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Abstract

We consider the problem of learning
perturbation-based probabilistic models by
computing and differentiating expected losses.
This is a challenging computational problem
that has traditionally been tackled using Monte
Carlo-based methods. In this work, we show
how a generalization of parametric min-cuts can
be used to address the same problem, achieving
higher accuracy and faster performance than a
sampling-based baseline. Utilizing our proposed
Skeleton Method, we show that we can learn the
perturbation model so as to directly minimize
expected losses. Experimental results show
that this approach offers promise as a new way
of training structured prediction models under
complex loss functions.

1 INTRODUCTION

Many problems in machine learning can be formulated as
structured-output prediction, such as pixel labelling prob-
lems in computer vision and protein side-chain predic-
tion in bio-informatics. A key challenge in the solution
of these problems is to build structured prediction mod-
els that capture key correlations within the outputs and to
learn these models from data. There are a range of ap-
proaches to this problem, including training a determinis-
tic predictor to minimize (regularized) empirical risk (e.g.,
structural SVMs (Taskar et al., 2003; Tsochantaridis et al.,
2005)), PAC Bayesian-based approaches where the goal is
to train a randomized predictor to minimize a regularized
empirical risk (Keshet et al., 2011), and probabilistic mod-
elling paired with Bayesian decision theory (Schmidt et al.,
2010).

Perturbation models (Papandreou & Yuille, 2011; Tarlow
et al., 2012; Hazan & Jaakkola, 2012) are an approach that
have been a focus of interest in recent years, and are closely

related to both PAC-Bayesian approaches and probabilis-
tic modelling. The idea is to build a probabilistic model
over structured outputs by drawing a random energy func-
tion and then returning the argmin of the random energy
function as a sample from the model. These models can
then be trained under maximum likelihood-like objectives
(Papandreou & Yuille, 2011; Tarlow et al., 2012; Hazan &
Jaakkola, 2012) or to minimize expected loss (Keshet et al.,
2011; Hazan et al., 2013). Typically the distribution over
energy functions is restricted so that the optimization step
is tractable (e.g., it is a min-cut problem). When this is the
case, perturbation models have the desirable property that
exact samples can be drawn efficiently with a single call to
an efficient optimization procedure.

Our aim in this work is to revisit the problem of training
perturbation models to minimize expected losses. Previous
works (Keshet et al., 2011; Hazan et al., 2013) have used
Monte Carlo-based methods to estimate the needed gradi-
ents. A concern with these approaches is that the gradient
estimates can have high variance, as is the case with the
well-known REINFORCE algorithm (Williams, 1992). In-
stead, our approach here is to explore combinatorial meth-
ods that take advantage of the structure of the optimization
problem in order to more efficiently make use of optimizer
runs. As a first foray into this approach, we restrict atten-
tion to the case where the perturbation model takes the form
of a uniform distribution over model parameters followed
by a call to a min-cut/maxflow routine.

Our method is based on a generalization of the paramet-
ric min-cut algorithm (Gallo et al., 1989) which in the
1-dimensional case is able to efficiently compute all pa-
rameter values (breakpoints) where the minimum energy
(MAP) solution changes. To demonstrate the efficacy of
our method, we compare estimated expected losses and
their gradients computed by our method with those ob-
tained from a sampling-based scheme. Experimental re-
sults show that we get more accurate solutions with fewer
calls to the optimization procedure and less overall wall
time.

As a full application, we also show that our method is use-



ful towards training structured prediction models to min-
imize expected losses. The method is indifferent to the
loss function used, so there is potential to use the same
method for loss functions that are typically difficult to work
with. Experimentally, we compare our method to learn-
ing using Perturb-and-MAP (a.k.a. P&M) (Papandreou &
Yuille, 2011) to learn a probabilistic model, then making
loss-aware predictions using Bayesian Decision theory. We
also show that the Skeleton method can be used in place of
sampling within the training procedure from (Papandreou
& Yuille, 2011) to give gradients with lower variance.

