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Motivation

• Want to do regression on
molecules

• For virtual screening of
drugs, materials, etc.

• Problem: Molecules can be
any size and shape

• Only know how to learn
from fixed-size examples.

• How to take a molecule in
and produce a fixed-size
vector?



Circular Fingeprints

• Standard method lists all
substructures below a
certain size

• Can do this by
combining hashes of
each atom with and
bonded neighbors

• Hash value indexes into
a fixed-sized vector

• Problem: can’t optimize
with gradients



What would Ryan do?

• Maybe we can build a
message-passing
network

• same function is applied
to each node (atom) and
its neighbors

• Like a convolutional net
• At the top, add all node’s

vectors together
• If we use a softmax, this

generalizes circular
fingerprints



Continuous-izing Circular Fingerprints

Circular fingerprints
1: Input: molecule, radius R, fingerprint

length S
2: Initialize: fingerprint vector f← 0S
3: for each atom a in molecule do
4: ra ← g(a) . lookup atom features
5: for L = 1 to R do . for each layer
6: for each atom a in molecule do
7: r1 . . . rN = neighbors(a)
8: v← [ra, r1, . . . , rN ] . concatenate
9: ra ← hash(v) . hash function
10: i ← mod(ra,S) . convert to index
11: fi ← 1 . Write 1 at index
12: Return: binary vector f

Neural graph fingerprints
1: Input: molecule, radius R, weights

H1
1 . . .H

5
R , output weights W1 . . .WR

2: Initialize: fingerprint vector f← 0S
3: for each atom a in molecule do
4: ra ← g(a) . lookup atom features
5: for L = 1 to R do . for each layer
6: for each atom a in molecule do
7: r1 . . . rN = neighbors(a)
8: v← ra +

∑
N
i=1 ri . sum

9: ra ← σ(vHN
L ) . smooth function

10: i← softmax(raWL) . sparsify
11: f← f + i . add to fingerprint
12: Return: real-valued vector f

Every non-differentiable operation is replaced with a
differentiable analog.



Generalizing Circular Fingerprints

• If we generalize existing
fingerprints, we can’t not
win (unless we overfit)

• large random weights
makes neural nets act like
hash functions

• Looked at similarities
between pairwise
distances. 0.5 0.6 0.7 0.8 0.9 1.0

Circular fingerprint distances
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Neural vs Circular distances, r=0:823



Generalizing Circular Fingerprints

• If we generalize existing
fingerprints, we can’t not
win (unless we overfit)

• large random weights
makes neural nets act like
hash functions

• Looked at performance of
random weights. 0 1 2 3 4 5 6

Fingerprint radius
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Random conv with large parameters
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Performance

Dataset Solubility Drug efficacy Photovoltaic efficiency
Units log Mol/L EC50 in nM percent

Predict mean 4.29 ± 0.40 1.47 ± 0.07 6.40 ± 0.09
Circular FPs + linear layer 1.84 ± 0.08 1.13 ± 0.03 2.62 ± 0.07
Circular FPs + neural net 1.40 ± 0.15 1.24 ± 0.03 2.04 ± 0.07
Neural FPs + linear layer 0.74 ± 0.09 1.16 ± 0.03 2.71 ± 0.13
Neural FPs + neural net 0.53 ± 0.07 1.17 ± 0.03 1.44 ± 0.11

• Could also try varying depth of neural net on top
(used one hidden layer here)



Interpretability

• Circular fingerprints
activate for a single
substructure

• No generalization
• No notion of similarity
• Let’s put a linear layer on

top of neural fingerprints
and examine which
fragments activate most
predictive features.



Interpretability: Solubility

Fragments activating feature most predictive of solubility:

O
OH

O

NH

O

OH

OH

most predictive of insolubility:



Interpretability: Toxicity

Fragments most activated by toxicity feature on SR-MMP
dataset:

Fragments most activated by toxicity feature on NR-AHR
dataset:



Future Work

• Limitation: Slow because of
so many weight transforms

• Could use low-rank weight
matrices

• Limitation: All features are
local

• Could learn to “parse”
molecules

• But how to take gradients?
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