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Abstract

Exemplar-based clustering methods are appeal-
ing because they offer computational benefits
over latent-mean models and can handle arbi-
trary pairwise similarity measures between data
points. However, when trying to recover under-
lying structure in clustering problems, tailored
similarity measures are often not enough; we
also desire control over the distribution of clus-
ter sizes. Priors such as Dirichlet process pri-
ors allow the number of clusters to be unspeci-
fied while expressing priors over data partitions.
To our knowledge, they have not been applied
to exemplar-based models. We show how to in-
corporate priors, including Dirichlet process pri-
ors, into the recently introduced affinity propa-
gation algorithm. We develop an efficient max-
product belief propagation algorithm for our new
model and demonstrate experimentally how the
expanded range of clustering priors allows us to
better recover true clusterings in situations where
we have some information about the generating
process.

1 Introduction

Clustering is a fundamental component of real-world prob-
lems in nearly every computational discipline, probably in
large part due to the human tendency to use categorization
as a tool for understanding data [2]. Also, clustering re-
moves variations due to noise and replication. The value
of clustering can indeed be seen by the ubiquity of the k-
means algorithm and the vast amount of work on clustering
that has followed [19].

Clustering is primarily used for two purposes. First,
clusters provide compact approximate density representa-
tions for multimodal or difficult-to-describe distributions.
Second, clustering is used to recover underlying categories
in data. In many real-world problems, data points do ac-
tually come from a single unobserved class (e. g., an im-

age pixel corresponding to an object), and we would like
to group data points based on which unobserved class they
come from. This second purpose motivates this work.

In order to properly describe a clustering problem, we
often would like to view the data points as having come
from more complex distributions than just a mixture of
Gaussians in Euclidean space. For example, if we would
like to cluster images while maintaining translation invari-
ance, it is unclear how to view each image as a point in
some Euclidean space [4]. In this setting, exemplar-based
models are appealing, because they do not require any es-
timation of latent parameters, which may become difficult
as spaces and distributions become more complex and high
dimensional. Instead, all that is required to cluster data is
a computable pairwise similarity measure between all (or
a sparse subset of) pairs of points. It is often more natural
to describe the clustering problem in this manner. There is
an exemplar-based analog to the standard latent-mean al-
gorithm, k-means, known as k-medians [10].

While exemplar-based models are appealing because
continuous latent parameters need not be estimated, learn-
ing reduces to a combinatorial optimization problem of
identifying exemplars and assigning points to exemplars.
However, recent work has revealed efficient algorithms for
exemplar-based clustering. Lashkari and Golland [11] give
a convex formulation of an exemplar-based model that does
not suffer from the initialization problems normally associ-
ated with the k-means algorithm. Affinity propagation [5]
has been shown to find solutions in a matter of minutes that
would take k-centers days or weeks to find and that outper-
form Hierarchical Agglomerative Clustering.

One drawback of existing exemplar-based methods,
however, is that the implicit prior distribution over cluster-
ings is not explicitly modeled or well-understood. In affin-
ity propagation, for example, different granularities of clus-
terings are controlled by a hand-tunable parameter, called
a self-similarity or preference, and there is little theoretical
justification for setting this parameter.

We introduce a model that admits flexible priors into an
exemplar-based clustering framework, allowing us to ex-
press a family of flexible and infinite priors over cluster



size distributions.
Since our focus is on recovering structure in data, we

are interested in maximum a posteriori (MAP) inference
algorithms that give a single, hard assignment as output.
We develop a max-product belief propagation algorithm for
our new model and show experimentally that if we have in-
formation about the generating process, without tuning any
parameters in our model we are consistently able to recover
true clusterings that have an unknown number of clusters
and large variations in cluster sizes within individual data
sets.

We further show a practical application of our model,
where the priors we develop allow control over image seg-
mentations along an axis that (to our knowledge) has been
left unexplored in the image segmentation literature.

2 Background

2.1 Affinity Propagation

Affinity propagation is a clustering algorithm based on
max-product belief propagation that is able to cluster data
into an a priori unknown number of clusters.

