Follow the Leader with Dropout Purturbations

Manfred K. Warmuth

UGS

December 12, NIPS 2014 workshop on perturbations

Joint work with Tim Van Erven and Wojciech Kottowski
;ic\l/:sileit @

Major insights from [Devroye, Lugosi, Neu 2013]

1/27

What is dropout?

2/27

)
(D)
[

“©
—
=
()
(=

ge]
-
©
s
j-

42

e
[}
(]

LL

Weights parameters - sigmoids at internal nodes

4/27

Dropout training

m Stochastic gradient descent

m Randomly remove every
hidden /input node with prob.
1

2
before each gradient descent
update

[Hinton et al. 2012]

5/27

Dropout training

m Very successful in image
recognition & speech
recognition

m Why does it work?

[Wagner, Wang, Liang 2013]
[Helmbold, Long 2014]

6/27

What are we doing?

m Prove bounds for dropout
» Single neuron

m Linear loss

7/21

Learning from expert advice

8/27

Online learning with expert

| Eq Es FEs ... E, prediction label loss
day 1 | 0 1 o ... 0 0 1 1

9/27

Online learning with expert

| Eq Es FEs ... E, prediction label loss
day 1 0 1 o ... 0 0 1 1
day 2 1 1 o ... 0 1 1 0

9/27

Online learning with expert

Eq FEy FEs E, prediction label loss
day 1 0 1 0 0 0 1 1
day 2 1 1 0 0 1 1 0
notation 1 T1 X9 Tn m Yy |y — v

9/27

Online learning with expert

Eq FEy FEs E, prediction label loss
day 1 0 1 0 0 0 1 1
day 2 1 1 0 0 1 1 0
notation T 1 X9 Tn y Y [y —
scope | € [0,1] € [0,1] c{0,1} €]0,1]

9/27

Online learning with expert

Eq Es FEs ... E, prediction label loss
day 1 0 1 o ... O 0 1 1
day 2 1 1 o ... O 1 1 0
notation 1 1 To ... Tn m Yy |y — v
scope | € [0,1] € [0,1] €{0,1} €]0,1]

m Algorithm maintains probability vector w:
- prediction y = w - x

9/27

Online learning with expert

E Es FEs E, prediction label loss
day 1 0 1 0 0 0 1 1
day 2 1 1 0 0 1 1 0
notation T T To Tn y Y [y —
scope | € [0,1] € [0,1] c{0,1} €]0,1]

m Algorithm maintains probability vector w:
- prediction y = w - x

m Loss linear because label y € {0,1}

Pt
WXyl =30 wi
N——

Yy
lz; — y|
——

loss of alg. loss of expert ¢

9/27

Hedge setting

10/27

On-line learning

Predicting with expert advice

Jg=w-Xx loss |§ — v

11/27

On-line learning

Predicting with expert advice

Jg=w-Xx loss |§ — v

trial t

- get advice vector x;
- predict 7; = wy - Xy
get label y;

exp. losses |y ; —
alg. loss |yr — yil
update w; — Wy

11/27

On-line learning

Predicting with expert advice

Jg=w-Xx loss |§ — v

trial t

- get advice vector x;
- predict 7; = wy - Xy

- get label y;

- exp. losses |z ; — i
- alg. loss |y — yil

- update w; — Wy

Hedge setting
loss w - /¢

11/27

On-line learning

Predicting with expert advice = Hedge setting

Jy=W-X loss | — v loss w - ¢
w w
X 14
trial ¢ trial ¢
- get advice vector x; -
- predict 7; = wy - Xy - predict wy
- get label y; - get loss vector £;

exp. losses |y ; —

alg. loss |y — yil
update w; — Wy

exp. losses /;;
alg. loss wy - £,
update w; — Wiy

11/27

Predicting with a random expert

trial ¢
- predict wy or predict with random expert i,

12/27

Predicting with a random expert

trial ¢
- predict wy or predict with random expert i,
- get loss vector £;

- alg. loss wy - £, or alg. expected loss E VZ} =wy; -4

12/27

Predicting with a random expert

trial ¢
- predict wy or predict with random expert i,
- get loss vector £;

- alg. loss wy - £, or alg. expected loss E VZ} =wy; -4

- update w; — Wy

12/27

Predicting with a random expert

trial ¢
- predict wy or predict with random expert i,
- get loss vector £;

- alg. loss wy - £, or alg. expected loss E VZ} =wy; -4

- update w; — Wy
weights are implicit

Only works for linear loss

12/27

How do we measure performance

Worst-case regret

T

Wt - Et — il’_lf 6<T7,‘
§ : P =
t=1

loss £* of best expert
total expected loss of alg

Should be logarithmic in # of experts n

13 /27

The algorithms

14 /27

Main algorithms

E, Ey, By E, Es
0 1 0 0 1
1 1 0 1 1

dyt—1 0 0 1 1 1

lci1;

15/27

Main algorithms

dayt —1
lci1;

