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Abstract

We show that unconverged stochastic gradient
descent can be interpreted as a procedure that
samples from a nonparametric approximate pos-
terior distribution. This distribution is implicitly
defined by the transformation of an initial distri-
bution by a sequence of optimization steps. By
tracking the change in entropy over these distri-
butions during optimization, we form a scalable,
unbiased estimate of a variational lower bound
on the log marginal likelihood. This bound can
be used to optimize hyperparameters instead of
cross-validation. This Bayesian interpretation
of SGD suggests improved, overfitting-resistant
optimization procedures, and gives a theoretical
foundation for early stopping and ensembling.
We investigate the properties of this marginal
likelihood estimator on neural network models.

1 Introduction

In much of machine learning, the central computational
challenge is optimization: we try to minimize some
training-set loss with respect to a set of model parame-
ters. If we treat the training loss as a negative log-posterior,
this amounts to searching for a maximum a posteriori
(MAP) solution. Paradoxically, over-zealous optimization
can yield worse test-set results than incomplete optimiza-
tion due to the phenomenon of over-training. A popular
remedy to over-training is to invoke “early stopping” in
which optimization is halted based on the continually mon-
itored performance of the parameters on a separate vali-
dation set. However, early stopping is both theoretically
unsatisfying and incoherent from a research perspective:
how can one rationally design better optimization meth-
ods if the goal is to achieve something “powerful but not
too powerful”? A related trick is to ensemble the results
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from multiple optimization runs from different starting po-
sitions. Similarly, this must rely on imperfect optimization,
since otherwise all optimization runs would reach the same
optimum.

We propose an interpretation of incomplete optimization in
terms of variational Bayesian inference, and provide a sim-
ple method for estimating the marginal likelihood of the ap-
proximate posterior. Our starting point is a Bayesian pos-
terior distribution for a potentially complicated model, in
which there is an empirical loss that can be interpreted as a
negative log likelihood and regularizers that have interpre-
tations as priors. One might proceed with MAP inference,
and perform an optimization to find the best parameters.
The main idea of this paper is that such an optimization
procedure, initialized according to some distribution that
can be chosen freely, generates a sequence of distributions
that are implicitly defined by the action of the optimiza-
tion update rule on the previous distribution. We can treat
these distributions as variational approximations to the true
posterior distribution. A single optimization run for N it-
erations represents a draw from the N th such distribution
in the sequence. Figure 1 shows contours of these approxi-
mate distributions on an example posterior.

With this interpretation, the number of optimization itera-
tions can be seen as a variational parameter, one that trades
off fitting the data well against maintaining a broad (high
entropy) distribution. Early stopping amounts to optimiz-
ing the variational lower bound (or an approximation based
on a validation set) with respect to this variational parame-
ter. Ensembling different random restarts can be viewed as
taking independent samples from the variational posterior.

To establish whether this viewpoint is helpful in practice,
we ask: can we efficiently estimate the marginal likelihood
implied by unconverted optimization? We tackle this ques-
tion in section 2. Specifically, for stochastic gradient de-
scent (SGD), we show how to compute an unbiased esti-
mate of a lower bound on the log marginal likelihood of
each iteration’s implicit variational distribution. We also
introduce an ‘entropy-friendly’ variant of SGD that main-
tains better-behaved implicit distributions.

We also ask whether model selection based on these
marginal likelihood estimates picks models with good test-
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Initial distribution After 150 steps of gradient descent After 300 steps of gradient descent

Figure 1: A series of distributions (blue) implicitly defined by gradient descent on an objective (black). These distributions
are defined by mapping each point in the initial distribution through a fixed number of iterations of optimization. These
distributions have nonparametric shapes, and eventually concentrate around the optima of the objective.

time performance. We give some experimental evidence
in both directions in section 5. A related question is how
close the variational distributions implied by various opti-
mization rules approximate the true posterior. We briefly
address this question in section 6.

1.1 Contributions

• We introduce a new interpretation of optimization al-
gorithms as samplers from a variational distribution
that adapts to the true posterior, eventually collapsing
around its modes.

• We provide a scalable estimator for the entropy of
these implicit variational distributions, allowing us to
estimate a lower bound on the marginal likelihood
of any model whose posterior is twice-differentiable,
even on problems with millions of parameters and data
points.