The objective function that affinity propagation tries to
maximize is:

P (C) = lim
b→∞

N∑
i=1

s(i, ci)− b

N∑
i=1

fi(C)

where C = {c1, . . . , cN}, ci ∈ {1, . . . , N} is the index of
the exemplar that point i is assigned to, s is a pre-computed
pairwise similarity measure between all pairs of points, and
fi(C) is 1 if there is some j such that cj = i and ci 6= i,
and 0 otherwise. Affinity propagation is an optimized max-
product belief propagation algorithm over the factor graph
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Figure 1: A factor graph representation of affinity propaga-
tion.

In affinity propagation, the prior distribution over clus-
terings, and thus the complexity control setting, is implicit
in the user-specified self similarity or preference for each
data point, represented as s(i, i). The self similarity repre-
sents each point’s tendency to be an exemplar. By making
self similarities high, affinity propagation will find a large
number of clusters, while making self similarities low will

cause affinity propagation to find a small number of clus-
ters. Though in some applications it makes sense to set
these self similarities differently for different data points,
there is often little reason to favor a priori one point to be
an exemplar over another. In the latter cases, the self sim-
ilarities are constrained to take on the same value for all
points.

2.2 Dirichlet Process Mixture Models

Dirichlet processes provide a well-understood prior over
partitions of data, which has been shown to be useful in
mixture models used to tackle real-world clustering prob-
lems with an a priori unknown number of clusters [14].
Dirichlet process mixture models (DPMMs) use a count-
ably infinite number of mixture components in a Bayesian
framework to bypass the model selection problem of choos-
ing the number of components [1].

We use the notation 1[.] as the indicator function, which
takes a value of 1 if the inside proposition is true and a value
of 0 otherwise. For convenience, let Nk =

∑N
i=1 1[ci = k]

be the number of points in cluster k. Let K be the number
of clusters with at least one point. After integrating out
mixture weights [8], the probability of a clustering over a
set of points X = {x1, . . . , xN} being given labels C =
{c1, . . . , cN} is given as

P (C | X;G0, α) =
N∏

i=1

P (xi | θci)
Γ(α)

Γ(N + α)
αK

×
K∏

k=1

Γ(Nk)
K∏

k=1

P (θk;G0)

where ci is the cluster assignment for point i, α is the con-
centration parameter, θj are the latent parameters for clus-
ter j, and G0 is the base distribution.

In qualitative terms, Dirichlet process mixture models
and affinity propagation behave similarly, in that they will
continue to find more clusters in data as more data points
are observed for a fixed setting of model parameters.

3 A Dirichlet Process Exemplar Model
We first develop a Dirichlet process mixture model that
uses exemplars instead of latent means. We work in a col-
lapsed space (i.e., where mixture weights are integrated
out).

Let X = {Xe, Xp} where Xe is the set of all points that
are exemplars and Xp is the set of all points that are not
exemplars. E = {e1, . . . , eN} is a set of binary variables,
where ei = 1 if point i is an exemplar for its cluster and 0
otherwise. The generative model is then given as follows:

• Draw a partition from a Dirichlet process prior. After
integrating out mixture weights [8], we obtain

P (C;α) =
Γ(α)

Γ(N + α)
αK

K∏
k=1

Γ(Nk)



• Choose exemplars uniformly at random, but constrain
there to be exactly one exemplar per group. The struc-
ture over e’s is an Markov Random Field with K fully
connected cliques involving all points that share the
same label:

P (E | C) =
K∏

k=1

1
Zk

one-of -N(Ek)

where one-of -N(E) is 1 if exactly one e ∈ E is 1 and
all the rest are zero, and zero otherwise. Let Ek be the
set of all ei such that ci = k. Since there is exactly
one legal choice of e’s for each choice of exemplar in
a group, the partition function Zk is Nk. P (E | C)
can then be rewritten

P (E | C) =
K∏

k=1

1
Nk

as long as each non-empty group has exactly one ex-
emplar (i.e., ∀k | Nk > 0, (

∑
i′:ci′=ck

1[ei′ = 1]) =
1), and zero otherwise.

