
Follow the Leader with Dropout Purturbations

Manfred K. Warmuth

December 12, NIPS 2014 workshop on perturbations

Joint work with Tim Van Erven and Wojciech Kot lowski

Major insights from [Devroye, Lugosi, Neu 2013]

1 / 27

Outline

1 What is dropout?

2 Learning from expert advice

3 Hedge setting

4 The algorithms

5 Proof methods

2 / 27

Feed forward neural net

Neural Network

3 / 27

Weights parameters - sigmoids at internal nodes

Neural Network

4 / 27

Dropout training

Dropout Training

● Stochastic gradient
descent

● Randomly remove
every hidden/input unit
with probability 1/2
before each gradient
descent update

[Hinton et al., 2012]

Stochastic gradient descent

Randomly remove every
hidden/input node with prob.
1
2
before each gradient descent
update

[Hinton et al. 2012]

5 / 27

Dropout training

Dropout Training

● Very successful in e.g.
image classification,
speech recognition

● Many people trying to
analyse why it works

[Wager, Wang, Liang, 2013]

Very successful in image
recognition & speech
recognition

Why does it work?

[Wagner, Wang, Liang 2013]
[Helmbold, Long 2014]

6 / 27

What are we doing?

Prove bounds for dropout

Single neuron

Linear loss

7 / 27

Outline

1 What is dropout?

2 Learning from expert advice

3 Hedge setting

4 The algorithms

5 Proof methods

8 / 27

Online learning with expert

E1 E2 E3 . . . En prediction label loss

day 1 0 1 0 . . . 0 0 1 1

day 2 1 1 0 . . . 0 1 1 0

notation x1 x1 x2 . . . xn ŷ y |ŷ − y|
scope ∈ [0, 1] . . . ∈ [0, 1] ∈ {0, 1} ∈ [0, 1]

Algorithm maintains probability vector w:
- prediction ŷ = w · x
Loss linear because label y ∈ {0, 1}

|
ŷ︷ ︸︸ ︷

w · x−y|︸ ︷︷ ︸
loss of alg.

=
∑

i wi |xi − y|︸ ︷︷ ︸
loss of expert i

9 / 27

Online learning with expert

E1 E2 E3 . . . En prediction label loss

day 1 0 1 0 . . . 0 0 1 1
day 2 1 1 0 . . . 0 1 1 0

notation x1 x1 x2 . . . xn ŷ y |ŷ − y|
scope ∈ [0, 1] . . . ∈ [0, 1] ∈ {0, 1} ∈ [0, 1]

Algorithm maintains probability vector w:
- prediction ŷ = w · x
Loss linear because label y ∈ {0, 1}

|
ŷ︷ ︸︸ ︷

w · x−y|︸ ︷︷ ︸
loss of alg.

=
∑

i wi |xi − y|︸ ︷︷ ︸
loss of expert i

9 / 27

Online learning with expert

E1 E2 E3 . . . En prediction label loss

day 1 0 1 0 . . . 0 0 1 1
day 2 1 1 0 . . . 0 1 1 0

notation x1 x1 x2 . . . xn ŷ y |ŷ − y|

scope ∈ [0, 1] . . . ∈ [0, 1] ∈ {0, 1} ∈ [0, 1]

Algorithm maintains probability vector w:
- prediction ŷ = w · x
Loss linear because label y ∈ {0, 1}

|
ŷ︷ ︸︸ ︷

w · x−y|︸ ︷︷ ︸
loss of alg.

=
∑

i wi |xi − y|︸ ︷︷ ︸
loss of expert i

9 / 27

Online learning with expert

E1 E2 E3 . . . En prediction label loss

day 1 0 1 0 . . . 0 0 1 1
day 2 1 1 0 . . . 0 1 1 0

notation x1 x1 x2 . . . xn ŷ y |ŷ − y|
scope ∈ [0, 1] . . . ∈ [0, 1] ∈ {0, 1} ∈ [0, 1]

Algorithm maintains probability vector w:
- prediction ŷ = w · x
Loss linear because label y ∈ {0, 1}

|
ŷ︷ ︸︸ ︷

w · x−y|︸ ︷︷ ︸
loss of alg.