N| = =
W= =

15/27

Main algorithms

1 0 1 1
day t — 1 o 1 1 1
lt14 2 1 2 3

~

FL iy = argmin; (<;_1; ties broken uniformly

15/27

Main algorithms

1 0 1 1
dayt —1 0 1 1 1
lci1; 2 1 2 3
FL /i\t = argmin; {<;_1; ties broken uniformly

FPL(n) iy = argmin f<; 1, + %&,i indep. additive noise

15 /27

Main algorithms

Ey Ey E3 Ey FEj
0 1 0 0 1
1 1 0 1 1
dayt—1 0 0 1 1 1
i1 1 2 1 2 3
FL /i\t = argmin; {<;_1; ties broken uniformly

FPL(n) iy = argmin f<; 1, + %&,i indep. additive noise

Hedge(n) w; = e_nezt_l’i Weighted Majority algorithm
for pred. with Expert Advice
Soft min

15 /27

Ey Ey E3 Ey FEj
o f o o [/
1 1 0 1 1
dayt—-1 0 0 f 1 1

16/27

ot

dayt —1

2=y

l—lRl—lOEj
O PR

7= 0 with prob. «
b 0y ; otherwise

FL on ~ m

iy = argmin; f<; 1, ‘

indep. multiplicative noise

dropout

16 /27

Optimal worst case regret: v L*Inn + Inn

17/27

Optimal worst case regret: v L*Inn + Inn

m FL is bad

m FPL(n) and Hedge(n) achieve optimal regret with tuning
- fancy tunings: AdaHedge and Flipflop

17/27

Optimal worst case regret: v L*Inn + Inn

m FL is bad

m FPL(n) and Hedge(n) achieve optimal regret with tuning
- fancy tunings: AdaHedge and Flipflop

m FL on dropout requires no tuning

17/27

Optimal worst case regret: v L*Inn + Inn

m FL is bad

m FPL(n) and Hedge(n) achieve optimal regret with tuning
- fancy tunings: AdaHedge and Flipflop

m FL on dropout requires no tuning
- dropout better noise for achieving optimal worst case regret
- in iid case with gap between 1st and 2nd: logn regret

17/27

What regularization?

Hedge(7) relative entropy

18/27

What regularization?

Hedge(7) relative entropy
FPL(n) additive % log exponential noise = Hedge(n)

18 /27

What regularization?

Hedge(7) relative entropy
FPL(n) additive % log exponential noise = Hedge(n)

FL on dropout tricky

Feed forward NN [Wagner, Wang, Liang 2013]
Logistic regression [Helmbold, Long 2014]
Linear loss case [ALST 2014]

18 /27

Our path to dropout

m Loss vectors ¢4 —— loss matrices L;

m Prob. vectors w; —— density matrices W,
—nt —1, .
= Hedge w;; = e T=2M L, Matrix Hedge
—nL<i_1
w, = =Rl st 1)

m Matrix Hedge O(n*) per update

19 /27

Our path to dropout

Loss vectors £ —— loss matrices L;
Prob. vectors w; —— density matrices W

—nl<p<t—1,i .
€ ——>- — Matrix Hedge

Hedge w;; =
exp(—nL<i—1,
Wt — _(Z/7 Z)

Matrix Hedge O(n?) per update

FL minimum eigenvector calculation of L<;—1;: O(n?)

19 /27

Our path to dropout

Loss vectors £ —— loss matrices L;
Prob. vectors w; —— density matrices W

—nl<p<t—1,i .
€ ——>- — Matrix Hedge

Hedge w;; =
exp(—nL<i—1,
Wt = —(Z’7 2)

Matrix Hedge O(n?) per update

FL minimum eigenvector calculation of L<;_1 ;: O(n?)
Is there O(n?) perturbation with optimal regret bound?

19 /27

Our path to dropout

m Loss vectors ¢4 —— loss matrices L;

m Prob. vectors w; —— density matrices W,
—nt —1, .
® Hedge w;; = e TSl Matrix Hedge
—nL<i_1
w, = 2RCrsen)

m Matrix Hedge O(n*) per update

® FL minimum eigenvector calculation of L<;_1 ;: O(n?)
m Is there O(n?) perturbation with optimal regret bound?

m Follow the skipping leader: Drop entire loss L; with
probability 3

19 /27

Our path to dropout

m Loss vectors ¢4 —— loss matrices L;
m Prob. vectors w; —— density matrices W,
—nl<p<t—1,i .
® Hedge w;; = “———~ — Matrix Hedge
exp(—nL<i_1,
Wt - —(Z’7)

m Matrix Hedge O(n*) per update

® FL minimum eigenvector calculation of L<;_1 ;: O(n?)
m Is there O(n?) perturbation with optimal regret bound?

m Follow the skipping leader: Drop entire loss L; with
probability 3

m Proof techniques break down - settled for vector case and
independent multiplicative noise = dropout

19 /27

Our path to dropout

Loss vectors £ —— loss matrices L;
Prob. vectors w; —— density matrices W

—nl<p<t—1,i .
e =21 5 Matrix Hedge

Hedge w;; =
exp(—nL<i_1,
Wt — _(Z/7 Z)