• In principle, this marginal likelihood estimator can be
used for hyperparameter selection and early stopping
without the need for a validation set. We investigate
the performance of these estimators empirically on
neural network models, and show that they have rea-
sonable properties. However, further refinements are
likely to be necessary before this marginal likelihood
estimator is more practical than using a validation set.

2 Incomplete optimization as variational
inference

Variational inference (Wainwright & Jordan, 2008) aims to
approximate an intractable posterior distribution, p(θ|x),
with another more tractable distribution, q(θ). The
usual measure of the quality of the approximation is the
Kullback-Leibler (KL) divergence from q(θ) to p(θ,x).
This measure provides a lower bound on the marginal like-
lihood of the original model; applying Bayes’ rule to the

definition of KL (q(θ)‖p(θ|x)) gives the familiar inequal-
ity:

log p(x) ≥ −Eq(θ) [− log p(θ,x)]︸ ︷︷ ︸
Energy E[q]

−Eq(θ) [log q(θ)]︸ ︷︷ ︸
Entropy S[q]

:= L[q] (1)

Maximizing L[q], the variational lower bound on
the marginal likelihood, with respect to q minimizes
KL (q(θ)‖p(θ|x)), the KL divergence from q to the true
posterior, giving the closest approximation available within
the variational family. A convenient side effect is that we
also get a lower bound on p(x), which can be used for
model selection.

To perform variational inference, we require a family of
distributions over which to maximize L[q]. Consider a gen-
eral procedure to minimize the energy (− log p(θ,x)) with
respect to θ ∈ RD. The parameters θ are initialized accord-
ing to some distribution q0(θ) and updated at each iteration
according to a transition operation T : RD → RD:

θ0 ∼ q0(θ)
θt+1 = T (θt),

Our variational family consists of the sequence of distribu-
tions q0, q1, q2, . . ., where qt(θ) is the distribution over θt
generated by the above procedure. These distributions
don’t have a closed form, but we can exactly sample from
qt by simply running the optimizer for t steps starting from
a random initialization.

As shown in (1), L consists of an energy term and an en-
tropy term. The energy term measures how well q fits the
data and the entropy term encourages the probability mass
of q to spread out, preventing overfitting. As optimization
of θ proceeds from its q0-distributed starting point, we can
examine how L changes. The negative energy term grows,
since the goal of the optimization is to reduce the energy.
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The entropy term shrinks because the optimization con-
verges over time. Optimization thus generates a sequence
of distributions that range from underfitting to overfitting,
and the variational lower bound captures this tradeoff.

We cannot evaluate L[qt] exactly, but we can obtain an un-
biased estimator. Sampling θ0 from q0 and then applying
the transition operator t times produces an exact sample θ0
from qt, by definition. Since θt is an exact sample from
qt(θ), log p(θt,x) is an unbiased estimator of the energy
term of (1). The entropy term is trickier, since we do not
have access to the density q(θ) directly. However, if we
know the entropy of the initial distribution, S[q0(θ)], then
we can estimate S[qt(θ)] by tracking the change in entropy
at each iteration, calculated by the change of variables for-
mula.

To compute how the volume shrinks or expands due to an
iteration of the optimizer, we require access to the Jacobian
of the optimizer’s transition operator, J(θ):

S[qt+1]− S[qt] = Eqt(θt)
[
log |J(θt)|

]
. (2)

Note that this analysis assumes that the mapping T is bijec-
tive. Combining these terms, we have an unbiased estima-
tor ofL at iteration T , based on the sequence of parameters,
θ0, . . . , θT , from a single training run:

L[qT ] ≈ log p(θT ,x)︸ ︷︷ ︸
Energy

+

T−1∑
t=0

log |J(θt)|+ S[q0]︸ ︷︷ ︸
Entropy

. (3)

3 The entropy of stochastic gradient descent

In this section, we give an unbiased estimate for the change
in entropy caused by SGD updates. We’ll start with a naı̈ve
method, then in section 3.1, we give an approximation that
scales linearly with the number of parameters in the model.

Stochastic gradient descent is a popular and effective opti-
mization procedure with the following update rule:

θt+1 = θt − α∇L(θ), (4)

where the L(θ) the objective loss (or an unbiased estimator
of it e.g. using minibatches) for example − log p(θ,x),
and α is a ‘step size’ hyperparameter. Taking the Jacobian
of this update rule gives the following unbiased estimator
for the change in entropy at each iteration:

S[qt+1]− S[qt] ≈ log |I − αHt(θt)| (5)

whereHt is the Hessian of− log pt(θ,x) with respect to θ.