=
∑

i wi |xi − y|︸ ︷︷ ︸
loss of expert i

9 / 27

Online learning with expert

E1 E2 E3 . . . En prediction label loss

day 1 0 1 0 . . . 0 0 1 1
day 2 1 1 0 . . . 0 1 1 0

notation x1 x1 x2 . . . xn ŷ y |ŷ − y|
scope ∈ [0, 1] . . . ∈ [0, 1] ∈ {0, 1} ∈ [0, 1]

Algorithm maintains probability vector w:
- prediction ŷ = w · x

Loss linear because label y ∈ {0, 1}

|
ŷ︷ ︸︸ ︷

w · x−y|︸ ︷︷ ︸
loss of alg.

=
∑

i wi |xi − y|︸ ︷︷ ︸
loss of expert i

9 / 27

Online learning with expert

E1 E2 E3 . . . En prediction label loss

day 1 0 1 0 . . . 0 0 1 1
day 2 1 1 0 . . . 0 1 1 0

notation x1 x1 x2 . . . xn ŷ y |ŷ − y|
scope ∈ [0, 1] . . . ∈ [0, 1] ∈ {0, 1} ∈ [0, 1]

Algorithm maintains probability vector w:
- prediction ŷ = w · x
Loss linear because label y ∈ {0, 1}

|
ŷ︷ ︸︸ ︷

w · x−y|︸ ︷︷ ︸
loss of alg.

=
∑

i wi |xi − y|︸ ︷︷ ︸
loss of expert i

9 / 27

Outline

1 What is dropout?

2 Learning from expert advice

3 Hedge setting

4 The algorithms

5 Proof methods

10 / 27

On-line learning

Predicting with expert advice

w

x

ŷ = w · x loss |ŷ � y|

trial t
- get advice vector xt
- predict ŷt = wt · xt
- get label yt
- exp. losses |xt,i − yt|
- alg. loss |ŷt − yt|
- update wt → wt+1

Hedge setting

w

`

loss w · `

trial t
-
- predict wt

- get loss vector `t
- exp. losses `t,i
- alg. loss wt · `t
- update wt → wt+1

11 / 27

On-line learning

Predicting with expert advice

w

x

ŷ = w · x loss |ŷ � y|

trial t
- get advice vector xt
- predict ŷt = wt · xt
- get label yt
- exp. losses |xt,i − yt|
- alg. loss |ŷt − yt|
- update wt → wt+1

Hedge setting

w

`

loss w · `

trial t
-
- predict wt

- get loss vector `t
- exp. losses `t,i
- alg. loss wt · `t
- update wt → wt+1

11 / 27

On-line learning

Predicting with expert advice

w

x

ŷ = w · x loss |ŷ � y|

trial t
- get advice vector xt
- predict ŷt = wt · xt
- get label yt
- exp. losses |xt,i − yt|
- alg. loss |ŷt − yt|
- update wt → wt+1

Hedge setting

w

`

loss w · `

trial t
-
- predict wt

- get loss vector `t
- exp. losses `t,i
- alg. loss wt · `t
- update wt → wt+1

11 / 27

On-line learning

Predicting with expert advice

w

x

ŷ = w · x loss |ŷ � y|

trial t
- get advice vector xt
- predict ŷt = wt · xt
- get label yt
- exp. losses |xt,i − yt|
- alg. loss |ŷt − yt|
- update wt → wt+1

