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Basic Algorithm



Generative Adversarial Networks: specific choice of Q (MLP) and specific choice 
of how to do estimation (adversarial). 

Many other selections possible, and adversarial training is not limited to MLPs.

GANs can do (1) and (2) but not (3).

Generative Models 
Three major tasks, given a generative model Q from a class of models Q:

1. Sampling: drawing from Q
2. Estimation: find the Q in Q that best matches observed data
3. Evaluate Likelihood: compute Q(x) for a given x.



Big Idea - Analogy
● Generative: team of counterfeiters, trying to fool police with fake currency
● Discriminative: police, trying to detect the counterfeit currency

● Competition drives both to improve, until counterfeits are indistinguishable 
from genuine currency

● Now counterfeiters have as a side-effect learned something about real 
currency



Big Idea
● Train a generative model G(z) to generate data with random noise z as input
● Adversary is discriminator D(x) trained to distinguish generated and true data
● Represent both G(z) and D(x) by multilayer perceptrons for differentiability

http://www.slideshare.net/xavigiro/deep-learning-for-computer-visio
n-generative-models-and-adversarial-training-upc-2016



Formulation and Value Function
Latent variable z is randomly drawn from prior 
Generator is a mapping from latent variable z to data space:

      Defined by MLP params  
Discriminator is a scalar function of data space that outputs probability that input 
was genuine (i.e. drawn from true data distribution):

      Defined by MLP params  
Trained with value function:

log prob of D predicting that 
real-world data is genuine

log prob of D predicting that G’s 
generated data is not genuine 



Perspectives on GANs
1. Want: Automatic model checking and improvement

Human building a generative model would iterate until the model 
generates plausible data. GAN attempts to automate that procedure.

2. “Adaptive” training signal

Notion that optimization of discriminator will find and adaptively penalize 
the types of errors the generator is making

3. Minimizing divergence

Training GAN is equivalent to minimizing Jensen-Shannon divergence 
between generator and data distributions. Other divergences possible too



Pros and Cons

Pros:

● Can utilize power of backprop
● No explicit intractable integral
● No MCMC needed
● Any (differentiable) computation (vs. Real NVP)



Pros and Cons
Cons:

● Unclear stopping criteria
● No explicit representation of pg(x)
● Hard to train (immature tools for minimax optimization)
● Need to manually babysit during training
● No evaluation metric so hard to compare with other models (vs. VLB)
● Easy to get trapped in local optima that memorize training data
● Hard to invert generative model to get back latent z from generated x



● Gibbs-type - like training procedure aka Block Coordinate Descent

○ Train discriminator (to convergence) with generator held constant

○ Train generator (a little) with discriminator held constant

● Standard use of mini-batch in practice

● Could train D & G simultaneously

Training a GAN





Alternating Training of D and G



● How much should we train G before going back to D?  If we train too much we 
won’t converge (overfitting)

● Trick about changing the objective from min log(1-D(G(z))) to max 
log(D(G(z))) to avoid saturating gradients early on when G is terrible

GAN Convergence?

log prob of D predicting that 
real-world data is genuine

log prob of D predicting that G’s 
generated data is not genuine 



● For a given generator, the optimal discriminator is:

Proof of optimality



● Incorporating that into the minimax game to yield virtual training criterion:

Proof of optimality



● Equilibrium is reached when the Generator matches the data distribution

Proof of optimality



● Virtual training criterion is JSD:

Proof of optimality



GANs as a NE
A game has 3 components - List of Players, potential actions by the players, and payoffs for the 
players in each outcome.

There are a variety of solution concepts for a game.  A Nash Equilibrium is one, where each 
player does not want to change their actions, given the other players actions.



Mixed NE and Minimax

A game is minimax iff it has 2 players and in all states the reward of player 1 is the 
negative of reward of player 2.

Minimax Theorem states any point satisfying this is a PNE

If the opponent knows our strategy, it may be best to play a distribution of actions.



Can we construct a game, with a (mixed) equilibria that forces one player to learn 
the data distribution?  Think counterfeiter vs police.