Note that the Hessian does not need to be positive definite
or even non-singular. If some directions in θ have nega-
tive curvature, as on the crest of a hill, it just means that

Algorithm 1 stochastic gradient descent with entropy esti-
mate

1: input: Weight initialization scale σ0, step size α,
twice-differentiable negative log-likelihood L(θ, t)

2: initialize θ0 ∼ N (0, σ0ID)
3: initialize S0 = D

2 (1 + log 2π) +D log σ0
4: for t = 1 to T do
5: St = St−1 + log |I− αHt−1| . Update entropy
6: θt = θt−1 − α∇L(θt, t) . Update parameters
7: end for
8: output sample θT , entropy estimate ST

optimization near there spreads out probability mass, in-
creasing the entropy. There are, however, restrictions on
α. If αλi = 1, for any i, where λi are the eigenvalues of
Ht, then the change in entropy will be undefined (infinitely
negative). This corresponds to a Newton-like update where
multiple points collapse to the optimum in a single step
giving a distribution with zero variance in a particular di-
rection. However, gradient descent is unstable anyway if
αλmax > 2, where λmax is the largest eigenvalue of Ht. So
if we choose a sufficiently conservative step size, such that
αλmax < 1, this situation should not arise. Algorithm 1
combines these steps into an algorithm that tracks the ap-
proximate entropy during optimization.

So far, we have treated SGD as a deterministic procedure
even though, as the name suggests, the gradient of the loss
at each iteration may be replaced by a stochastic version.
Our analysis of the entropy is technically valid if we fix the
sequence of stochastic gradients to be the same for each
optimization run, so that the only randomness comes from
the parameter initialization. This is a tendentious argument,
similar to arguing that a pseudorandom sequence of num-
bers has only as much entropy as its seed. However, if we
do choose to randomize the gradient estimator differently
for each training run (e.g. choosing different minibatches)
then the expression for the change in entropy, Equation 5,
remains valid as a lower bound on the change in entropy
and the subsequent calculation of L remains a true lower
bound on the log marginal likelihood.

3.1 Estimating the Jacobian in high dimensions

The expression for the change in entropy given by (5)
is impractical for large-scale problems since it requires
an O

(
D3
)

determinant computation. Fortunately, we can
make a good approximation using just two Hessian-vector
products, which can usually be performed in O (D) time
using reverse-mode differentiation (Pearlmutter, 1994).

The idea is that since αλmax is small, the Jacobian is just a
small perturbation to the identity, and we can approximate
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Algorithm 2 linear-time estimate of log-determinant of Ja-
cobian of one iteration of stochastic gradient descent

1: input: step size α, current parameter vector θ, twice-
differentiable negative log-likelihood L(θ)

2: initialize r0 ∼ N (0, σ0ID)
3: r1 = r0 − αrT0∇∇L(θ, t)
4: r2 = r1 − αrT1∇∇L(θ, t)
5: L̂ = rT0 (−2r0 + 3r1 − r2)
6: output L̂, an unbiased estimate of a parabolic lower

bound on the change in entropy.

its determinant using traces as follows:

log |I − αH| =
D∑
i=0

log (1− αλi)

≥
D∑
i=0

[
−αλi − (αλi)

2
]

(6)

= −αTr [H]− α2Tr [HH] . (7)

The bound in (6) is just a second order Taylor expansion
of log(1 − x) about x = 0 and is valid if αλi < 0.68. As
we argue above, the regime in which SGD is stable requires
that αλmax < 1, so again choosing a conservative learning
rate keeps this bound in the correct direction. For suffi-
ciently small learning rates, this bound becomes tight.

The trace of the Hessian can be estimated using inner prod-
ucts of random vectors (Bai et al., 1996):

Tr [H] = E
[
rTHr

]
, r ∼ N (0, I) . (8)

We use this identity to derive algorithm 2. In high di-
mensions, the exact evaluation of the determinant in step 5
should be replaced with the approximation given by algo-
rithm 2.

Note that the quantity we are estimating (5) is well-
conditioned, in contrast to the related problem of com-
puting the log of the determinant of the Hessian itself.
This arises, for example, in making the Laplace approxi-
mation to the posterior (MacKay, 1992). This is a much
harder problem since the Hessian can be arbitrarily ill-
conditioned, unlike our small Hessian-based perturbation
to the identity.

