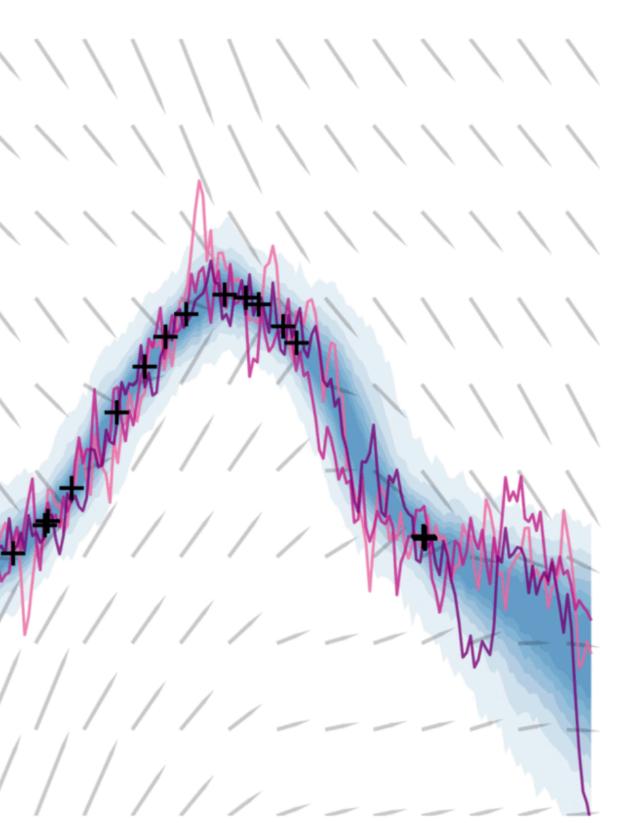
Latent Stochastic Differential Equations

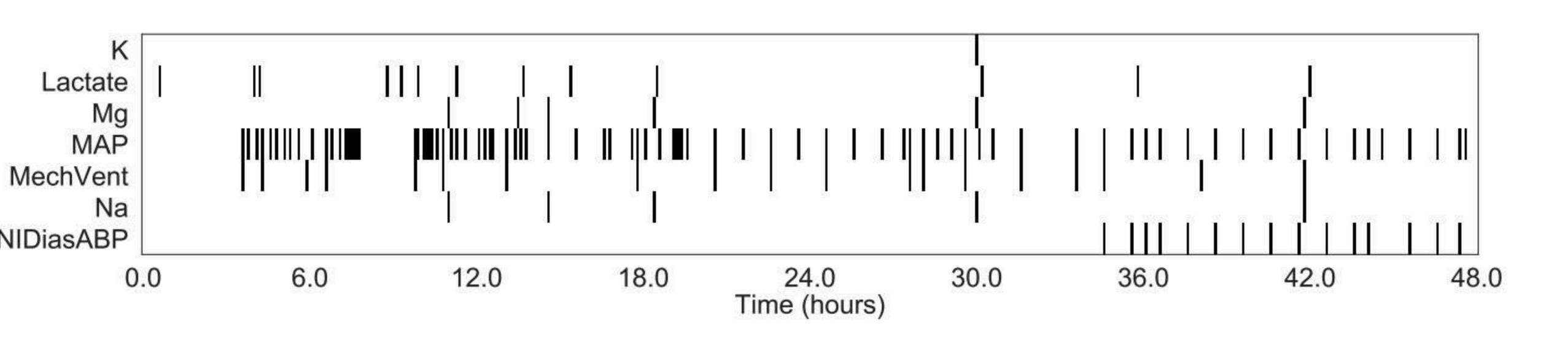


Xuechen Li, Leonard Wong, Ricky Chen, David Duvenaud University of Toronto, Vector Institute, **T** VECTOR INSTITUTE Google Brain Toronto

Summary

- New-ish model class for continuous-time generative models:
 - SDESolve z_{t_n} z_0 estimates θ x_{t_1} x_{t_2} x_{t_n} (a) Generation
- Neural net dynamics and likelihoods • Well-defined model, tractable marginal likelihood • 2020: Adjoint sensitivity method for SDEs.
 - O(1) training memory cost, adaptive compute
- 2021: Asymptotically-zero variance gradient estimator
- Exploring this model class: Time series, BNNs, multi-scale

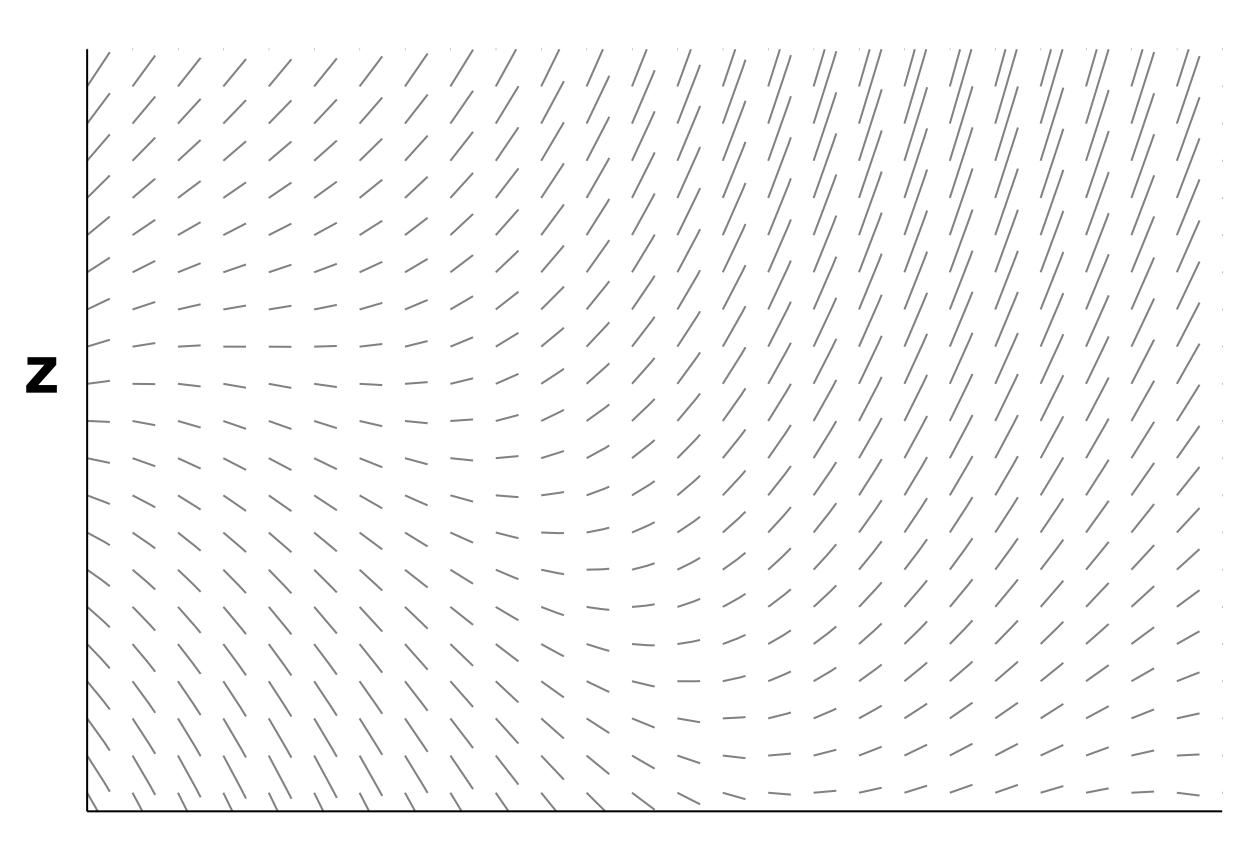
Motivation: Irregularly-timed datasets



- Most patient data, business data irregularly sampled through time.
- How to handle these data without binning?

Most large parametric models in ML are discrete time: RNNs, HMMs, DKFs

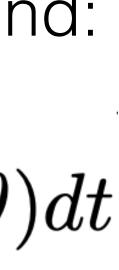
Ordinary Differential Equations



- Vector-valued z changes in time
- Time-derivative: $\frac{d\mathbf{z}}{dt} = f(\mathbf{z}(t),t)$
- Initial-value problem: given $\mathbf{z}(t_0)$, find:

$$\mathbf{z}(t_1) = \mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta)$$

• Euler approximates with small steps: $\mathbf{z}(t+h) = \mathbf{z}(t) + hf(\mathbf{z}, t)$



Autoregressive continuous-time

Standard RNN:

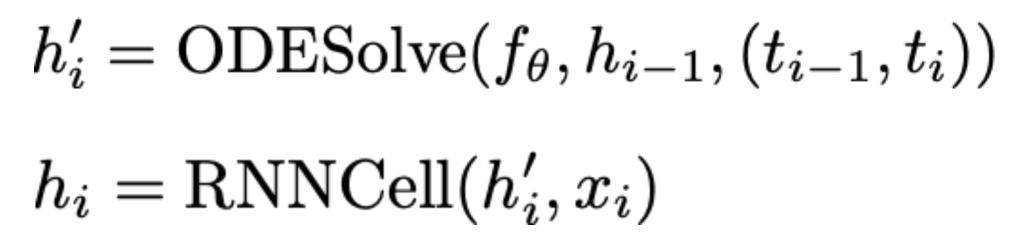
$$h'_{i} = h_{i-1}$$
$$h_{i} = \text{RNNCell}(h'_{i}, x_{i})$$

ODE-RNN:

 $h'_i = \text{ODESolve}(f_{\theta}, h_{i-1}, (t_{i-1}, t_i))$ $h_i = \text{RNNCell}(h'_i, x_i)$

Limitations of RNN-based models

- Hidden state h represents model's belief about system's future, not the same thing as system state.
- Not a well-defined generative model.
- No explicit use of Bayes' rule, just makes predictions (but robust to mis-specification!)

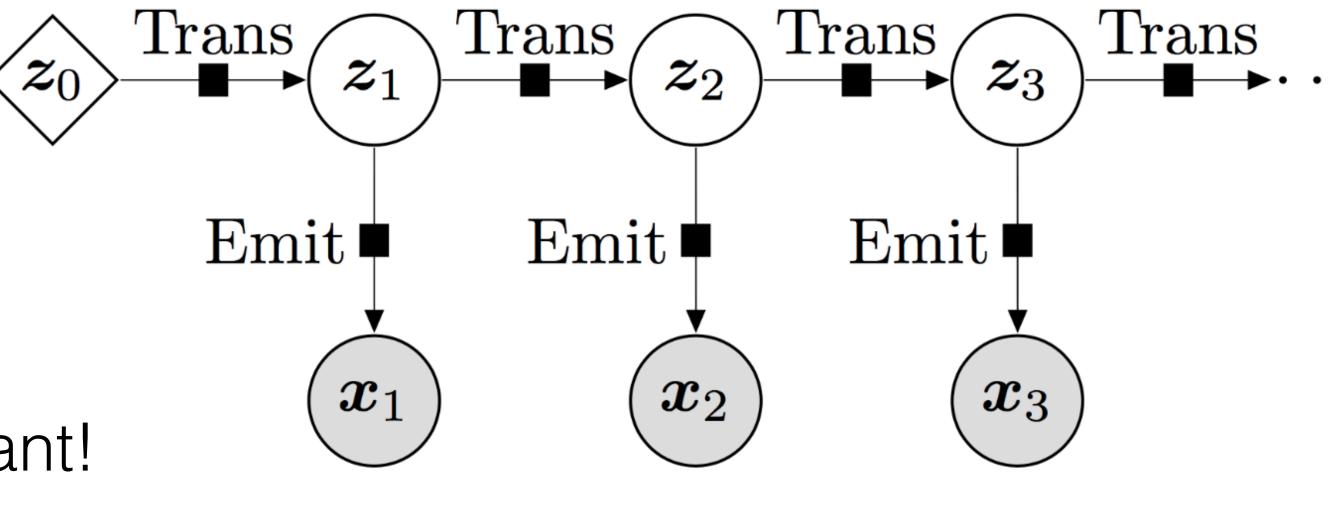


Latent variable models

- Kalman Filters, Hidden Markov Models, Deep Markov Models
 - specify p(z), p(x|z)

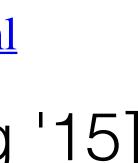
$$p(x) = \int p(x \mid z) p(z) dz$$

- Can integrate out z however you want!
 - Recognition net can give approx. posterior



https://pyro.ai/examples/dmm.html

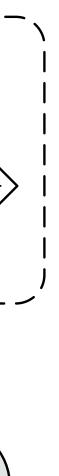
[Krishnan, Shalit & Sontag '15]

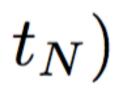


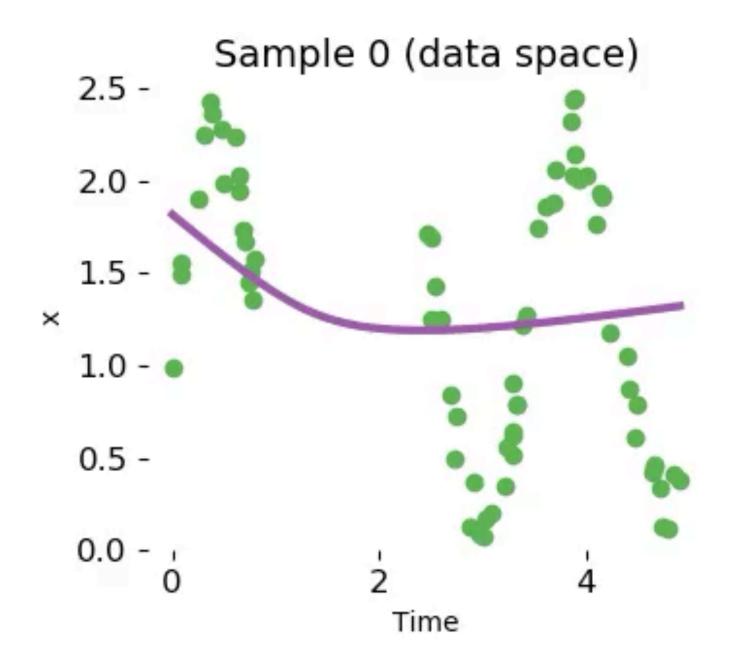
ODE latent-variable model ODE Solve $(z_{t_0}, f, \theta_f, t_0, ..., t_N)$ $\langle z_{t_1} \rangle$ Z_{t_N} $\langle z_{t_i} \rangle$ z_{t_0} (\hat{x}_{t_1}) (\hat{x}_{t_i}) (\hat{x}_{t_0})

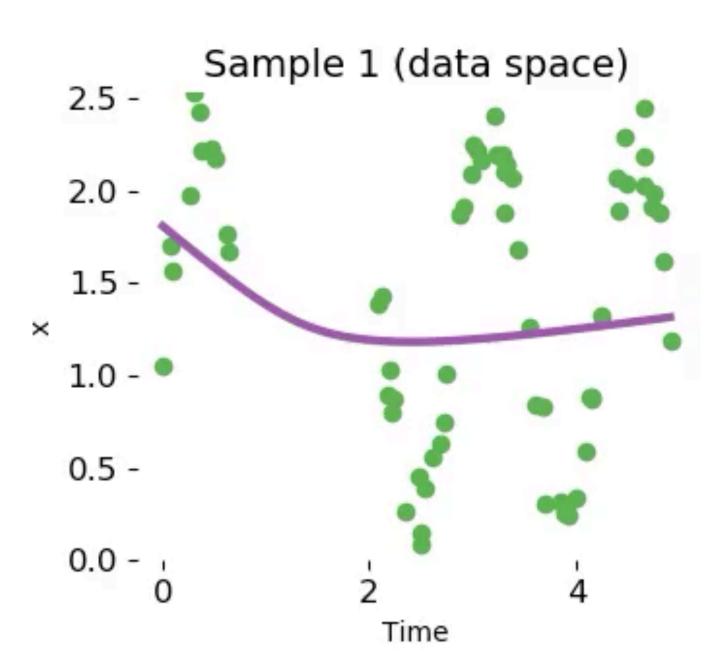
- z(t) is state of system at time t
- Need to approximate posterior p(z_t0 | x_t1...)
- Well-defined state at all times, dynamics separate from inference

 $\mathbf{z}_{t_0} \sim p(\mathbf{z}_{t_0})$ $\mathbf{z}_{t_1}, \mathbf{z}_{t_2}, \ldots, \mathbf{z}_{t_N} = \text{ODESolve}(\mathbf{z}_{t_0}, f, \theta_f, t_0, \ldots, t_N)$ each $\mathbf{x}_{t_i} \sim p(\mathbf{x} | \mathbf{z}_{t_i}, \theta_{\mathbf{x}})$

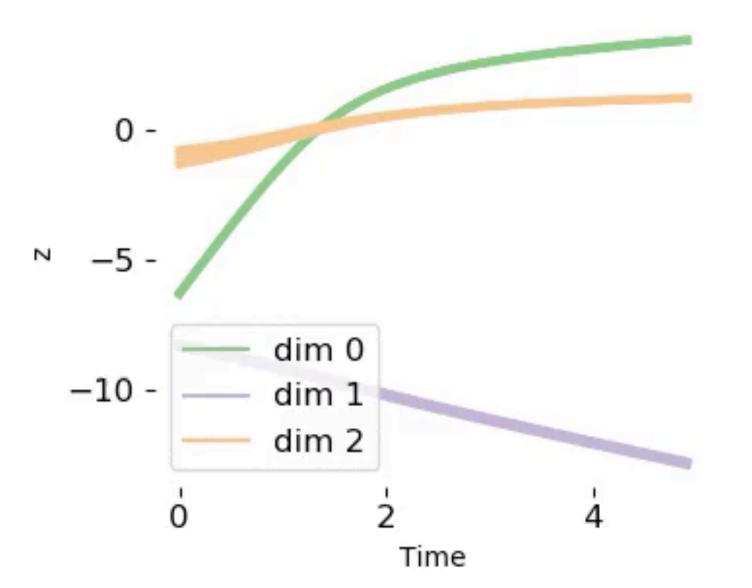


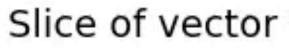


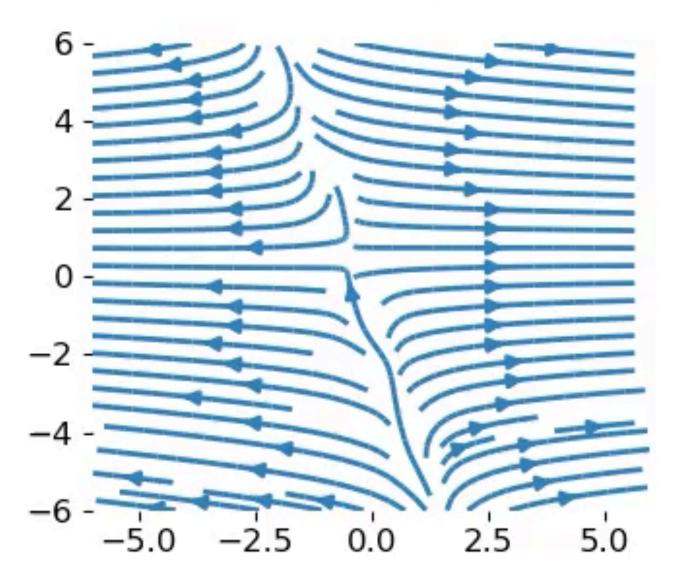


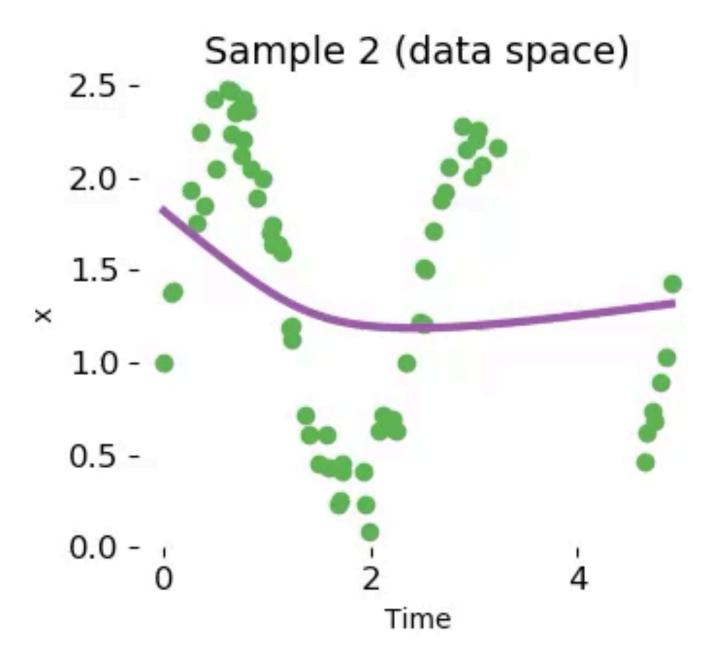


Latent trajectories z(t) (latent space)



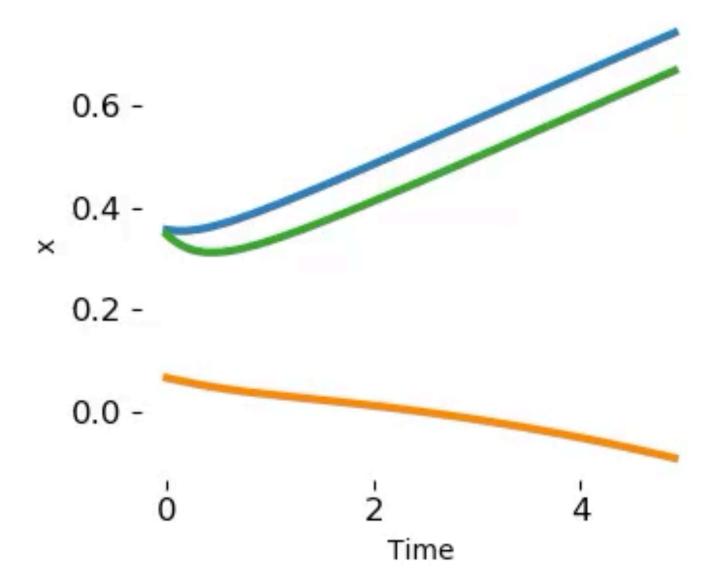






Slice of vector field (latent space)

Samples from prior (data space)