Hedge setting

w

`

loss w · `

trial t
-
- predict wt

- get loss vector `t
- exp. losses `t,i
- alg. loss wt · `t
- update wt → wt+1

11 / 27

Predicting with a random expert

trial t

- predict wt or predict with random expert ît

- get loss vector `t

- alg. loss wt · `t or alg. expected loss E
[
`̂it

]
= wt · `t

- update wt → wt+1

weights are implicit

Only works for linear loss

12 / 27

Predicting with a random expert

trial t

- predict wt or predict with random expert ît
- get loss vector `t

- alg. loss wt · `t or alg. expected loss E
[
`̂it

]
= wt · `t

- update wt → wt+1

weights are implicit

Only works for linear loss

12 / 27

Predicting with a random expert

trial t

- predict wt or predict with random expert ît
- get loss vector `t

- alg. loss wt · `t or alg. expected loss E
[
`̂it

]
= wt · `t

- update wt → wt+1

weights are implicit

Only works for linear loss

12 / 27

Predicting with a random expert

trial t

- predict wt or predict with random expert ît
- get loss vector `t

- alg. loss wt · `t or alg. expected loss E
[
`̂it

]
= wt · `t

- update wt → wt+1

weights are implicit

Only works for linear loss

12 / 27

How do we measure performance

Worst-case regret

T∑
t=1

wt · `t︸ ︷︷ ︸
total expected loss of alg

− inf
i
`≤T,i︸ ︷︷ ︸

loss `∗ of best expert

Should be logarithmic in # of experts n

13 / 27

Outline

1 What is dropout?

2 Learning from expert advice

3 Hedge setting

4 The algorithms

5 Proof methods

14 / 27

Main algorithms

E1 E2 E3 E4 E5

0 1 0 0 1
1 1 0 1 1

day t− 1 0 0 1 1 1

`≤t−1,i

1 2 1 2 3

FL ît = argmini `≤t−1,i ties broken uniformly

FPL(η) ît = argmini `≤t−1,i +
1
η ξt,i indep. additive noise

Hedge(η) wi =
e−η`t−1,i

Z Weighted Majority algorithm
for pred. with Expert Advice
Soft min

15 / 27

Main algorithms

E1 E2 E3 E4 E5

0 1 0 0 1
1 1 0 1 1

day t− 1 0 0 1 1 1

`≤t−1,i 1 2 1 2 3

FL ît = argmini `≤t−1,i ties broken uniformly

FPL(η) ît = argmini `≤t−1,i +
1
η ξt,i indep. additive noise

Hedge(η) wi =
e−η`t−1,i

Z Weighted Majority algorithm
for pred. with Expert Advice
Soft min

15 / 27

Main algorithms

E1 E2 E3 E4 E5

0 1 0 0 1
1 1 0 1 1

day t− 1 0 0 1 1 1

`≤t−1,i 1 2 1 2 3

FL ît = argmini `≤t−1,i ties broken uniformly

FPL(η) ît = argmini `≤t−1,i +
1
η ξt,i indep. additive noise

Hedge(η) wi =
e−η`t−1,i

Z Weighted Majority algorithm
for pred. with Expert Advice
Soft min

15 / 27

Main algorithms

E1 E2 E3 E4 E5

0 1 0 0 1
1 1 0 1 1

day t− 1 0 0 1 1 1

`≤t−1,i 1 2 1 2 3

FL ît = argmini `≤t−1,i ties broken uniformly

FPL(η) ît = argmini `≤t−1,i +
1
η ξt,i indep. additive noise

Hedge(η) wi =
e−η`t−1,i

Z Weighted Majority algorithm
for pred. with Expert Advice
Soft min

15 / 27

Main algorithms

E1 E2 E3 E4 E5

0 1 0 0 1
1 1 0 1 1

day t− 1 0 0 1 1 1

`≤t−1,i 1 2 1 2 3

FL ît = argmini `≤t−1,i ties broken uniformly

FPL(η) ît = argmini `≤t−1,i +
1
η ξt,i indep. additive noise

Hedge(η) wi =
e−η`t−1,i

Z Weighted Majority algorithm
for pred. with Expert Advice
Soft min

15 / 27

Dropout

E1 E2 E3 E4 E5

0 �1 0 0 �1
1 1 0 1 1

day t− 1 0 0 �1 �1 1̂̀≤t−1,i

1 1 0 1 2

̂̀
t,i =

{
0 with prob. α
`t,i otherwise

indep. multiplicative noise

FL on
dropout

ît = argmini
̂̀≤t−1,i `

�! �!�!�!