3.2 Parameter initialization, priors, and objective
functions

What initial parameter distribution should we use for SGD?
The marginal likelihood estimate given by (3) is valid no
matter which initial distribution we choose. We could con-
ceivably optimize this distribution in an outer loop using
the marginal likelihood estimate itself.

However, using the prior as the initialization distribution
has several advantages. First, it is usually designed to have

broad support. Since SGD usually decreases entropy, start-
ing with a high-entropy distribution is a good heuristic.

The second advantage has to do with our choice of objec-
tive function. One option is to use the unnormalized log-
posterior, but we can use any function we like. A more
sensible choice is the negative log-likelihood. Variational
distributions only differ from the initial distribution to the
extent that the posterior differs from the prior. This differ-
ence is just the log-likelihood.

One nice implication of using the log-likelihood as the ob-
jective function is that the entropy estimate will be exactly
correct for parameters that don’t affect the likelihood, since
their gradient (and corresponding rows of the Hessian) will
always be zero. Because of these favorable properties, we
use the prior as the initial distribution and log-likelihood as
the objective in our experiments.

4 Entropy-friendly optimization methods

SGD optimizes the training loss, not the variational lower
bound. In some sense, if this optimization happens to cre-
ate a good intermediate distributions, it’s only by accident!
Why not design a new optimization method that produces
good variational lower bounds? In place of SGD, we can
use any optimization method for which we can approxi-
mate the change in entropy, which in practice means any
optimization for which we can compute Jacobian-vector
products.

An obvious place to start is with stochastic update rules in-
spired by Markov chain Monte Carlo (MCMC). Procedures
like Hamiltonian Monte Carlo (Neal, 2011) and Langevin
dynamics MCMC (Welling & Teh, 2011) look very much
like optimization procedures but actually have the posterior
as their stationary distribution. This is exactly the approach
taken by Salimans et al. (2014). One difficulty with using
stochastic updates, however, is that calculating the change
in entropy at each iteration requires access to the current
distribution over parameters. As an example, consider that
convolving a delta function with a Gaussian yields an infi-
nite entropy increase, whereas convolving a broad uniform
distribution with a Gaussian yields only a small increase
in entropy. Welling & Teh (2011) handle this by learning
a highly parameterized “inverse model” which implicitly
models the distribution over parameters. The downside of
this approach is that the parameters of this model must be
learned in an outer loop.

Another approach is to try to develop deterministic update
rules that avoid some of the pathologies of update rules like
SGD. This could could be a research agenda in itself, but
we give one example here of a modification to SGD which
can improve the variational lower bound. One problem
with SGD in the context of posterior approximation is that
SGD can collapse the implicit distribution into low-entropy
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Figure 2: Left: The distribution implied by standard gradient descent. Right: The distribution implied by the modified,
“entropy-friendly”, gradient descent algorithm. The entropy-friendly distributions are slower to collapse into low-entropy
filaments, causing the marginal likelihood to remain higher.

filaments, shrinking in some directions to be orders of mag-
nitude smaller than the width of the true posterior. A simple
trick to prevent this is to apply a nonlinear, parameter-wise
warping to the gradient, such that directions of very small
gradient do not get optimized all the way to the optimium.
For example, the modified gradient (and resulting modified
Jacobian) could be

g′ = g − g0 tanh (g/g0) (9)

J ′ =
(
1− cosh−2(g/g0)

)
J (10)

where g0 is a “gradient threshold” parameter that sets the
scale of this shrinkage. The effect is that entropy is not re-
moved from parameters which are close to their optimum.
An example showing the effect of this entropy-friendly
modification is shown in Figure 2.

5 Experiments

In this section we show that the marginal likelihood esti-
mate can be used to choose when to stop training, to choose
model capacity, and to optimize training hyperparameters
without the need for a validation set. We are not attempting
to motivate SGD variational inference as a superior alterna-
tive to other procedures; we simply wish to give a proof of
concept that the marginal likelihood estimator has reason-
able properties. Further refinements are likely to be neces-
sary before this marginal likelihood estimator is more prac-
tical than simply using a validation set.

