## **Invertible Residual Networks**

Jens Behrmann\* Will Grathwohl\* Ricky T. Q. Chen David Duvenaud Jörn-Henrik Jacobsen\*





## VECTOR INSTITUTE

(\*equal contribution)

## What are Invertible Neural Networks?

Invertible Neural Networks (INNs) are bijective function approximators which have a **forward mapping** 

 $F_{\theta} : \mathbb{R}^d \to \mathbb{R}^d$  $x \mapsto z$ 

and an inverse mapping

$$F_{\theta}^{-1} : \mathbb{R}^d \to \mathbb{R}^d$$
$$z \mapsto x$$





# Why Invertible Networks?

- Mostly known because of Normalizing Flows
  - Training via maximum-likelihood and evaluation of likelihood



Generated samples from GLOW (Kingma et al. 2018)





# Why Invertible Networks?

- Generative modeling via invertible mappings with exact likelihoods (Dinh et al. 2014, Dinh et al. 2016, Kingma et al. 2018, Ho et al. 2019)
  - Normalizing Flows
- Mutual information preservation

 $I(Y;X) = I(Y;F_{\theta}(X))$ 

- Analysis and regularization of invariance (Jacobsen et al. 2019)
- Memory-efficient backprop (Gomez et al. 2017)
- Analyzing inverse problems (Ardizzone et al. 2019)

Workshop: Invertible Networks and Normalizing Flows





#### Invertible Networks use Exotic Architectures

- Dimension partitioning and coupling layers (Dinh et al. 2014/2016, Gomez et al. 2017, Jacobsen et al. 2018, Kingma et al. 2018)
  - Transforms one part of the input at a time
  - Choice of partitioning is important





#### Invertible Networks use Exotic Architectures

- Dimension partitioning and coupling layers (Dinh et al. 2014/2016, Gomez et al. 2017, Jacobsen et al. 2018, Kingma et al. 2018)
  - Transforms one part of the input at a time
  - Choice of partitioning is important
- Invertible dynamics via Neural ODEs (Chen et al. 2018, Grathwohl et al. 2019)
  - Requires numerical integration
  - Hard to tune and often slow due to need of ODE-solver



Why do we move away from standard architectures?

- Partitioning, coupling layers, ODE-based approaches move further away from standard architectures
  - Many new design choices necessary and not well understood yet
- Why not use most successful discriminative architecture?

ResNets

• Use connection of ResNet and Euler integration of ODEs (Haber et al. 2018)



# Making ResNets invertible

**Theorem** (sufficient condition for invertible residual layer): Let  $F_{\theta}^{t}(x) = x + g_{\theta}^{t}(x)$  be a residual layer, then it is invertible if

$$\operatorname{Lip}(g_{\theta}^t) < 1$$

where

$$||g(x) - g(y)||_2 \le \operatorname{Lip}(g)||x - y||_2$$



# Making ResNets invertible

Let  $F_{\theta}^{t}(x) = x + g_{\theta}^{t}(x)$  be a residual layer, then it is invertible if

$$\operatorname{Lip}(g_{\theta}^t) < 1$$

where

$$||g(x) - g(y)||_2 \le \operatorname{Lip}(g)||x - y||_2$$



#### Invertible Residual Networks (i-ResNet)

$$F_{\theta} = F_{\theta}^T \circ \cdots \circ F_{\theta}^1$$



# i-ResNets: Constructive Proof

**Theorem:** (invertible residual layer) Let F(x) = x + g(x) be a residual layer, then it is invertible if  $\operatorname{Lip}(g) < 1$ 

#### **Proof:**

Features:

$$z := F(x)$$

Fixed-point equation: x = z - g(x)



# i-ResNets: Constructive Proof

**Theorem:** (invertible residual layer) Let F(x) = x + g(x) be a residual layer, then it is invertible if  $\operatorname{Lip}(g) < 1$ 

#### **Proof:**

Features: z := F(x)