16 / 27

Dropout

E1 E2 E3 E4 E5

0 �1 0 0 �1
1 1 0 1 1

day t− 1 0 0 �1 �1 1̂̀≤t−1,i 1 1 0 1 2

̂̀
t,i =

{
0 with prob. α
`t,i otherwise

indep. multiplicative noise

FL on
dropout

ît = argmini
̂̀≤t−1,i `

�! �!�!�!

16 / 27

How good?

Optimal worst case regret:
√
L∗ lnn+ lnn

FL is bad

FPL(η) and Hedge(η) achieve optimal regret with tuning
- fancy tunings: AdaHedge and Flipflop

FL on dropout requires no tuning
- dropout better noise for achieving optimal worst case regret
- in iid case with gap between 1st and 2nd: log n regret

17 / 27

How good?

Optimal worst case regret:
√
L∗ lnn+ lnn

FL is bad

FPL(η) and Hedge(η) achieve optimal regret with tuning
- fancy tunings: AdaHedge and Flipflop

FL on dropout requires no tuning
- dropout better noise for achieving optimal worst case regret
- in iid case with gap between 1st and 2nd: log n regret

17 / 27

How good?

Optimal worst case regret:
√
L∗ lnn+ lnn

FL is bad

FPL(η) and Hedge(η) achieve optimal regret with tuning
- fancy tunings: AdaHedge and Flipflop

FL on dropout requires no tuning

- dropout better noise for achieving optimal worst case regret
- in iid case with gap between 1st and 2nd: log n regret

17 / 27

How good?

Optimal worst case regret:
√
L∗ lnn+ lnn

FL is bad

FPL(η) and Hedge(η) achieve optimal regret with tuning
- fancy tunings: AdaHedge and Flipflop

FL on dropout requires no tuning
- dropout better noise for achieving optimal worst case regret
- in iid case with gap between 1st and 2nd: log n regret

17 / 27

What regularization?

Hedge(η) relative entropy

FPL(η) additive 1
η log exponential noise = Hedge(η)

FL on dropout tricky

Feed forward NN [Wagner, Wang, Liang 2013]
Logistic regression [Helmbold, Long 2014]
Linear loss case [ALST 2014]

18 / 27

What regularization?

Hedge(η) relative entropy
FPL(η) additive 1

η log exponential noise = Hedge(η)

FL on dropout tricky

Feed forward NN [Wagner, Wang, Liang 2013]
Logistic regression [Helmbold, Long 2014]
Linear loss case [ALST 2014]

18 / 27

What regularization?

Hedge(η) relative entropy
FPL(η) additive 1

η log exponential noise = Hedge(η)

FL on dropout tricky

Feed forward NN [Wagner, Wang, Liang 2013]
Logistic regression [Helmbold, Long 2014]
Linear loss case [ALST 2014]

18 / 27

Our path to dropout

Loss vectors `t −→ loss matrices Lt
Prob. vectors wt −→ density matrices Wt

Hedge wt,i =
e
−η`≤`≤t−1,i

Z −→ Matrix Hedge

Wt =
exp(−ηL≤t−1,i)

Z′

Matrix Hedge O(n3) per update

FL minimum eigenvector calculation of L≤t−1,i: O(n2)
Is there O(n2) perturbation with optimal regret bound?

Follow the skipping leader: Drop entire loss Lt with
probability 1

2
Proof techniques break down - settled for vector case and
independent multiplicative noise = dropout

(((
((((

(((
(((

Follow the skipping leader can have linear regret

[Lugosi, Neu 2014]

19 / 27

Our path to dropout

Loss vectors `t −→ loss matrices Lt
Prob. vectors wt −→ density matrices Wt

Hedge wt,i =
e
−η`≤`≤t−1,i

Z −→ Matrix Hedge

Wt =
exp(−ηL≤t−1,i)

Z′

Matrix Hedge O(n3) per update

FL minimum eigenvector calculation of L≤t−1,i: O(n2)

Is there O(n2) perturbation with optimal regret bound?

