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The Quadrature Problem

� We want to estimate an
integral

Z =

∫
f (x)p(x)dx

� Most computational problems

in inference correspond to

integrals:

� Expectations
� Marginal distributions
� Integrating out

nuisance parameters
� Normalization

constants
� Model comparison
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Sampling Methods

� Monte Carlo methods:
Sample from p(x), take
empirical mean:

Ẑ =
1

N

N∑
i=1

f (xi )
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Sampling Methods

� Monte Carlo methods:
Sample from p(x), take
empirical mean:

Ẑ =
1

N

N∑
i=1

f (xi )

� Possibly sub-optimal for two

reasons:

� Random bunching up
� Often, nearby function

values will be similar

� Model-based and
quasi-Monte Carlo methods
spread out samples to achieve
faster convergence.
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Model-based Integration

� Place a prior on f , for example, a GP

� Posterior over f implies a posterior over Z .

Z

x
 

 

f(x)

p(x)

GP mean
GP mean ±2SD
p(Z)

samples

� We’ll call using a GP prior Bayesian Quadrature



Bayesian Quadrature Estimator

� Posterior over Z has mean linear in f (xs):

Egp [Z |f (xs)] =
N∑
i=1

zTK−1f (xi )

where zn =
∫
k(x , xn)p(x)dx

� Natural to minimize posterior variance of Z :

V [Z |f (xs)] =

∫ ∫
k(x , x ′)p(x)p(x ′)dxdx ′ − zTK−1z

� Doesn’t depend on function values at all!

� Choosing samples sequentially to minimize variance:
Sequential Bayesian Quadrature.
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Things you can do with Bayesian Quadrature

� Can incorporate knowledge of function (symmetries)

f (x , y) = f (y , x)⇔ ks(x , y , x ′, y ′) = k(x , y , x ′, y ′) + k(x , y ′, x ′, y)

+ k(x ′, y , x , y ′) + k(x ′, y ′, x , y)

� Can condition on gradients

� Posterior variance is a natural convergence diagnostic
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� Can compute likelihood of GP, learn kernel

� Can compute marginals with error bars, in two ways:
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� Much nicer than histograms!
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Rates of Convergence

What is rate of convergence of SBQ when its assumptions are true?

Expected Variance / MMD
Empirical Rates out of

RKHS



Rates of Convergence

What is rate of convergence of SBQ when its assumptions are true?

Expected Variance / MMD Bound on Bayesian Error



GPs vs Log-GPs for Inference
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Integrating under Log-GPs
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Integrating under Log-GPs
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Conclusions

� Model-based integration allows active learning about integrals,
can require fewer samples than MCMC, and allows us to
check our assumptions.

� BQ has nice convergence properties if its assumptions are
correct.

� For inference, GP is not especially appropriate, but other
models are intractable.
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Limitations and Future Directions

� Right now, BQ really only works in low dimensions ( < 10 ),
when the function is fairly smooth, and is only worth using
when computing f (x) is expensive.

� How to extend to high dimensions? Gradient observations are
helpful, but a D-dimensional gradient is D separate
observations.

� It seems unlikely that we’ll find another tractable
nonparametric distribution like GPs - should we accept that
we’ll need a second round of approximate integration on a
surrogate model?

� How much overhead is worthwhile? Bounded rationality work
seems relevant.

Thanks!
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