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What are Invertible Neural Networks?

Invertible Neural Networks (INNs)
are bijective function
approximators which
have a forward mapping

and an inverse mapping
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Why Invertible Networks?
• Mostly known because of Normalizing Flows

– Training via maximum-likelihood and evaluation of likelihood

Generated samples from GLOW (Kingma et al. 2018)
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Workshop: Invertible Networks and Normalizing Flows

Why Invertible Networks?
• Generative modeling via invertible mappings with exact 

likelihoods (Dinh et al. 2014, Dinh et a. 2016, Kingma et al. 2018, Ho et al. 2019)

– Normalizing Flows
• Mutual information preservation

• Analysis and regularization of invariance (Jacobsen et al. 2019)

• Memory-efficient backprop (Gomez et al. 2017)

• Analyzing inverse problems (Ardizzone et al. 2019)
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Invertible Networks use Exotic Architectures

• Dimension partitioning and coupling layers (Dinh et al. 2014/2016, 
Gomez et al. 2017, Jacobsen et al. 2018, Kingma et al. 2018)

– Transforms one part of the input at a time
– Choice of partitioning is important
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Invertible Networks use Exotic Architectures

• Dimension partitioning and coupling layers (Dinh et al. 2014/2016, 
Gomez et al. 2017, Jacobsen et al. 2018, Kingma et al. 2018)

– Transforms one part of the input at a time
– Choice of partitioning is important

• Invertible dynamics via Neural ODEs  (Chen et al. 2018, Grathwohl et al. 
2019)

– Requires numerical integration
– Hard to tune and often slow due to need of ODE-solver
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Why do we move away from standard architectures?

• Partitioning, coupling layers, ODE-based approaches move
further away from standard architectures
– Many new design choices necessary and not well 

understood yet

• Why not use most successful discriminative architecture?

• Use connection of ResNet and Euler integration of ODEs     
(Haber et al. 2018)
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Making ResNets invertible
Theorem (sufficient condition for 
invertible residual layer):

Let                                 be a 
residual layer, then it is invertible 
if

where

8
Invertible Residual Networks



Making ResNets invertible
Theorem (sufficient condition for 
invertible residual layer):

Let                                 be a 
residual layer, then it is invertible 
if

where
Invertible Residual Networks (i-ResNet)
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i-ResNets: Constructive Proof
Theorem: (invertible residual layer)
Let                               be a residual layer, then it is invertible if 

Proof:
Features:
Fixed-point equation:

10
Invertible Residual Networks



i-ResNets: Constructive Proof
Theorem: (invertible residual layer)
Let                               be a residual layer, then it is invertible if 

Proof:
Features:
Fixed-point equation:
 Use fixed-point iteration: 

11
Invertible Residual Networks



i-ResNets: Constructive Proof
Theorem: (invertible residual layer)
Let                               be a residual layer, then it is invertible if 

Proof:
Features:
Fixed-point equation:
 Use fixed-point iteration: 

 Guaranteed convergence to x if  g contractive (Banach fixed-point theorem) 
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Inverting i-ResNets

• Inversion method from proof
• Fixed-point iteration:

– Init:

– Iteration:
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Inverting i-ResNets

• Inversion method from proof
• Fixed-point iteration:

– Init:

– Iteration:

• Rate of convergence depends on 
Lipschitz constant

• In practice: cost of inverse is 5-10 
forward passes
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How to build i-ResNets

• Satisfy Lip-condition: data-independent upper bound
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How to build i-ResNets

• Satisfy Lip-condition: data-independent upper bound

• Spectral normalization  (Miyato et al. 2018, Gouk et al. 2018)

approx of largest singular value via power-iteration
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How to build i-ResNets

• Satisfy Lip-condition: data-independent upper bound

• Spectral normalization  (Miyato et al. 2018, Gouk et al. 2018)

approx of largest singular value via power-iteration
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Validation
• Reconstructions

CIFAR10 Data

Reconstructions: i-ResNet

Reconstructions: standard ResNet
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Classification Performance

• Competetive performance

• But what do we get additionally?

Generative models via Normalizing Flows
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Maximum-Likelihood Generative Modeling with 
i-ResNets

• We can define a simple generative 
model as

Gaussian distribution

Data distribution
20
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Maximum-Likelihood Generative Modeling with 
i-ResNets

• We can define a simple generative 
model as

• Maximization (and evaluation) of 
likelihood via change-of-variables

… if        is invertible

Gaussian distribution

Data distribution
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Maximum-Likelihood Generative Modeling with 
i-ResNets

• Maximization (and evaluation) of 
likelihood via change-of-variables

… if        is invertible

• Challenges:
– Flexible invertible models
– Efficient computation of          

log-determinant

Gaussian distribution

Data distribution
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Efficient Estimation of Likelihood

• Likelihood with log-determinant of Jacobian

• Previous approaches:
– exact computation of log-determinant via constraining 

architecture to be triangular 
(Dinh et al. 2016, Kingma et al. 2018)

– ODE-solver and estimation only of trace of Jacobian 
(Grathwohl et al. 2019)

• We propose an efficient estimator for i-ResNets based on 
trace-estimation and truncation of a power series
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Generative Modeling Results

Data Samples GLOW
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Generative Modeling Results

Data Samples GLOW i-ResNets
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Generative Modeling Results

GLOW (Kingma et al. 2018) FFJORD (Grathwohl et al. 2019) i-ResNet
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i-ResNets Across Tasks

• i-ResNet as an architecture which works well both in discriminative and 
generative modeling

• i-ResNets are generative models which use the best discriminative
architecture

• Promising for:
– Unsupervised pre-training
– Semi-supervised learning
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Drawbacks

• Iterative inverse 
– Fast convergence in practice
– Rate depends on Lip-constant and not on dimension

• Requires estimation of log-determinant
– Due to free-form of Jacobian
– Properties of i-ResNets allows to design efficient estimator
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Conclusion

• Simple modification makes ResNets invertible
• Stability is guaranteed by construction

• New class of likelihood-based generative models
– without structural constraints

• Excellent performance in discriminative/ generative tasks
– with one unified architecture

• Promising approach for:
– unsupervised pre-training
– semi-supervised learning
– tasks which require invertibility
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See us at Poster #11 (Pacific Ballroom)
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Invertible Networks and Normalizing Flows, workshop on Saturday 
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