• Draw parameters for each exemplar from G0:

P (Xe;G0) =
N∏

i=1

P (xi;G0)1[ei=1]

• Draw the parameters for each remaining point from
a distribution parameterized by the exemplar for its
group. P (Xp | Xe, C, E) is then given as:

N∏
i=1

N∏
j=1,j 6=i

P (xi | xj)1[ci=cj∧ei=0∧ej=1]

Note that in this model, x’s are not drawn i.i.d.
The full joint likelihood, P (C,E,X;G0, α) is

P (C;α)P (E | C)P (Xe;Go)P (Xp | Xe, C,E)

=
Γ(α)

Γ(N + α)
αK

K∏
k=1

Γ(Nk)
Nk

N∏
i=1

P (xi;G0)1[ei=1]

×
N∏

i=1

N∏
j=1,j 6=i

P (xi | xj)1[ci=cj∧ei=0∧ej=1]

s.t. ∀k | Nk > 0,
∑

i′:ci′=k

1[ei′ = 1] = 1

Since the labels C have no meaning beyond saying that
points with the same label belong to the same group, we
have some freedom in how to choose their values. In par-
ticular, we can constrain all groups to take on the label of
their exemplar under some fixed but arbitrary ordering of
points: ∀i.ci = i ⇐⇒ ei = 1. Under this constraint,
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Figure 2: (a) A factor graph plate model of the Dirichlet
process affinity propagation generative model. (b) After
replacing constraints and reparameterizing to remove E.

there is one choice of C for each legal combination of par-
tition and set of exemplars. We can replace all references
to ei with 1[ci = i]. The full likelihood P (C,X;G0, α)
then becomes

=
Γ(α)

Γ(N + α)
α

PN
i=1 1[ci=i]

∏
k:ck=k

Γ(Nk)
Nk

×
N∏

i=1

P (xi;G0)1[ci=i]P (xi | xci)
1[ci 6=i]

s.t. ∀k | Nk > 0, ck = k

Note that under this representation, the labels are not
assumed to range from 1 to K. Instead, we use not nec-
essarily consecutive labels from 1 to N since given N ob-
served data points, there are at most N clusters in the data.
However, we note that we are not explicitly truncating the
model by forcing these to correspond to the first N clusters
in the stick breaking representation like in [3], and there is
no ordering of clusters. In this sense, we are working in the
infinite Chinese Restaurant Process representation, rather
than in a truncated approximation.

3.1 Comparison to Affinity Propagation

Affinity propagation uses the same model, but without
the Dirichlet process prior over partitions, and rather than
drawing exemplar parameters from a given base distribu-
tion, self similarities are set as desired by the user.

4 Dirichlet Process Affinity Propagation

In order to derive Dirichlet process affinity aropagation
(DPAP), a max-product belief propagation algorithm for
this model, we make one further change in representation
that is useful for deriving extensions to affinity propaga-
tion [7]. Rather than representing each ci as a multino-



mial variable with N states, we use N binary variables,
{hi1, . . . , hiN} and a one-of-N constraint specifying that
hij can only be 1 for one choice of j. Formally, ci = j ⇔
hij = 1. The same algorithm can be derived without mak-
ing this change of representation, but the derivations are
simpler in this form.

By laying out these h variables in a 2-dimensional grid,
we can express our model as a factor graph with one factor
for each row, one factor for each column, and one factor for
each h. Fig. 3 shows this factor graph representation that
our algorithm operates on.

hi1

h11

hN1

µ1

ø1

øi

øN

s11

si1

sN1

hij

h1j

hNj

µj

s1j

sij

sNj

hiN

h1N

hNN

µN

s1N

siN

sNN

. . . . . .

. . .. . .

. .
 .

. .
 .

. .
 .

. .
 .

Figure 3: A factor graph representation of the Dirichlet pro-
cess affinity propagation model as a grid of binary indicator
variables.