Matrix Hedge O(n?) per update

FL minimum eigenvector calculation of L<;_1 ;: O(n?)
Is there O(n?) perturbation with optimal regret bound?

m Follow the skipping leader: Drop entire loss L; with
probability 3

m Proof techniques break down - settled for vector case and
independent multiplicative noise = dropout

m Follow t ipping leader can have linear regret

[Lugosi, Neu 2014]

19 /27

Proof methods

20/27

Simple algorithms

Any deterministic alg. (such as FL) has huge regret
m For T trials: give algorithm’s expert a unit of loss

m Loss of alg.: T’ loss of best: < %

21/27

Simple algorithms

Any deterministic alg. (such as FL) has huge regret
m For T trials: give algorithm’s expert a unit of loss
m Loss of alg.: T’ loss of best: < %
regret: > — =(n—-1)L*

nL*

:‘{:M

21/27

Simple algorithms

Any deterministic alg. (such as FL) has huge regret
m For T trials: give algorithm’s expert a unit of loss
m Loss of alg.: T’ loss of best: < %
regret: > — =(n—-1)L*

nL*

:‘{:M

Recall optimum regret: v L*Inn + Inn

FL with random ties

21/27

Simple algorithms

Any deterministic alg. (such as FL) has huge regret
m For T trials: give algorithm’s expert a unit of loss
m Loss of alg.: T’ loss of best: < %

> =(n—-1)L*

regret: > —
nL*

S‘{:»I'ﬂ

Recall optimum regret: v L*Inn + Inn

FL with random ties

m Give every expert one unit of loss
- iterate L* + 1 times

m Loss per sweep %—i—%—i—...—i—%—i—lzlnn

Py
m Loss of alg.: (L* +1)Inn loss of best: L*
regret: L*Inn

21/27

Analysis of dropout

Unit rule
m Adversary forces more regret by splitting loss vectors into units

1 1\ [0\ /0

—> 0
1 ofl1]{o
1 0/ \o/ \1

22/27

Analysis of dropout

Unit rule

m Adversary forces more regret by splitting loss vectors into units

Er
Es
Es

1 1 0 0
0_)0 0 0
1 0 1 0
1 0 0 1
Swapping rule
111111111| 9
1 11 1111 1] 8
1111111111|10
11 1 1 11 6

Ey

22/27

Analysis of dropout

Unit rule

m Adversary forces more regret by splitting loss vectors into units

Swapping rule

E
Es
Es
Ey4

m 1's in some order

1

- = o

1 0 0

o O
O =
= o O

1

1

=] = =

e i s

1
1
1

1
1
1
1

1
1
1

1
1
1
1

m 1 before 1
m Otherwise adversary benefits from swapping

22/27

c
—
(D)
4
4+
T
o
[}
(%]
T
it
4
(2]
—
=

23 /27

Cost per sweep

Assume we have s leaders

24 /27

Cost per sweep

Assume we have s leaders

s leader get unit
ignore non-leaders

HHHHH

24 /27

Cost per sweep

Assume we have s leaders

1
s leader get unit 11
ignore non-leaders 1
1
FL
+ ! + ! + ! + ...+ ! !
s s—1 s—2 -3 =~ s§—-5—-2 s—s5-—1
—_—— —\—

24 /27

Assume we have s leaders

1
s leader get unit 11
ignore non-leaders 1
1
FL
+ ! + ! + ! +
s s—1 s—2 s—3
~lIns
Dropout
1 1 1 1

st s ti 3™

2
%21n—8 =2In2
s

Cost per sweep

1 . 1
s—s—2 s—s—1
2 1
-+ 1 + 1
T s—(s—2)/2 s—(s—1)/2

24 /27

L* = 0 - one expert incurs no loss

FL

m One sweep

1 1 1
- n_1—|—...+§;k1’~(lnn)—1

m Optimal

25 /27

L* = 0 - one expert incurs no loss

FL

m One sweep

1 1
n n-—1

1
—|—...+§;V1’%(lnn)—1

m Optimal

Dropout
m # of leaders reduced by half in each sweep

B = logyn sweeps times < 2In2=1.386

25/27

Overview of proof for noisy case

m Focus on first L sweeps

m Only occurs constant regret if number of leaders > 1

26 /27

Overview of proof for noisy case

m Focus on first L sweeps

m Only occurs constant regret if number of leaders > 1

Inn

m Prob. that number of leaders > 1 is at most S|

for sweep ¢

26 /27

Overview of proof for noisy case

m Focus on first L sweeps
m Only occurs constant regret if number of leaders > 1
m Prob. that number of leaders > 1 is at most ;"T’i for sweep ¢

For Hedge(n) and FPL(n) cost per sweep constant
and dependent on 7

26 /27

Combinatorial experts
Matrix case
Where else can dropout perturbations be used?

Dropout for convex losses

Dropout for neural nets

27 /27

	What is dropout?
	Learning from expert advice
	Hedge setting
	The algorithms
	Proof methods