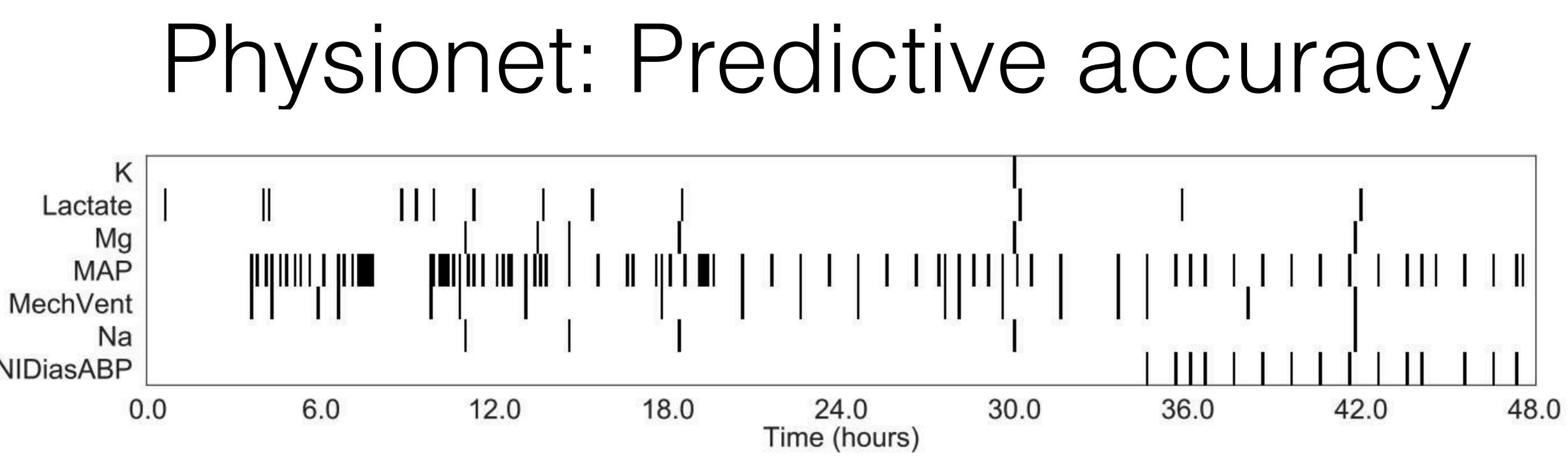
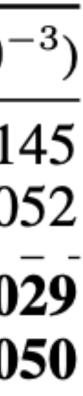


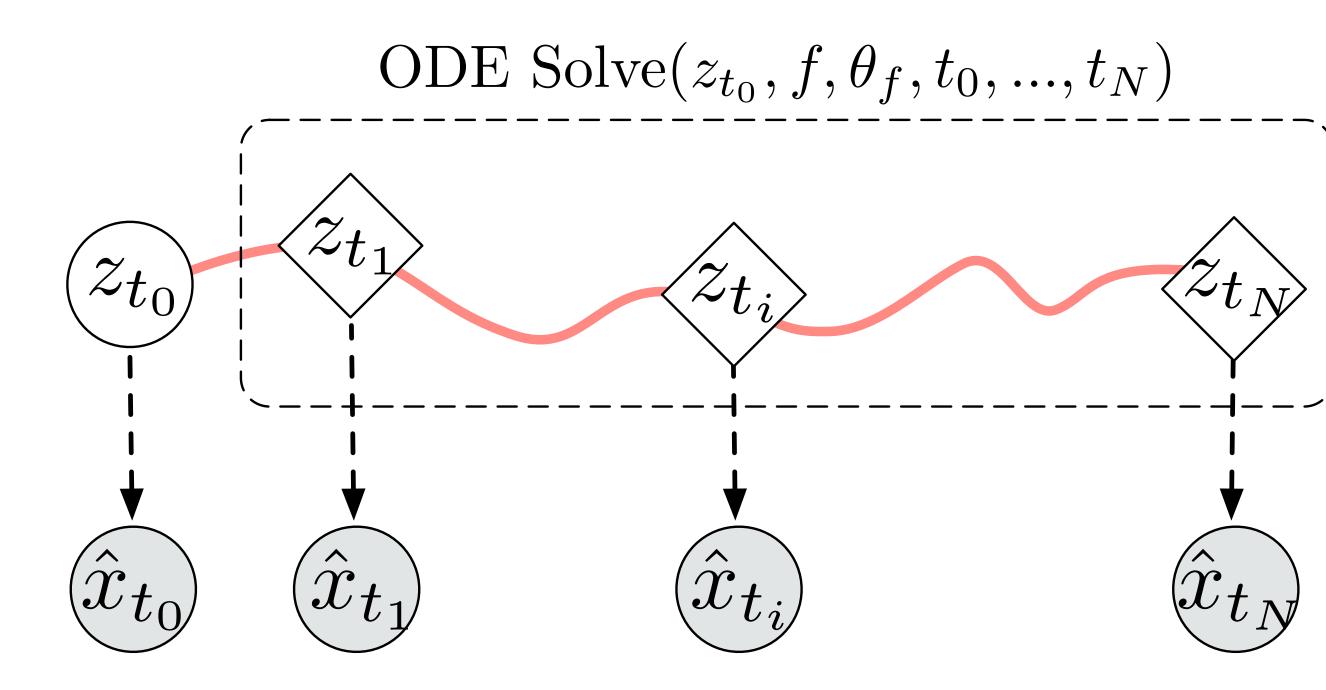
Table 4: Test MSE (mean \pm std) on PhysioNet. Autoregressive models.

3 6 1 1	Interp ($\times 10^{-3}$)			
Model		Model	Interp ($\times 10^{-3}$)	Extrap (×10 ⁻
RNN Δ_t RNN-Impute RNN-Decay	$\begin{array}{c} 3.520 \pm 0.276 \\ 3.243 \pm 0.275 \\ 3.215 \pm 0.276 \end{array}$	RNN-VAE Latent ODE (RNN enc.)	$\begin{array}{c} 5.930 \pm 0.249 \\ 3.907 \pm 0.252 \end{array}$	3.055 ± 0.14 3.162 ± 0.02
RNN GRU-D ODE-RNN (Ours)	3.384 ± 0.274 $$	Latent ODE (ODE enc) Latent ODE + Poisson	2.118 ± 0.271 2.789 ± 0.771	2.231 ± 0.02 2.208 ± 0.02

Table 5: Test MSE (mean \pm std) on PhysioNet. Encoder-decoder models.



Limitations of Latent ODEs



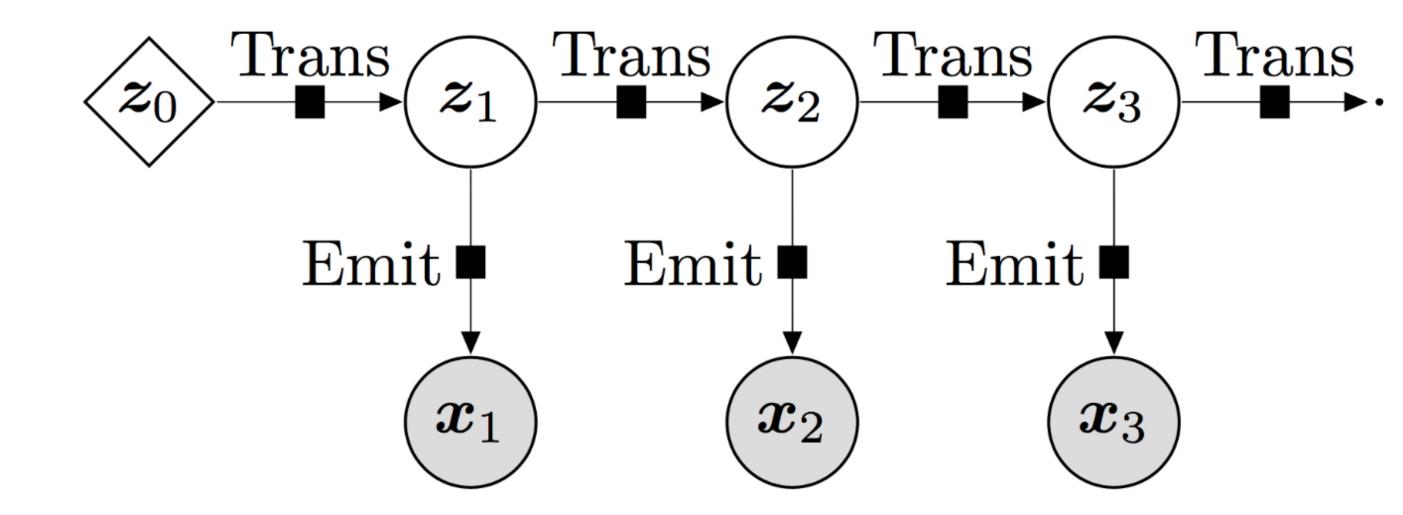
- Deterministic dynamics!
 - State size grows with sequence length
- Special time t0

Stochastic transition dynamics

Nonlinear latent variable with noise at each step:

$$z_{t+1} = z_t + f_{\theta}(z_t) + \epsilon$$

- Could add more steps between observations.
- Infinitesimal limit some sort of stochastic ODE...?



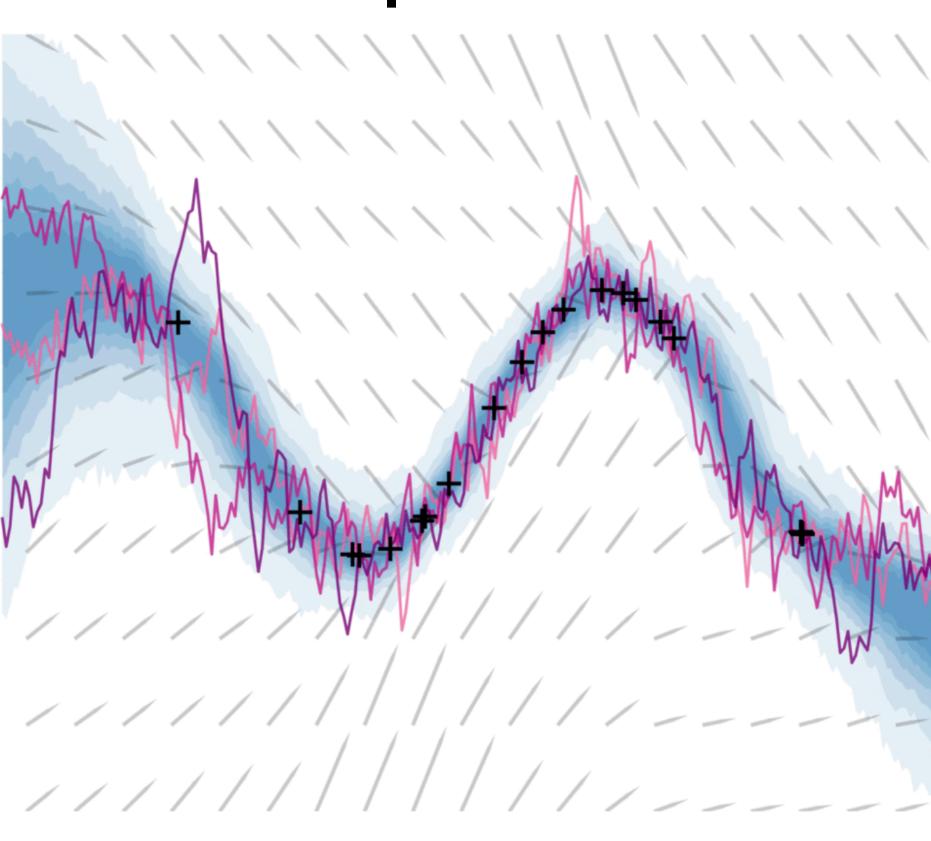
https://pyro.ai/examples/dmm.html

Stochastic Differential Equations

 $\frac{dz}{dt} = f(z(t)) + \tilde{\epsilon}$

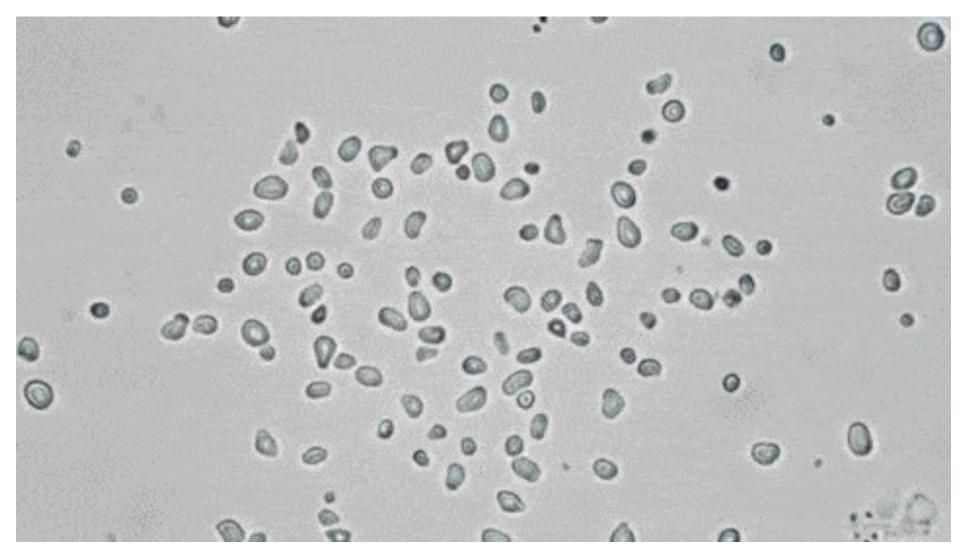
$dz = f(z(t))dt + \sigma(z(t))dB(t)$ Diffusion Drift

Implicit distribution over functions.



What are SDEs good for? natural fit for many small, unobserved interactions:

- - motion of molecules in a liquid
 - allele frequencies in a gene pool
 - prices in a market
- Interactions don't need to be Gaussian if CLT kicks in
- Let's put neural nets in SDE dynamics and fit to data!



 $dz = f_{\theta}(z(t))dt + \sigma_{\theta}(z(t))dB(t)$

How to fit ODE params? $L(\theta) = L\left(\int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right)$ $\frac{\partial L}{\partial A} = ?$

- Don't backprop through solver: High memory cost, numerical error
- Alexey Radul: Approximate the derivative, don't differentiate the approximation!

Continuous-time Backpropagation

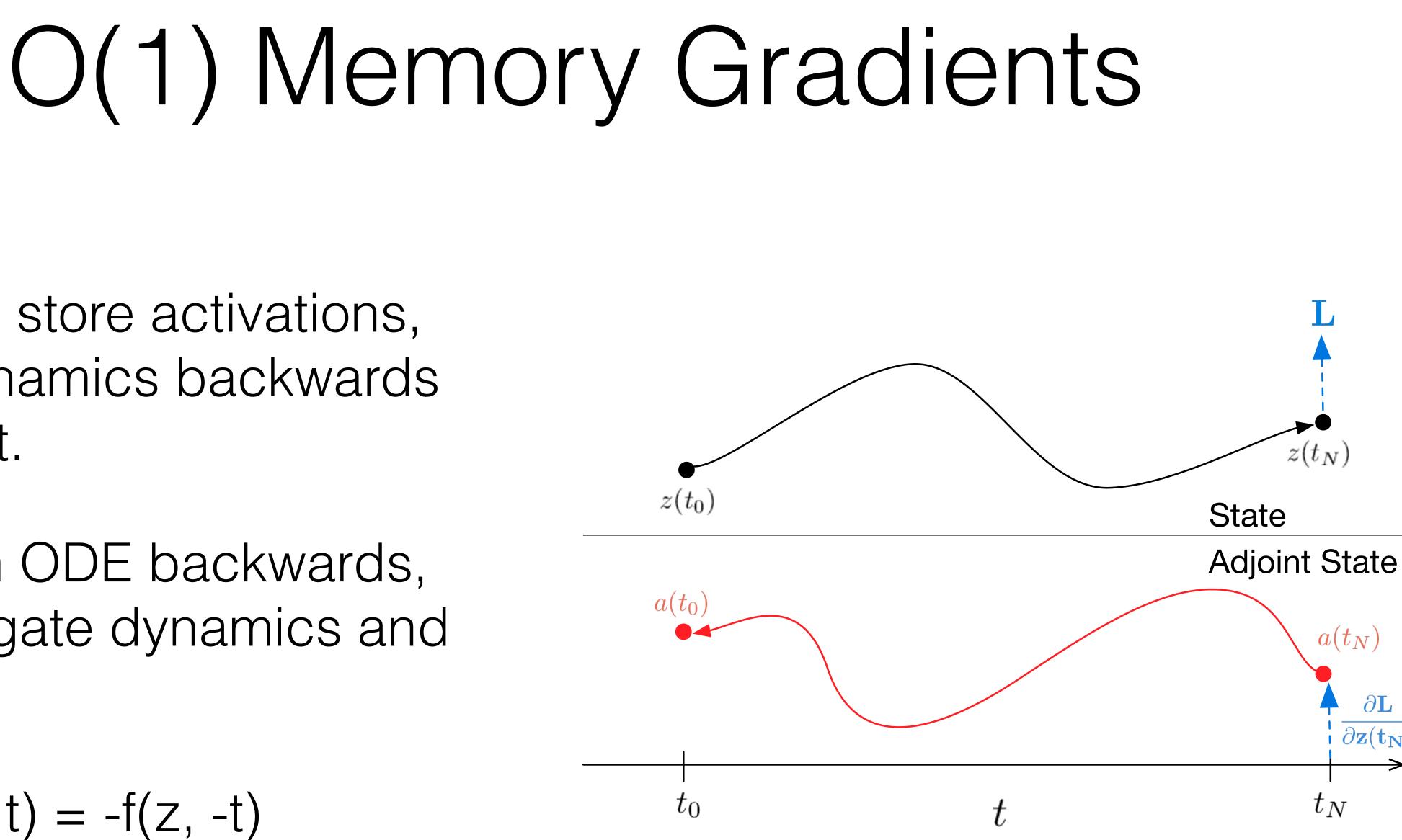
- Can Standard Backpranics with autodiff, compute gradients with second ODE solve:
- def f_aug([z, a, d], t): $\partial_{f(z_{t}, \theta)}$ return [f, - a^*df/dz , - $a^*df/d\theta$)

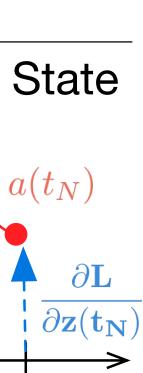
 $[z0, dL/dz(t0), dL/d\theta] = ODE ODE ODE ODE ODE ODE ODE ODE (f aug, <math>\partial f(z_t, \theta)$ [z(t1) $\partial \phi L/dz(1), 0$], t1, $\partial \phi$]

Adjoint sensitivities: (Pontryagin et al., 1962):

> $\frac{\partial}{\partial t} \frac{\partial L}{\partial \mathbf{z}(t)} = \frac{\partial L}{\partial \mathbf{z}(t)} \frac{\partial f(\mathbf{z}(t), \theta)}{\partial \mathbf{z}}$ $\frac{\partial L}{\partial \theta} = \int_{t_{\star}}^{t_{0}} \frac{\partial L}{\partial \mathbf{Z}(t)} \frac{\partial f(\mathbf{Z}(t), \theta)}{\partial \theta} dt$

- No need to store activations, just run dynamics backwards from output.
- Easy to run ODE backwards, just run negate dynamics and time:
 - back_f(z, t) = -f(z, -t)





Algorithm 1 ODE Adjoint Sensitivity

Input: Parameters θ , start time t_0 , stop time t_1 , final state z_{t_1} , loss gradient $\partial \mathcal{L}/z_{t_1}$, dynamics $f(z, t, \theta)$.

$$\begin{array}{ll} \operatorname{def} \ \overline{f}([z_t, a_t, \cdot], \ t, \ \theta) &: \qquad \triangleright \ \operatorname{Augmented} \ \operatorname{dynam} \\ v = f(z_t, -t, \theta) \\ \operatorname{return} \left[-v, \ a_t \partial v / \partial z, \ a_t \partial v / \partial \theta \right] \end{array}$$

$$\begin{bmatrix} z_{t_0} \\ \partial \mathcal{L}/\partial z_{t_0} \\ \partial \mathcal{L}/\partial \theta \end{bmatrix} = \texttt{odeint} \left(\begin{bmatrix} z_{t_1} \\ \partial \mathcal{L}/\partial z_{t_1} \\ \mathbf{0}_p \end{bmatrix}, \overline{f}, -t_1, -t_0 \right)$$

$$\texttt{return} \ \partial \mathcal{L}/\partial z_{t_0}, \partial \mathcal{L}/\partial \theta$$

ics

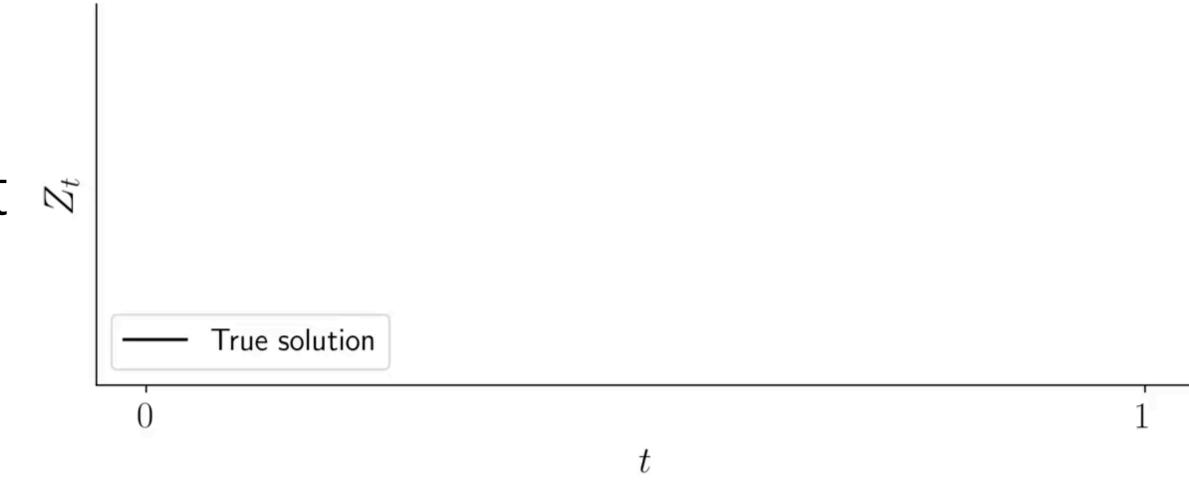
- Final algorithm for ODE grads: Solve one big augmented system backwards in time.
- Mostly worked out by Pontryagin (1961)

Why not repeat same trick?

- If an SDE is just "an ODE with noise", why not use same adjoint method?
- "Unfortunately, there is no straightforward way to port this construction to SDEs." -Tzen & Raginsky (2019)
- (alternative: Rough path theory. ask later)

What is "running an SDE backwards"?

