GAN Foundations

CSC2541
Michael Chiu - chiu@cs.toronto.edu
Jonathan Lorraine - Lorraine@cs.toronto.edu
Ali Punjani - alipunjani@cs.toronto.edu
Michael Tao - mtao@dgp.toronto.edu

Basic Algorithm

Generative Models

Three major tasks, given a generative model Q from a class of models Q:

1. Sampling: drawing from Q
2. Estimation: find the Q in Q that best matches observed data
3. Evaluate Likelihood: compute Q(x) for a given x.

Generative Adversarial Networks: specific choice of Q (MLP) and specific choice
of how to do estimation (adversarial).

Many other selections possible, and adversarial training is not limited to MLPs.

GANs can do (1) and (2) but not (3).

Big Idea - Analogy

e Generative: team of counterfeiters, trying to fool police with fake currency

e Discriminative: police, trying to detect the counterfeit currency

e Competition drives both to improve, until counterfeits are indistinguishable
from genuine currency

e Now counterfeiters have as a side-effect learned something about real
currency

Big Idea

e Train a generative model G(z) to generate data with random noise z as input
e Adversary is discriminator D(x) trained to distinguish generated and true data
e Represent both G(z) and D(x) by multilayer perceptrons for differentiability

Latent random variable

Real world
images

Sampla

Q00O

Generator

Real

Discriminator

Fake

http://www_.slideshare.net/xavigiro/deep-learning-for-computer-visio
n-generative-models-and-adversarial-training-upc-2016

Formulation and Value Function

Latent variable z is randomly drawn from prior p,(2)
Generator is a mapping from latent variable z to data space:
G(z;6,) Defined by MLP params ¢,
Discriminator is a scalar function of data space that outputs probability that input
was genuine (i.e. drawn from true data distribution):
D(z;0,) Defined by MLP params 64
Trained with value function:

min max V' (D, G) = Eqpeu @) 108 D()] +Exvp, () l08(1 — D(G(2)))]

log prob of D predicting that log prob of D predicting that G’s
real-world data is genuine generated data is not genuine

Perspectives on GANs

1. Want. Automatic model checking and improvement

Human building a generative model would iterate until the model
generates plausible data. GAN attempts to automate that procedure.

2. “Adaptive” training signal

Notion that optimization of discriminator will find and adaptively penalize
the types of errors the generator is making

3. Minimizing divergence

Training GAN is equivalent to minimizing Jensen-Shannon divergence
between generator and data distributions. Other divergences possible too

Pros and Cons

Pros:

Can utilize power of backprop

No explicit intractable integral

No MCMC needed

Any (differentiable) computation (vs. Real NVP)

Pros and Cons

Cons:

Unclear stopping criteria

No explicit representation of pg(x)

Hard to train (immature tools for minimax optimization)

Need to manually babysit during training

No evaluation metric so hard to compare with other models (vs. VLB)
Easy to get trapped in local optima that memorize training data

Hard to invert generative model to get back latent z from generated x

Training a GAN

o Gibbs-type - like training procedure aka Block Coordinate Descent
o Train discriminator (to convergence) with generator held constant
o Train generator (a little) with discriminator held constant

e Standard use of mini-batch in practice

e Could train D & G simultaneously

Algorithm 1 Single-Step Gradient Method

1: function SINGLESTEPGRADIENTITERATION(P, 6*, w?, B, 1)

2 Sample Xp = {z1,...,z5} and Xq = {z},...,25}, from P and Qg:, respectively.
3 Update: w'™! = w® +nV,F(6",w’).
4
o

Update: 0'T! = 0 — n Vo F (0, wh).
end function

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(*), ..., z(™)} from noise prior p,(z).
e Sample minibatch of m examples {zV,... , x(™} from data generating distribution
Ddata ().

e Update the discriminator by ascending its stochastic gradient:

Vo, 3 [togD (=9) +10g (1 - D (¢ (x)))].