2 BACKGROUND: PERTURBATIONS,
EXPECTED LOSSES

We will focus on the case where perturbation models are
used to define a conditional probability model P (y |x; θ),
where x is an input (e.g., an image), y ∈ {0, 1}n is a struc-
tured output (e.g., a foreground-background image seg-
mentation), and θ ∈ Rm is a real-valued vector of parame-
ter values. We additionally assume access to a feature vec-
tor φ(x, y) ∈ Rm which contains unary and pairwise po-
tentials. Perturbation models begin by defining an energy
functionE(y |x; θ) = 〈θ, φ(x, y)〉. The second component
to a perturbation model is the noise distributionP (γ) which
is a distribution over noise vectors γ ∈ Rm. The probabil-
ity model P (y |x; θ) can then be defined as follows:

γ ∼ P (γ) (1)
y = argmin

y′
E(y′ |x; θ + γ). (2)

It will be useful to define minimizer f(θ) =
argminy E(y |x; θ), dual function g(θ) =
miny E(y |x; θ), and inverse set f−1(y) = {θ :
f(θ) = y}. Under this definition, the proba-
bility of a configuration y can be expressed as
P (y |x; θ) =

∫
1{θ+γ∈f−1(y)}P (γ)dγ. We are inter-

ested in expected losses under perturbation models. The
expected loss (or risk) is a function of a given y∗ (in our
case, the ground truth configuration) and parameters θ. It
is defined as

R(y∗, θ) =
∑

y∈{0,1}n
P (y |x; θ)L(y∗, y) (3)

=
∑

y∈{0,1}n

∫
1{θ+γ∈f−1(y)}P (γ)L(y∗, y)dγ,

(4)

where L(y∗, y) assigns a loss value for predicting y when
the ground truth is y∗. The ultimate goal we are working
towards is to learn parameters θ so as to minimizeR(y∗, θ).
First, we focus on the prerequisite tasks of computing and
differentiating R(y∗, θ). We will use deterministic update
rules to calculate gradients with the Skeleton method to
learn the model.

3 ALGORITHM: SKELETON METHOD

We begin by making some assumptions. First, let P (γ)
be a uniform distribution such that θ + γ is distributed
uniformly over a m-dimensional hyperrectangular region
Sθ =

∏m
i=1[θi, θi +wi], where γi ∈ [0, wi] and wi ∈ R>0.

Also assume that the minimizer f(θ) is unique for all θ ex-
cept for a set with measure zero, so f(θ) can be treated as
having a unique value. Finally, assume that for all θ ∈ S,
E(y |x; θ) is submodular and can be optimized efficiently.

In the following, it will be convenient for us to re-
define the inverse set f−1(y) so that only regions in
S are included. That is, f−1(y) = {θ : f(θ) =
y ∧ θ ∈ S}. Then from above, we have that
R(y∗, θ) =

∑
y∈{0,1}n

∫
1{θ+γ∈f−1(y)}P (γ)L(y∗, y)dγ.

Noting that L(y∗, y) is not a function
of γ and that

∫
1{θ+γ∈f−1(y)}P (γ)dγ =

Volume(f−1(y))/Volume(S), we can rewrite R(·)
as

∑
y∈YS L(y∗, y) Volume(f−1(y))/Volume(S), where

YS = {y : ∃θ, θ ∈ S ∧ f(θ) = y} is the set of
configurations that are minimizers for some θ ∈ S.

In this paper, we introduce a novel method to find the min-
imizers y ∈ YS and their inverse sets by iteratively updat-
ing a graph structure that we call a skeleton. Note that for
a fixed y, E(y |x; θ) is a linear function of θ, which im-
plies that the dual function g(θ) = miny E(y |x; θ) is a
piecewise concave function, where pieces are hyperplanes
corresponding to minimizers y. Let hy be the correspond-
ing hyperplane for some fixed minimizer y. Intuitively, the
skeleton GY = (VY , EY ) is a graphical representation of
the dual g(θ) over S. The skeleton will be constructed on
the given parameter space S by finding new minimizers, or
hyperplanes, at each iteration until there are no more min-
imizers. At each iteration, the growing skeleton represents
an upper bound on the dual g, which we call the subset
dual.

Definition 1 (Subset dual gY ) For some given minimizer
set Y ⊆ YS , let gY (θ) = miny∈Y E(y |x; θ) be the subset
dual, which is a piecewise concave function.

For some given subset dual gY (·), each hyperplane hy has a
corresponding graph which we refer as a facet Gy . A facet
Gy = (Vy, Ey) is defined as the smallest convex hull made
by the intersections of hy and other hyperplanes, where
Vy, Ey are boundary vertices and edges of the convex hull.
Let θv be the parameter value and zv = gY (θv) be the sub-
set dual value corresponding to the vertex v. Note that a
facet can be cut because of the boundaries the given pa-
rameter space makes. A skeleton is defined using the union
of these facets as follows.