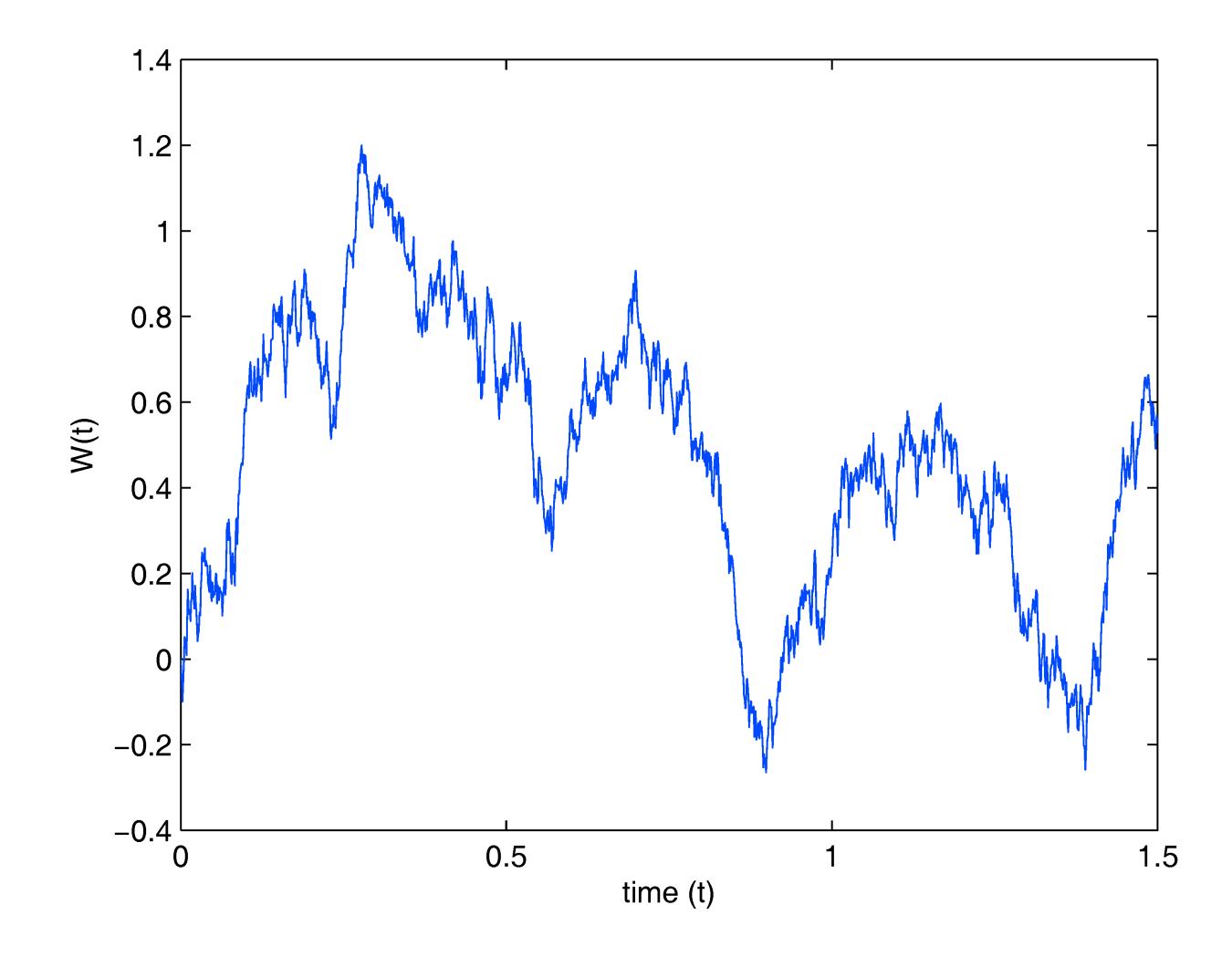
- Me: Let's just slap negative signs on everything and hope for the best
- Xuechen Li and Leonard Wong: What does that even mean?
 - Much later: Nvm that's correct.
- Builds on Kunita (2019)

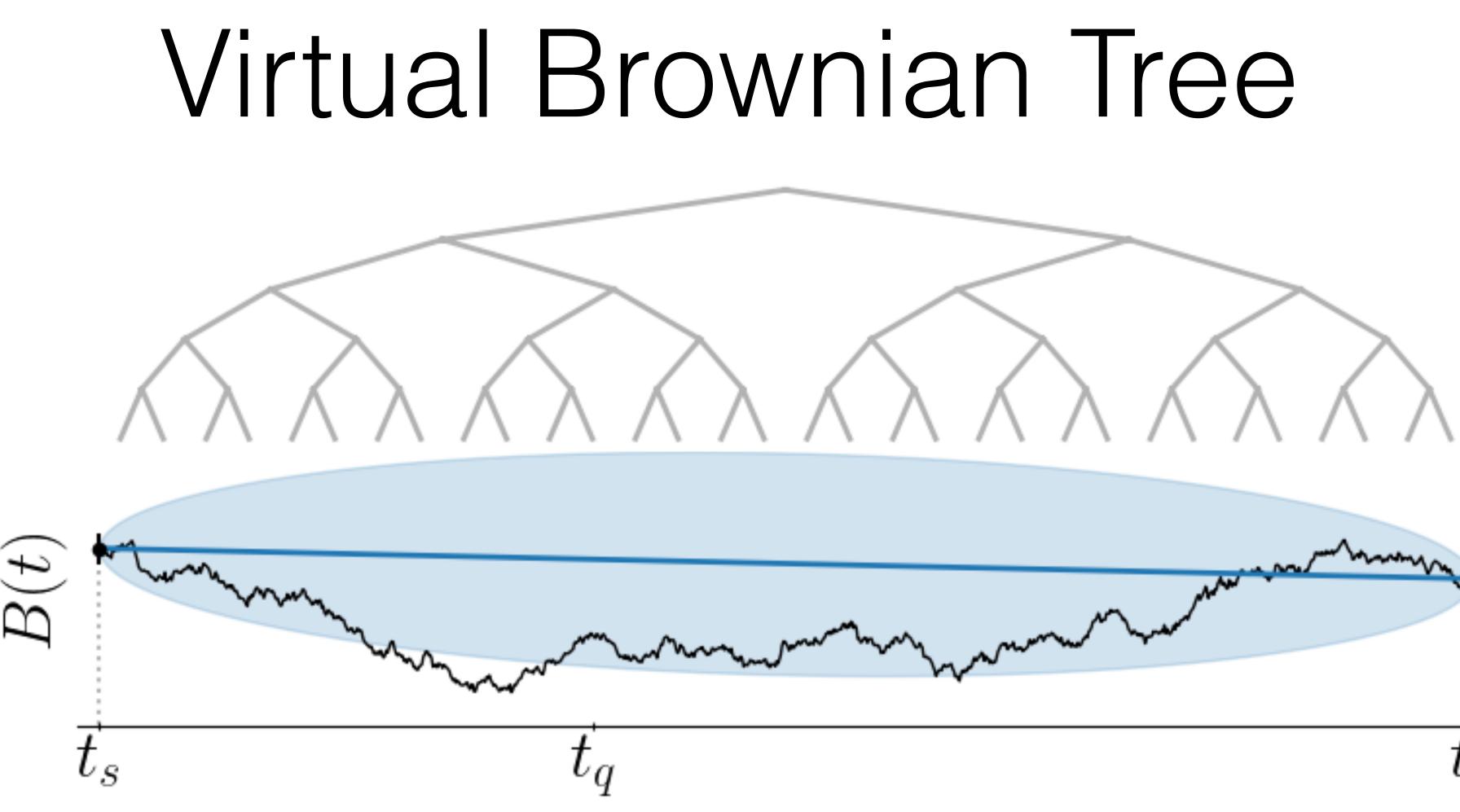


 $dz = -f(z(-t))dt + \sigma(z(-t))dB(-t)$

- Reparameterization trick: Use same noise from forward pass on reverse pass
- Infinite reparameterization trick: Use same Brownian motion sample on forward and reverse passes.
- Need to sample entire function

Need to store noise





- Can 'zoom in' arbitrarily close at any point.
 - O(1) memory, O(log(1/eps)) time

• splittable random seed ensures all entire sample is consistent

Algorithm 1 ODE Adjoint Sensitivity

Input: Parameters θ , start time t_0 , stop time t_1 , final state z_{t_1} , loss gradient $\partial \mathcal{L}/z_{t_1}$, dynamics $f(z, t, \theta)$.

$$\begin{array}{ll} \operatorname{def} \ \overline{f}([z_t, a_t, \cdot], \ t, \ \theta) &: \qquad \triangleright \ \operatorname{Augmented} \ \operatorname{dynam} \\ v = f(z_t, -t, \theta) \\ \operatorname{return} \left[-v, \ a_t \partial v / \partial z, \ a_t \partial v / \partial \theta \right] \end{array}$$

$$\begin{bmatrix} z_{t_0} \\ \partial \mathcal{L}/\partial z_{t_0} \\ \partial \mathcal{L}/\partial \theta \end{bmatrix} = \texttt{odeint} \left(\begin{bmatrix} z_{t_1} \\ \partial \mathcal{L}/\partial z_{t_1} \\ \mathbf{0}_p \end{bmatrix}, \overline{f}, -t_1, -t_0 \right)$$

$$\texttt{return} \ \partial \mathcal{L}/\partial z_{t_0}, \partial \mathcal{L}/\partial \theta$$

 \mathbf{i}

Algorithm 1 ODE Adjoint Sensitivity

Input: Parameters θ , start time t_0 , stop time t_1 , final state z_{t_1} , loss gradient $\partial \mathcal{L}/z_{t_1}$, dynamics $f(z, t, \theta)$.

$$\begin{array}{ll} \operatorname{def} \ \overline{f}([z_t, a_t, \cdot], \ t, \ \theta) &: \qquad \triangleright \ \operatorname{Augmented} \ \operatorname{dynam} \\ v = f(z_t, -t, \theta) \\ \operatorname{return} \left[-v, \ a_t \partial v / \partial z, \ a_t \partial v / \partial \theta \right] \end{array}$$

$$\begin{bmatrix} z_{t_0} \\ \partial \mathcal{L}/\partial z_{t_0} \\ \partial \mathcal{L}/\partial \theta \end{bmatrix} = \texttt{odeint} \left(\begin{bmatrix} z_{t_1} \\ \partial \mathcal{L}/\partial z_{t_1} \\ \mathbf{0}_p \end{bmatrix}, \overline{f}, -t_1, -t_0 \right)$$

$$\texttt{return} \ \partial \mathcal{L}/\partial z_{t_0}, \partial \mathcal{L}/\partial \theta$$

Algorithm 2 SDE Adjoint Sensitivity (Ours)

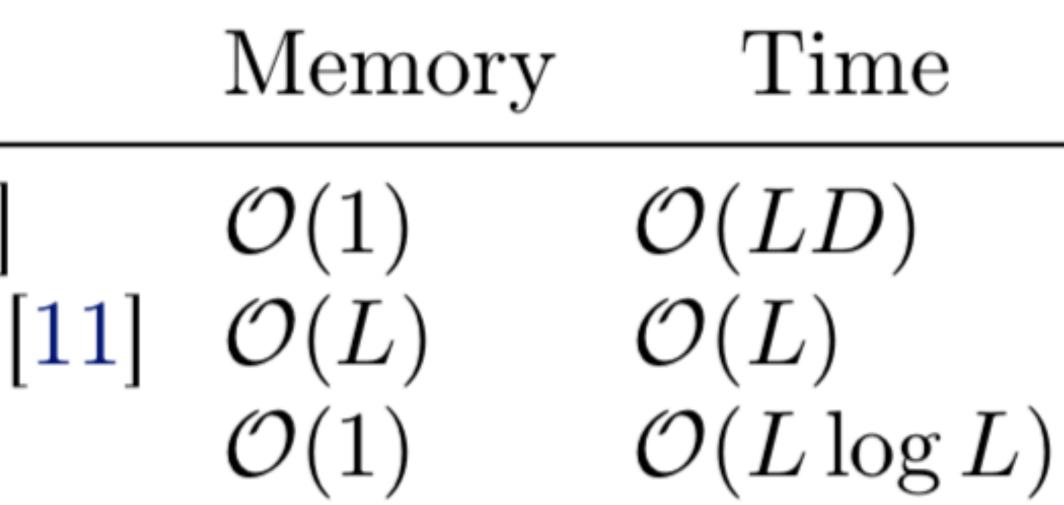
Input: Parameters θ , start time t_0 , stop time t_1 , final state z_{t_1} , loss gradient $\partial \mathcal{L}/z_{t_1}$, drift $f(z, t, \theta)$, diffusion $\sigma(z, t, \theta)$, Wiener process sample w(t). nics def $f([z_t, a_t, \cdot], t, \theta)$: \triangleright Augmented drift $v = f(z_t, -t, \theta)$ **return** $[-v, a_t \partial v / \partial z, a_t \partial v / \partial \theta]$ def $\overline{\sigma}([z_t, a_t, \cdot], t, \theta)$: \triangleright Augmented diffusion $v = \sigma(z_t, -t, \theta)$ **return** $[-v, a_t \partial v / \partial z, a_t \partial v / \partial \theta]$ def $\overline{w}(t)$: \triangleright Replicated noise **return** [-w(-t), -w(-t), -w(-t)] $egin{aligned} z_{t_0} \ \partial \mathcal{L}/\partial z_{t_0} \ \partial \mathcal{L}/\partial heta \end{aligned} = extscale extscale$ $\mathbf{return} \ \partial \mathcal{L} / \partial z_{t_0}, \partial \mathcal{L} / \partial heta$

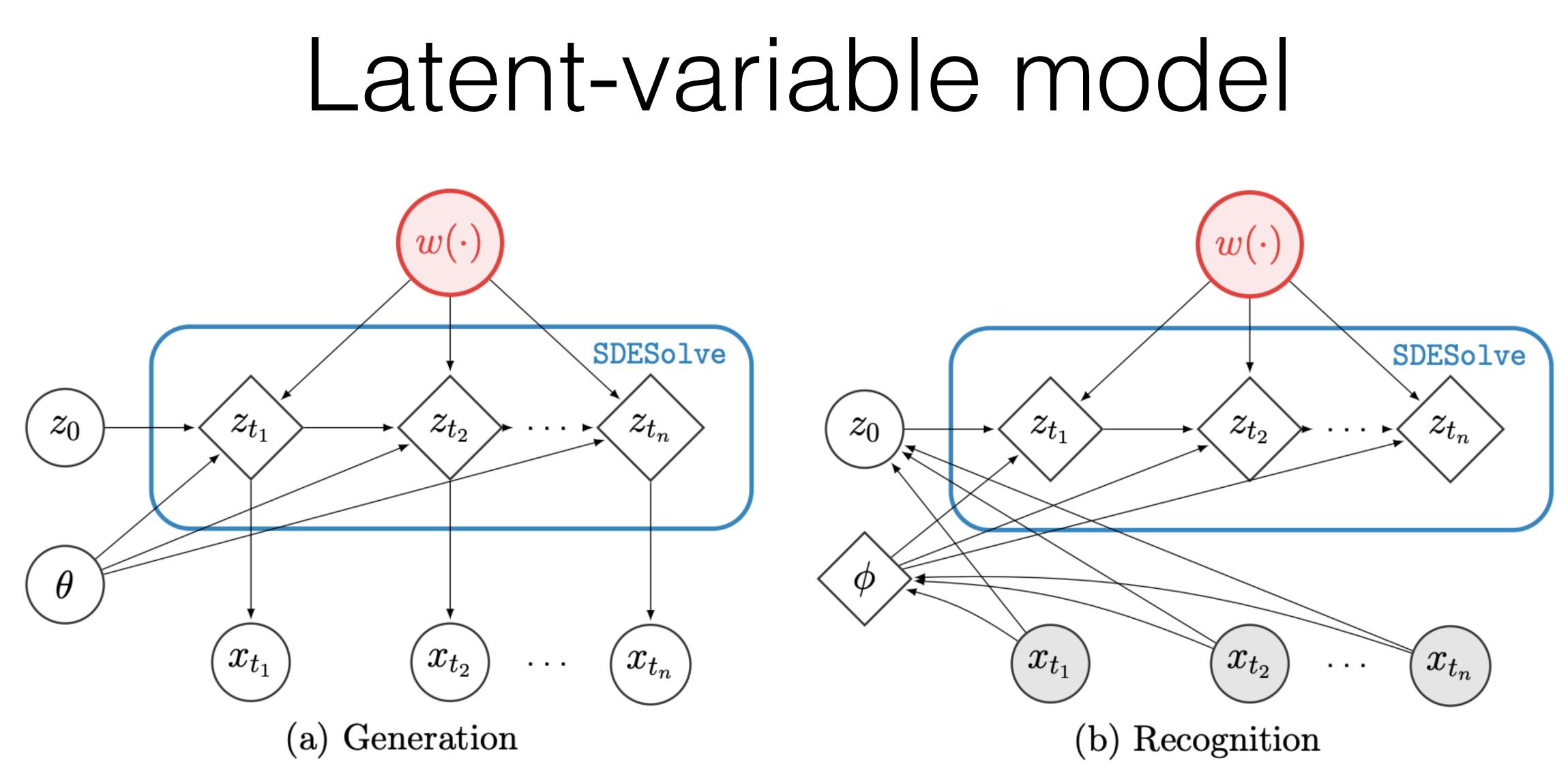
Time and memory cost

Method

Forward pathwise [14, 60]Backprop through solver [11] Stochastic adjoint (ours)

- Time more like O(L) when dynamics are expensive
- Can now fit large SDE models by gradient descent!

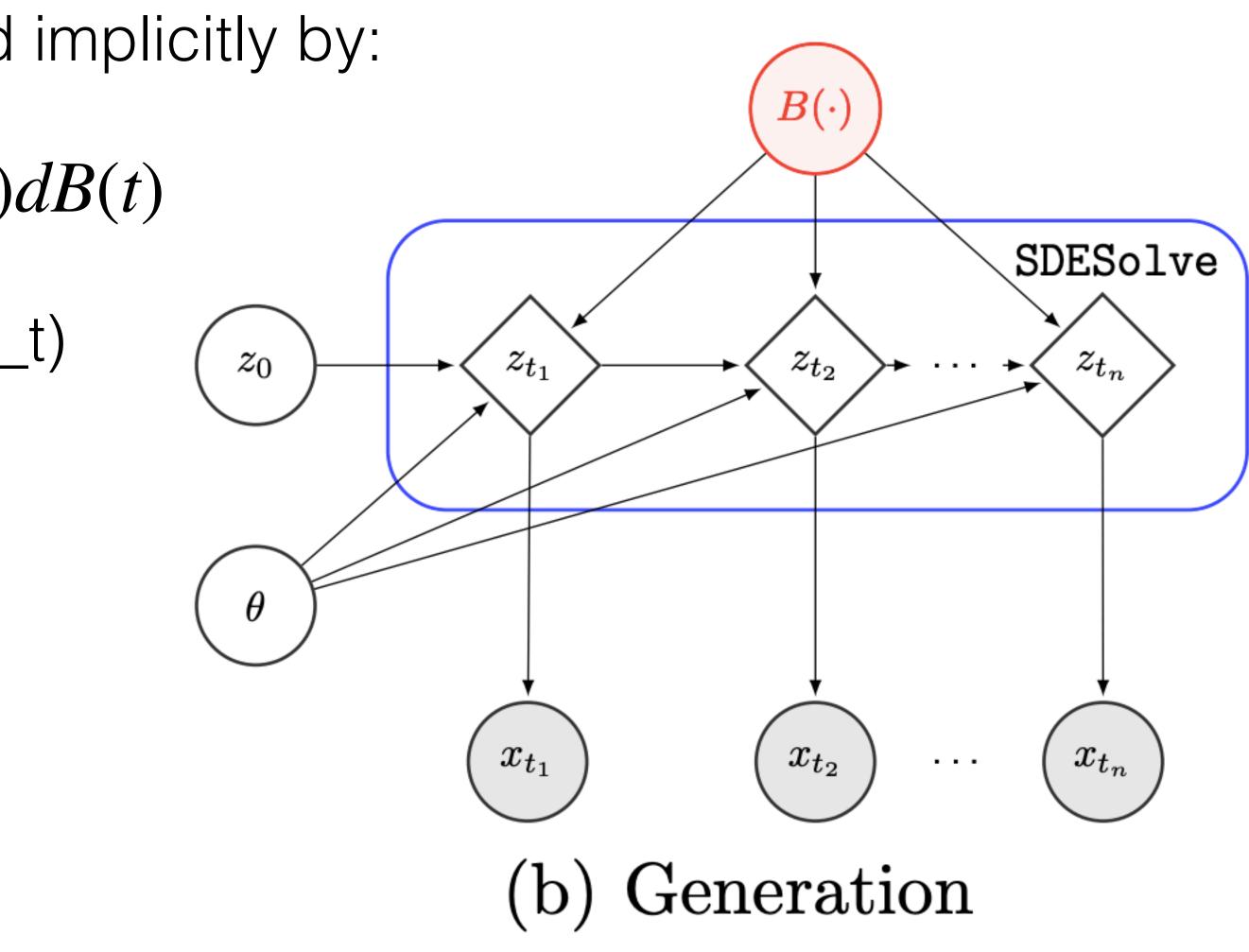




• Can handle arbitrary likelihoods. Infinite-dimensional VAE.