=
end for

e Sample minibatch of m noise samples {z(1), ..., (™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, L 3 10g (1-0 (6 (:9))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Alternating Training of D and G

v \
. 3 . Y .
A \
° X . '» °
. . .
. . .

\
.~

.......

A
\
'y
8 ey
v
s, v

. 70 T I

GAN Convergence?

e How much should we train G before going back to D? If we train too much we

won’t converge (overfitting)
e Trick about changing the objective from min log(1-D(G(z))) to max
log(D(G(z))) to avoid saturating gradients early on when G is terrible

minmax V (D, G) = Eqpu(@) 108 D(@)] + Exvp, (2)l08(1 — D(G(2)))]

log prob of D predicting that log prob of D predicting that G’s
real-world data is genuine generated data is not genuine

Proof of optimality

For a given generator, the optimal discriminator is:

Pdata(T)
Pdata(T) + pgl:il:)

Proof. The training criterion for the discriminator D, given any generator (G, is to maximize the
quantity V' (G, D)

V(G, D) prum(m) log(D(x))dx +fioz(3) log(1 — D(g(2)))dz

i z

~ [puss(@) og(D(@)) +py (@) log(1 - D(@))do ©

Dg(x) =

For any (a,b) € R?\ {0,0}, the function y — alog(y) + blog(1 — y) achieves its maximum in
[0,1] at %5. The discriminator does not need to be defined outside of Supp(piaa) U Supp(py),
concluding the proof. O

Proof of optimality

e Incorporating that into the minimax game to yield virtual training criterion:

C(G) = max V(G, D)

=FErpe [108 DE ()] 4+ Ezop, [log(1 — D& (G(2)))]
=Eg~pua 108 DG (2)] + Egrp, [log(1l — Dg ()]

pdata(m }] [Pgq (EJ]
=E... lo + Egnp, |10
T~ Pdata 5 Pclata(m:} + Pg (fﬂ) ot i Pdata (:ﬂ} + Pg ('T')

Proof of optimality
e Equilibrium is reached when the Generator matches the data distribution

Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if
Pg = Pdara- At that point, C(G) achieves the value — log 4.

Proof. Forpy; = pyaa, DG () = %, (consider Eq. 2). Hence, by inspecting Eq. 4 at Df,(z) = %, we
find C(G) = log 5 + log 5 = —log 4. To see that this is the best possible value of C(G), reached
only for p; = Pdara, Observe that

Eznpu [—1082] + Egnp, [—log2] = —log4
and that by subtracting this expression from C(G) = V(D¢,, G), we obtain:

q

5 5)

C(G) = —log(4) + KL (Pdam

Pdata + Pg
-

Proof of optimality

e Virtual training criterion is JSD:

(3)

2

C(G) = —log(4) + KL (pdam :

Pdata —I_pg) —-|—KL (pq

Pdata 1 Pg)

where KL is the Kullback-Leibler divergence. We recognize in the previous expression the Jensen—
Shannon divergence between the model’s distribution and the data generating process:

C(G) = —log(4) +2- JSD (paua [IPg) (6)

Since the Jensen—Shannon divergence between two distributions i1s always non-negative and zero
only when they are equal, we have shown that C* = — log(4) is the global minimum of C(G) and
that the only solution is p, = pgaa, 1.€., the generative model perfectly replicating the data generating
process. [

GANs as a NE

A game has 3 components - List of Players, potential actions by the players, and payoffs for the
players in each outcome.

There are a variety of solution concepts for a game. A Nash Equilibrium is one, where each
player does not want to change their actions, given the other players actions.

Left Right Y

Left | 10, 10 0,0 Cooperate Defect

Cooperate 1, 1 0,2

Right | 0,0 10,10

Defect 2,0 0,0
Fig. 2: Choosing sides

Mixed NE and Minimax

A game is minimax iff it has 2 players and in all states the reward of player 1 is the

negative of reward of player 2. %
J play Rock Paper Scissors

min max f(z,y) = maxmin f(z,y). Y
zeX yeY f(@:y) yeY zeX f(@:y) 2| 0 - I
Minimax Theorem states any point satisfying this is a PNE .
- 0 | -I
@% y | 0

If the opponent knows our strategy, it may be best to play a distribution of actions.