Definition 2 (Skeleton of gY over S) For some given
subset dual gY , the skeleton of gY on S can be represented
by the following structure GY = (VY , EY ). Let (u, v) be



an edge between u and v, where u, v ∈ VY .

• VY =
⋃
y∈Y {v : Boundary vertices ofGy , where θv ∈

S, zv = gY (θv)}

• EY =
⋃
y∈Y {(u, v) : Boundary edges of Gy ,

where u, v ∈ VY } ∪ {(u, v) : u ∈ VY , θu ∈
Πm
i=0{w

−
i , w

+
i }, v = (θu,−∞)}

For example, Figure 1 is a skeleton over some parame-
ter space S ∈ R2 given a subset dual gY , where Y =
{y1, ..., y5}. There are five facets on the skeleton, where
four are cut by the boundaries of S.

From the given definitions, it is clear that an inverse set
f−1
Y (y) = {θ : y = argminy′∈Y fθ(y′) ∧ θ ∈ S} of
y defined on a subset dual gY directly corresponds to the
projection of the facet Gy . Thus, in order to calculate the
volume of θY (y), we can use the projected vertices of Gy
on S. One of the main points of our method is that we are
able to track every facet with every iteration, so that we
can calculate the approximate expected loss every time we
update the skeleton.

We now describe our Skeleton method and how it works.
Figure 1 describes a visual example on how a skeleton is
constructed and updated by a single iteration of our algo-
rithm. Algorithm 1 is the pseudo code of the algorithm.

3.1 INITIALIZATION

The initial skeleton GY = (VY , EY ) is given by the fol-
lowing.

• Y = φ

• VY = {(θvn , zvn) : θvn = Πm
i=0{w

−
i , w

+
i }, zvn =

∞}

• EY = {(u, v) : u ∈ VY , v = (θu,−∞)}

3.2 FINDING A NEW FACET

In order to find a new facet, the algorithm first picks some
vertex u = (θu, zu) ∈ VY . Using graph cut, a new solution
yu = f(θu) can be found. The first step is to determine
whether the new solution improves the current dual in any
region. This can be checked by hyu(θu) < zu. If this is the
case, we say that a cut is made, and yu is added to Y .

Next, we must find new intersection points where hyu inter-
sects other hyperplanes defining the subset dual. The key
property of the new intersection points is that they will ei-
ther appear at existing vertices v ∈ VY , or they appear on
an edge (ph, pt) ∈ EY that “crosses” the new hyperplane;
that is hyph (θph) < zph and hypt (θpt) > zpt . The set of
vertices where hyv (θv) < zv , form a connected component

Algorithm 1 Skeleton Method

Input: Oracle f , Loss function L(y∗, y)
(Y,GY )← InitSkeleton()
for all u = (θu, zu) ∈ Vi do
yu = f(θu)
if hyu(θu) < zu then

Add yu to Y
(I,H)← FindIntersection(GY , hyu)
Add fyu = (yu, I) to FY
VY = (VY ∪ I)−H
for all Intersection vertices p ∈ I do

if p is a new vertex then
Add p to all Gy ∈ {Facets sharing (pt, ph),
where ph is above and pt is below hyu}
Append new edge (pt, p) to EY

end if
end for
Remove vertices r ∈ H above hyu from all facets
Remove E− = {(u, v) : u or v ∈ H} from EY
Append E+ = {Boundary edges of Gyu} to EY
R =

∑
y∈Y V olumef−1(y)L(y∗, y)

end if
end for

H ⊂ GY , and the crossing edges are the boundary edges
of this connected component. Thus, the intersection points
can be found by exploring a search tree outwards from u.
When a vertex v is encountered such that hyv (θv) < zv , the
intersection point between v and its parent is computed by
finding some point p where hyp(θp) = zp, and the search
tree is not searched further down that path. Upon termina-
tion, vertices of the connected component H are removed
from VY , and the new intersection points, notated as I , are
added. A step of this procedure is illustrated in Figure 1(b),
where there is a cut after selecting vertex ui, colored in red.

3.3 UPDATING THE SKELETON GY

When a cut is done in the skeleton, it should be updated
with the new upper bound made by hyu . The nontrivial
case is when some intersection point p ∈ I is a new point
made on some edge (ph, pt) ∈ EY , which is (u1, v1) for p1

in Figure 1b. The new vertex p is added to all facets which
share the edge (ph, pt). Also, a new edge (pt, p) should
be added to the skeleton. Boundary edges made from the
convex hull of the new polytope Gyu are also added to EY .
Finally, the skeleton update is done when all vertices r ∈ H
are deleted from every facet and all edges including r are
removed from EY .