φi(hi1, . . . , hiN ) = 1[
N∑

j=1

hij = 1]

µj(h1j , . . . , hNj) =

{
1 if Nj = 0
Γ(Nj)

Nj
· 1[hjj = 1] otherwise

sij(hij) =
{

P (xi | xj)hij if i 6= j

(α · P (xj ;G0))hjj if i = j

It can be confirmed that this is equivalent to our earlier
formulation.

4.1 Max-Product Belief Propagation

Max-product belief propagation is an iterative, local, mes-
sage passing algorithm that can be used to find the MAP
configuration of a discrete probability distribution speci-
fied by a factor graph. The algorithm was originally devel-
oped for exact inference on tree-structured graphical mod-
els, but it has empirically been shown to perform well even
on graphs with cycles.

When working in log space, the algorithm is known as
max-sum, and the updates for factor graphs involve either a
message from a variable to each adjacent factor or a factor

to each adjacent variable. The messages from variable to
factor add together the messages from all adjacent factors
except the factor receiving the message. Formally, if n(x)
is the set of all factors that share an edge with x, then the
message from x to factor i, fi, is

m̃x→fi(x) =
∑

f ′∈n(x)\fi

mf ′→x(x)

Messages from factors to variables involve a maximization
over all variables in the scope of the factor except the vari-
able receiving the message. If X = neighbors(f), then

m̃f→x(x) = max
X\x

log f(X) +
∑

x′∈X\x

mx′→f (x′)


We work in log space, and since all variables are bi-
nary, we normalize all messages so that mX→Y (0) = 0.
This is equivalent to saying that all messages we pass are
mX→Y (1) = m̃X→Y (1)− m̃X→Y (0).

4.1.1 µ Factor Messages
The non-trivial calculation that is needed to do max-
product inference in this factor graph is to compute the
outgoing messages from the µ factors, m̃µj→hij (hij). We
use the notation h−ij = {hi′j}N

i′=1,i′ 6=i and hi−j =
{hij′}N

j′=1,j′ 6=j throughout:

= max
h−ij

log µj(h:j) +
N∑

i′:i′ 6=i

mhi′j→µj
(hi′j)


= max

h−ij


0 if Nj = 0

log Γ(Nj)
Nj

+ log1[hjj = 1]+∑N
i′:i′ 6=i mhi′j→µj (hi′j) otherwise

If i = j:

m̃µj→hjj (0) = 0

m̃µj→hjj
(1) = max

h−jj

N∑
i′:i′ 6=j

mhi′j→µj
(hi′j) +

log
Γ(1 +

∑N
i′:i′ 6=j hi′j)

1 +
∑N

i′:i′ 6=j hi′j

If i 6= j:

m̃µj→hij
(0)=max(0,max

h−ij

N∑
i′:i′ 6=i,i′ 6=j

mhi′j→µj
(hi′j) +

mhjj→µj
(1) + log

Γ(1 +
∑N

i′:i′ 6=j,i′ 6=i hi′j)

1 +
∑N

i′:i′ 6=j,i′ 6=i hi′j

)

m̃µj→hij
(1)= max

h−ij

N∑
i′:i′ 6=i,i′ 6=j

mhi′j→µj
(hi′j) +

mhjj→µj
(1) + log

Γ(2 +
∑N

i′:i′ 6=j hi′j)

2 +
∑N

i′:i′ 6=j hi′j



Temporarily ignoring constants, which are irrelevant in
computing the maximal settings of h’s, all of the messages
require a maximization of the following form:

max
h−ij

∑
i′

mhi′j→µj
(hi′j) + log

Γ(
∑

i′ hi′j)∑
i′ hi′j

This can be rewritten, using the fact that h’s are binary vari-
ables, as

max
h−ij

∑
i′

hi′j ·mhi′j→µj
(1) +

(1− hi′j) ·mhi′j→µj
(0)) + log

Γ(
∑

i′ hi′j)∑
i′ hi′j

= max
h−ij

∑
i′

hi′j ·mhi′j→µj (1) + log
Γ(

∑
i′ hi′j)∑

i′ hi′j

We can now see that there is a tradeoff between the first
term, which specifies how much a point prefers (or prefers
not) to be in cluster j, and the second term, which favors
more points in cluster j, regardless of how good of a fit they
are. Also notice that as more points are added to cluster j,
the marginal effect of the second term becomes stronger.