Latent SDE Model

- Generative model (decoder) defined implicitly by:
 - an SDE $dz_p = f_{\theta}(z(t))dt + \sigma_{\theta}(z(t))dB(t)$
 - A likelihood (noise model) p(x_t | z_t)

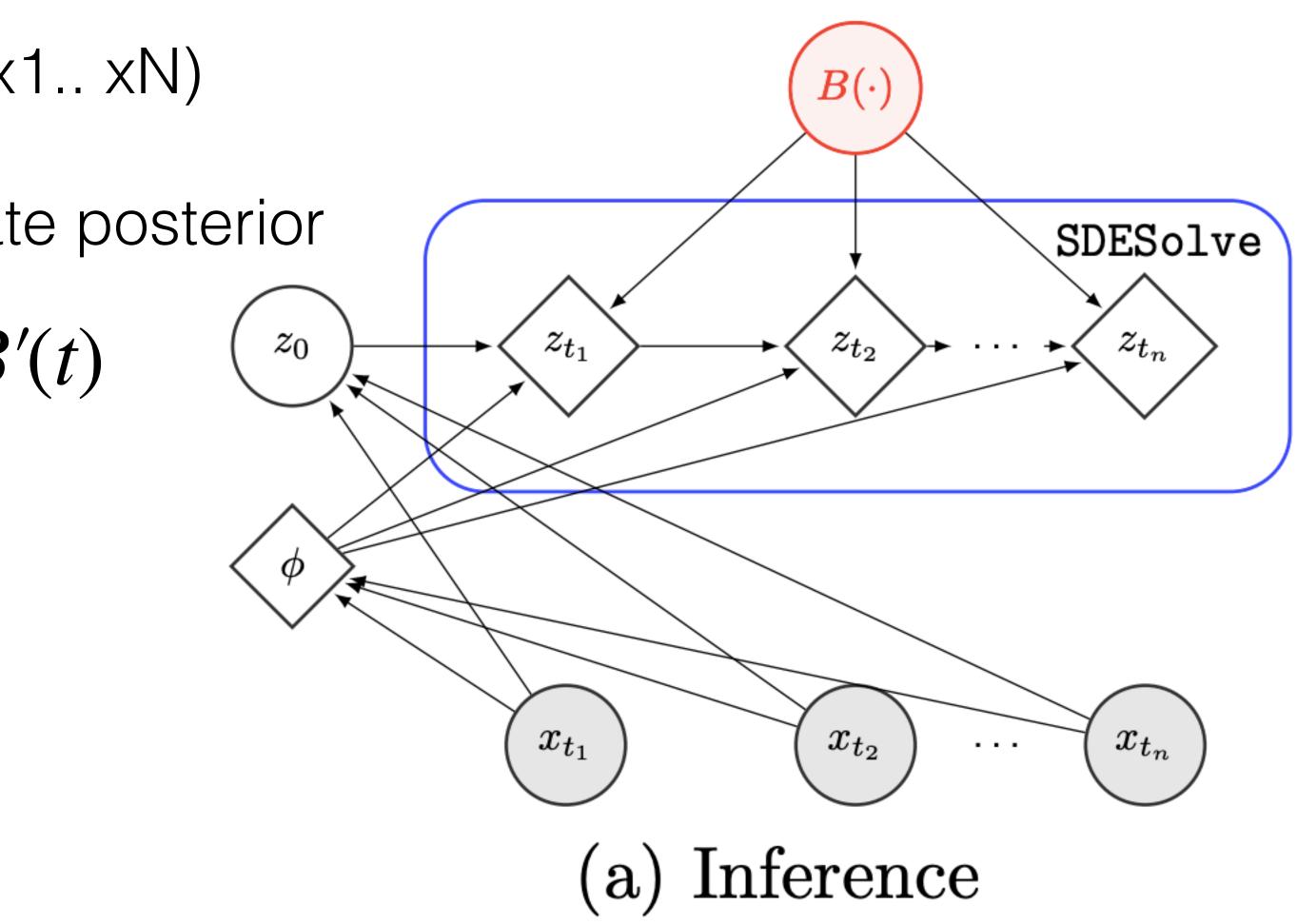


Variational inference

- Recognition model (encoder) takes in data, outputs:
 - Distribution over initial state q(z0 | x1.. xN)
 - Params of SDE defining approximate posterior

$$dz_q = f_{\phi}(z(t))dt + \sigma_{\theta}(z(t))dB$$

• Like Neural Processes, but actually a well-defined probabilistic model



Variational inference

$$\mathcal{L}_{\mathrm{VI}} = \mathbb{E}\left[\frac{1}{2}\int_0^T |u(Z_t, t)\right]$$

u(t) =

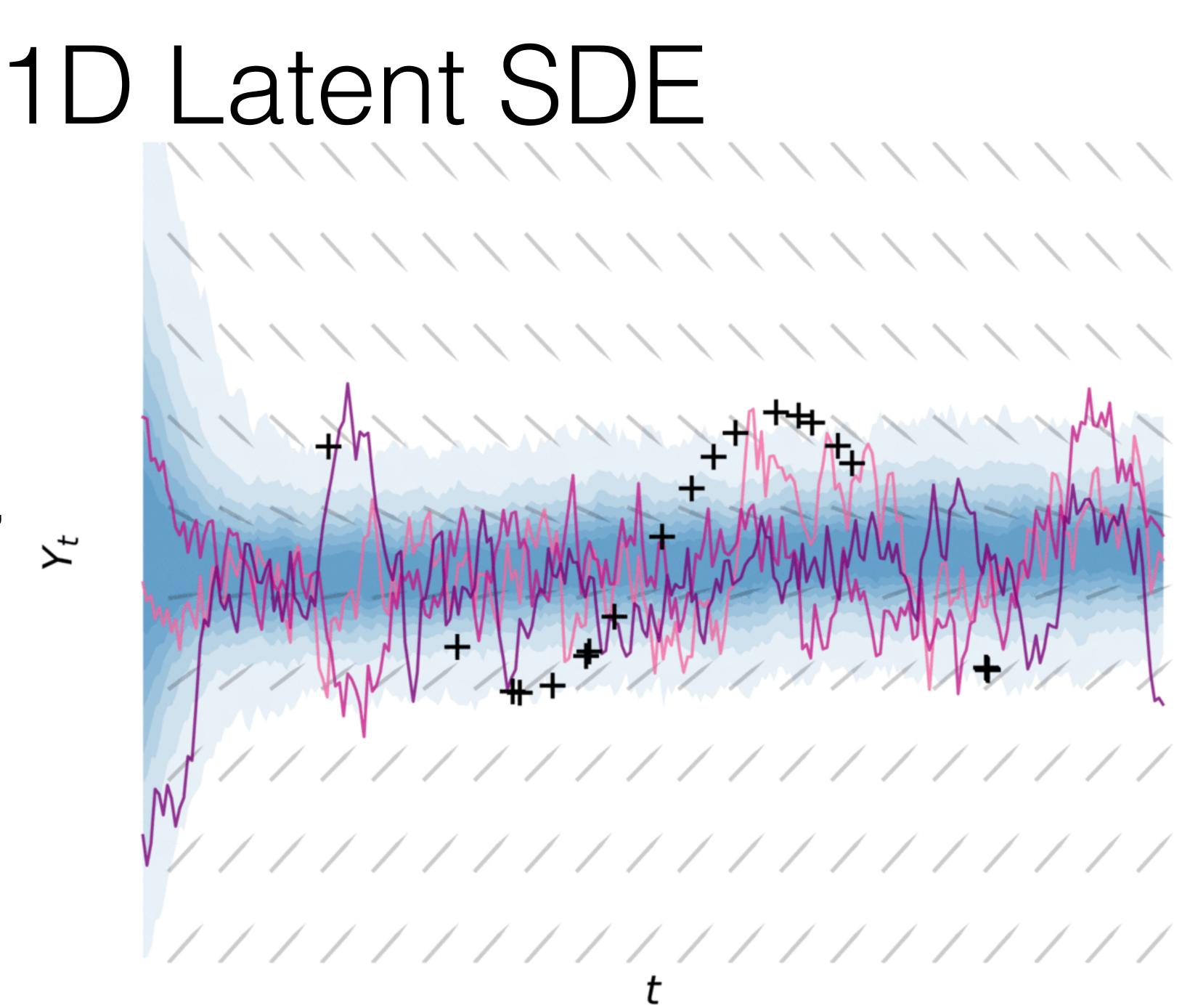
$$f_{\theta}(z(t$$

To optimize ELBO, need unbiased estimate of KL divergence between

prior: $dz_p = f_{\theta}(z(t))dt + \sigma_{\theta}(z(t))dB(t)$ • approximate posterior: $dz_a = f_{\phi}(z(t))dt + \sigma_{\theta}(z(t))dB'(t)$ N $|^2 \mathrm{d}t - \sum \log p(y_{t_i}|z_{t_i})|$ i=1 $(t)) - f_{\phi}(z(t)) \Big|^2$ $\sigma_{\theta}(z(t))$

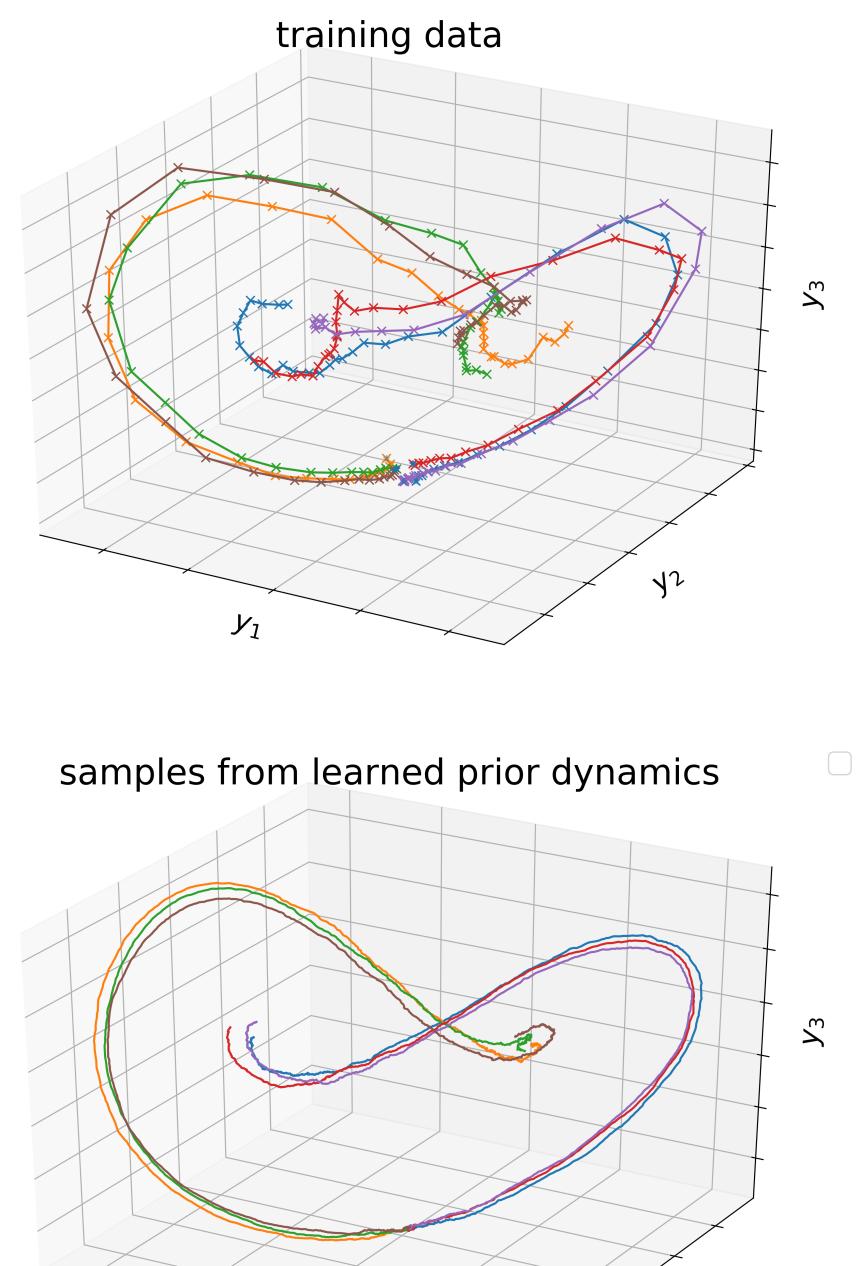
بر

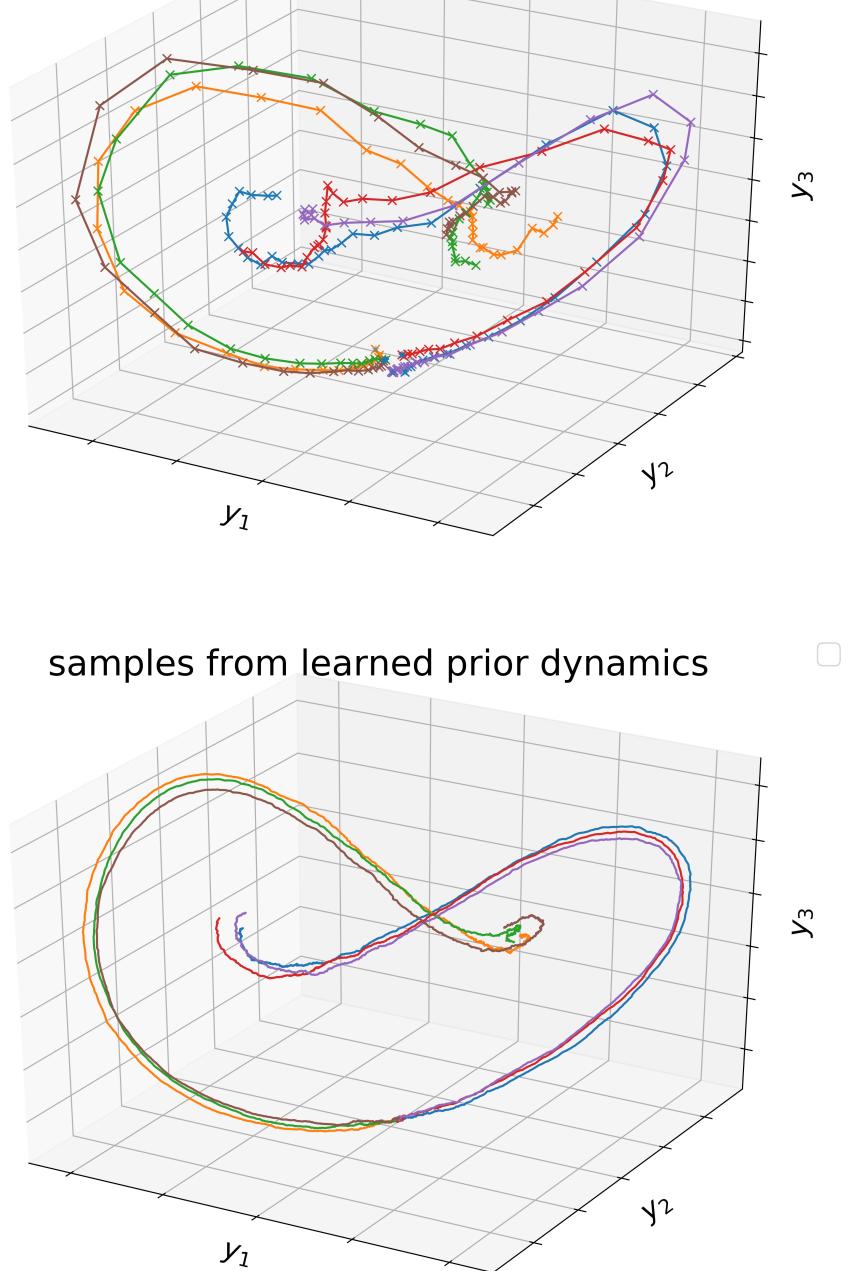
- Ornstein-Uhlenbeck prior, Laplace likelihood
- Posterior SDE steers sample paths to data



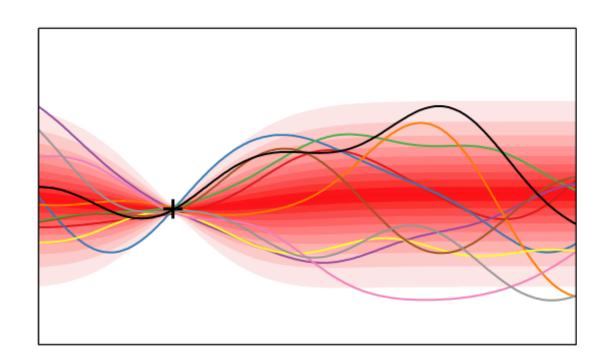
Latent SDEs: An unexplored model class

- Define implicit prior + posterior over functions
- Define observation likelihoods. Anything differentiable wrt latent state (e.g. text models!)
- Train everything with stochastic variational inference.
- Can use adaptive-step SDE solvers.
- Should scale to millions of params, huge states. Can use adaptive Milstein solver (only diagonal noise).

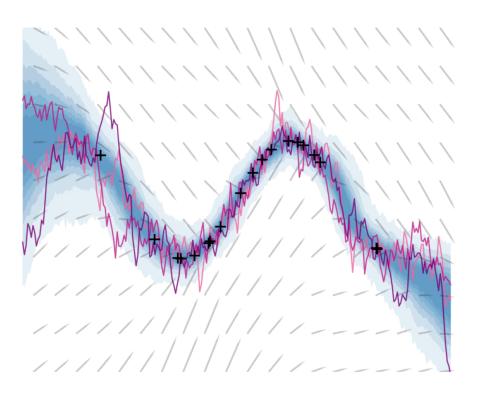




GPs vs Markov SDEs



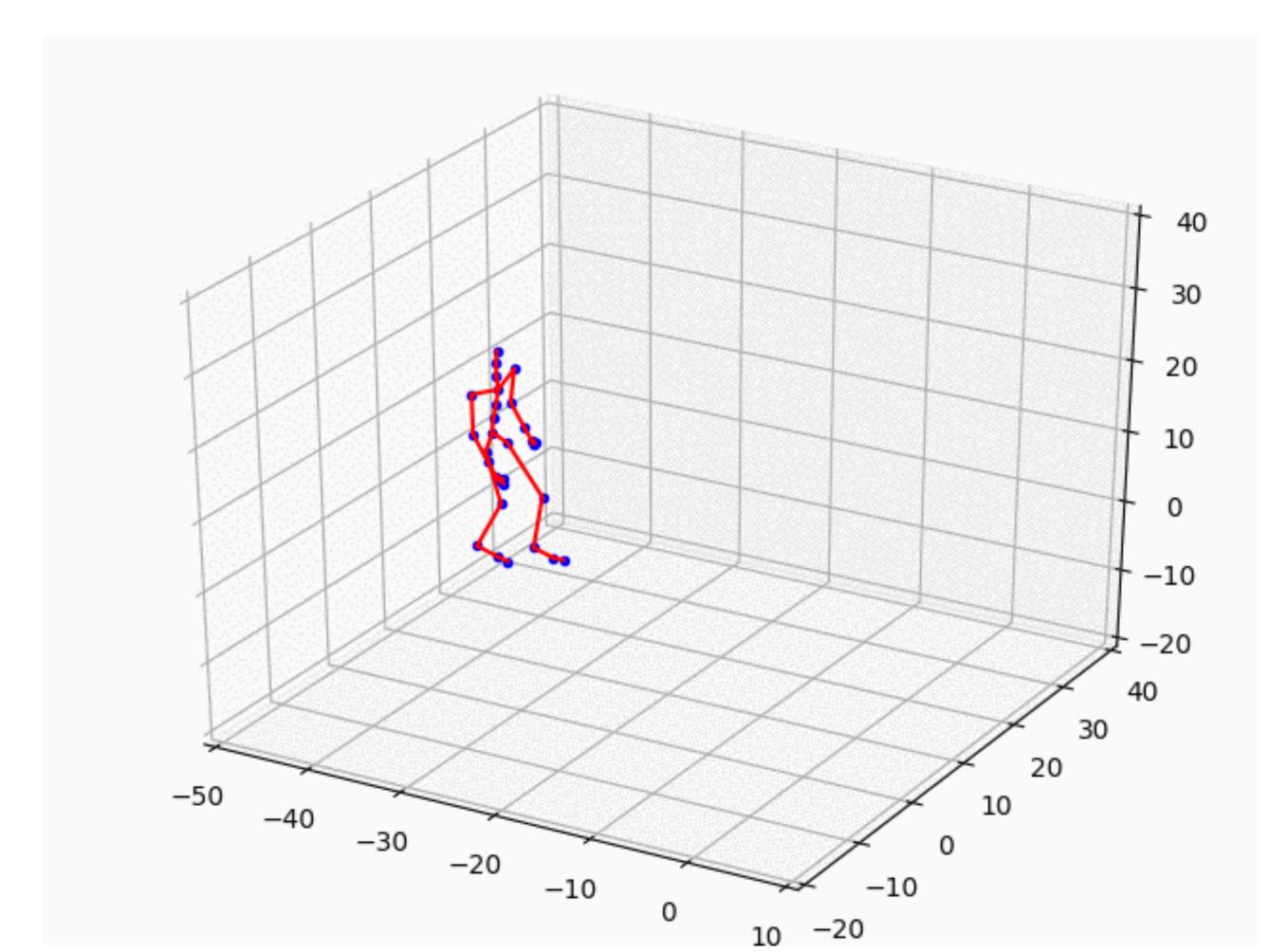
- mean and kernel funcs
- Not closed over marginal transforms.
 exp(f(x) ~ GP) not a GP
- Multi-dim input fine



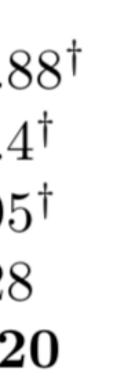
- Drift and diffusion funcs
- Closed over marginal transforms.
 exp(f(x) ~ SDE) still an SDE
- Only single-dim input

Early latent SDE results: Mocap

 50D data, 6D latent space, sharing dynamics and recognition params across time series (11000 params)

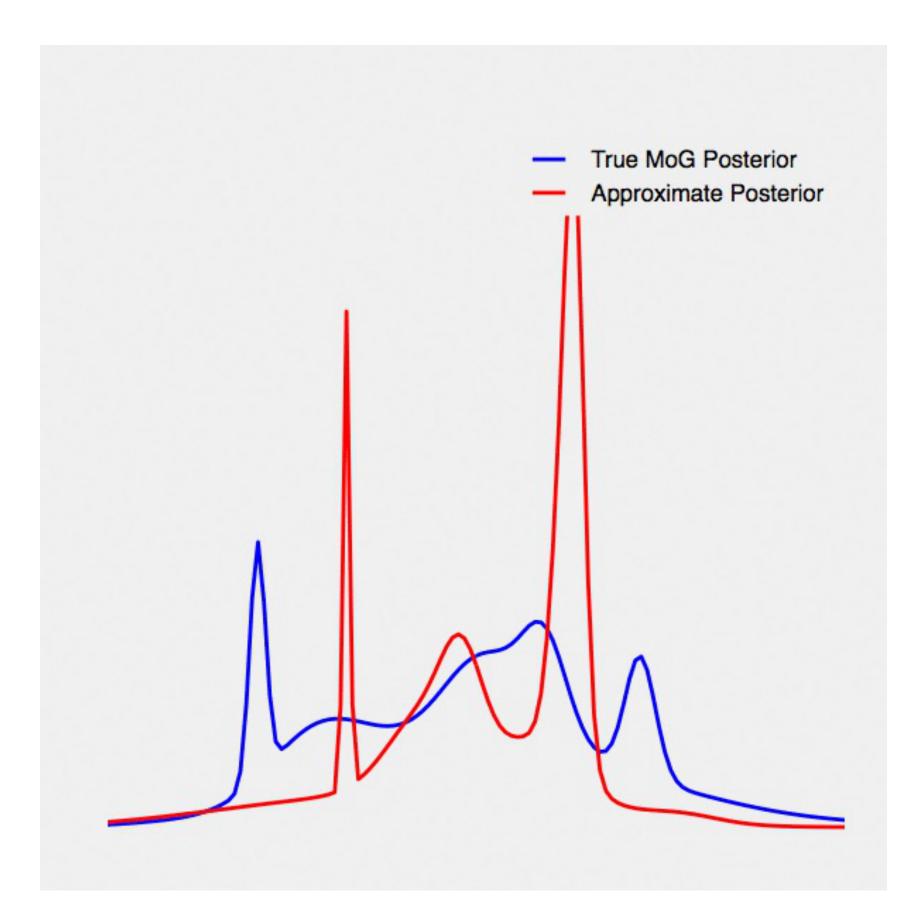


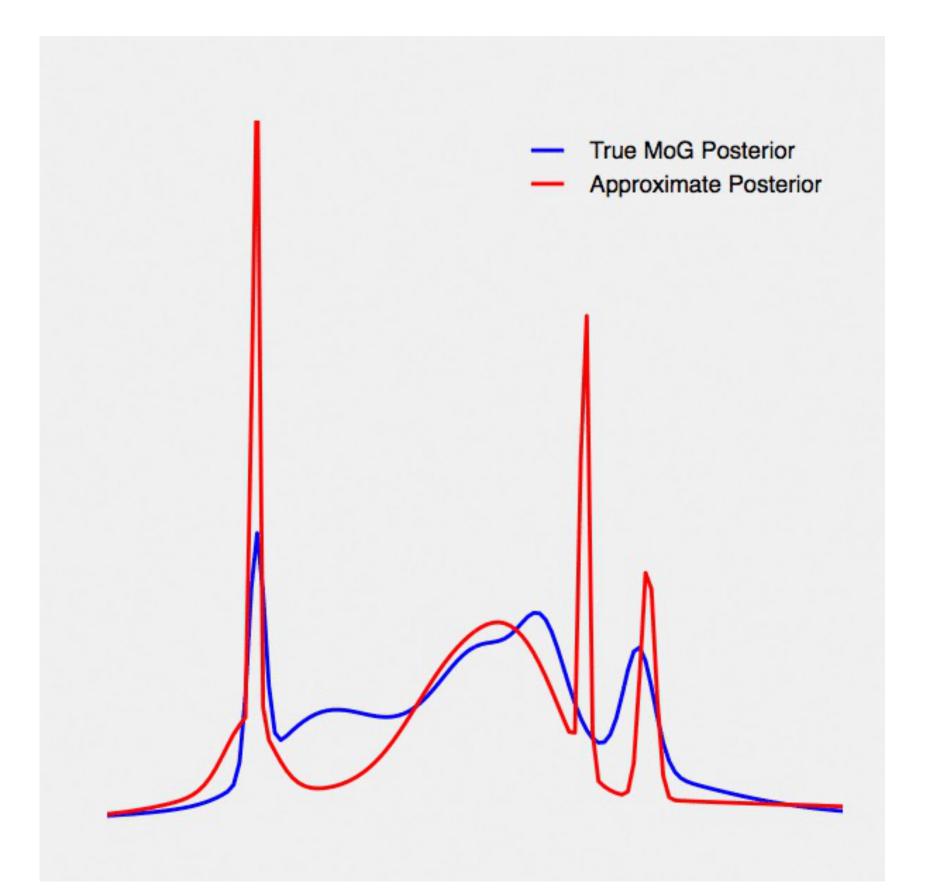
Method	Test MSE
npODE [18]	22.96^{+}
NeuralODE $[4]$	22.49 ± 0.8
ODE^2VAE [61]	10.06 ± 1.4
$ODE^2VAE-KL$ [61]	8.09 ± 1.93
Latent ODE $[4, 50]$	5.98 ± 0.28
Latent SDE (this work)	4.03 ± 0.2