5.1 Choosing when to stop optimization

As a simple demonstration of the usefulness of our
marginal likelihood estimate, we show that it can be used
to estimate the optimal number of training iterations before

overfitting begins. We performed regression on the Boston
housing dataset using a neural network with one hidden
layer having 100 hidden units, sigmoidal activation func-
tions, and no regularization. Figure 3 shows that marginal
likelihood peaks at a similar place to the peak of held-out
log-likelihood, which is where early stopping would occur
when using a large validation set.
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Figure 3: Top: Training and test-set error on the Boston
housing dataset. Bottom: Stochastic gradient descent
marginal likelihood estimates. The dashed line indi-
cates the iteration with highest marginal likelihood. The
marginal likelihood, estimated online using only the train-
ing set, and the test error peak at a similar number of itera-
tions.

5.2 Choosing the number of hidden units

The marginal likelihood estimate is also comparable be-
tween training runs, allowing us to use it to select model
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hyperparameters, such as the number of hidden units.
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Figure 4: Top: Training and test-set likelihood as a function
of the number of hidden units in the first layer of a neu-
ral network. Bottom: Stochastic gradient descent marginal
likelihood estimates. In this case, the marginal likelihood
over-penalizes high numbers of hidden units.

Figure 4 shows marginal likelihood estimates as a function
of the number of hidden units in the hidden layer of a neu-
ral network trained on 50,000 MNIST handwritten digits.
The largest network trained in this experiment contains 2
million parameters.

The marginal likelihood estimate begins to decrease for
more than 30 hidden units, even though the test-set like-
lihood in maximized at 300 hidden units. We conjecture
that this is due to the marginal likelihood estimate penaliz-
ing the loss of entropy in parameters whose contribution to
the likelihood was initially large, but were made irrelevant
later in the optimization.

5.3 Optimizing training hyperparameters

We can also use marginal likelihoods to optimize training
parameters such as learning rates, initial distributions, or
any other optimization parameters. As an example, Fig-
ure 5 shows the marginal likelihood estimate as a function
of the gradient threshold in the entropy-friendly SGD algo-
rithm from section 4 trained on 50,000 MNIST handwritten
digits.

As the level of thresholding increases, the training and test
error get worse due to under-fitting. However, for inter-
mediate thresholds, the lower bound increases. Because it
is a lower bound, its increase means that the estimate of
the marginal likelihood is becoming more accurate, even
though the actual model happens to be getting worse at the
same time.
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Figure 5: Top: Training and test-set likelihood as a function
of the gradient threshold. Bottom: Marginal likelihood as
a function of the gradient threshold. A gradient threshold
of zero corresponds to standard SGD. The increased lower
bound for non-zero thresholds indicates that the entropy-
friendly variant of SGD is producing a better implicit vari-
ational distribution.

5.4 Implementation details

To compute Hessian-vector products in our models, we
used autograd, a reverse-mode automatic differentiation
package for Python capable of arbitrary-order derivatives.

Code for all experiments in this paper will be made avail-
able upon publication.

6 Limitations

In practice, the marginal likelihood estimate we present
might not be useful for several reasons. First, using only
a single sample to estimate both the expected likelihood as
well as the entropy of an entire distribution will necessarily
have high variance under some circumstances. These prob-
lems could conceivably be addressed by ensembling, which
has an interpretation as taking multiple exact independent
samples from the implicit posterior.

Second, as parameters converge, their entropy estimate
(and true entropy) will continue to decrease indefinitely,
making the marginal likelihood arbitrarily small. However,
in practice there is usually a limit to the degree of overfit-
ting possible. This raises the question: when are marginal
likelihoods a good guide to predictive accuracy? Presum-
ably the marginal likelihood is more likely to be correlated
with predictive performance when the implicit distribution
has moderate amounts of entropy. In section 4 we modified
SGD to be less prone to produce regions of pathologically
low entropy, but a more satisfactory solution is probably
possible.

Third, if the model includes a large number of parameters

http://github.com/HIPS/autograd
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that do not affect the predictive likelihood, but which are
still affected by a regularizer, their convergence will penal-
ize the marginal likelihood estimate even though these pa-
rameters do not affect test set performance. This is why
in section 3.2 we recommend optimizing only the log-
likelihood, and incorporating the regularizer directly into
the initialization procedure. More generally however, en-
tropy could be underestimated if a large group of param-
eters are initially constrained by the data, but are later
“turned off” by some other parameters in the model.