We can effectively remove the log Γ(K)
K term by break-

ing up the maximization into cases, doing the maximiza-
tion for each setting of K = 1, . . . , N , and then taking the
largest value:

m̃µj→hij
(hij ;K) + const

= log
Γ(K)

K
+ max

h−ij

∑
i′

hi′jmhi′j→µj
(1)

s.t.
∑

i′ hi′j = K

At this point, it is easy to see that the maximum can be
achieved by sorting the mhi′j→µj

(1) values in descending
order, and then setting the first K hij’s to be 1 and the
remainder to be 0. We do this for each value of K, and then
take the setting of K that produces the largest value. The
sort operation dominates the complexity, so computing a
message takes O(N log N) time, which is an improvement
over the O(2N−1) time that would be needed to compute
the message naively.

By sorting mhi′j→µj (1) for all values of i, rather than
for i′ : i′ 6= i, the sort operation can be shared across N in-
stances of essentially the same computation, reducing the
complexity to O(N2) for N of these maximizations that
correspond to computing all outgoing messages from a sin-
gle µ factor.

Intuitively, this computation is leveraging the fact that
the only interaction between the h variables is via the
counting term, log Γ(K)

K . By conditioning on K, the terms
break apart and we can maximize greedily. It should be
noted that this is similar to the algorithm described in [9],
though we are using it in a different way.

4.1.2 φ Factor Messages
The φ factor messages specify the one-of -N constraint and
can be calculated as follows:

m̃φi→hij
(hij) = max

hi−j

N∑
j′:j′ 6=j

hij′mhij′→φi
(hij′)

s.t.
∑N

j′=1 hij′ = 1
m̃φi→hij (1) = 0
m̃φi→hij (0) = max

j′:j′ 6=j
mhij′→φi(1).

The message that we actually send is the difference:

mφi→hij
(1) = − max

j′:j′ 6=j
mhij′→φi

(1).

The rest of the messages are computed using standard max-
product updates and do not require any marginalization.

4.1.3 Computing Assignments
To compute the belief for hij , we take the standard sum of
incoming messages:

bhij
(hij) = sij(hij) + mµj→hij

(hij) + mφi→hij
(hij).

Since we enforce that m(0) = 0 for all messages, we
set hij = 1 if the belief is greater than 0 and hij = 0
otherwise. Upon convergence, we generally do not have
problems with more than one hij = 1 per row. However, in
the case when it does happen, we set the hij with the largest
belief to be 1 and all others in the row to be zero. As a final
step—to refine the final assignment and to eliminate the
possibility of finding an illegal solution—we run one round
of iterated conditional modes (ICM) (see below), initialized
with the settings for hij that we find with the technique
described in this section.

4.2 Flexible Priors

At this point it is worth noting that there is nothing specific
to the exact form of the Dirichlet process prior that allows
us to compute µ factor messages efficiently. In particular,
since the key step of the computation involves pulling the
log Γ(K)

K term outside of the maximization, any unnormal-
ized probability that is dependent only on the cluster size
may be put in place here. This allows any of the priors de-
scribed in [18] to be used in place of the Dirichlet process.

5 Iterated Conditional Modes

An alternative to max-product inference is to use ICM. For
the purposes of this algorithm, we return to the original,
expanded formulation of the model, since resampling bi-
nary variables with mutual exclusion constraints over rows
would be problematic and because a sampler will mix bet-
ter if it is given more flexibility in the values that labels take



on. After proposing a new label for point i, we choose the
best exemplars for each group, given the new labels. We
then take the new label with the largest probability.

We schedule inference in a blocked manner: we iterate
over each point, jointly choosing both a new value for the
point currently being resampled and a new exemplar for the
old and new groups simultaneously. We loop over variables
to resample sequentially, until the algorithm converges.

