s Elapaeed.
Stazting isteractive ansotation (Press ? for help)..
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Gibbs distribution
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* MCMC samplers:
- Gibbs sampling, Metropolis-Hastings, Swendsen-VWang

* Many efficient sampling algorithms for special cases:
- Counting bi-partite matchings in planar graphs (Kasteleyn 61)
- Ising models (Jerrum 93)
- Approximating the permanent (Jerrum 04)

- Many others...
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Gibbs distribution

* Gibbs distribution hasa p(y) x exp (Z 0u(yi) + D 05 (i, yj))
significant impact on statistics 7; »
and computer science
- Efficient sampling in Ising models 0351

(Jerrum 93) sl

- Attractive pairwise potentials

)
Wy, it y; =y,
—w; ; otherwise

0i i(yi,y;) = 4
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- No data terms
(o) — * Nicely behaved distribution
9@(3/@) =0 )
that is centered around the
(I,...,1) or (0,...,0)
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Sampling likely structures

* Sampling from the Gibbs p(y) o exp 0i(us) + > 6, (i, v
distribution is provably hard in v (ZL: (1) Zz; i ]))

Al applications (Goldberg 05,
Jerrum 93)
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Sampling likely structures

* Sampling from the Gibbs * Recall: sampling from the Gibbs
distribution is provably hard in distribution is easy in Ising
Al applications (Goldberg 05, models (Jerrum 93)
lerrum 93)
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* Sampling from the Gibbs * Recall: sampling from the Gibbs
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Sampling likely structures

* Sampling from the Gibbs * Recall: sampling from the Gibbs
distribution is provably hard in distribution is easy in Ising
Al applications (Goldberg 05, models (Jerrum 93)
lerrum 93)
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Most likely structure

* Instead of sampling, it may be * The most likely structure
significantly faster to find the

most likely structure
- Graph-cuts = = = °
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Most likely structure

y* = arg max ZH i)+ D 0 (Yir )

Y1,---9Yn
1,]

* Maximum a-posterior (MAP) inference.

* Many efficient optimization algorithms for special cases:
- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10),
- Graph-cuts for image segmentation

= branch and bound (Rother 09), branch and cut (Gurobi)

- Linear programming relaxations (Schlesinger 76,WWainwright 05,
Kolmogorov 06,Werner 07, Sontag 08, Hazan |0, Batra 10,

Nowozin |0, Pletscher |2, Kappes |3, Savchynskyy |3, Tarlow 13,
Kohli |3, Jancsary |3, Schwing 13)

- CKY for parsing
- Many others...



The challenge

Sampling from the likely high dimensional structures
(with millions of variables, e.g., image segmentation
with |12 million pixels) as efficient as optimizing
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Most likely structure

* The maximizing structure is not robust in case of
multiple high scoring alternatives
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Most likely structure

* The maximizing structure is not robust in case of

ambiguities
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John saw
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Most likely structure

* The maximizing structure is not robust in case of
computationally limited models
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Random perturbations

scores scores -

ﬂ |-||_||-|> 4[] [1 0,

Y structures f structures
*

Y
* Randomly perturbing the system reveals its complexity

- little effect when the maximizing structure is “evident”

- substantial effect when there are alternative high scoring
structures

* Related work:
- McFadden 74 (Discrete choice theory)

- Talagrand 94 (Canonical processes)
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Random perturbations

* Notation:

scores (potential) 0(y)

I perturbed score  6(y) 4+ v(y)
B perturbations  Y(y)
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Random perturbations

* For every structure y, the perturbation value y(y)is a
random variable (y is an index, traditional notation is 7y).

* Perturb-max models: how stable is the maximal structure
to random changes in the potential function.

scores # (9 (y* )

I I I structures
- >



Outline

* Random perturbation - why and how!

- Sampling likely structures as fast as finding the most likely one.
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* Theorem ¢
Let 7(y) be i.i.d. with Gumbel distribution with zero mean

F(t) Y Ply(y) < 1] = exp(— exp(—t))
f(t) = F'(t) = exp(—t) F(t)
042 | | | | | * [— Gaussian

= ==Gumbel
~ Laplace

0.351-




Perturb-max models

* Theorem

Let 7(y) be i.i.d. with Gumbel distribution with zero mean‘

F(t) 2 Ply(y) < t] = exp(— exp(—t))

then the perturb-max model is the Gibbs distribution

1

 exD(0(y)) = Pynumsealy = argmax{6(3) +~(5)}]



Perturb-max models

* Why Gumbel distribution? F'(t) = exp(— exp(—t))

e Since maximum of Gumbel variables is a Gumbel variable.