Can we construct a game, with a (mixed) equilibria that forces one player to learn
the data distribution? Think counterfeiter vs police.

In the idealized game:
2 Players - Discriminator D and Generator G. Assume infinite capacity

Actions - G can declare a distribution in data space. D can declare a value
(sometimes 0 to 1) for every point in data space.

Payoff - D wants to assign low values for points likely to be from G and high
values for points likely to be from the real distribution. We could have payoff
functions r_data(x) = log(D(x)) and r_g(x) = log(1 - D(x)):

méyn e V(D,G) = Egrpy(a) 108 D(@)] + Eznp, (2)[log(1 — D(G(2)))].

In the real game:
2 Players - Discriminator D and Generator G. Finite capacity

Actions - G broadcasts m fake data points. D can declares a value for every fake
and real (2m) point. Require both strategy sets to be differentiable, so use a
neural network.

Payoff - Can only use approximations of expectation. “Similar” objective function
for G?

e Update the discriminator by ascending its stochastic gradient: e Update the generator by descending its stochastic gradient:
1 . . 1« ;
Vo, — Z [logD (a:(’)> + log <1 -D (G (z(l)»ﬂ) Vogﬁ Zlog (1 -D (G (z()))) ,
m i=1

1=

train GG to maximize log D(G(z))

Unique PNE Existence for the idealized game.

If G plays some value more often than the Data, D will either (1) predict that point at a higher than average
value, (2) predict the average, or (3) a below average value. In case (1) G will change its strategy by
reducing mass in this region and moving it to a below average region. In case (2) and (3) D will increase
its prediction of G in this region. Thus we are not at a PNE. A similar argument holds if G plays less often
than Data. Thus p_G = p_Data at any PNE.

If D plays some value other than the average, then there exists some region above the average and some
below. G will increase its payoff by decreasing its mass in low value region and moving it to the high
value region. Thus D must play the same value at all points at a PNE (and that value expresses
indifference between G and Data). D’s payoff governs the value that expresses indifference and the loss
that is learned (ex. p_r/(p_g+p_r) or p_g/p_r). If there is 1 value that expresses indifference the PNE is
unique.

Existence? I

Use Infinite capacity. S : N hy

/Y Y/ N/

Siigagay

Global optimality

The PNE is a global min of the minimax equation.

One particular case is D(x) = p_r/(p_g+p_r) and G(x) maximizing JS(r ||), with
payoff r(D(x)) = log(D(x)) and payoff _g(D(x)) = log(1 - D(x)).

Another is is D(x) = p_g/p_r and G(x) maximizing KL(g || r), with payoff r(D(x)) =
D(x) - 1 and payoff_g(D(x)) = -log(D(x)).

Relations to VAE

VAEs minimize an objective function indirectly. This is the ELBO.

GANs attempt to minimize the objective function directly by training the
discriminator to learn the objective function for a fixed Generator. How much
can we change the generator, while still having the Discriminator as a good
approximation?

Framework for GANs can include alternative measures of divergences for the

objective

Alternative Divergence Measures

So Far...

e \We have the following based min-max problem using the objective

IIgIl ngx V(Da G) = Emwpdm(m) [log D(m)] + Ezwp,(z} [log(l - D(G(Z)))] d

e \When we have an optimal D with respect to G we obtain a Jenson-Shannon
divergence term:

C(G) = max V(G, D)

C(G) - 10g(4) +2.JSD (pdata Hpg)

However in implementation

e This formulation is difficult to train due to log(1 — D(G(z)))aving poor
convergence when the p_model differs from p_data too much
e Is replaced with -log D(G(z)) in the original paper.

ming maxp V (D, @) = Exep,.ui 108 D(@)] — Eyep, () llog D(G(2))]