6 Experiments

6.1 Synthetic Data

We begin by generating synthetic data from the generative
process described in section 3. For these experiments, we
set G0 to be a spherical Gaussian with unit variance; P (xi |
xj) = N (xi | xj , .5); α = 1; and we generate 1000 data
sets of 100 points each.

We compute sij for all pairs of points using the distribu-
tions given above and run three families of algorithms:

• Affinity propagation (AP(d)): We give standard AP
the similarities, sij , as input, along with an additional
self-similarity scaling parameter d, which is a real
number that is added to each sii before running in-
ference.

• Iterated conditional modes: We initialize the assign-
ment to either one large group (ICM-1) or N separate
groups (ICM-N), then run ICM until convergence.

• Dirichlet process affinity propagation (DPAP): The
max-product inference algorithm described in section
4.

We scheduled messages in DPAP using a block syn-
chronous schedule, where we alternated between updating
mutual exclusion-based messages and cluster-based mes-
sages. We determined convergence by checking whether
the largest absolute message difference between the cur-
rent and previous iteration was less than 10−5. DPAP con-
verged on 94% of the runs, and produced reasonable seg-
mentations even in the few cases when it did not converge.
We used message damping of .7 for all cluster-based mes-
sages and no damping for mutual exclusion-based mes-
sages. Affinity propagation converged on all runs, and we
gave it message damping of .8.

We analyze the results of running the algorithms on the
synthetic data along several dimensions. First, we look at
the distribution of cluster sizes found by each algorithm,
aggregated over all the data sets. Fig. 4 (a) shows the dis-
tribution of cluster sizes in the true labels for the synthetic
data. Fig. 4 (b) shows the distribution of cluster sizes found
by affinity propagation when it is given different settings
for the diagonal. This corresponds to the range of cluster
size distributions that are attainable by adjusting the affin-
ity propagation self-similarity parameter. No matter what

settings are chosen for d, the algorithm is not able to simul-
taneously capture the heavy tail of the true labels and the
large weight on small clusters of 1-5 points shown in Fig. 4
(a). Fig. 4 (c) shows that adding the infinite prior over clus-
ter sizes allows all of the DPAP model inference algorithms
to match the characteristics of the true distribution.

(a)

(b)

(c)

Figure 4: (a) Frequency versus true cluster size for data
generated by the exemplar-based generative model, ag-
gregated over 1000 random data sets. (b) Frequency
versus size of cluster found by AP(d) with d =
−100,−50,−35;−20,−10, 0 (c) Frequency versus size of
cluster found by ICM-1, ICM-N, and DPAP, respectively.

Second, we do a comparison with respect to the log
likelihoods of the different algorithms that operate on our
DPAP model. Figure 5 (a) shows the average delta log like-
lihood of the MAP assignment found by each algorithm,
as compared to the log likelihood of the true assignment,
which is normalized to be the x-axis. Note that all al-
gorithms except for ICM-N consistently find assignments
with higher log likelihoods than the true labels do, which
is possible due to the random nature of the generating pro-
cess.
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Figure 5: (a) Comparison of log likelihoods of found la-
bels versus number of clusters in the true labels. Scores
are normalized by subtracting the likelihood of the true la-
bels. (b) Direct comparison of the top two methods, DPAP
and ICM-1, on Rand Index between the true labels and the
labels found by each algorithm.

Finally, we directly compare the two best models from
(a), DPAP and ICM-1, using the Rand Index [15] of the
found labels against the true labels. The Rand Index is a
standard metric for measuring the similarity between two
clusterings, which is given as the fraction of pairs of points
that are correctly assigned as being in the same cluster or
correctly assigned as being in different clusters. A score of
1 means that the labels are identical up to a permutation of
label names. Figure 5 (b) shows that both do quite well in
general, meaning that we are able to recover the underlying
labels in many cases, but DPAP consistently outperforms
ICM-1, often by a substantial margin.

6.2 Real Data: Image Segmentation

Image segmentation is a clustering problem that is made
easier if non-Gaussian similarity measures are used. In
fact, many approaches to image segmentation do not use
latent-mean based models, due in part to the restrictions
that they place on the likelihood functions that may be used.