3.4 CALCULATING EXPECTED LOSS R

At this point, the skeleton is fully updated. To compute
expected loss R(y∗, θ), we use an off-the-shelf subroutine



for computing the volume of each inverse set f−1
Y (y) for

y ∈ Y . The volumes are multiplied by the loss value for
each y, and the products are summed to get the full ex-
pected loss. For normalization, the value is divided by the
volume of S.

3.5 EXAMPLE : TWO PARAMETERS

Figure 1 describes a single iteration of the Skeleton Method
on a perturbation model having two parameters, θ1, θ2.
Note that the leftside represents the subset dual gY and
that the right image isthe projection of facets on the given
parameter space S. The iteration starts from a skele-
ton which has already done five iterations by the algo-
rithm (Y = {y1...y5}). There are five facets on the pa-
rameter space so that the expected loss is R(y∗, θ) =∑5
n=1 Volume(f−1

Y (yn))L(y∗, yn)/Volume(S). Sup-
pose we take some unused vertex u1. In this case, we
can see that the hyperplane hy6 makes a cut in the skeleton
(Y ′ = Y ∪ {y6}). By updating the skeleton, a new facet
f6 is found. Since there is a unique loss value for each
facet, we can calculate the expected loss as R(y∗, θ) =∑6
n=1 Volume(f−1

Y ′ (yn))L(y∗, yn)/Volume(S).

4 LEARNING

4.1 COMPUTING GRADIENTS: SLICING

Our main focus is not only computing expected losses; the
ultimate aim is to learn parameters that yield a perturba-
tion model that achieves low expected loss. In order to
update the perturbation model to minimize the expected
loss, we calculate the gradients by applying a simple finite-
differencing-based technique named slicing.

Before going through details, we add more assumptions
from the previous section. To be more flexible, let the
parameter space where θ + γ is sampled from notated as
Sθ = θ+ S = θ+ Πm

i γ, where γi ∈ [0, wi]. The expected
loss of the region which S creates on parameter θ will be
notated as RS(y∗, θ). The approximation we use is

∂R(y∗, θ)
∂θi

≈ RS(y∗, θ + δei)−RS(y∗, θ)
δ

, (5)

where δ is a small value and ei ∈ Rm is a unit vector with
1 in the ith coordinate and 0 elsewhere. Intuitively, this is
identical to the difference between expected losses of re-
gions shifted to the + direction of θi by a small distance of
δ. Therefore, we can use a Monte Carlo-based method or
the Skeleton method on these two regions and compute the
differences to find the gradients.

When shifting a region by δ, we see that the contribution
to the gradient comes just from the δ-width end-regions il-
lustrated in Figure 3 (b). We call these end regions slices.
Motivated by this, instead of computing expected losses of
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Figure 1: Visual Example of the Skeleton Method with Two
Parameters.

the shifted and unshifted full regions, we compute expected
losses only on the slices. Intuitively, we expect the slices to
have fewer minimizers defining the Skeleton structure than
the full regions that include them, and we expect that fo-
cusing only on the regions of difference will lead to faster
and more accurate gradient estimates.

Let si = Πm
j γj be the size of the thin slice where γj =

[0, wj ] except the ith range γi ∈ [0, δ]. From this setting,
Rsi(y∗, θ) stands for the expected loss of the sliced region
of size si. Using this we can apply gradient descent up-
dates.

∂R(y∗, θ)
∂θi

≈ Rsi(y∗, θ + wi)−Rsi(y∗, θ) (6)

θi(t+ 1) = θi(t)− αi
∂R(y∗, θ)

∂θi
(7)

Each parameter θi in iteration t + 1 is updated with the
gradient value with a constant step size of αi, which is pro-
portional by the feature size of θi. One thing to be cau-
tious about when selecting a learning rate is, that if the



Figure 2: Comparisons between the Monte Carlo Estimator and the Skeleton Method. Using both methods we computed
expected Hamming losses to identical settings and compared by runtime. Images of size [90x120] taken from (Rother
et al., 2004) are used.