SVI Gradient variance

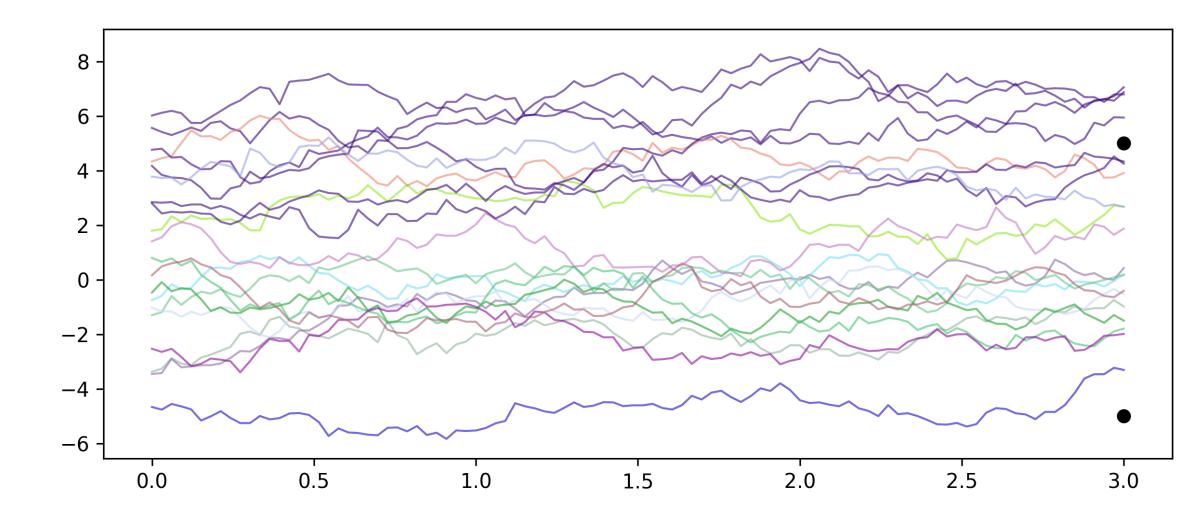
 Sticking the landing [Roeder, Wu, Duvenaud, NIPS 2017] SVI gradient estimator whose variance goes to zero as $q(z) \rightarrow p(z|x)$

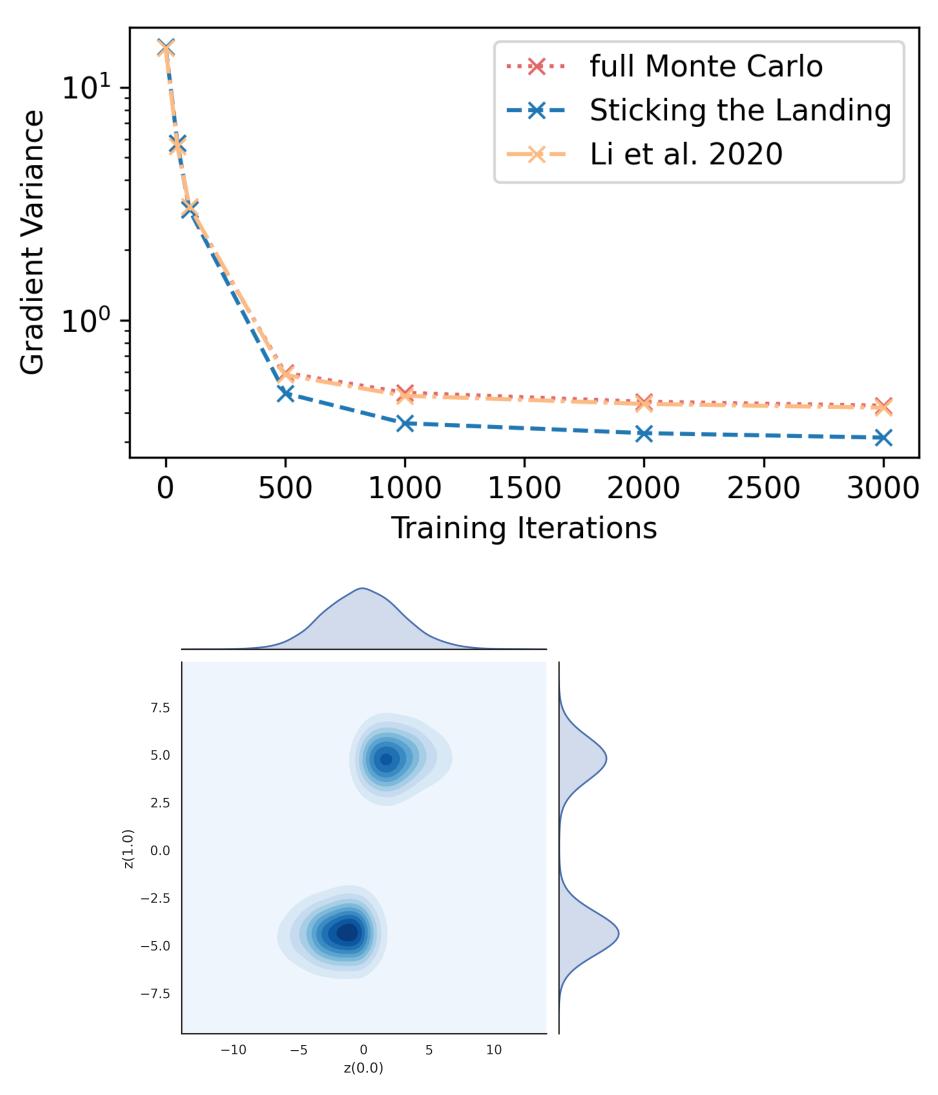




SVI Gradient variance

- New for ICML 2021: We extended "Sticking the Landing" to SDEs
- Reminder: Approx posterior can be arbitrarily close to true posterior!





Takeaway

- Large SDE-based latent-variable models now practical-ish
- Should handle real irregularly-sampled time series!
 - Can condition on time of observations
 - Can answer any query, not just forward prediction
- In practice, start with an RNN!
- Code: https://github.com/google-research/torchsde

Modeling:

- Jump processes, SPDEs
- Applications:
 - Population genetics, finance,
 - Infinitely deep Bayesian neural networks

Next steps

Multi-timescale SDE - skip low-level details

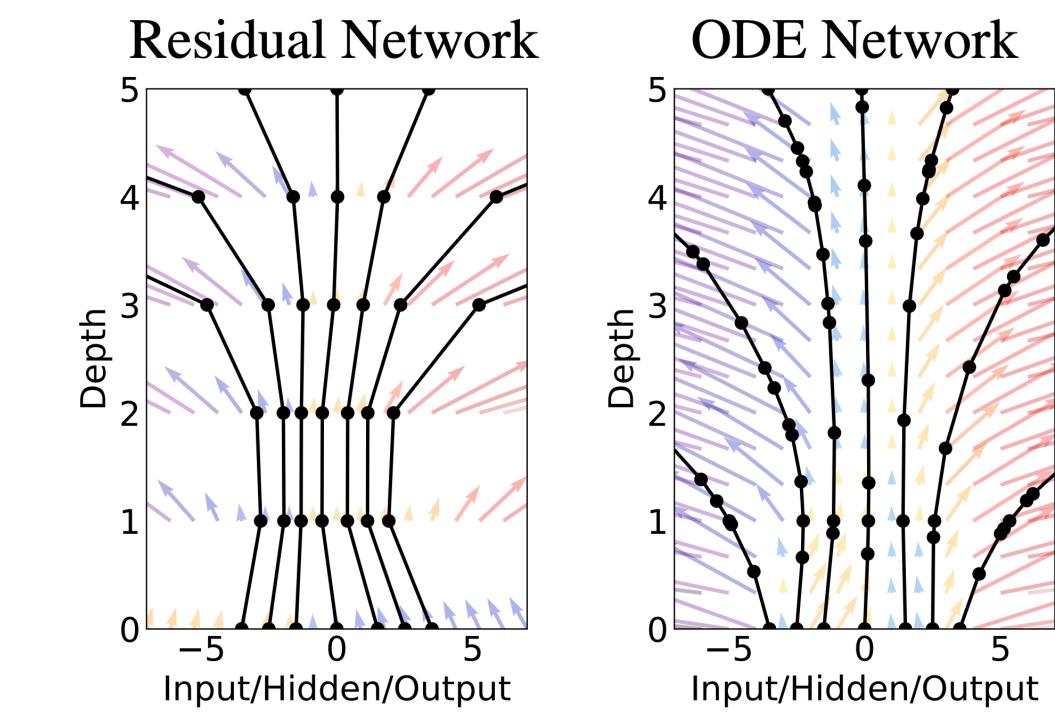
epidemiology? User traces? Let's talk!

Building an infinitely-deep BNN

• Start with a ResNet:

$$h_{t+\epsilon} = h_t + \epsilon f_h(h_t, w_t)$$

- Take limit as eps -> 0, number of layers grows.
- Given a process over weights, activations h follow a random ODE: $dh_t = f_h(h_t, w_t)$



Building an infinitely-deep BNN

• Prior on weights is a OU process

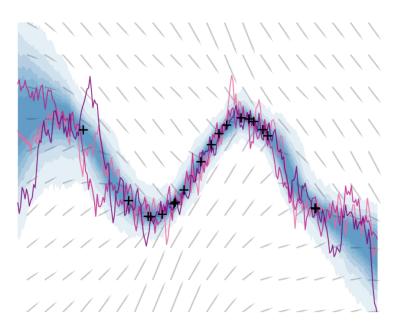
$$dw_t = -w$$

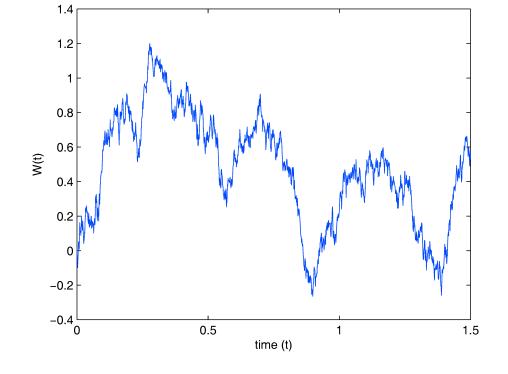
- Likelihood depends on activation at time 1: $p(y \mid x, w) = \mathcal{N}(y \mid h_1, w)$
- Define approximate posterior on weights:

$$dw_t = f_w(w)$$

 $v_t dt + dB_t$

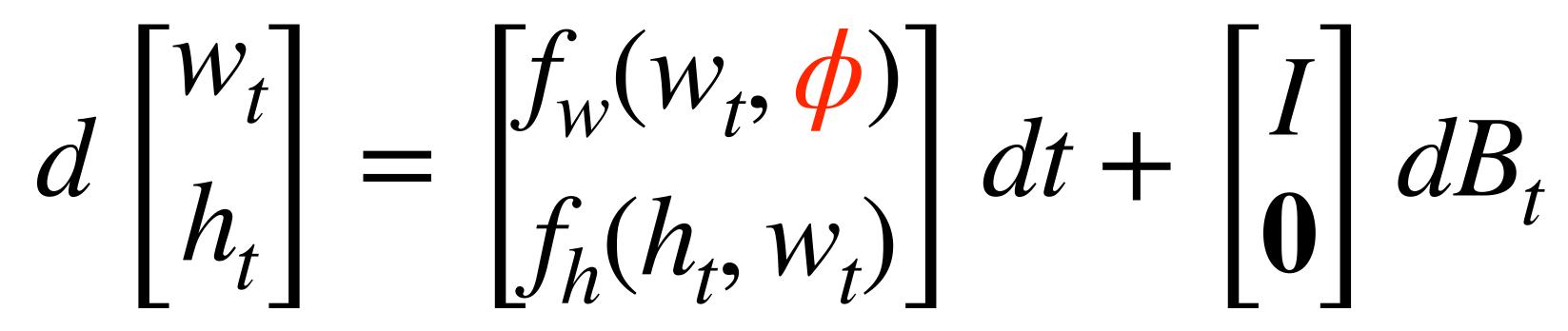
 v_t, ϕ) $dt + dB_t$



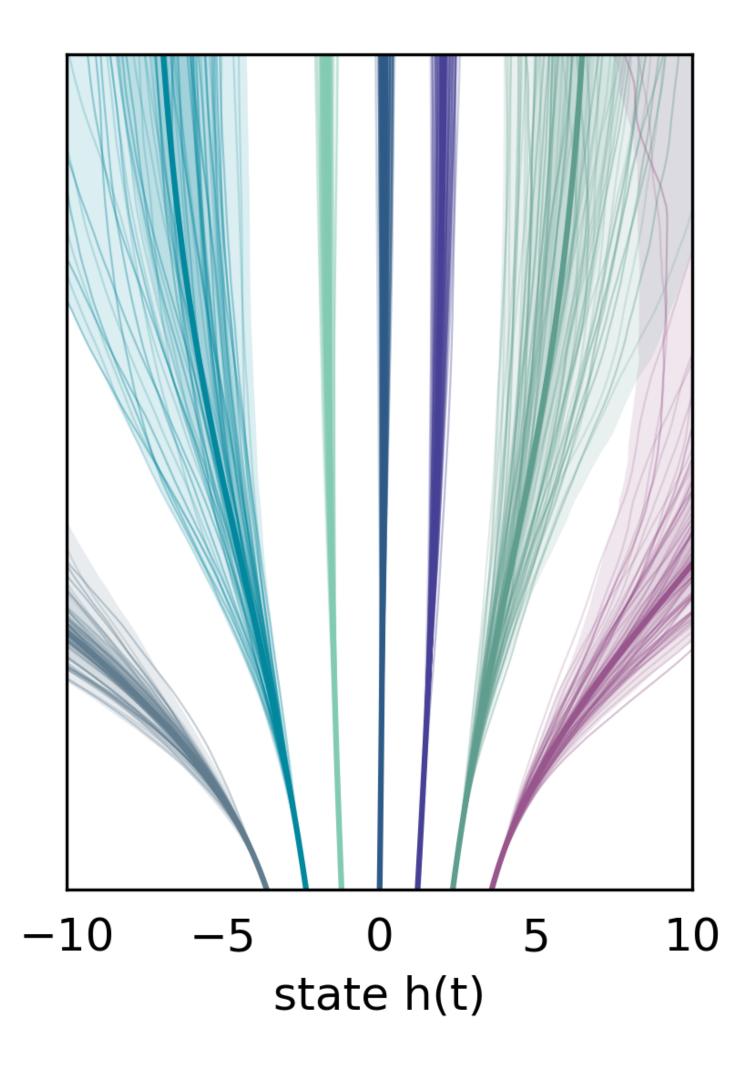


Building an infinitely-deep BNN

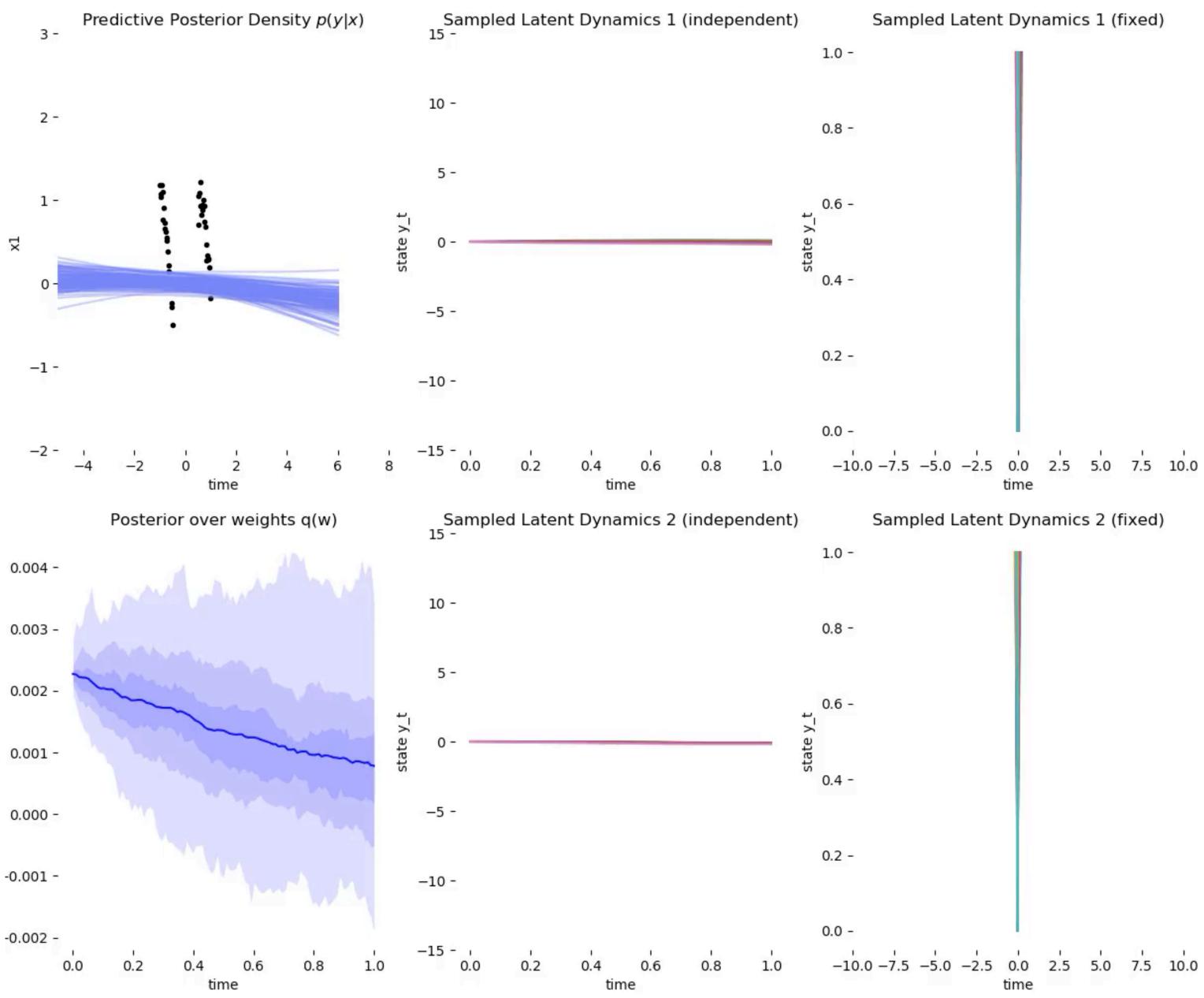
 Can sample weights from approx posterior and evaluate network output in one SDE solve:



- Start h_0 at input to neural network x.
- h_1 is output of neural network

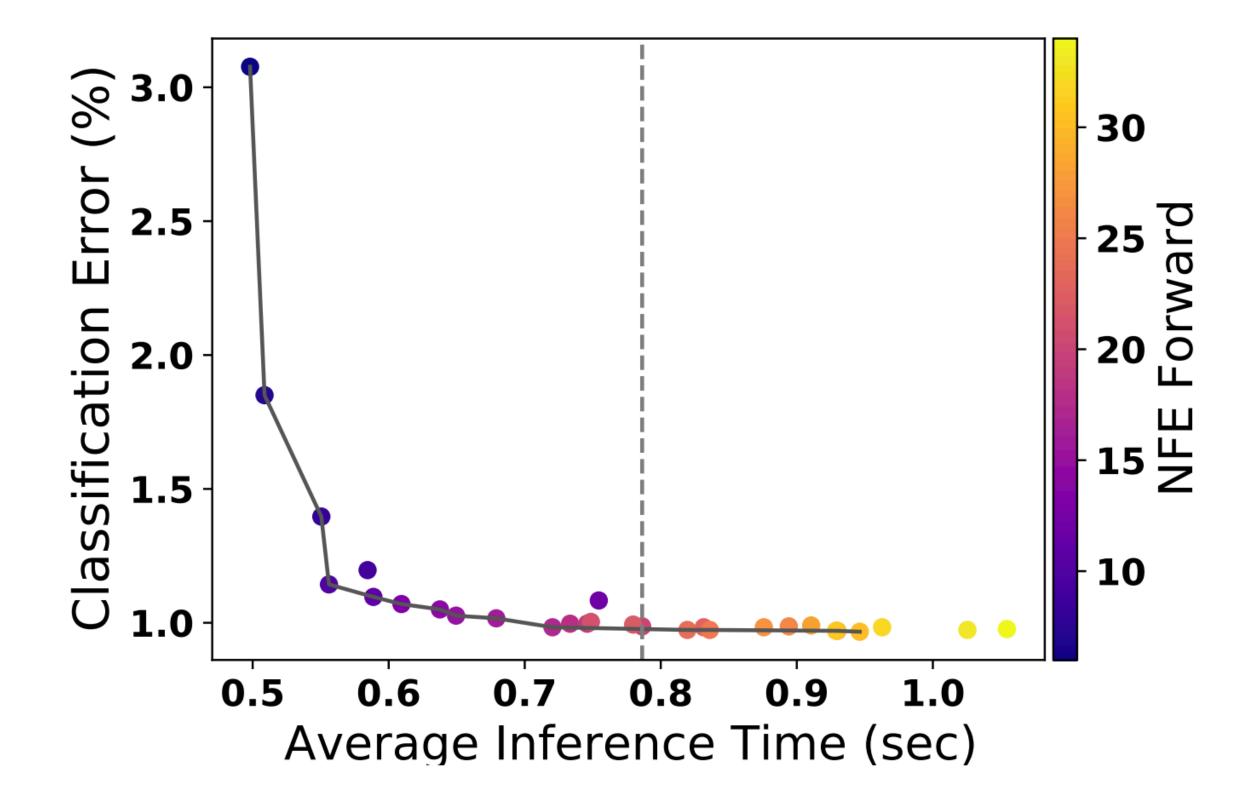


Training an infinitely-deep BNN



Practical Advantages (in theory)