We begin by converting the image into a superpixel rep-
resentation [16, 6], which has been shown to reduce the size
of the problem without losing much information. We find
approximately 250 superpixels for each image. We then
follow in the spirit of many image segmentation algorithms
and use a combination of color and boundary information
to compute pairwise similarities between superpixels.

The color component of our similarity measure is based
on the difference between mean colors of superpixels in
RGB space:

sR(i, j) = −τR||R̄(i)− R̄(j)||2

To incorporate boundary information, we first use the lo-
cal boundary detector described in [12] to find a soft edge
map, E, where each pixel is assigned a probability that it is
an edge pixel. For each pair of neighboring superpixels, we
look at the pixels on the boundary, b, between superpixel i

and superpixel j, and then take the average edge response
over boundary pixels as the edge distance between the su-
perpixel pair.

dE(i, j) = τE

{ P
x,y∈b(i,j) E(x,y)

|boundary(i,j)| if |b(i, j)| > 0

∞ otherwise

To convert edge distances to a similarity measure, we
find the shortest paths between all pairs of superpixels rela-
tive to dE using Dijkstra’s algorithm as is standard. Negat-
ing these shortest-path distances gives us the boundary
component of our similarity measure, sE(i, j).

Finally, our full similarity measure simply adds together
the two components:

sij(1) = sR(i, j) + sE(i, j)

It should be noted that we make no claim that our simi-
larity measure between superpixels is optimal. In fact, we
make the opposite claim. This was a relatively simple sim-
ilarity measure that took little hand-tuning to produce. In-
stead, our aim is to explore whether imposing a prior over
cluster sizes is an axis of control that can produce a more
powerful segmentation algorithm, a question rarely consid-
ered in the image segmentation literature.

Since the focus of this work is on the prior and not image
segmentation, we set the values of τR and τE by hand, mak-
ing sure only that both sources of information contribute
roughly equally to the full similarity measure. We leave the
values constant for all experiments presented. We give the
same similarity matrix to each of the following algorithms,
then show results on a range of reasonable parameter set-
tings for each of the respective algorithms:

• Dirichlet process affinity propagation (DPAP): We use
DPAP, as suggested by the synthetic experiments. We
set the self similarities to be constant at a level that
produces an oversegmentation, then we multiply all
similarities (self and non-self) by a scaling parameter.
This has the effect of varying the relative strength of
the prior versus image information. The concentration
parameter, α, is set to 1 for all experiments.

• Affinity propagation (AP): We give standard AP the
similarities, then vary the self similarity to produce a
range of clusterings.

• Normalized cuts [17] (Ncut): We give normalized cuts
the same similarity matrix as we give the AP and
DPAP, then we vary K, the number of clusters that
we ask it to find.

Figure 6 (a) shows a range of results found by each al-
gorithm on a family scene. The image is quite crowded and
has a range of different true cluster sizes. As can be seen



(a) (b)

Figure 6: Top row: Original image; Superpixellation; True Labels. Second-Fourth Row: Image segmentations of a crowded
family scene and a scuba diving scene using a range of parameter settings for DPAP, AP, and Ncut, respectively. The
clustering with the best Rand Index is highlighted in black. Best viewed in color. (a) As AP and Ncut move towards
finer segmentations (right column), they oversegment the the Christmas tree. (b) Similarly, as AP and Ncut move towards
finer segmentations, they oversegment the water. Since DPAP has an explicit prior over cluster sizes that encourages large
clusters to get larger, it chooses to split apart the smaller clusters—the diver and fish—instead of the larger water cluster.

by looking at (a6) (where a1-a12 index the color images in
raster scan order), the Dirichlet process prior is beneficial,
because it allows large clusters like the Christmas tree to
remain in a single cluster while simultaneously finely dis-
criminating in the smaller clusters like the faces and chair
in the center of the scene . In order for either Ncut or AP to
get this level of fineness, they must oversegment the Christ-
mas tree. Compare (a6) to (a8), (a9), (a11), and (a12).