Let v(y) be i.i.d Gumbel ( Ply(y) <t] = F(t) ). Then
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Perturb-max models

* Why Gumbel distribution? F'(t) = exp(— exp(—t))

e Since maximum of Gumbel variables is a Gumbel variable.

Let v(y) be i.i.d Gumbel ( Ply(y) <t] = F(t) ). Then

max{0(y) + v(y)}

(2

has Gumbel distribution whose mean is log Z

* Proof: Py [max{0(y) +v(y)} <] = HFt—

= exp(— Zexp( (t - H(y)))) = F(t —log Z)

Yy



Perturb-max models

* Max stability:

log (Z exp(@(y))) = By Gumbel {myax{e(y) + ”Y(y)}}

(2

* Implications (taking gradients):

1

7 exp(0(y)) = Py~Gumbel |y = arg mgax{@(??) + 7(9) }]
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models may require exponential number of perturbations
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Perturb-max models

* Representing the Gibbs distribution using perturb-max
models may require exponential number of perturbations

P,ly = arg mgx{G(z)) + ()}

Y= (Y1, Yn)




Perturb-max models

* Representing the Gibbs distribution using perturb-max
models may require exponential number of perturbations

P,ly = arg mgx{ﬁ(z)) + ()}

* Use low dimension perturbations [Papandreou & Yuillel |,
Tarlow et. all2]

P.ly = arg max{@ ) + Z vi (Y



Outline

* Random perturbation - why and how!?

- Sampling likely structures as fast as finding the most likely one.
* Connections and Alternatives to Gibbs distribution:

- the marginal polytope

- non-MCMC sampling for Gibbs with perturb-max
* Application: interactive annotation.

- New entropy bounds for perturb-max models.



The marginal polytope
Oy, ) = » Oi(y) + Y 0i (i, y5)

=% i,j€E



The marginal polytope
Oy, ) = » Oi(y) + Y 0i (i, y5)

eV 1,




The marginal polytope

3/17° 727n> :E::(Q Zyz + :E:: (gzty 27@73[7

eV 1,7€E

t2(0) 03 (0

N LN\~

—
VR
—_
\V)
VR
!
w
VR
-



The marginal polytope

3/17° 727n> :E::(Q 37@ + :E:: (gzty 27@73[7

eV 1,7€E

'91,2(0, 0*91,2(0, 1 '92,3(0, 0*92,3(0, 1

01(0) t2(0) 63(0)
'91,2(1,0*91,2(1,1 '92,3(1,0*2’3(1,1

X 2 20




The marginal polytope
Oy, ) = » Oi(y) + Y 0i (i, y5)

eV 1,




The marginal polytope




The marginal polytope

y17° 7yn




The marginal polytope



The marginal polytope

p(y) o< exp (Z 0:(y:) + Z 0:,5 (Yi ?J:i))



The marginal polytope

p(y) o< exp (Z 0:(yi) + Z 0:,5 (i, yj))

N




The marginal polytope

p(y) o< exp (Z 0:(yi) + Z 0:,5 (i, yj))




The marginal polytope

p(y) o< exp (Z 0:(yi) + Z 0:,5 (i, yj))

[Wainwright & Jordan 08] miN
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The marginal polytope

p(y) o< exp (Z 0:(yi) + Z 0:,5 (i, yj))
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p(y) = P, [y = argmax { Z 0i(yi) + Z 0,5 (i y5) + Z%(yi)}}



The marginal polytope
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The marginal polytope
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The marginal polytope
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The marginal polytope

minimW
p(y) = P, [y = arg max i Z 0:(yi) + Z 0i,i (yir y;) + Z%(yqz)}}

* Proof idea:

OB, | max, { 2, 0:(0:) + X, 00 (ir v3) + 30, %i(i)}|
1i(yi) = 90, (y:)

OB, | max, { X, 0:(0:) + X, 00 (ir v3) + 30, %i(i)}|
ti g (Yir Yj) = 99; (i, ;)
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Non-MCMC sampling

* Perturb-max sample from tree-shaped Gibbs distribution
[Gane, H, Jaakkola [4].

* Perturb-max + rejections sample from the Gibbs
distribution on general graphs [H, Maji, Jaakkola | 3].