Follow the skipping leader: Drop entire loss Lt with
probability 1

2
Proof techniques break down - settled for vector case and
independent multiplicative noise = dropout

(((
((((

(((
(((

Follow the skipping leader can have linear regret

[Lugosi, Neu 2014]

19 / 27

Our path to dropout

Loss vectors `t −→ loss matrices Lt
Prob. vectors wt −→ density matrices Wt

Hedge wt,i =
e
−η`≤`≤t−1,i

Z −→ Matrix Hedge

Wt =
exp(−ηL≤t−1,i)

Z′

Matrix Hedge O(n3) per update

FL minimum eigenvector calculation of L≤t−1,i: O(n2)
Is there O(n2) perturbation with optimal regret bound?

Follow the skipping leader: Drop entire loss Lt with
probability 1

2
Proof techniques break down - settled for vector case and
independent multiplicative noise = dropout

(((
((((

(((
(((

Follow the skipping leader can have linear regret

[Lugosi, Neu 2014]

19 / 27

Our path to dropout

Loss vectors `t −→ loss matrices Lt
Prob. vectors wt −→ density matrices Wt

Hedge wt,i =
e
−η`≤`≤t−1,i

Z −→ Matrix Hedge

Wt =
exp(−ηL≤t−1,i)

Z′

Matrix Hedge O(n3) per update

FL minimum eigenvector calculation of L≤t−1,i: O(n2)
Is there O(n2) perturbation with optimal regret bound?

Follow the skipping leader: Drop entire loss Lt with
probability 1

2

Proof techniques break down - settled for vector case and
independent multiplicative noise = dropout

(((
((((

(((
(((

Follow the skipping leader can have linear regret

[Lugosi, Neu 2014]

19 / 27

Our path to dropout

Loss vectors `t −→ loss matrices Lt
Prob. vectors wt −→ density matrices Wt

Hedge wt,i =
e
−η`≤`≤t−1,i

Z −→ Matrix Hedge

Wt =
exp(−ηL≤t−1,i)

Z′

Matrix Hedge O(n3) per update

FL minimum eigenvector calculation of L≤t−1,i: O(n2)
Is there O(n2) perturbation with optimal regret bound?

Follow the skipping leader: Drop entire loss Lt with
probability 1

2
Proof techniques break down - settled for vector case and
independent multiplicative noise = dropout

(((
((((

(((
(((

Follow the skipping leader can have linear regret

[Lugosi, Neu 2014]

19 / 27

Our path to dropout

Loss vectors `t −→ loss matrices Lt
Prob. vectors wt −→ density matrices Wt

Hedge wt,i =
e
−η`≤`≤t−1,i

Z −→ Matrix Hedge

Wt =
exp(−ηL≤t−1,i)

Z′

Matrix Hedge O(n3) per update

FL minimum eigenvector calculation of L≤t−1,i: O(n2)
Is there O(n2) perturbation with optimal regret bound?