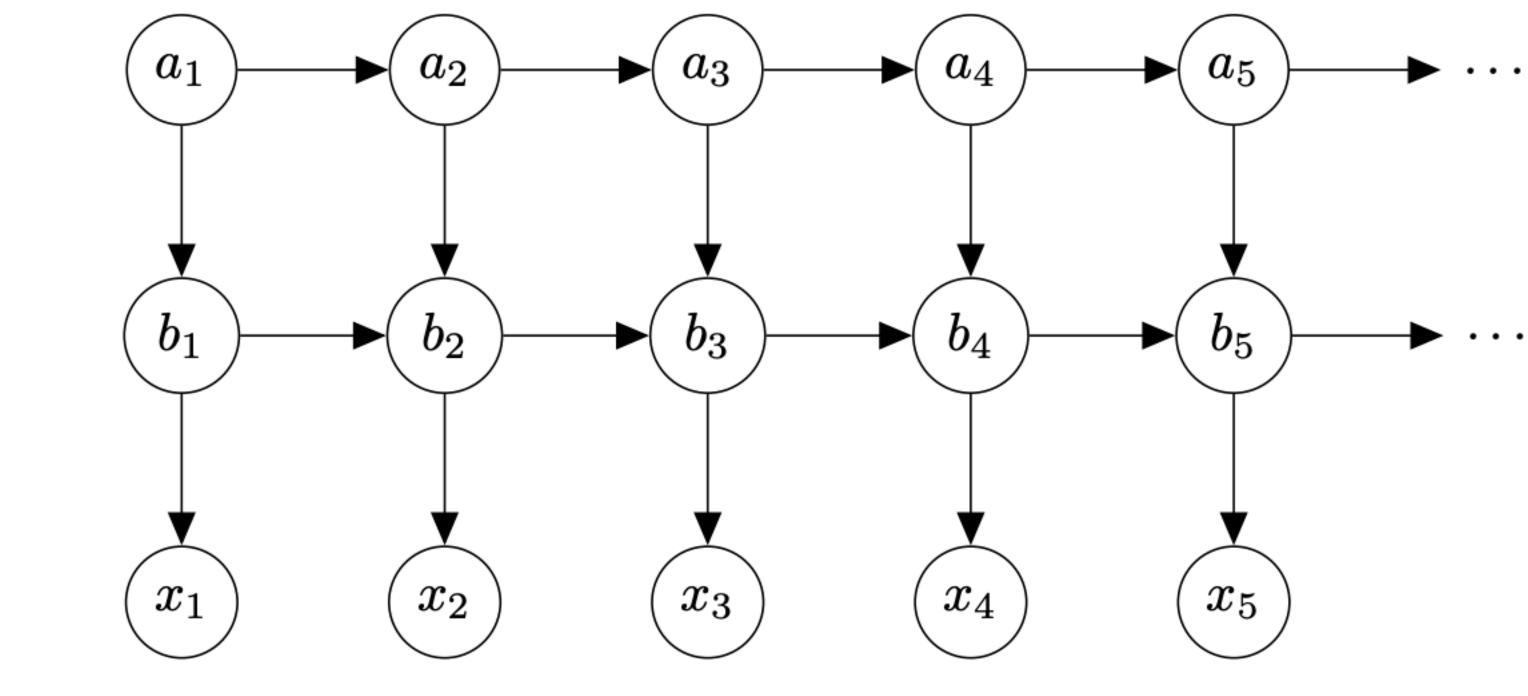
- Continuous-time formulation allows use of adaptive SDE solvers.
- Can adjust adaptive solver tolerance at test time, trades off speed vs precision
- Arbitrarily-flexible approx posterior with no O(D^3) scaling.
 - (True scaling unknown!?)



At least scales to CIFAR10

Model	MNIST		CIFAR-10	
	Accuracy (%)	ECE ($\times 10^{-2}$)	Accuracy (%)	$ECE(\times 10^{-2})$
ResNet32	99.46 ± 0.00	2.88 ± 0.94	87.35 ± 0.00	8.47 ± 0.39
ODENet	98.90 ± 0.04	1.11 ± 0.10	88.30 ± 0.29	8.71 ± 0.21
HyperODENet	99.04 ± 0.00	1.04 ± 0.09	87.92 ± 0.46	15.86 ± 1.25
Mean Field ResNet32	99.44 ± 0.00	2.76 ± 1.28	86.97 ± 0.00	3.04 ± 0.94
Mean Field ODENet	98.81 ± 0.00	2.63 ± 0.31	81.59 ± 0.01	3.62 ± 0.40
Mean Field HyperODENet	98.77 ± 0.01	2.82 ± 1.34	80.62 ± 0.00	4.29 ± 1.10
SDE BNN	99.30 ± 0.09	0.63 ± 0.10	88.98 ± 0.94	7.60 ± 0.37
SDE BNN (+ STL)	99.10 ± 0.09	0.78 ± 0.12	89.10 ± 0.45	7.97 ± 0.51

Multi-Scale Continuous-time

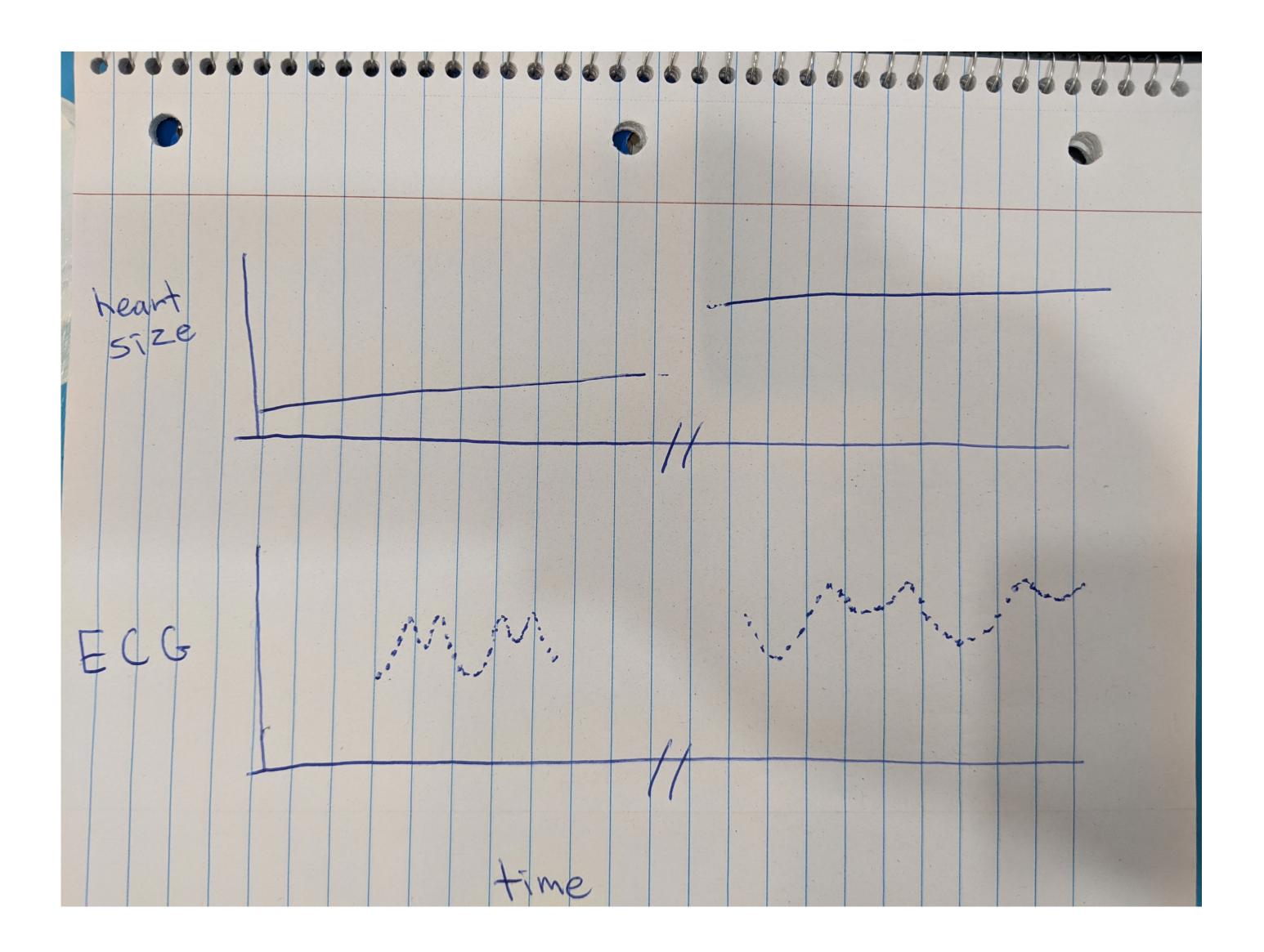


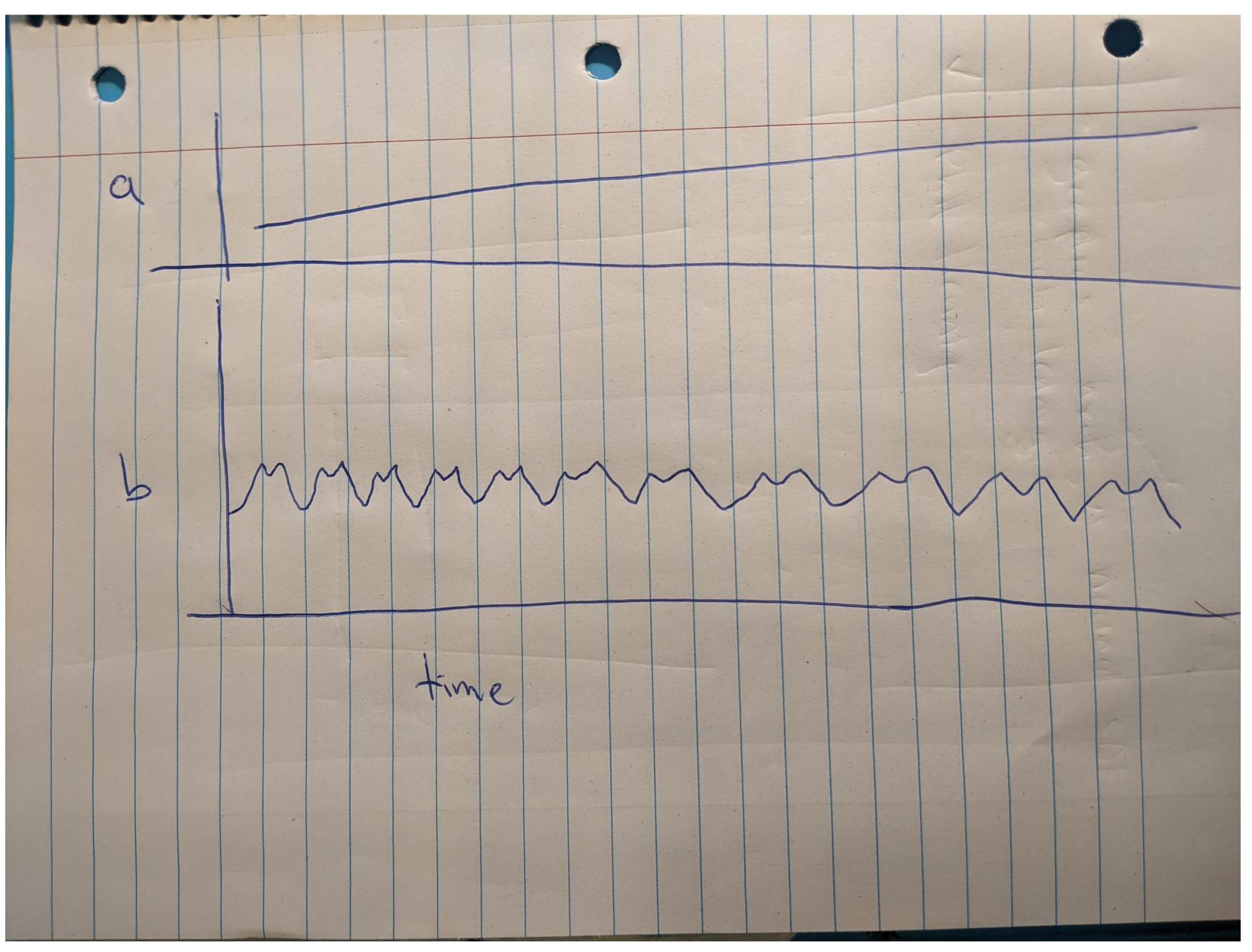
$da = f_a(a(t)) dt + \sigma_a(a(t)) dW(t)$ $db = f_b(a(t), b(t)) dt + \sigma_b(a(t), b(t)) dW(t)$

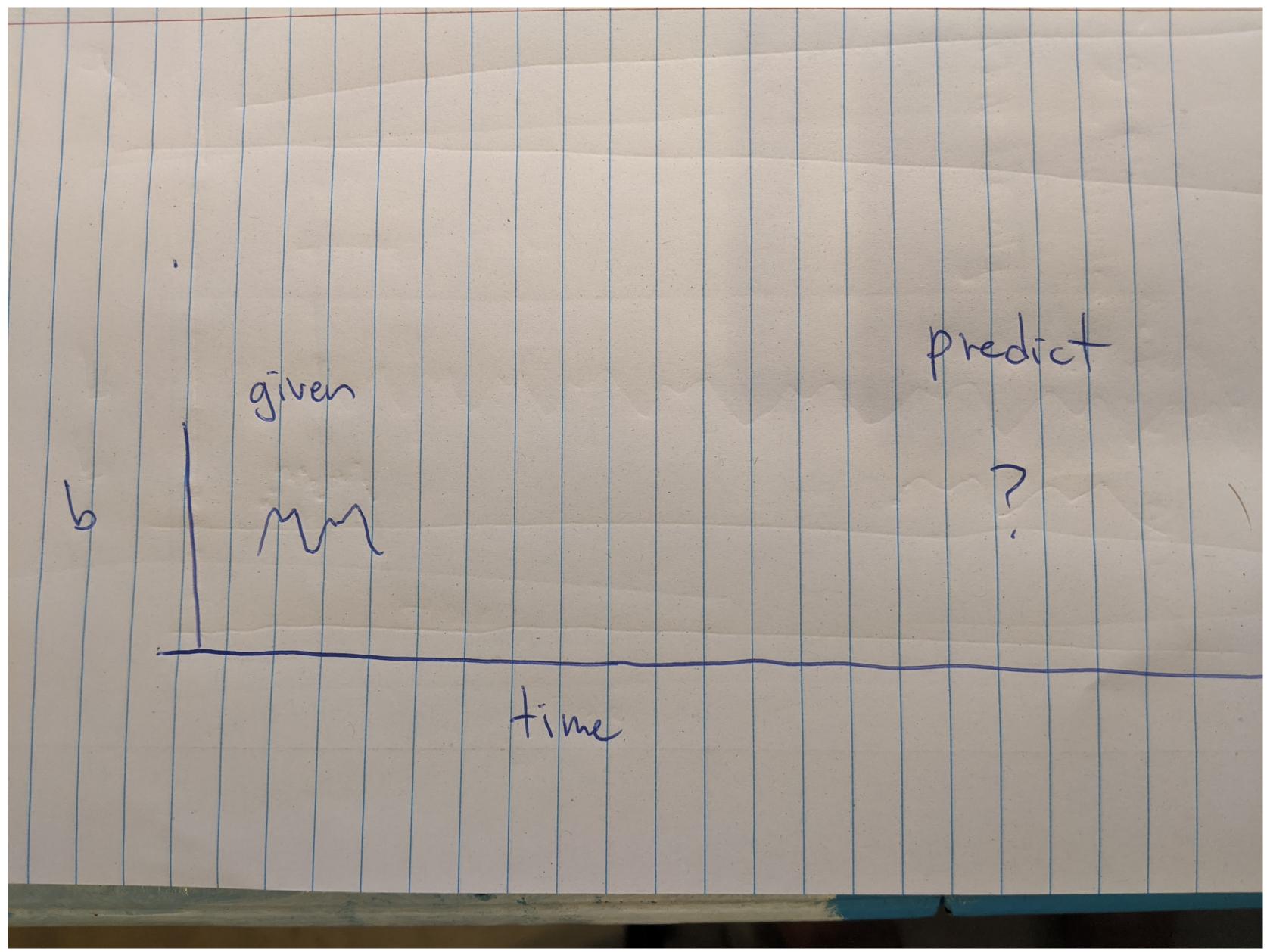
 Conjecture: Infinitesimal time limit of Mar same as parents in graph.

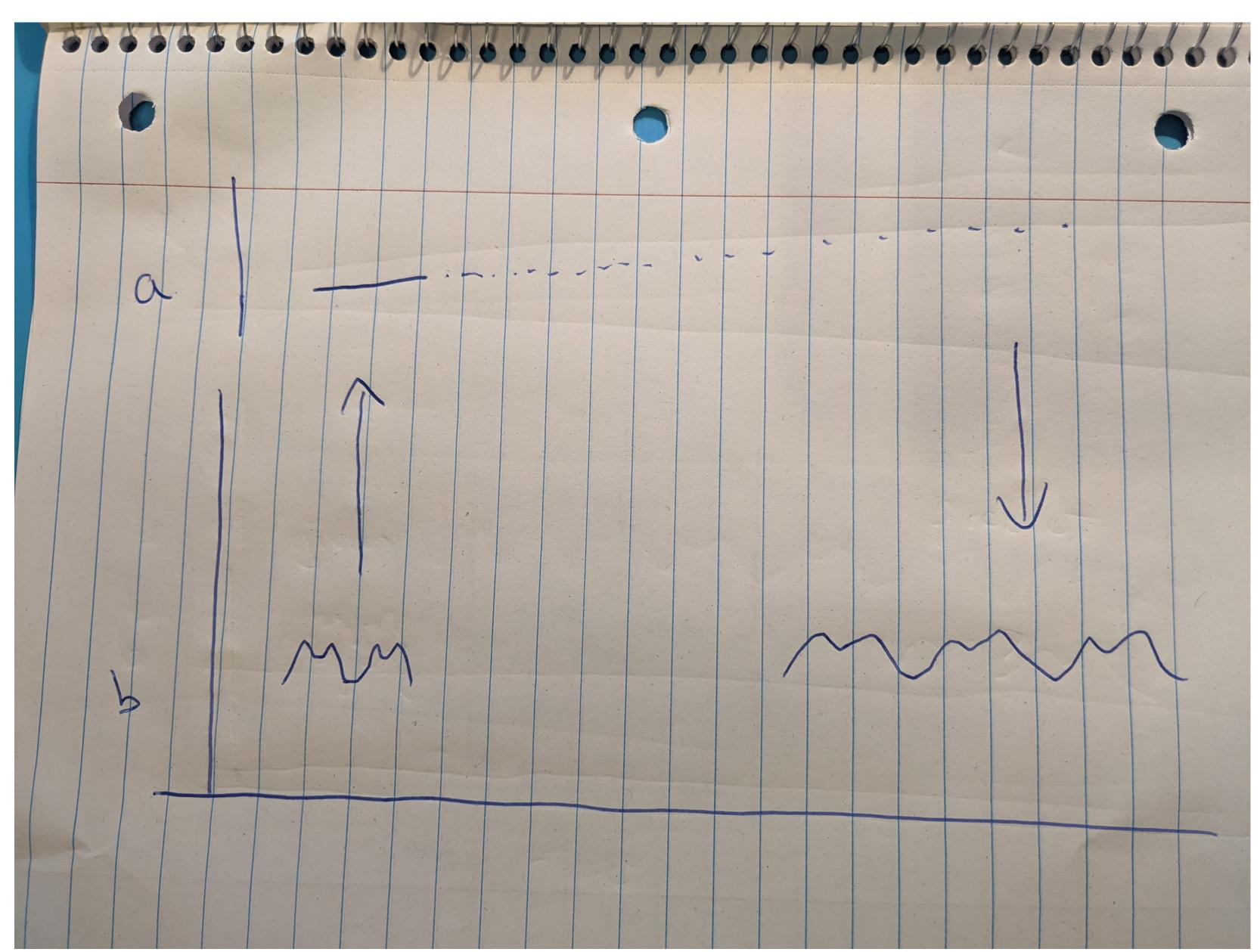
• Conjecture: Infinitesimal time limit of Markov models give SDE with variable dependence

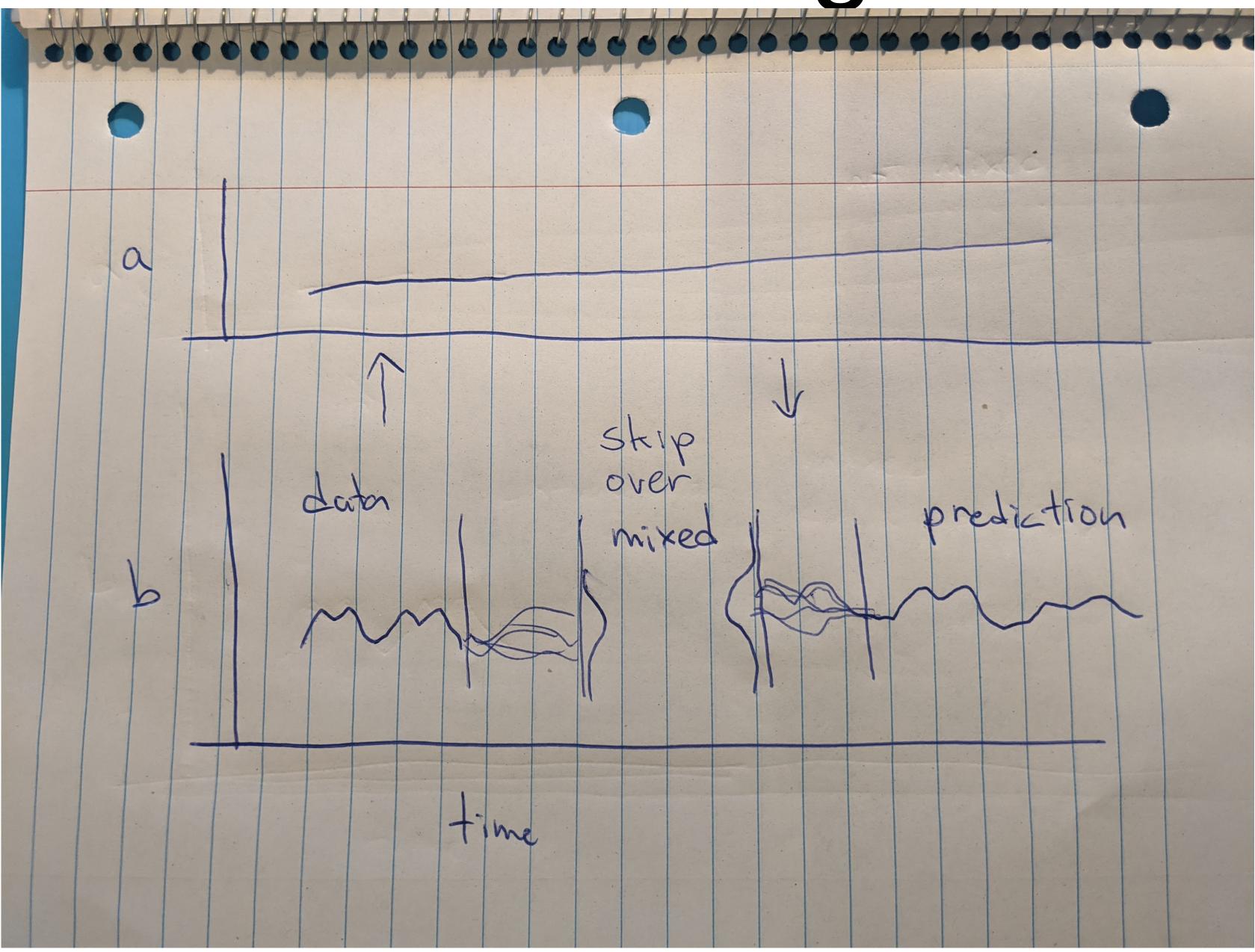
- Jointly compute p(ECG of time N, ECG of time N + 10000)
- Phase of ECG in between are irrelevant, heart size is sufficient statistic