* In practice, perturb-max marginals approximate the Gibbs
marginals for general graphs [Papandreou & Yuille | I].
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Outline

* Random perturbation - why and how!?

- Sampling likely structures as fast as finding the most likely one.
* Connections and Alternatives to Gibbs distribution:

- the marginal polytope

- non-MCMC sampling for Gibbs distributions with perturb-max
* Application: interactive annotation.

- New entropy bounds for perturb-max models.



Image annotation

* Image annotation is a time consuming (and tedious) task.
Can computers do it for us?



Image annotation

* Why not to use the most likely annotation instead!?
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Image annotation

* Why not to use the most likely annotation instead?
Y Y

* Most likely annotation is inaccurate around

- “thin’’ areas

- clutter




Interactive image annotation

* Perturb-max models show the boundary of decision.



Interactive image annotation

* Perturb-max models show the boundary of decision.




Interactive image annotation

* Perturb-max models show the boundary of decision.

* Interactive annotation directs the human annotator to
areas of uncertainty - significantly reduces annotation time

[Maji, H., Jaakkola 14].



Uncertainty

* Entropy Zpe ) log po (y)

* Entropy = uncertainty
- It is a nonnegative function over probability distributions.

- |t attains its maximal value for the uniform distribution.

- |t attains its minimal value for the zero-one distribution.

* Computing the entropy requires summing over
exponential many configurations vy = (y1, ..., Yn)

* Can we bound it with perturb-max approach?



Uncertainty

* Perturb-max models

de f

poly) = P [y = arg max{é’ ) + Z vi (9

* Entropy

Z po(y) log pe(y

* Entropy bound  H(py) < E, {Z ’Yz(y;,k)}
1=1

y* = arg max{é’ ) + Z Vi (Y



Uncertainty

= FE, {Z%(y;‘)} y* = arg ma,x{é’ ) + Z% i) }
i=1
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Uncertainty

= Luy [Z%(yf)} y* = argmax{6(9) + Z%
1=1

e U(pp) is an uncertainty measure
- U(pg) is nonnegative since 0 < H(py) < U(py)

- U(zero-one distribution) = 0

0(9) =0, Yy #g 0(y) = —o0

Elvi(9:)] =0



Uncertainty

= Luy [Z%(yf)} y* = argmax{6(9) + Z%
1=1

e U(pp) is an uncertainty measure

- U(pg) is nonnegative since 0 < H(py) < U(py)
- U(zero-one distribution) = 0
U(

uniform distribution) = maximal



Uncertainty

= Luy [Z%(yf )} y" = argmax{f(j) + Z%
1=1

e U(pp) is an uncertainty measure

- U(pg) is nonnegative since 0 < H(py) < U(py)
- U(zero-one distribution) = 0
U(

uniform distribution) = maximal

0(y) =0
higher 6(y) favor lower Y(y) at the expanse of higher (7))



Uncertainty

* How does it compare to standard entropy bounds?

* Perturb-max entropy bound:
< E[Z%(yf)} = ZE{%(yZ‘)}
* Standard entropy independence bound:

H(pg) < ZH(pe(yi))

po(yi) = P, ly: = arg max{6(7) + Z%

* Perturb-max entropy bound requires less samples since
sampled average tail decreases exponentially.



Perturb-max entropy bounds

* Spin glass, 5x5 grid

Zei(yi)+zei,j(yivyj) e
7 i,

—o— Marginal entropy

y; € {—1,1} 1 |

0i(yi) = wiy;

ei,j (yw yj) — Wi, jYilY;

* attractive w; ; > 0. Graph-cuts.
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Uncertainty™

* Theorem: H(py) < E{Z% Yy }
y" = arg maX{9 ) + Z% 7i)}

* Proof idea: conjugate duality

H(p):mjn{logZ Z@ }

0

log Z(Q) <E, [myax {é(y) =+ Z%(yz)}}



The flashback slide

* Max stability:

log (Z exp(@(y))) = By Gumbel {myax{e(y) + ”Y(y)}}

(2



Uncertainty™

* Theorem: H(py) < E{Z% Yy }
y" = arg maX{9 ) + Z% 7i)}

* Proof idea: conjugate duality

H(p):mjn{logZ Z@ }

0

logZ(H)SE {max{@ +Z% Yi) }

H(p) < mén{E [maX{H +Z% Yi) } - 0(y)py)

0



Uncertainty™

e Theorem: H(py) < E{Z% Y }

y" = arg maX{9 ) + Z% 7))