Finally, how viable is optimization as an inference method?
Standard variational methods find the best approximation
in some class, but SGD doesn’t even try to produce a good
approximate posterior, other than by seeking the modes. In-
deed, Figure 1 shows that the distribution implied by SGD
collapses to a small portion of the true posterior early on,
and mainly continues to shrink as optimization proceeds.
However, the point of early stopping is not that the inter-
mediate distributions are particularly good approximations,
but simply that they are better than the point masses that
occur when optimization has converged.

7 Related work

Estimators for early stopping Stein’s unbiased risk esti-
mator (SURE) (Stein, 1981) provides an unbiased estimate
of generalization performance under broad conditions, and
can be used to construct a stopping rule. Raskutti et al.
(2014) derived a SURE estimate for SGD in a regression
setting. Interestingly, this estimator depends on the ‘shrink-
age matrix’

∏T
t=0 (I− αtHT ), which is just the Jacobian

of the entire SGD procedure along a particular path. How-
ever, this estimator depends on an estimate of the noise
variance, and is restricted to the i.i.d. regression setting. It’s
not clear if this stopping rule could also be used to select
other training parameters or model hyperparameters.

Reversible learning Optimization is an intrinsically
information-destroying process, since a (good) optimiza-
tion procedure maps any initial starting point to one or a
few final optima. We can quantify this loss of informa-
tion by asking how many bits must be stored in order to
reverse the optimization, as in Maclaurin et al. (2015). We
can think of the number of bits needed to exactly reverse
the optimization procedure as the average number of bits
‘learned’ during the optimization.

From this perspective, stopping before optimization con-
verges can be seen as a way to limit the number of bits
we try to learn about the parameters from the data. This
is a reasonable strategy, since we don’t expect to be able to
learn more than a finite number of bits from a finite dataset.
This is also an example of reducing the hypothesis space to
improve generalization.

MCMC for variational inference Our method can be
seen as a special case of Salimans et al. (2014), who
showed that any set of stochastic dynamics, even those not
satisfying detailed balance, can be used to implicitly define
a variational distribution. However, to provide a tight vari-
ational bound, one needs to estimate the entropy of the re-
sulting implicit distribution. Salimans et al. (2014) do this
by defining an inverse model which estimates backwards
transition probabilities, and then optimizes this model in
an outer loop. In contrast, our dynamics are deterministic,
and our estimate of the entropy has a simple fixed form.

Bayesian neural networks Variational inference
has been performed in Bayesian neural-network
models (Graves, 2011; Hensman & Lawrence, 2014;
Hernández-Lobato & Adams, 2015). Kingma & Welling
(2014) show how neural networks having unknown
weights can be reformulated as neural networks having
known weights but stochastic hidden units, and exploit this
connection to preform efficient gradient-based inference in
Bayesian neural networks.

Black-box stochastic variational inference Kucukelbir
et al. (2014) introduce a general scheme for variational in-
ference using only the gradients of the log-likelihood of a
model. However, they constrain their variational approxi-
mation to be Gaussian, as opposed to our free-form varia-
tional distribution.

SGD as an estimator Hardt et al. (2015) give theoreti-
cal results showing that the smaller the number of training
epochs, the better the generalization performance of mod-
els trained using SGD. Toulis et al. (2015) examine the
properties of SGD as an estimator, and show that a variant
that averages parameter updates has improved statistical ef-
ficiency.

8 Future work and extensions

Optimization with momentum One obvious extension
would be to design an entropy estimator of momentum-
based optimizers such as stochastic gradient descent with
momentum, or refinements such as Adam (Kingma & Ba,
2014). However, it is difficult to track the entropy change
during the updates to the momentum variables.

Gradient-based hyperparameter optimization Opti-
mizing marginal likelihood rather than training loss lets us
choose both training and regularization parameters with-
out using a validation set. However, optimizing more than
a few hyperparameters is difficult without gradients. Fol-
lowing Domke (2012) and Maclaurin et al. (2015), we
could compute exact gradients of the variational lower
bound with respect to all variational parameters using
reverse-mode differentiation through SGD. Chaining gradi-
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ents through SGD would allow one to set all hyperparame-
ters using gradient-based optimization without the need for
a validation set.