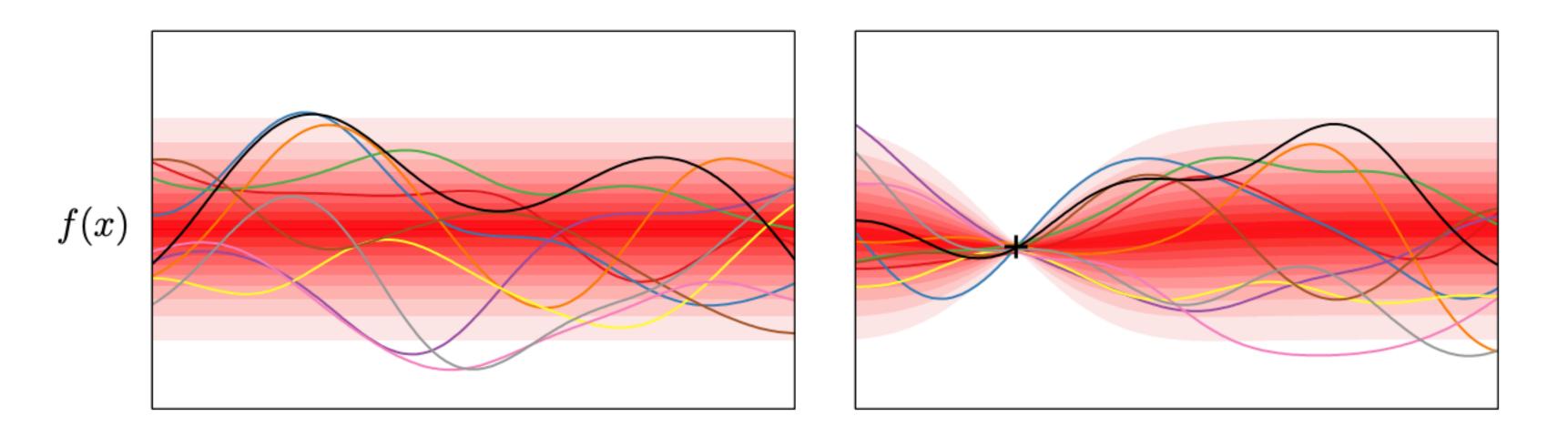








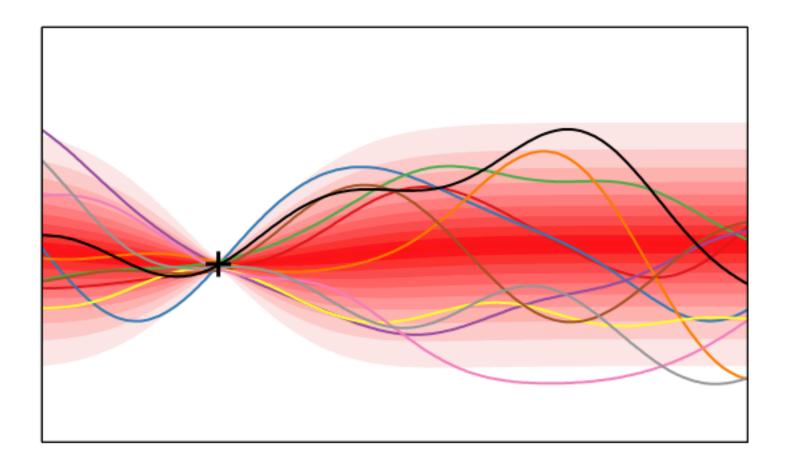
Hope #1: Low levels Mix Fast



- Away from observations, fine-grained details usually uncorrelated given high-level properties. I.e. conditional independence of fine given coarse
- E.g. in some GPs, we mix back to prior away from data
- Not always true (e.g. in computers) but that situation is always hard

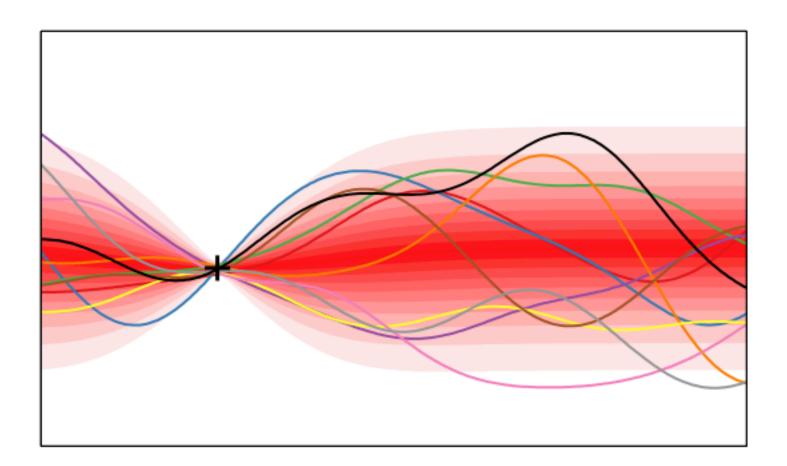
- Expensive part is simulation of finer levels
- Away from data, these variables have KL of 0 given coarse grained trajectories!

$$KL(q||p) = \mathbb{E}_{a(\cdot),b(\cdot)|a(\cdot)} \left[\underbrace{\int_{0}^{T} u(a(t)) \, \mathrm{d}W_{t}}_{\text{coarse grained}} + \underbrace{\int_{0}^{T} u(a(t),b(t)) \, \mathrm{d}W_{t}}_{\text{fine grained}} \right]$$



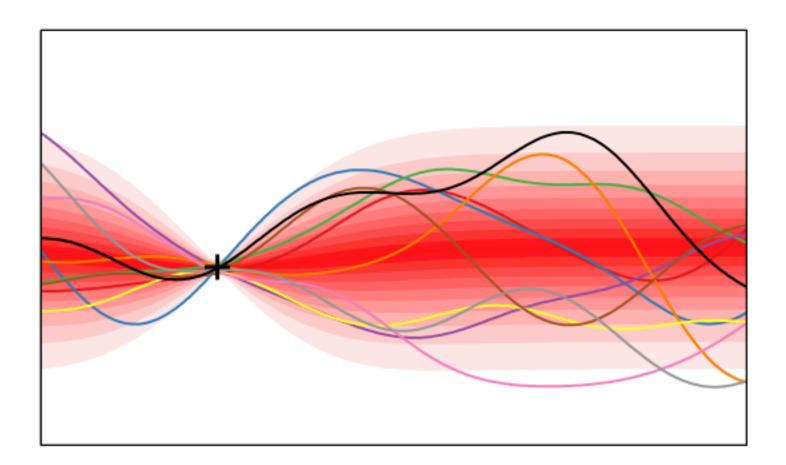
- Expensive part of ELBO is detailed simulation of finer levels away from data
- But these variables have KL of 0 given coarse grained trajectories!

$$KL(q||p) = \underbrace{\mathbb{E}_{a(\cdot)}\left[\int_{0}^{T} u(a(t)) \, \mathrm{d}W_{t}\right]}_{KL(q_{a}||p_{a})} + \underbrace{\mathbb{E}_{a(\cdot),b(\cdot)|a(\cdot)}\left[\int_{0}^{T} u(a(t),b(t)) \, \mathrm{d}W_{t}\right]}_{KL(q_{b}||p_{b})}$$



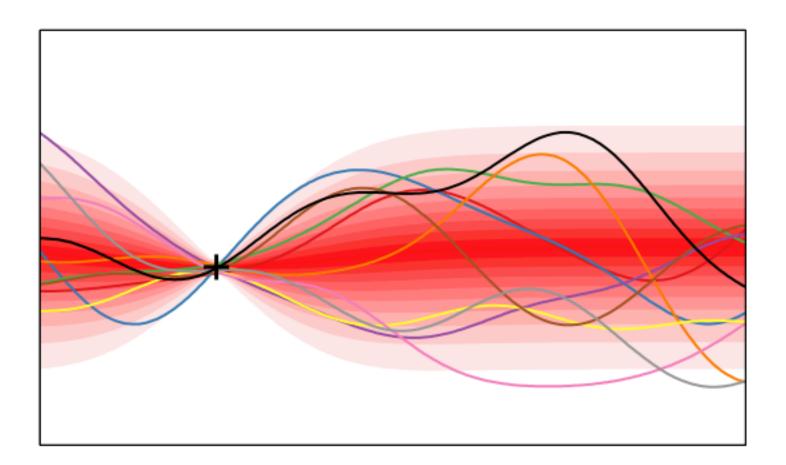
- Expensive part of ELBO is detailed simulation of finer levels away from data
- But these variables have KL of 0 given coarse grained trajectories!

$$KL(q_b||p_b) = \mathbb{E}_{a(\cdot),b(\cdot)|a(\cdot)} \left[\underbrace{\int_{\text{unmixed}} u(a(t),b(t)) \, \mathrm{d}W_t}_{\text{near data}} \right] + \mathbb{E}_{a(\cdot),b(\cdot)|a(\cdot)} \left[\underbrace{\int_{\text{mixed}} u(a(t),b(t)) \, \mathrm{d}W_t}_{\text{away from data}} \right]$$



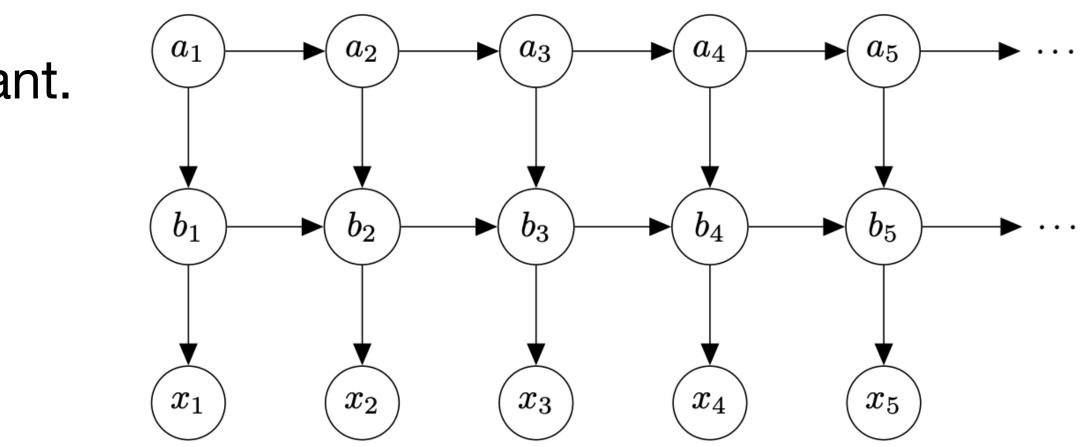
- Expensive part of ELBO is detailed simulation of finer levels away from data
- But these variables have KL of 0 given coarse grained trajectories!

$$KL(q_b||p_b) = \mathbb{E}_{a(\cdot),b(\cdot)|a(\cdot)} \left[\underbrace{\int_{\text{unmixed}} u(a(t),b(t)) \, \mathrm{d}W_t}_{\text{near data}} \right] + \mathbb{E}_{a(\cdot),b(\cdot)|a(\cdot)} \left[\underbrace{\int_{\text{mixed}} u(a(t),b(t)) \, \mathrm{d}W_t}_{\text{away from data}} \right]$$



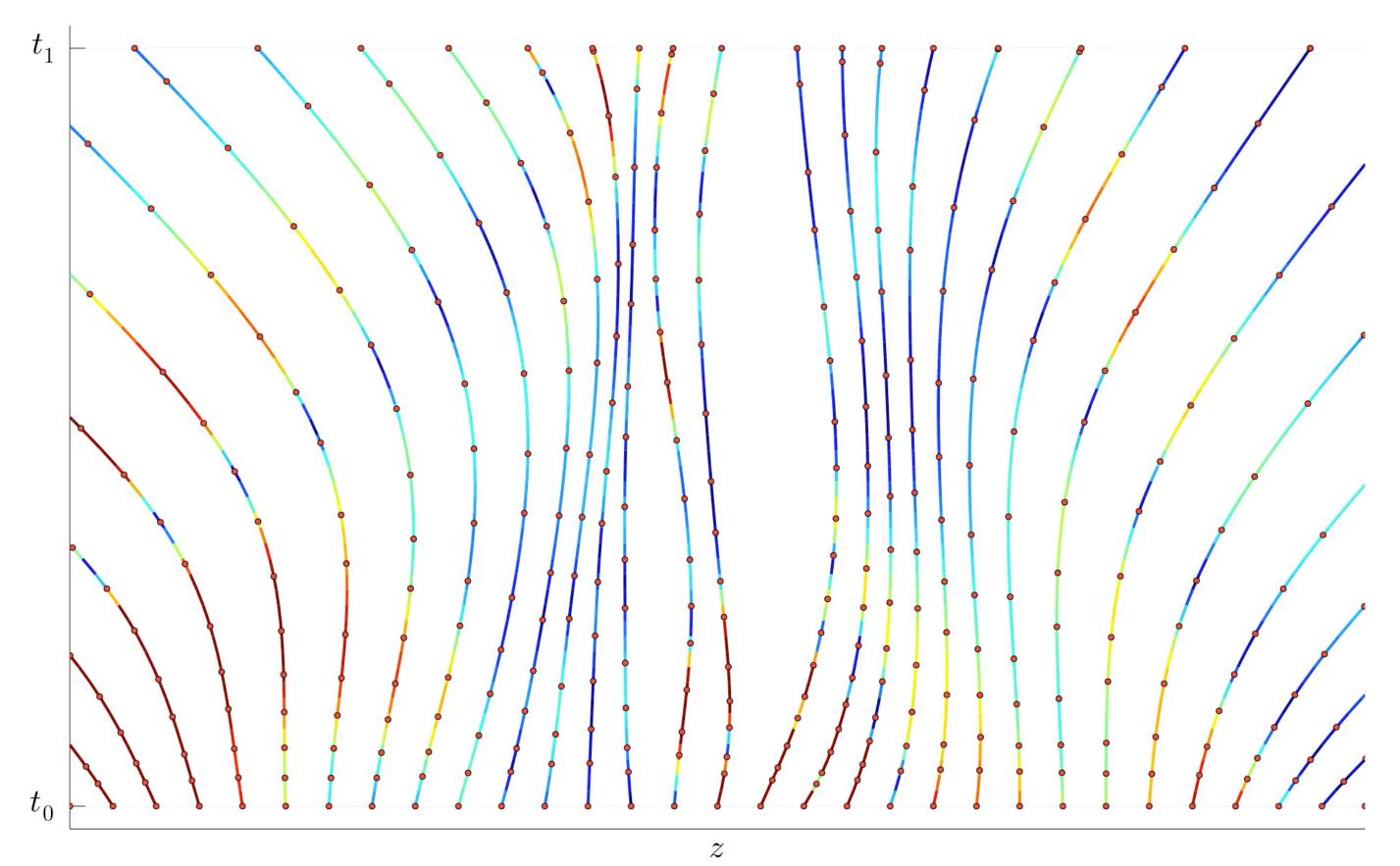
Refinement: Auxiliary Variables

- Why are there extraneous coarse-grained variables in our model?
 - Should only exist in approximation.
 - E.g. In Ising model, temperature isn't a separate variable in model
- Answer: Put only fine-grained variables in model p, both sets in approx q
 - Standard trick in variational inference (auxiliary vars in variational dist)
- Can have as many time scales as we want.



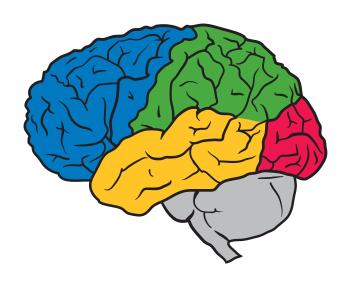
Unsolved Problems

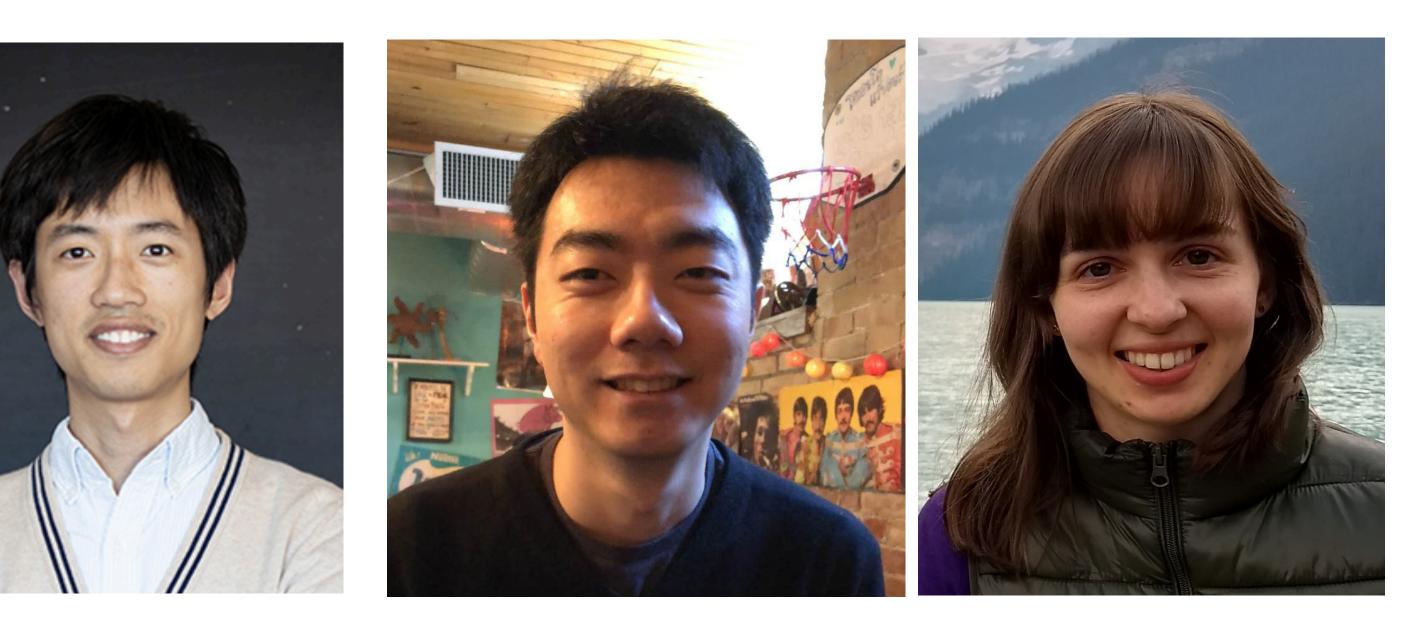
- How to estimate marginals to sample from when we ``fade back in''
- How to regularize approx. posterior dynamics to be fast to mix?



Learning Differential Equations that are Easy to Solve Jacob Kelly*, Jesse Bettencourt*, Matthew Johnson, David Duvenaud

Xuechen Li, Winnie Xu, Leonard Wong, Ricky Chen, Yulia Rubanova, David Duvenaud





Thanks!

Connections to BNN theory

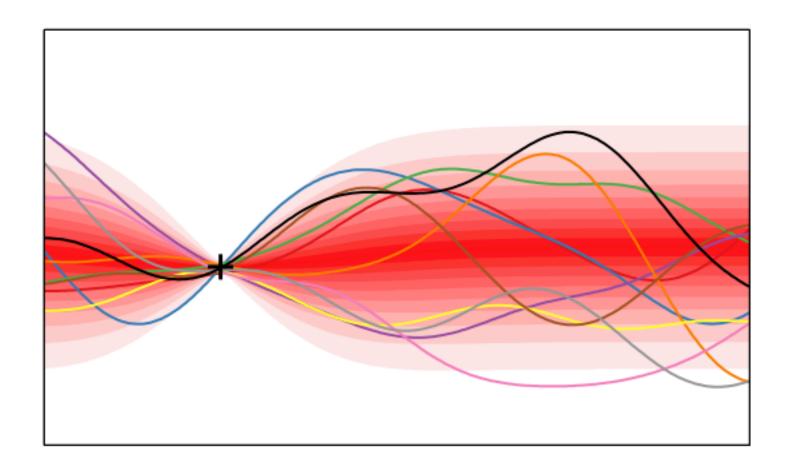
- "Liberty or Depth" (Farquhar, Smith, Gal, 2020): Infinite depth mean-field gives arbitrarily good predictive posteriors?
- Mean-field (Brownian motion) sufficient in SDEs for arbitrary expressiveness. But true and approximate posterior not Gaussian.