𝜃𝑖

(a) Sθ

𝛿

𝜃𝑖

(b) Sθ → Sθ+δei

Figure 3: Visual Discription of Slices. The Slicing method
computes the differences in gray regions in (b) to estimate
the gradient with respect to parameter θi.

learning rate is too large, then the parameters may make
the model jump to an unlearnable state (plateau in the ob-
jective), which is a state where Sθ holds only one inverse
set.

4.2 TRAINING

In order to learn the parameters for our perturbation model,
we exploit the Slicing method so that the model is trained
directly from minimizing expected loss. One main advan-
tage for our method is that we can use an arbitrary loss
function very easily in this process. Suppose we have a
training set with a size of N and have m parameters. For
each iteration, we make 2m slices from the model. Param-
eters are updated by using the mean value of gradients from
all training images like the following equation.

θi(t+ 1) = θi(t) + αi
1
N

N∑
n

∂R(y∗n, θ)
∂θi

(8)

Note that it is not necessary to evaluate the expected loss
objective at every step of the optimization.

4.3 EXPLOITING THE SKELETON METHOD

Previous approaches focus on how to use sampling meth-
ods to learn their models, which although many have well
understood theoretical convergence properties as the sam-
ple size goes to infinity, suffer from problems with high
variance in practice. In fact, the Skeleton method can be
used in place of sampling more generally; for example, the
P&M model in (Papandreou & Yuille, 2011) is trained us-
ing a moment-matching objective described in Eq. 9-11.

θi(t+ 1) = θi(t)− αi∆θi (9)
∆θi = ESθ [φi(y)]− E[φi(y∗)] (10)

ESθ [φi(y)] =
1
M

M∑
j

φi(yj) (11)

To compute the expectations ESθ [φi(y)], where φi(y)
is a feature function, the standard approach is to use
sampling. However, we can replace the sampling-
based approach with a skeleton-based approach. Specif-
ically, we replace the term to be ESθ [φi(y)] =∑
y∈{0,1}n P (y |x, θ)LH(y∗, yj) and then use the method

described above to compute the quantities needed in Eq. 9-
11. This gives an alternative method for optimizing the
original P&M objective; we call this approach Skeleton
Perturb-and-MAP (Skeleton P&M).

5 EXPERIMENTS AND DISCUSSION

5.1 DATA AND SETUP

In this section, we apply the Skeleton Method to a
foreground-background image segmentation task, compar-
ing against Monte Carlo baselines which estimate expected
losses by drawing samples from the prior and reporting the
average incurred loss. All images used in experiments are



originally from the Berkeley image segmentation set by
(Rother et al., 2004). The energy function used is of the
following form:

E(y |x; θ) = 〈θ, φ(x, y)〉

= E(x) + θ1

n∑
i

xi

+ θ2
∑

(yi,yj)∈Ev

(yi 6= yj) + θ3
∑

(yi,yj)∈Eh

(yi 6= yj)

(12)

whereEv, Eh are each sets of neighboring vertical and hor-
izontal pairs of pixels respectively. xi is the ith pixel’s label
of the noised input, which is made by switching values of
ground truth labels with a uniform probability of 5%.

Expected losses were computed over a parameter space
Sθ = θ + γ ⊆ Rm defined from a uniform distribu-
tion γ ∼ P (γ) where γ ∈ [0, 1]3. Intuitively, Sθ is a
cube shaped region positioned by θ on the parameter space
where parameters are sampled from. Expected loss over
region Sθ will be notated as RS(y∗, θ).

In default, the loss function for the following experiments
will be defined as the Hamming distance, LH(y∗, y) =∑n
i=1(yi 6= y∗i ). Note that this formulation supports ar-

bitrary loss functions other than the Hamming distance.

5.2 CALCULATING EXPECTED LOSSES

To evaluate the methods, it would be ideal to have a ground
truth value of expected losses for a given parameter setting.
Unfortunately this is hard to calculate accurately, because
the Skeleton method does not always run to termination
within practical time, and there is necessarily some vari-
ance in the estimates returned by the sampling estimate.
Thus, we report the estimates from each method along
with 95% confidence intervals derived from the sampling
method. For the sampling method, in each trial, parame-
ters were independently sampled 100k times, and this was
repeated 10 times.

