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Introduction

Develop Control Policy for a System

If you have a robot. To find a good way to control it, you can
either:
@ Peform reinforcement learning during the robot operation.

o takes higher cost and time.

@ Perform reinforcement learning on a simulation of the robot.
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Introduction

Learn Policies from Simulation?

@ Policies learned from simulation usually cannot be used
directly.

@ Simulation often captures only high level trajectories, ignoring
details of physical properties.

e Can we transfer learned policy from simulation to real world?
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Deep Inverse Dynamic Model
Training of Inverse Dynamics Neural Network

Transfer Learning of Policy

@ Policies are found by simulation instead of real world.

@ Use neural network to map learned policy in source
environment (simulation) to target environment (real world).

@ Transfer good policies in one simulation to many other real
world environments.
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Deep Inverse Dynamic Model
Training of Inverse Dynamics Neural Network

Variables in Environments

Each environment has its own:
@ State Space S: s € S are states of the environment.
@ Action Space A: a € A are actions can be take.

@ Observation Space O: o(s) is the observation of environment
in state s

@ System Forward Dynamic: T(s,a) = s’, determine new state
s’ given action and previous state
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Deep Inverse Dynamic Model
Training of Inverse Dynamics Neural Network

Deep Inverse Dynamic Model

@ 7_y.: Trajectory: {o}most recent k observations and k-1
actions of target environment.

@ Tsource: Good enough policy in source environment.
@ ¢: Inverse dynamics is a neural network that maps source
policy to target policy.
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Deep Inverse Dynamic Model
Training of Inverse Dynamics Neural Network

Method

Deep Inverse Dynamic Model

@ Compute source action aspurce = Tsource(T—k:) according to
target trajectory.

@ Observe the next state given 7_. and asoyrce:
6next = O( Tsource('r—k:a asource))

© Feed 0pex¢ and 7_y. to Inverse dynamics that produce asarget
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Deep Inverse Dynamic Model
Training of Inverse Dynamics Neural Network

Training of Inverse Dynamics Neural Network |

@ Given trajectory of previous k time step and the desired
observation ok 1, the network output action that leads to
desired observation
¢ (00,a0,01,...,3Kk_1, 0k, Ok+1) — Ak

@ Training data are obtained by preliminary inverse dynamics
model ¢ and prelimiary policy 7targer Of target environment

@ Diversity of training data can be achieved by adding noise to
predefined actions
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Deep Inverse Dynamic Model
Training of Inverse Dynamics Neural Network

Architecture of Inverse Dynamic Neural Network

@ input: previous k observations, previous k — 1 actions, desired
observation for next time step

@ output: the action that leads to desired observation

e Hidden layer: two fully connected hidden layer with 256 unit
followed by ReLU activation function.
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Result

Simulation 1 to Simulation 2 Transfer |

@ The experiments are performed on Simulators that can change
conditions of it's environment.

@ The source and target environment are basically the same
model except gravity or motor noise

@ The following four models are used for simulation.

Figure: From left to right are Reacher, Hopper, Half-cheetah, and
Humanoid
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Result

Simulation 1 to Simulation 2 Transfer |l

Variation of Gravity
Varying gravity
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Result

Simulation 1 to Simulation 2 Transfer Il

Variation of Motor Noise
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Result

Simulation to Real Transfer

@ The real evironment is a physical Fetch Robot.

@ The groundtruth is the observation obtained by directy apply
reinforcement learning on the robot.

@ The baseline to compare with is a PD controller.

Task Swings limited with a bungee cord
Method
| Our method 3.72% + 0.020%
‘ PD controller 4.49% + 0.050%

Figure: The discrepancy between observations on transferred policy and
ground truth is measured.

Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneide Transfer from Simulation to Real World through Learning



Result

Conclusion

@ The method succefully adapt complex control policies to real
world.

@ obsrvation in source and target environment are assume the
same, which are not always true.

@ The method can also be applied to the simulation that actions
cannot be seen.
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