Fixed-point equation:

$$= z - g(x)$$

 $\rightarrow$  Use fixed-point iteration:

$$x^{(0)} = z$$

 ${\mathcal X}$ 

$$x^{(i+1)} = z - g(x^{(i)})$$



# i-ResNets: Constructive Proof

**Theorem:** (invertible residual layer) Let F(x) = x + g(x) be a residual layer, then it is invertible if  $\operatorname{Lip}(g) < 1$ 

#### **Proof:**

Features: z := F(x)

Fixed-point equation: x =

$$= z - g(x)$$

 $\rightarrow$  Use fixed-point iteration:

$$x^{(0)} = z$$

$$x^{(i+1)} = z - g(x^{(i)})$$

 $\rightarrow$  Guaranteed convergence to x if g contractive (Banach fixed-point theorem)

# Inverting i-ResNets

- Inversion method from proof
- Fixed-point iteration:

– Init:

$$x^{(0)} = z$$

- Iteration:

$$x^{(i+1)} = z - g(x^{(i)})$$



# Inverting i-ResNets



- Rate of convergence depends on Lipschitz constant
- In practice: cost of inverse is 5-10 forward passes

Fixed-point Iterations

# How to build i-ResNets

• Satisfy Lip-condition: data-independent upper bound

 $g = W_3 \circ \phi \circ W_2 \circ \phi \circ W_1 \circ \phi$ 

 $\operatorname{Lip}(g) \le \|W_3\|_2 \cdot \|W_2\|_2 \cdot \|W_1\|_2$ 



# How to build i-ResNets

• Satisfy Lip-condition: data-independent upper bound  $g = W_3 \circ \phi \circ W_2 \circ \phi \circ W_1 \circ \phi$ 

 $\operatorname{Lip}(g) \le \|W_3\|_2 \cdot \|W_2\|_2 \cdot \|W_1\|_2$ 

• Spectral normalization (Miyato et al. 2018, Gouk et al. 2018)  $ilde{W} = c \frac{W}{\hat{\sigma_1}}, \quad 0 < c < 1$ 

 $\hat{\sigma_1}$  approx of largest singular value via power-iteration



# How to build i-ResNets

• Satisfy Lip-condition: data-independent upper bound  $g = W_3 \circ \phi \circ W_2 \circ \phi \circ W_1 \circ \phi$ 

 $\operatorname{Lip}(g) \le \|W_3\|_2 \cdot \|W_2\|_2 \cdot \|W_1\|_2$ 

• Spectral normalization (Miyato et al. 2018, Gouk et al. 2018)

$$\tilde{W} = c \frac{W}{\hat{\sigma_1}}, \quad 0 < c < 1$$

 $\hat{\sigma_1}$  approx of largest singular value via power-iteration

```
def invertible_residual_block(self):
    layers = []
    layers.append(nn.ReLU)
    layers.append(spectral_norm(nn.Linear(in_dim, hidden_dim)))
    layers.append(nn.ReLU)
    layers.append(spectral_norm(nn.Linear(hidden_dim, in_dim)))
```



# Validation

• Reconstructions



CIFAR10 Data

Reconstructions: i-ResNet

Reconstructions: standard ResNet



# **Classification Performance**

|                    |          | ResNet-164 | Vanilla | c = 0.9 |
|--------------------|----------|------------|---------|---------|
| Classification     | MNIST    | -          | 0.38    | 0.40    |
| Error %            | CIFAR10  | 5.50       | 6.69    | 6.78    |
|                    | CIFAR100 | 24.30      | 23.97   | 24.58   |
| Guaranteed Inverse |          | No         | No      | Yes     |

- Competetive performance
- But what do we get additionally?