Figure 2 shows plots of expected losses calculated by the
two methods versus runtime. The average sampling esti-
mate (across all trials) appear as red dashed lines in Fig-
ure 2(a) -2(c). Also shown are the cumulative averages for
three representative trials of the sampling (green to blue
curves), and the Skeleton method (magenta). The main
take-away is that the expected loss values of both methods
converge to similar values, but particularly with few sam-
ples, there is high variance in sampling. While the Monte
Carlo estimator has significant variance even after 1000
seconds, the Skeleton Method has essentially converged to
its final, accurate estimate after approximately 10 seconds.
This suggests that we can even stop running the method in
the middle of the algorithm to estimate the expected loss
with high accuracy. The reason such behavior appears is

(a) (b)

Figure 4: Gradients of Expected Hamming Loss for θ1.
(a) Sampling and Skeleton method on two full regions (b)
Skeleton method on full regions and Slicing method.

related to the high concentration of vertices in the later it-
erations of the algorithm. Many calculations made in later
iterations induce inverse sets which have very small vol-
umes, implying the low contribution to the expected loss.

5.3 CALCULATING GRADIENTS

We now turn attention to evaluating the Skeleton method
and Monte Carlo method for computing gradients of ex-
pected losses. For the Skeleton method, we evaluate our
recommended Slicing method, and also a variant that com-
putes expected losses over full regions that are shifted by
δ, which would be the more standard finite-difference ap-
proach. We use the thickness δ = 0.001 and parameter θ1,
which is for the unary term, for the experiments. A compar-
ison of the Monte Carlo approach (red) and the full-region
Skeleton method (magenta) appear in Figure 4 (a). The red
curve shows the cumulative average Monte Carlo estimate
averaged across 10 repetitions. Even with this averaging,
we see a great deal of variance in the estimates. The Skele-
ton method, by contrast, quickly converges to a value near
where the Monte Carlo estimator appears to be converging
to.

We then zoom in (note the y-axis scales) and consider the
recommended Slicing variant of the Skeleton method and
compare it to the full-region version shown in Figure 4 (a).
The result appears in Figure 4 (b). Here we see that the
Slicing variant is faster and much more stable than the full-
region variant. As mentioned above, we believe the rea-
son for the disparity is that number of unique inverse sets
in the Slicing variant is smaller, and there is no variance
that arises from the two runs computing slightly different
estimates of the expected loss in the middle region that is
contained by both the original and shifted full region.

5.4 MODEL LEARNING

Learning was done an image set including 30 images each
having approximately 2500 pixels. The data set was ran-
domly split into N = 24 training images and N ′ = 6 test



(a) (b)

(c) (d)

Figure 5: Parameter Learning with P&M and the Slicing
Method. (a)-(c): Parameter updates (d): Expected Ham-
ming Loss updates

images.

5.4.1 Learning

We performed learning with the Slicing method, where
gradients are computed with slices having a thickness of
δ = 0.001. The starting parameter is θ = (0, 0, 0), with a
uniform perturbation γ ∈ Π3

i [0, 1] defining a cube-shaped
region on the parameter space. Gradients are computed for
each parameter, which makes 6 slices to use. All slices
can be computed independently, where in most cases 1-3
seconds are enough to get significant accuracy. By every
iteration, the region will shift to a certain direction, and the
process is repeated. The orange plots of Figure 5 show how
the Slicing method learns the model for 60 iterations.

As a baseline for our method, we trained the P&M model
with the same settings. Note that the Slicing method and
P&M model have different behaviors, which are due to the
difference in objectives; our Slicing method directly tries
to minimize expected Hamming loss while the P&M model
uses a moment-matching rule to estimate the posterior. The
behavior of the learning P&M model is illustrated as the
solid blue line of Figure 5, with the Skeleton P&M model
being the dotted blue line. Take note that the Skeleton P&M
strongly resembles the original P&M trace, but its trajec-
tory is smoother, presumably due to lower variance in the
gradient estimates.

At test time, instead of computing expected losses accu-
rately, there may be a desire to sacrifice accuracy over run-
time in estimating the value. One easy example is to use a
finite number of samples such as 20 and compute the aver-
age of losses. Another approach is to sample a single output

Table 1: Expected Hamming Losses. Expected losses are
computed with three ways 1) Average loss of 20 samples
2) Skeleton method 3) Single sampled loss from center.
The performance for each model is described in each row,
where values were computed separately on the training set
and test set.