* Proof idea: conjugate duality

H(p):mjn{logZ Z@ }

0
logZ(H)SE {max{@ +Z% Yi) }

Po

H(p) < mén{E [maX{H +Z% Yi) } — Zé(y)p(y)

0



Uncertainty™

e Theorem: H(py) < E{Z% Y }

y" = arg maX{9 ) + Z% 7))

* Proof idea: conjugate duality

H(p):mjn{logZ Z@ }

0

Po

2 _
H(p) < min { B, [ max {0(y) + Y~ (v} = D 0w)r(v)|

0



Uncertainty™

e Theorem: H(py) < E{Z% Y }

y" = arg maX{9 ) + Z% 7))

* Proof idea: conjugate duality

H(p):mjn{logZ Z@ }

0

log Z(0) < E,, {max {é(y) T Z%(yz)}}
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Uncertainty™

e Theorem: H(py) < E{Z% Y }

y" = arg maX{9 ) + Z% 7))

* Proof idea: conjugate duality

H(p):mjn{logZ Z@ }

0

log Z(Q) <E, [myax {é(y) =+ Z%(yz)}}

pg 9 —(9 9 —9 pg

H(p)<mein{E {max{@ —I—Z% Vi) } Zé’ }
H(pe)SE[ +Z% Yi) }—Z&%@*



Sample complexity™

* The upper bounds hold in expectation.

SE{Z%(yfﬂ

y* = arg max{@ ) + Z vi (i) +

* The distance between the sampled average and the
true expectation decays exponentially



Sample complexity™

Local field = 1, coupling strength = 1

25

< N T 1 samples
'% - - =5 samples
= — 10 samples||
)
©
©
R
C
)
-
O
D
&
©
|22 '
-9 ‘,s,\'[ A A
L2 ) L sV
B O -t ERSIR N y
total deviation
: M 7“2
Plavg of M samples < expectation + r| < exp | — 20 min(r, —)
T

[Orabona, H., Sarwate, Jaakkola 14], [Nguyen [4]
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* Why is it hard to get exponential decay?
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* Why is it hard to get exponential decay?

Elexp(3;7i(y;))]

P[Z%(yf)Nﬂ <

exp(r)



Sample complexity™

* Why it is hard to get exponential decay?

moment generating function

Elexp(3;7i(y;))]

exp(r)

P[Z%(yfbﬂ <

* Measure concentration requires to bound the moment
generating function

- Hoeffding concentration requires bounded perturbations.
- McDiarmid concentration requires bounded differences.

= Our perturbations are unbounded with exponential tail.



Sample complexity™

* The exponential tail of Gumbel distribution

q(vi(yi)) — exp(—i(y:))

Blexp ()] = [ atnes (3 ()

i~ exp(vi(yi))

0.5

045l — Gaussian
- ==Gumbel
Laplace

04}

0.35}

03+

0.25

0.2

0.15}

0.1}

0.05}+
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* A function concentrates around its expectation if it does
not change too much.

- Use tensorization to deal with one dimension at a time

Var[ Y viy)] = ) Varsy,, [} )]

jayj 1



Sample complexity™

* A function concentrates around its expectation if it does
not change too much.

- Use tensorization to deal with one dimension at a time

Var[ ) vily)] = )_Vary,,, Z Yi(y)]

Jyj

- Bound any dimension’s variance with its perturb-max
probability (a Poincare inequality)

Varjy ') < Py (y,)|ly; = arg max{@ ) + Z% i) }



Outline

* Random perturbation - why and how!?

- Sampling likely structures as fast as finding the most likely one.
* Connections and Alternatives to Gibbs distribution:

- the marginal polytope

- non-MCMC sampling for Gibbs distributions with perturb-max
* Application: interactive annotation.

- New entropy bounds for perturb-max models.



Open problems

* Perturb-max models:

- How do perturb-max models generalize - Follow the Perturbed
Leader [Manfred Warmuth, Jacob Abernethy]

- Adversarial learning objective [lan Goodfellow]

= Perturb-max models stabilize the prediction. Do they connect
computational and statistical stability [Yury Makarychev]?

= Perturb-max models in continuous space [Maddison et. al 14]

- When does fixing variables in the max-function amount to statistical
conditioning!?

= When do perturb-max models preserve the most likely assignment?
- How do the perturbations dimension affect the model properties?

- How to encourage diverse sampling?



Thank you

Q-

_
™