Figure 6 (b) shows segmentations found by each algo-
rithm on a scuba diving scene. The oversegmentation of
the background by both AP and Ncut is made more clear
in this case, which is likely due to the implicit prior that
favors clusters of roughly the same size. However, we can
also see that DPAP is too willing to find small, singleton
clusters. This comes from the fact that the Dirichlet process
prior becomes more discriminating as the clusters become
smaller. Since there are few strongly coherent regions other
than the background, DPAP is willing to call nearly all of
the non-water regions singletons.

Table 1 shows that the DPAP prior provides a quantita-
tive improvement in the clusterings that we are able to find
relative to the Rand Index for the two images shown, but
we note that of course there are some images where such a
prior is appropriate and some where it is not. The images
that we have chosen to show are meant to be representa-
tive of the range of solutions that each algorithm is able to
produce, rather than focusing only on illustrating the best
results.

A further point is that all algorithms are too willing

to form small, 1-3 superpixel clusters. This suggests that
while the Dirichlet process prior is often more appropri-
ate than the implicit priors of AP and Ncut, an ideal image
segmentation prior would shift some of the weight that the
Dirichlet process prior places on small clusters to medium-
sized clusters for these images. Such a prior could be ex-
pressed within our model, as mentioned in Section 4.2, but
we leave learning or choosing a prior or set of priors spe-
cific to image segmentation as future work.

Table 1: Quantitative Results For Real Data

Family Christmas Scuba Diver
Figure(Alg.) K R.I. Figure(Alg.) K R.I.

a3(True) 21 1 b3(True) 10 1
a4(DPAP) 19 .746 b4(DPAP) 6 .734
a5(DPAP) 30 .884 b5(DPAP) 15 .773
a6(DPAP) 50 .937 b6(DPAP) 31 .697

a7(AP) 7 .833 b7(AP) 5 .494
a8(AP) 19 .915 b8(AP) 16 .457
a9(AP) 42 .919 b9(AP) 31 .377

a10(Ncut) 7 .862 b10(Ncut) 6 .424
a11(Ncut) 19 .914 b11(Ncut) 15 .395
a12(Ncut) 41 .917 b12(Ncut) 30 .379



7 Discussion
We have developed a family of priors for exemplar-based
clustering that are more flexible in their ability to express
prior knowledge about cluster size distributions. If there is
reason to believe that cluster sizes follow a certain distribu-
tion, such as in word counts, various power-law phenom-
ena, or the size of objects in images, then this gives us the
ability to impart that information into an exemplar-based
clustering setting. The combination of flexible priors with
exemplar-based clustering allows us to naturally represent
a broad range of clustering problems. With added flexi-
bility comes added ability to discover underlying structure.
The tradeoff that we make to add flexibility in the prior
information comes at an order N cost in complexity over
affinity propagation, due to the fact that we must condition
on all values of K inside the µ factor message computa-
tions. However, many of these computations result in the
conclusion that no points should be assigned to the given
cluster, so there are likely many directions by which to im-
prove efficiency, including calculating bounds and finding
intelligent message schedules.

If we have no prior information about cluster sizes, it
may be reasonable to default to using methods without ex-
plicitly defined priors. On the other hand, those methods
have implicit priors, which may be equally unjustified. In
general, when trying to recover underlying classes of a
known type, it is important to consider what assumptions
about cluster sizes should be included in the model.

The results presented here show that the combination of
flexible priors with exemplar-based clustering gives a large
degree of control over the characteristics of the clusterings
that our algorithms produce. Our work suggests other re-
search directions along similar lines. One direction that
would be interesting is to incorporate a Dirichlet process
prior into the k-means component of spectral clustering.

We have illustrated our model using Dirichlet process
priors on an image segmentation problem, but we empha-
size that our model is broadly applicable to many differ-
ent priors and applications. Further, though there has been
some work revealing that max-product belief propagation
may be done efficiently with cardinality-based clique po-
tentials [9] and priors placed on node degrees [13], this
is the first work that we are aware of that shows how to
use Dirichlet process priors in a max-product belief propa-
gation setting. We are currently exploring other problems
where using Dirichlet process priors with max-product in-
ference may be useful.
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