METHOD SAMPLED EXPECTED CENTER

P&M (Train) 1.694±.0011 1.812 .2369
Skel. P&M (Train) 1.764±.0017 1.816 .2369
Slicing (Train) 1.480±.0012 1.535 .2932
P&M (Test) 2.186±.0011 2.257 1.172
Skel. P&M (Test) 2.197±.0016 2.268 1.178
Slicing (Test) 2.048±.0043 2.134 1.391

from a moderate position such as the center of the param-
eter space. Table 1 shows the expected losses computed
from the mentioned methods. Each column represents the
method we choose to compute expected loss. Each row rep-
resents the selected model trained for 60 iterations. Both
from Figure 5(d) and Table 1, it is clear that our method
is superior to the P&M model in optimizing the expected
Hamming loss.

5.4.2 Other Loss Functions

With our method, it is possible to minimize an arbitrary loss
function’s expected value. In the following experiments we
try to minimize the following loss function.

- Boundary-only Pixel Loss LP : Hamming loss on only
pixels which have at least one neighbor with a different la-
bel in the ground truth

LP (y∗, y) =
∑
y∗i 6=y∗j

(yi 6= y∗i )

The solid lines of Figure 6 shows the expected losses
changing by the Slicing method in 60 iterations. The
dashed lines are loss values from a baseline where we
use the learned Skeleton P&M parameters to make loss-
directed predictions using an approximation of Bayesian
decision theory, similar to that used by (Premachandran
et al., 2014). approximation Bayesian Decision Theory
prediction framework. Specifically, we sample M = 100
segmentations Y = {y(1), . . . , y(M)} from the learned
model, then we make predictions by restricting possible
predictions to be one of the M sampled segmentations,
and we approximate expected losses by taking averages
over the M segmentations; specifically, we predict as
arg miny′∈Y

∑
y∈Y ∆(y′, y). Figure 6 shows the expected

boundary-only pixel loss being learned from the Slicing
method as solid lines and the approximate Minimum Bayes
Risk (MBR) prediction loss as dashed lines. This experi-
ment shows that our method gives better results than the
classical approach in minimizing expected losses.



Figure 6: Learning Other Expected Losses. Orange and
blue lines represent the values computed from the test set
and training set respectively. Dashed lines are Approxi-
mate MBR prediction loss values, while the solid lines are
learned from the Slicing method.

5.5 EXPECTED SEGMENTATIONS

To visualize how different parameters, or regions, effect the
expected loss, we can use a probabilistic image constructed
from every solution captured by our algorithm. This image
or expected segmentation is made by weighting each con-
figuration by the volume of its inverse set and summing
up to a gray scale image. Note that this implies that the
values of Table 1 are identical to the l1 distance between
the ground truth image and the expected segmentation. Ex-
amples are shown in Figure 7. The example images were
selected from the test set. From the figure, you can see
that expected segmentations made from our perturbation
model have higher quality, smoother segmentations than
those from the P&M models.

6 CONCLUSION

Our results show that the Skeleton method is a promising
alternative to Monte Carlo methods. The Skeleton method
converges in a nice deterministic behavior, which shows
higher accuracy than using samples. Another benefit of
the Skeleton method is that it is applicable for any loss
function. We have shown it applied to a boundary-only
pixel loss; in future work it would be interesting to apply
it to even more complicated loss functions. The Skeleton
method also appears to be a general drop-in replacement
for sampling-based computation of expectations in pertur-
bation models. We showed this by adapting the method to
the moment-matching objective that the original P&M pa-
per proposed, showing that the Skeleton method leads to
similar-but-smoother learning trajectories.

The idea of iteratively building piecewise linear approxi-

mations arises in many cases, such as when computing the
value function in POMDPs (Porta et al., 2006; Isom et al.,
2008; Brechtel et al., 2013). While the high level ideas are
similar to these and other methods, the details are quite dif-
ferent; for example, in the above works, no volume compu-
tations are required, whereas they are core to our method.

The primary challenge going forward is to broaden the ap-
plicability of the method, extending to higher dimensions
and enlarging the space of supported perturbation distribu-
tions. It is likely in these cases that exactness of the method
will need to be abandoned due to the fact that the number
of solutions will likely grow, and the computations of nec-
essary volumes will become computationally hard. Despite
this, we believe the algorithm presented here will be useful
going forward. There are two possibilities we are interested
in exploring: first, using a hybrid of the Skeleton and sam-
pling methods where some dimensions are sampled and
some are integrated analytically using the Skeleton method
(producing a Rao-Blackwellized sampler); second, we be-
lieve there to be opportunities for computing and differenti-
ating upper bounds based on the Skeleton structure, which
could lead to interesting new learning methods.
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