Bayesian Quadrature:
Model-based Approximate Integration

David Duvenaud
University of Cambridge



The Quadrature Problem

® \We want to estimate an
integral

Z= / £(x)p(x)dx /\/\/

® Most computational problems
in inference correspond to ’ N
integrals: ’ s

e Expectations = ==

e Marginal distributions

e Integrating out
nuisance parameters

e Normalization
constants

e Model comparison
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Sampling Methods

® Monte Carlo methods:
Sample from p(x), take
empirical mean:

1 N
Z:N;f(x,-)

® Possibly sub-optimal for two
reasons:

e Random bunching up
e Often, nearby function
values will be similar

® Model-based and
quasi-Monte Carlo methods
spread out samples to achieve
faster convergence.
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Model-based Integration

e Place a prior on f, for example, a GP

e Posterior over f implies a posterior over Z.
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Model-based Integration

e Place a prior on f, for example, a GP

e Posterior over f implies a posterior over Z.

f(z)
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—— GP mean
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—p(2)

X samples

e We'll call using a GP prior Bayesian Quadrature
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Bayesian Quadrature Estimator

e Posterior over Z has mean linear in f(xs):

N
Eee [Z|F(x)] = > 2T K7 F(xi)
i=1
where z, = [k(x, xn)p(x)dx

e Natural to minimize posterior variance of Z:

v [Z|f xs]_// x, X )p(x)p(x)dxdx’ — zT K~z

e Doesn't depend on function values at all!

e Choosing samples sequentially to minimize variance:
Sequential Bayesian Quadrature.
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f(x,y) =f(y,x) & ki(x,y, X', y") = k(x,y,x',y") + k(x,y', X', y)
+ k(X' y, x, ¥ )+ k(X ¥ %, y)

e Can condition on gradients

e Posterior variance is a natural convergence diagnostic
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More things you can do with Bayesian Quadrature

e Can compute likelihood of GP, learn kernel
e Can compute marginals with error bars, in two ways:

e Simply from the GP posterior:

X sample points
[N 2d posterior mean
prior on (x,y)
marginal mean of x
I marginal variance of x
marginal mean of y
N marginal variance of y




More things you can do with Bayesian Quadrature

e Can compute likelihood of GP, learn kernel
e Can compute marginals with error bars, in two ways:

e Or by recomputing fy(x) for different 6 with same x
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More things you can do with Bayesian Quadrature

e Can compute likelihood of GP, learn kernel
e Can compute marginals with error bars, in two ways:

e Or by recomputing fy(x) for different 6 with same x

True o,

Marg. Like.

e Much nicer than histograms!
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Rates of Convergence

What is rate of convergence of SBQ when its assumptions are true?

Expected Variance / MMD Empirical Rates in RKHS

absolute error
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Rates of Convergence

What is rate of convergence of SBQ when its assumptions are true?

Empirical Rates out of
Expected Variance / MMD RKHS
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Rates of Convergence

What is rate of convergence of SBQ when its assumptions are true?

Expected Variance / MMD Bound on Bayesian Error

absolute error
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GPs vs Log-GPs

200

150
— True Function
5 100f x  Evaluations
< — GP Posterior
50+ —— Log-GP Posterior
0
[
T
ol
5ol
—
) — True Log-func
S -100 )
&0 % Evaluations
150 —— GP Posterior

-200




Integrating under Log-GPs
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Integrating under Log-GPs
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Conclusions

e Model-based integration allows active learning about integrals,
can require fewer samples than MCMC, and allows us to
check our assumptions.

e BQ has nice convergence properties if its assumptions are
correct.

e For inference, GP is not especially appropriate, but other
models are intractable.
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when the function is fairly smooth, and is only worth using
when computing f(x) is expensive.

¢ How to extend to high dimensions? Gradient observations are
helpful, but a D-dimensional gradient is D separate
observations.

e |t seems unlikely that we'll find another tractable
nonparametric distribution like GPs - should we accept that
we'll need a second round of approximate integration on a
surrogate model?

¢ How much overhead is worthwhile? Bounded rationality work
seems relevant.

Thanks!