Follow the skipping leader: Drop entire loss Lt with
probability 1

2
Proof techniques break down - settled for vector case and
independent multiplicative noise = dropout

(((
((((

(((
(((

Follow the skipping leader can have linear regret

[Lugosi, Neu 2014]
19 / 27

Outline

1 What is dropout?

2 Learning from expert advice

3 Hedge setting

4 The algorithms

5 Proof methods

20 / 27

Simple algorithms

Any deterministic alg. (such as FL) has huge regret

For T trials: give algorithm’s expert a unit of loss

Loss of alg.: T loss of best: ≤ T
n

regret: ≥ T︸︷︷︸
nL∗

− T

n︸︷︷︸
L∗

= (n− 1)L∗

Recall optimum regret:
√
L∗ lnn+ lnn

FL with random ties

Give every expert one unit of loss
- iterate L∗ + 1 times

Loss per sweep 1
n + 1

n−1 + . . .+ 1
2 + 1 ≈ lnn

Loss of alg.: (L∗ + 1) lnn loss of best: L∗

regret: L∗ lnn

21 / 27

Simple algorithms

Any deterministic alg. (such as FL) has huge regret

For T trials: give algorithm’s expert a unit of loss

Loss of alg.: T loss of best: ≤ T
n

regret: ≥ T︸︷︷︸
nL∗

− T

n︸︷︷︸
L∗

= (n− 1)L∗

Recall optimum regret:
√
L∗ lnn+ lnn

FL with random ties

Give every expert one unit of loss
- iterate L∗ + 1 times

Loss per sweep 1
n + 1

n−1 + . . .+ 1
2 + 1 ≈ lnn

Loss of alg.: (L∗ + 1) lnn loss of best: L∗

regret: L∗ lnn

21 / 27

Simple algorithms

Any deterministic alg. (such as FL) has huge regret

For T trials: give algorithm’s expert a unit of loss

Loss of alg.: T loss of best: ≤ T
n

regret: ≥ T︸︷︷︸
nL∗

− T

n︸︷︷︸
L∗

= (n− 1)L∗

Recall optimum regret:
√
L∗ lnn+ lnn

FL with random ties

Give every expert one unit of loss
- iterate L∗ + 1 times

Loss per sweep 1
n + 1

n−1 + . . .+ 1
2 + 1 ≈ lnn

Loss of alg.: (L∗ + 1) lnn loss of best: L∗

regret: L∗ lnn

21 / 27

Simple algorithms

Any deterministic alg. (such as FL) has huge regret

For T trials: give algorithm’s expert a unit of loss

Loss of alg.: T loss of best: ≤ T
n

regret: ≥ T︸︷︷︸
nL∗

− T

n︸︷︷︸
L∗

= (n− 1)L∗

Recall optimum regret:
√
L∗ lnn+ lnn

FL with random ties

Give every expert one unit of loss
- iterate L∗ + 1 times

Loss per sweep 1
n + 1

n−1 + . . .+ 1
2 + 1 ≈ lnn

Loss of alg.: (L∗ + 1) lnn loss of best: L∗

regret: L∗ lnn

21 / 27

Analysis of dropout

Unit rule

Adversary forces more regret by splitting loss vectors into units
1
0
1
1

 −→

1
0
0
0



0
0
1
0



0
0
0
1



Swapping rule

E1 1 1 1 1 1 1 1 1 1 9
E2 1 1 1 1 1 1 1 1 8
E3 1 1 1 1 1 1 1 1 1 1 10
E4 1 1 1 1 1 1 6

1’s in some order

1 before 1

Otherwise adversary benefits from swapping

22 / 27

Analysis of dropout

Unit rule

Adversary forces more regret by splitting loss vectors into units
1
0
1
1

 −→

1
0
0
0



0
0
1
0



0
0
0
1


Swapping rule

E1 1 1 1 1 1 1 1 1 1 9
E2 1 1 1 1 1 1 1 1 8
E3 1 1 1 1 1 1 1 1 1 1 10
E4 1 1 1 1 1 1 6

1’s in some order

1 before 1

Otherwise adversary benefits from swapping

22 / 27

Analysis of dropout

Unit rule

Adversary forces more regret by splitting loss vectors into units
1
0
1
1

 −→

1
0
0
0



0
0
1
0



0
0
0
1


Swapping rule