Another alternative

e If we replace that term with
D(G(2:6,);%¢41)
1 —D(G(26:);%¢+1)
e NOTATION: Rather than call G, we say x~Q for x=G(z), z~p_z
NOTATION: Data is drawn from P

log

. : P(z)
e \We get a KL divergence term according to (recall that D*(z) =
g g g é}(| @)= P + 0
£
KL[Q| P] =E;-qlog P()
L 1 — D*(x)
=E;.glog D ()
= Kz log)

D(z)

A family of alternatives (f-GAN)

e Consider a general class of divergences of the form

o()f (M) dr,

Dy(PIQ) = | a@)f (5

X

e f: R, — IR is a convex lower-semicontinuous such that f(1) = 0.
e Use convex conjugates, f* to move from divergences to objectives
e Train a distribution Q and an approximation of divergence with T

Some divergence measures

Name D¢(P||Q) Generator f(u) T(%)
Kullback-Leibler [p(z)log p(2) 4y ulogu 1 +log 2—’%

Reverse KL [q(z)log 2 gmi —~logu gg%

Pearson x? i 7(‘}(%(@(@)2 dz (u—1)> 2(2%3)

Squared Hellinger (\/p —a(z)2 dz (G -1 (% -1)- pgm%
Jensen-Shannon 5 > [p(z)log 5%%%@ + q(z) log %‘L(?m—) dz —(u+1)log HT“ +ulogu log p(%ﬂ%

GAN

i) 24()
[p(z)log jrhyery +a(2) log jrtiy 4o —

ulogu — (u+ 1) log(u +1)

p(z)
log Zzyra@

Fenchel (Convex) Dual

1) = sup {ut— f(u)}.

uedﬂmf

Note that: f = f**
. e [w7 (22)
The f-divergence is defined as: Dy (P||Q) fryq{)f (q(m] dz,
Using the Fenchel Dual: D;(P|lQ) = [q(x) sup {tp("’) £t)}
> suprer ([p(@) T(@)do - [q(@) f*(T(z)) dz)
= sup (Egnp [T(2)] — Bang [f(T())])

TeT

This poses divergence minimization into a min-max problem

New Optimization

e Now optimize T and Q with parameters w and 0O respectively:
F(0,w) = Exnp [To(2)] — Eang, [(To(2))]
T,(x) = g5 (Vi (x))

e (s a f-specific activation function
F(0,w) = Eonp (97 (Voo (2))] + Ezng, [—F7 (95 (Vo (2)))]

e Forstandard GAN: g¢(v) = —log(1+e™")
° With D,(z) = 1/(1 + e V@)

F(0,w) = Eznp [log Du(2)] + Ezng, [l0g(1 — Du(x))]

Fenchel Duals for various divergence functions

Name Output activation gy dom - Conjugate f*(t) f'(1)
Total variation 5 tanh(v) —3<t<3 t 0
Kullback-Leibler (KL) v R exp(t — 1) 1
Reverse KL — exp(v) R_ —1 — log(—t) —1
Pearson y? v R M2+t 0
Neyman x? 1 — exp(v) i< 1 2 —2y/1—1 0
Squared Hellinger 1 — exp(v) t<1 s 0
JEffI‘By v R W(El_t) -+ ﬁl—t) +t—-2 0
Jensen-Shannon log(2) — log(1 + exp(—v)) t < log(2) — log(2 — expét)) 0
Jensen-Shannon-weighted —mlogm —log(l +exp(—v)) t< —wlogm (1 —7)log 1_1;‘LW 0
GAN —log(1 + exp(—v)) R_ — log(1 — exp(t)) -
a-div. (@ < 1, a # 0) ﬁ — log(1 + exp(—v)) fos ﬁ i(t(a —1)41)==T — é 0
a-div. (a > 1) v R lit(a—1)+1)a1-1 0

For optimal T*, T* = f(1)

f-GAN Summary

e GAN can be generalized to minimize a large family of divergences
(f-divergences)

e The min-max comes from weakening the evaluation of D(P||Q) using the
Fenshel dual

e Rather than as an adversarial network G/N, can see GAN as a system for
simultaneously approximating the divergence (T) and minimizing the
divergence (Q)