Stochastic dynamics One possible method to deal with
over-zealous reduction in entropy by SGD would be to add
noise to the dynamics. In the case of Gaussian noise, we
would recover Langevin dynamics (Neal, 2011). However,
estimating the entropy is more difficult in this case. Welling
& Teh (2011) introduced stochastic gradient Langevin dy-
namics for doing inference with minibatches, but do not
track the entropy of the implicit distribution.

More generally, we are free to design optimization algo-
rithms that do a better job of producing samples from the
true posterior, as long as we can track their entropy. The
gradient-thresholding method proposed in this paper is a
simple first example of a refinement to SGD that maintains
a tractable entropy estimate while improving the quality of
the intermediate distributions.

9 Conclusion

Most regularization methods have an interpretation as ap-
proximate inference in some Bayesian model. This paper
shows that early stopping and ensembling can also be inter-
preted this way, sampling from an implicit nonparametric
distribution.

We introduced a variational lower bound on the marginal
likelihood of these implicit distributions. We showed how
to produce an unbiased estimate of this variational lower
bound by approximately tracking the entropy change at
each step of optimization. Our estimator is compatible with
using data minibatches and scales linearly with the num-
ber of parameters, making it suitable for large-scale prob-
lems. This inexpensive calculation turns standard gradient
descent into an inference algorithm.

In principle this bound could be used to choose model
and training hyperparameters without a validation set, how-
ever in practice it doesn’t beat the gold standard of cross-
validation.
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Hernández-Lobato, José Miguel and Adams, Ryan P.
Probabilistic backpropagation for scalable learn-
ing of bayesian neural networks. Arxiv preprint
arXiv:1502.05336, 2015.

Kingma, Diederik and Ba, Jimmy. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kingma, Diederik and Welling, Max. Efficient gradient-
based inference through transformations between bayes
nets and neural nets. In Proceedings of the 31st Interna-
tional Conference on Machine Learning (ICML-14), pp.
1782–1790, 2014.

Kucukelbir, Alp, Ranganath, Rajesh, Gelman, Andrew, and
Blei, David. Fully automatic variational inference of dif-
ferentiable probability models. In NIPS Workshop on
Probabilistic Programming, 2014.

MacKay, David JC. A practical bayesian framework for
backpropagation networks. Neural computation, 4(3):
448–472, 1992.

Maclaurin, Dougal, Duvenaud, David, and Adams, Ryan P.
Gradient-based hyperparameter optimization through re-
versible learning. Arxiv preprint arXiv:1502.03492,
2015.

Neal, Radford M. MCMC using hamiltonian dynamics.
Handbook of Markov Chain Monte Carlo, 2, 2011.

Pearlmutter, Barak A. Fast exact multiplication by the Hes-
sian. Neural computation, 6(1):147–160, 1994.

Raskutti, Garvesh, Wainwright, Martin J., and Yu, Bin.
Early stopping and non-parametric regression: an opti-
mal data-dependent stopping rule. The Journal of Ma-
chine Learning Research, 15(1):335–366, 2014.

Salimans, Tim, Kingma, Diederik P., and Welling, Max.
Markov chain Monte Carlo and variational inference:
Bridging the gap. arXiv preprint arXiv:1410.6460, 2014.

Stein, Charles M. Estimation of the mean of a multivariate
normal distribution. The Annals of Statistics, 9(6):1135–
1151, 1981.

Toulis, Panos, Tran, Dustin, and Airoldi, Edoardo M.
Stability and optimality in stochastic gradient descent.
arXiv preprint arXiv:1505.02417, 2015.

Wainwright, Martin J and Jordan, Michael I. Graphical
models, exponential families, and variational inference.
Foundations and Trends in Machine Learning, 1(1-2):1–
305, 2008.



Manuscript under review by AISTATS 2016

Welling, Max and Teh, Yee Whye. Bayesian learning via
stochastic gradient Langevin dynamics. In Proceedings
of the 28th International Conference on Machine Learn-
ing (ICML-11), pp. 681–688, 2011.


	Introduction
	Contributions

	Incomplete optimization as variational inference
	The entropy of stochastic gradient descent
	Estimating the Jacobian in high dimensions
	Parameter initialization, priors, and objective functions

	Entropy-friendly optimization methods
	Experiments
	Choosing when to stop optimization
	Choosing the number of hidden units
	Optimizing training hyperparameters
	Implementation details

	Limitations
	Related work
	Future work and extensions
	Conclusion