E1 1 1 1 1 1 1 1 1 1 9
E2 1 1 1 1 1 1 1 1 8
E3 1 1 1 1 1 1 1 1 1 1 10
E4 1 1 1 1 1 1 6

1’s in some order

1 before 1

Otherwise adversary benefits from swapping
22 / 27

Worst-case pattern

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

23 / 27

Cost per sweep

Assume we have s leaders

s leader get unit
ignore non-leaders



1
1
1
1
1

FL
1

s
+

1

s− 1
+

1

s− 2
+

1

s− 3
+ . . .+

1

s− s− 2︸ ︷︷ ︸
2

+
1

s− s− 1︸ ︷︷ ︸
1

≈ ln s

Dropout

1

s
+

1

s− 1/2
+

1

s− 2/2
+

1

s− 3/2
+. . .+

1

s− (s− 2)/2
+

1

s− (s− 1)/2

≈ 2 ln
2s

s
= 2 ln 2

24 / 27

Cost per sweep

Assume we have s leaders

s leader get unit
ignore non-leaders



1
1
1
1
1

FL
1

s
+

1

s− 1
+

1

s− 2
+

1

s− 3
+ . . .+

1

s− s− 2︸ ︷︷ ︸
2

+
1

s− s− 1︸ ︷︷ ︸
1

≈ ln s

Dropout

1

s
+

1

s− 1/2
+

1

s− 2/2
+

1

s− 3/2
+. . .+

1

s− (s− 2)/2
+

1

s− (s− 1)/2

≈ 2 ln
2s

s
= 2 ln 2

24 / 27

Cost per sweep

Assume we have s leaders

s leader get unit
ignore non-leaders



1
1
1
1
1

FL
1

s
+

1

s− 1
+

1

s− 2
+

1

s− 3
+ . . .+

1

s− s− 2︸ ︷︷ ︸
2

+
1

s− s− 1︸ ︷︷ ︸
1

≈ ln s

Dropout

1

s
+

1

s− 1/2
+

1

s− 2/2
+

1

s− 3/2
+. . .+

1

s− (s− 2)/2
+

1

s− (s− 1)/2

≈ 2 ln
2s

s
= 2 ln 2

24 / 27

Cost per sweep

Assume we have s leaders

s leader get unit
ignore non-leaders



1
1
1
1
1

FL
1

s
+

1

s− 1
+

1

s− 2
+

1

s− 3
+ . . .+

1

s− s− 2︸ ︷︷ ︸
2

+
1

s− s− 1︸ ︷︷ ︸
1

≈ ln s

Dropout

1

s
+

1

s− 1/2
+

1

s− 2/2
+

1

s− 3/2
+. . .+

1

s− (s− 2)/2
+

1

s− (s− 1)/2

≈ 2 ln
2s

s
= 2 ln 2

24 / 27

L∗ = 0 - one expert incurs no loss

FL

One sweep

1

n
+

1

n− 1
+ . . .+

1

2
��+1 ≈ (lnn)−1

Optimal

Dropout

of leaders reduced by half in each sweep

≈ log2 n sweeps times ≤ 2 ln 2 = 1.386
========================
2 lnn

25 / 27

L∗ = 0 - one expert incurs no loss

FL

One sweep

1

n
+

1

n− 1
+ . . .+

1

2
��+1 ≈ (lnn)−1

Optimal

Dropout

of leaders reduced by half in each sweep

≈ log2 n sweeps times ≤ 2 ln 2 = 1.386
========================
2 lnn

25 / 27

Overview of proof for noisy case

Focus on first L sweeps

Only occurs constant regret if number of leaders > 1

Prob. that number of leaders > 1 is at most
√

lnn
q+1 for sweep q

For Hedge(η) and FPL(η) cost per sweep constant
and dependent on η

26 / 27

Overview of proof for noisy case

Focus on first L sweeps

Only occurs constant regret if number of leaders > 1

Prob. that number of leaders > 1 is at most
√

lnn
q+1 for sweep q

For Hedge(η) and FPL(η) cost per sweep constant
and dependent on η

26 / 27

Overview of proof for noisy case

Focus on first L sweeps

Only occurs constant regret if number of leaders > 1

Prob. that number of leaders > 1 is at most
√

lnn
q+1 for sweep q

For Hedge(η) and FPL(η) cost per sweep constant
and dependent on η

26 / 27

Outlook

Combinatorial experts

Matrix case

Where else can dropout perturbations be used?

Dropout for convex losses

Dropout for neural nets

27 / 27

	What is dropout?
	Learning from expert advice
	Hedge setting
	The algorithms
	Proof methods