In the idealized game:

2 Players - Discriminator D and Generator G.  Assume infinite capacity

Actions - G can declare a distribution in data space.  D can declare a value 
(sometimes 0 to 1) for every point in data space.

Payoff - D wants to assign low values for points likely to be from G and high 
values for points likely to be from the real distribution.  We could have payoff 
functions r_data(x) = log(D(x)) and r_g(x) = log(1 - D(x)):



In the real game:

2 Players - Discriminator D and Generator G. Finite capacity

Actions - G broadcasts m fake data points.  D can declares a value for every fake 
and real (2m) point.  Require both strategy sets to be differentiable, so use a 
neural network.

Payoff - Can only use approximations of expectation.  “Similar” objective function 
for G?



Unique PNE Existence for the idealized game. 

If G plays some value more often than the Data, D will either (1) predict that point at a higher than average 
value, (2) predict the average, or (3) a below average value.  In case (1) G will change its strategy by 
reducing mass in this region and moving it to a below average region.  In case (2) and (3) D will increase 
its prediction of G in this region. Thus we are not at a PNE. A similar argument holds if G plays less often 
than Data.  Thus p_G = p_Data at any PNE.

If D plays some value other than the average, then there exists some region above the average and some 
below.  G will increase its payoff by decreasing its mass in low value region and moving it to the high 
value region.  Thus D must play the same value at all points at a PNE (and that value expresses 
indifference between G and Data).  D’s payoff governs the value that expresses indifference and the loss 
that is learned (ex. p_r/(p_g+p_r) or p_g/p_r).  If there is 1 value that expresses indifference the PNE is 
unique.

Existence?

Use Infinite capacity.



Global optimality

The PNE is a global min of the minimax equation.

One particular case is D(x) = p_r/(p_g+p_r) and G(x) maximizing JS(r || g), with 
payoff_r(D(x)) = log(D(x)) and payoff_g(D(x)) = log(1 - D(x)). 

Another is is D(x) = p_g/p_r and G(x) maximizing KL(g || r), with payoff_r(D(x)) = 
D(x) - 1 and payoff_g(D(x)) = -log(D(x)). 



Relations to VAE
● VAEs minimize an objective function indirectly. This is the ELBO.

● GANs attempt to minimize the objective function directly by training the 

discriminator to learn the objective function for a fixed Generator.  How much 

can we change the generator, while still having the Discriminator as a good 

approximation?

● Framework for GANs can include alternative measures of divergences for the 

objective



Alternative Divergence Measures



So Far...
● We have the following based min-max problem using the objective

● When we have an optimal D with respect to G we obtain a Jenson-Shannon 
divergence term:



However in implementation
● This formulation is difficult to train due to                                  having poor 

convergence when the p_model differs from p_data too much
● Is replaced with -log                  in the original paper.



Another alternative

● If we replace that term with

● NOTATION: Rather than call G, we say x~Q for x=G(z), z~p_z
● NOTATION: Data is drawn from P
● We get a KL divergence term according to ( recall that                                   )



A family of alternatives (f-GAN)
● Consider a general class of divergences of the form

●                  is a convex lower-semicontinuous such that f(1) = 0.
● Use convex conjugates,     to move from divergences to objectives
● Train a distribution Q and an approximation of divergence with T



Some divergence measures



Fenchel (Convex) Dual

Note that:

The f-divergence is defined as:

Using the Fenchel Dual:

This poses divergence minimization into a min-max problem



New Optimization
● Now optimize T and Q with parameters ω and θ respectively:

● g is a f-specific activation function

● For standard GAN:
○ With 



Fenchel Duals for various divergence functions

For optimal T*, T* = f’(1)



f-GAN Summary
● GAN can be generalized to minimize a large family of divergences 

(f-divergences)
● The min-max comes from weakening the evaluation of D(P||Q) using the 

Fenshel dual
● Rather than as an adversarial network G/N, can see GAN as a system for 

simultaneously approximating the divergence (T) and minimizing the 
divergence (Q)