Generative models via Normalizing Flows



#### Maximum-Likelihood Generative Modeling with i-ResNets

• We can define a simple generative model as

 $z \sim p_Z(z)$  $x = F_{\theta}^{-1}(z)$ 

Gaussian distribution



 $\mathcal{Z}$ 





 ${\mathcal X}$ 

Data distribution



#### Maximum-Likelihood Generative Modeling with i-ResNets

• We can define a simple generative model as

 $z \sim p_Z(z)$  $x = F_{\theta}^{-1}(z)$ 

 Maximization (and evaluation) of likelihood via change-of-variables

 $\log p_X(x) = \log p_Z(F_\theta(x)) + \log |\det J_{F_\theta}(x)|$ 

#### ... if $F_{\theta}$ is invertible



Gaussian distribution



Data distribution

 $\mathcal{Z}$ 

 $F_{\theta}^{-1}(z)$ 

 $\mathcal{X}$ 

21

#### Maximum-Likelihood Generative Modeling with i-ResNets

 Maximization (and evaluation) of likelihood via change-of-variables

 $\log p_X(x) = \log p_Z(F_\theta(x)) + \log |\det J_{F_\theta}(x)|$ 

- ... if  $F_{\theta}$  is invertible
- Challenges:
  - Flexible invertible models
  - Efficient computation of log-determinant

Gaussian distribution



 $\mathcal{Z}$ 





X

Data distribution

# Efficient Estimation of Likelihood

• Likelihood with log-determinant of Jacobian

 $\log p_X(x) = \log p_Z(F_\theta(x)) + \log |\det J_{F_\theta}(x)|$ 

- Previous approaches:
  - exact computation of log-determinant via constraining architecture to be triangular (Dinh et al. 2016, Kingma et al. 2018)
  - ODE-solver and estimation only of trace of Jacobian (Grathwohl et al. 2019)
- We propose an **efficient estimator for i-ResNets** based on trace-estimation and truncation of a power series



## **Generative Modeling Results**





Data Samples

GLOW





## **Generative Modeling Results**







GLOW



i-ResNets









# **Generative Modeling Results**

| Method                          | MNIST | CIFAR10 |
|---------------------------------|-------|---------|
| NICE (Dinh et al., 2014)        | 4.36  | 4.48†   |
| MADE (Germain et al., 2015)     | 2.04  | 5.67    |
| MAF (Papamakarios et al., 2017) | 1.89  | 4.31    |
| Real NVP (Dinh et al., 2017)    | 1.06  | 3.49    |
| Glow (Kingma & Dhariwal, 2018)  | 1.05  | 3.35    |
| FFJORD (Grathwohl et al., 2019) | 0.99  | 3.40    |
| i-ResNet                        | 1.06  | 3.45    |



GLOW (Kingma et al. 2018)

Invertible Residual Networks

FFJORD (Grathwohl et al. 2019)

i-ResNet





# i-ResNets Across Tasks

 i-ResNet as an architecture which works well both in discriminative and generative modeling

| Affine Glow $1 \times 1$ Conv | Additive Glow | i-ResNet   | i-ResNet |
|-------------------------------|---------------|------------|----------|
|                               | Reverse       | Glow-Style | 164      |
| 12.63                         | 12.36         | 8.03       | 6.69     |

- i-ResNets are generative models which use the best discriminative architecture
- Promising for:
  - Unsupervised pre-training
  - Semi-supervised learning



# Drawbacks

- Iterative inverse
  - Fast convergence in practice
  - Rate depends on Lip-constant and not on dimension

- Requires estimation of log-determinant
  - Due to free-form of Jacobian
  - Properties of i-ResNets allows to design efficient estimator



# Conclusion

- Simple modification makes ResNets invertible
- Stability is guaranteed by construction
- New class of likelihood-based generative models

   without structural constraints
- Excellent performance in discriminative/ generative tasks
  - with one unified architecture
- Promising approach for:
  - unsupervised pre-training
  - semi-supervised learning
  - tasks which require invertibility

## See us at Poster #11 (Pacific Ballroom)









Code:





Invertible Residual Networks





Follow-up work:

Residual Flows for Invertible Generative Modeling

Invertible Networks and Normalizing Flows, workshop on Saturday (contributed talk)