 $dz = f(z(t))dt + \sigma(z(t))dB(t)$

- Break model into coarse (slow) and fine (fast) vars.
- When sampling:
 - Recognition nets look at local data and give posterior over coarse and fine variables
 - Sample entire coarse trajectory (only using) approximate dynamics, never real ones!)
 - Sample fine trajectory starting just before and ending just after areas with data
 - Gives (almost) unbiased estimates of ELBO and predicted trajectories

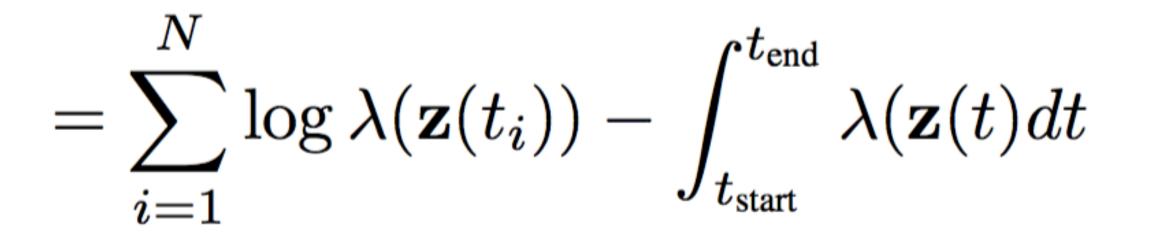
Putting it all together:

 $da = f_a(a(t)) dt + \sigma_a(a(t)) dW(t)$ $db = f_b(a(t), b(t)) dt + \sigma_b(a(t), b(t)) dW(t)$

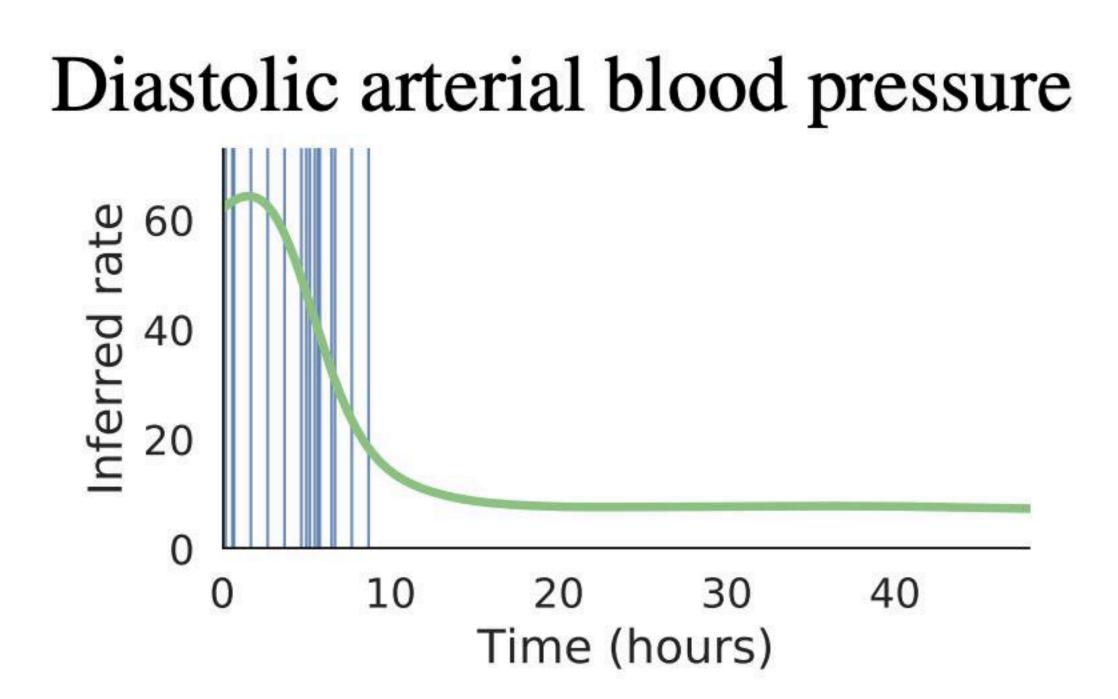


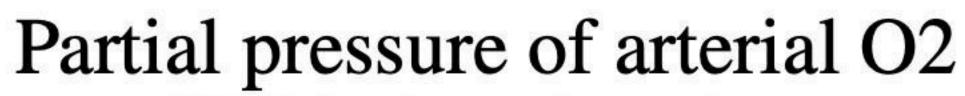
Poisson Process Likelihoods

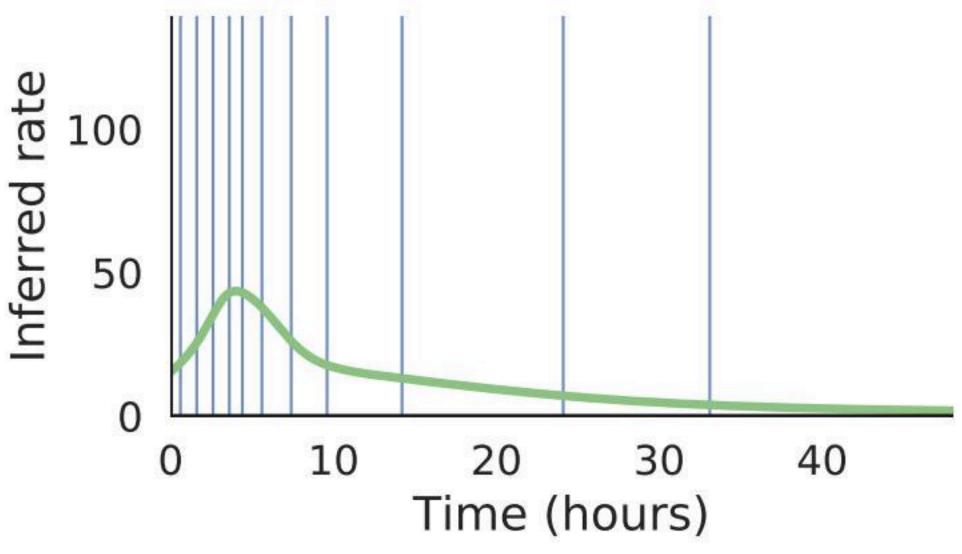
 $\log p(t_1,\ldots,t_N|t_{\text{start}},t_{\text{end}})$



- Model p(obs, time) instead of p(obs | time)
- Non-intervention model
- E.g. hurricanes

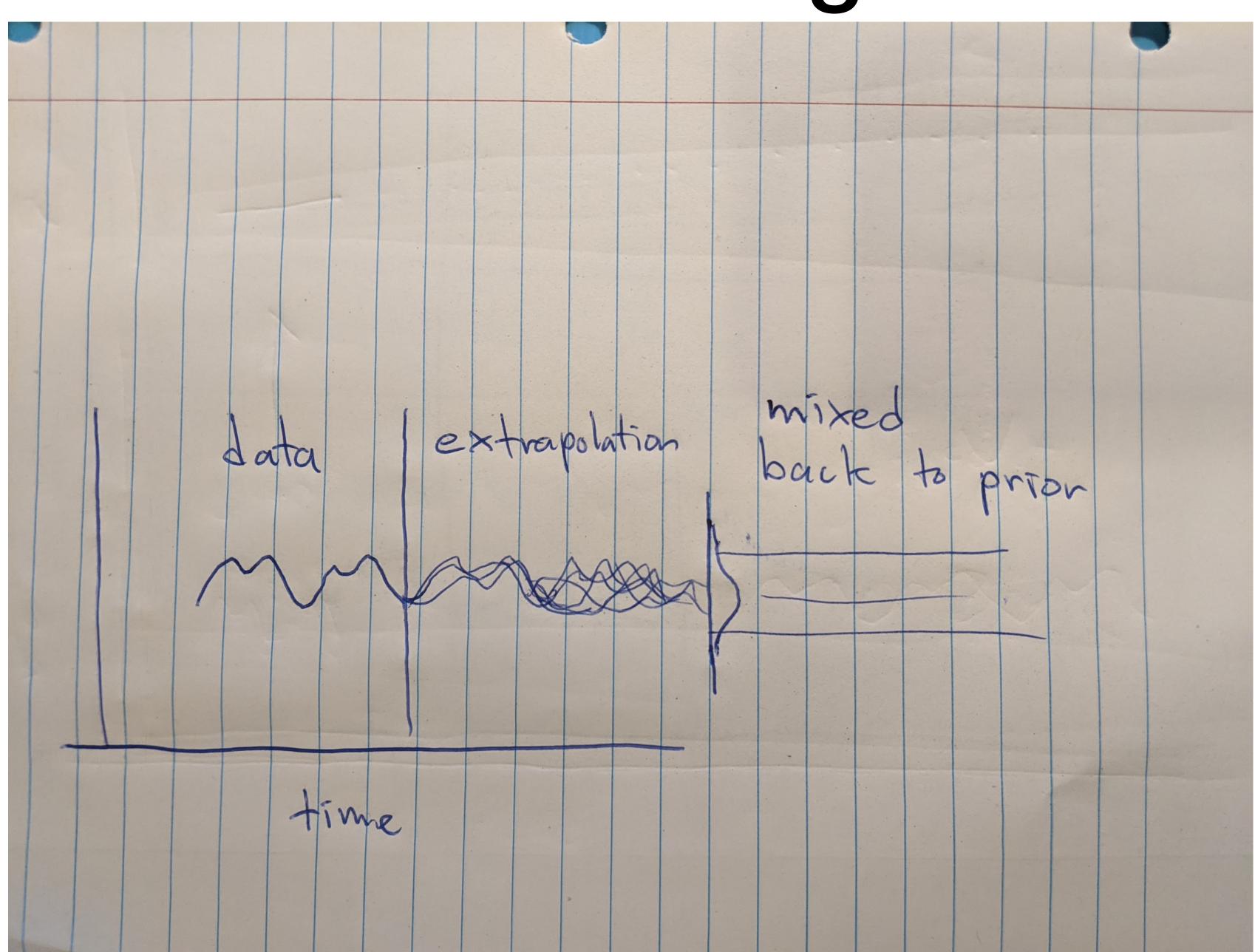


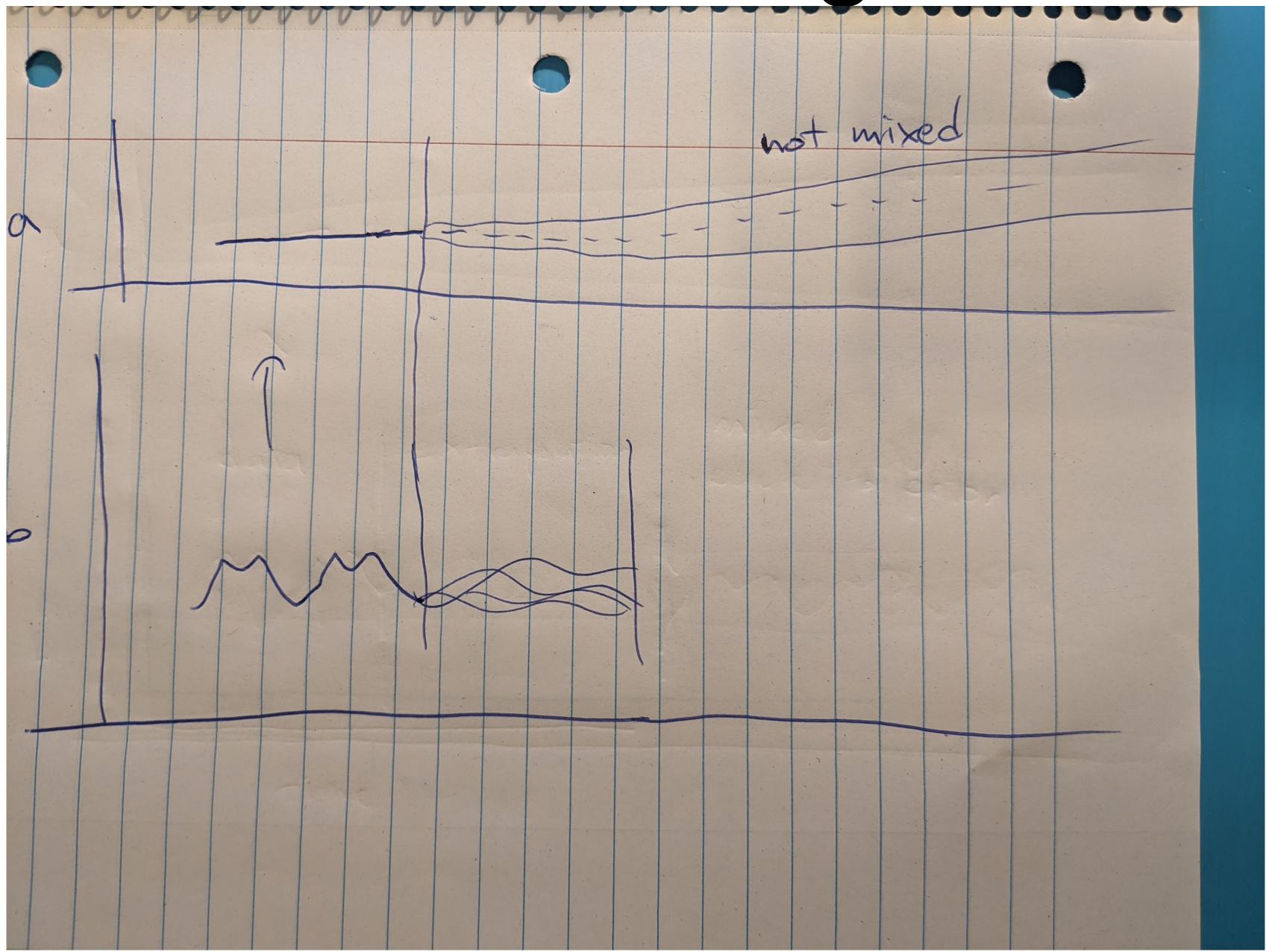




Achieving the dream

- Jointly learn true fine-grained expensive model and flexible approximation strategy from raw fine-grained data.
- Auxiliary coarse-grained variables might be interpretable
- Can combine high-level and low-level info automatically?





Dex: a typed array language built for speed

for i. f x.i

Flexibility

- Ragged and sparse arrays
- Algebraic data types (e.g. Value | NaN | Missing)

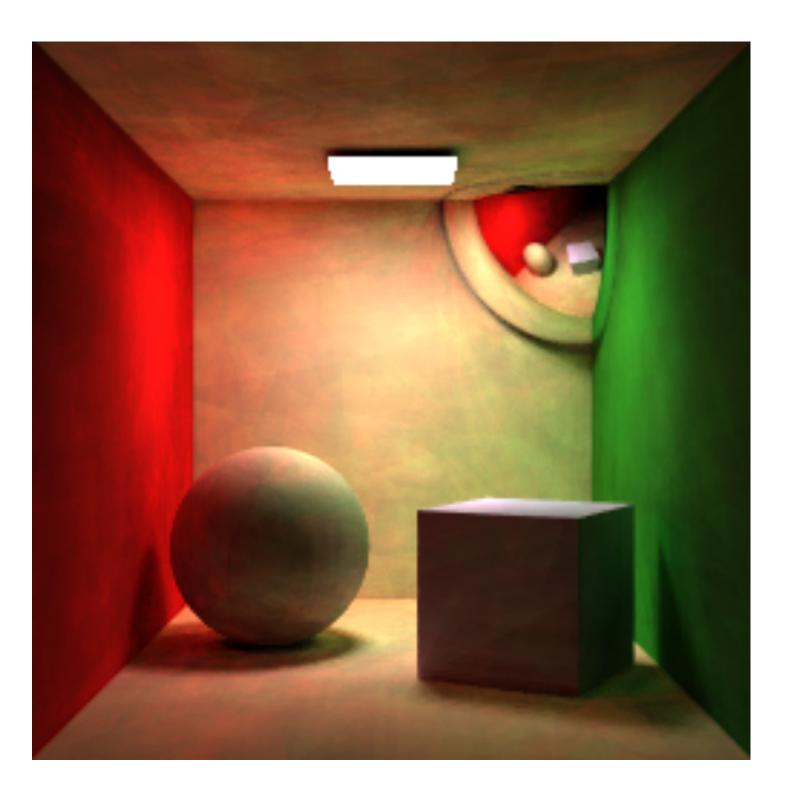
Correctness

- Dependent types for compile-time debugging (e.g. shape checking)
- Composable, zero-cost abstractions (e.g. run on any vector space)

Performance

- Fast nested loops + gradients (e.g. CTC loss)
- CPU, GPU, TPU backends, JAX interop

def map (f : a - b) (xs : n = a) : n = b =



Ray tracer written in Dex google-research.github.io/dex-lang/raytrace.html

Related work 1

- Tzen + Raginski: Deep LVMs become SDEs in the limit. Variational inf framework. Forwardmode autodiff.
- Peluchetti + Favaro: Worked out SDE corresponding to infinitelydeep convnets with uncertain weights
- Jia + Benson: Added countably many discrete jumps to latent ODEs

Neural Ordinary **Differential Equations**

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud

Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit

Belinda Tzen, Maxim Raginsky

Neural Stochastic Differential Equations

Stefano Peluchetti, Stefano Favaro

Neural Jump Stochastic Differential Equations

Junteng Jia, Austin R. Benson

mailerer

Related work 2

- Thomas Ryder, Andrew Golightly, A Stephen Mc-Gough, and Dennis Prangle. Black-box variational inference for stochastic differential equations.
- Pashupati Hegde, Markus Heinonen, Harri Lähdesmäki, and Samuel Kaski. Deep learning with differential gaussian process flows.
- Markus Heinonen, Cagatay Yildiz, Henrik Mannerström, Jukka Intosalmi, and Harri Lähdesmäki. Learning unknown ODE models with gaussian processes.
- C. Garcia, A. Otero, P. Felix, J. Presedo, and D. Marguez. Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.

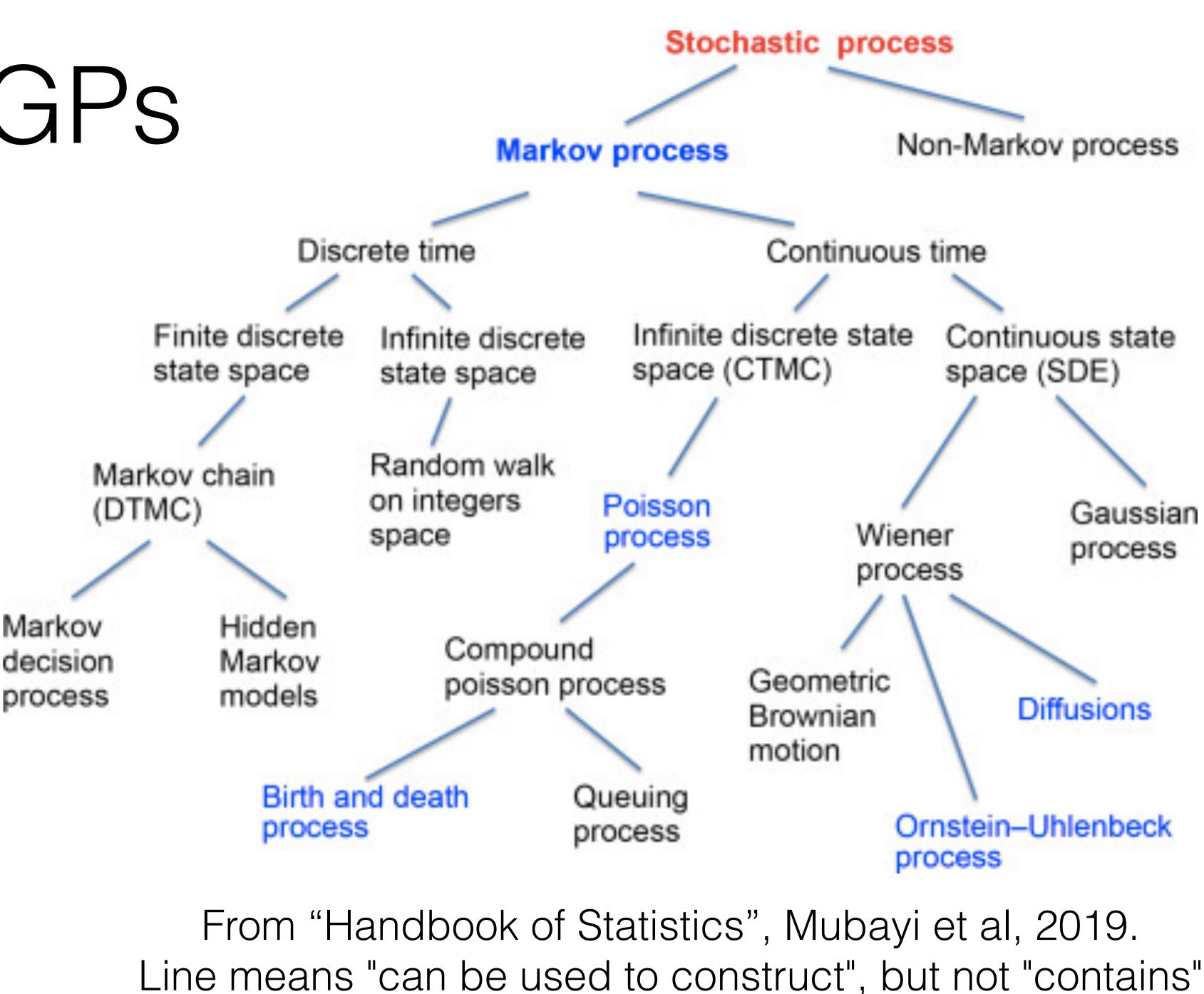
- All use Euler discretizations. Not clear what limiting algorithm is (e.g. enforces invariants?), and not memory-efficient.
- Not even going to discuss methods that require solving a PDE - not scalable.
- We want to use adaptive, (high-order?) SDE solvers.

Limitations

- SDE solvers generally lower-order convergence than ODE solvers
 - (e.g. Milstein order 1 vs RK4)
- Non-diagonal noise requires Levy areas
 - Diagonal noise requires funny parameterization
- Need jump-style noise? (e.g. hit by a car)
- Only one input dimension (unlike GPs)

SDES VS GPS

- Distinct sets of priors over functions
- Easy to construct non-Gaussian SDE



Mujoco: State versus Belief states

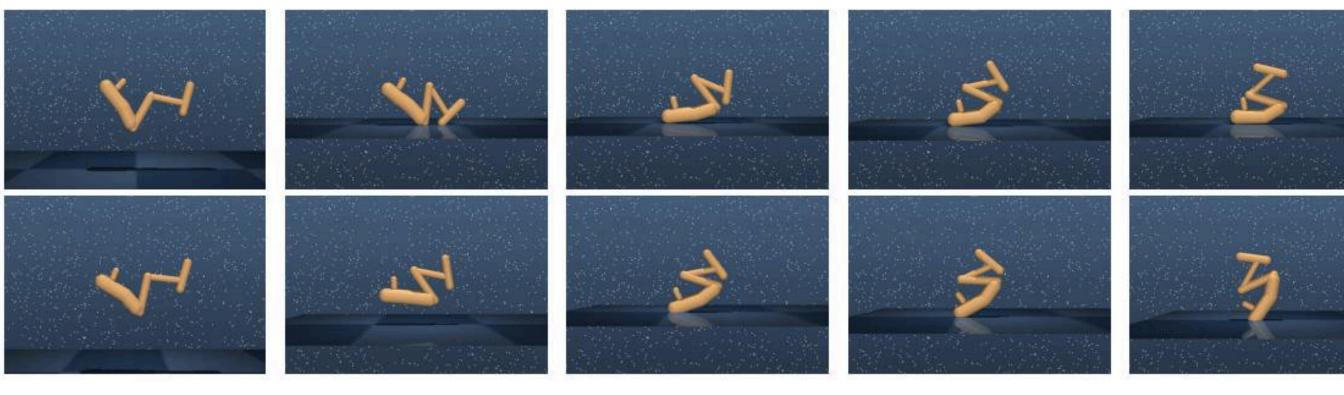
- States are more interpretable than belief states
- True dynamics are deterministic

Truth

Latent ODE

||f(z)||(ODE)

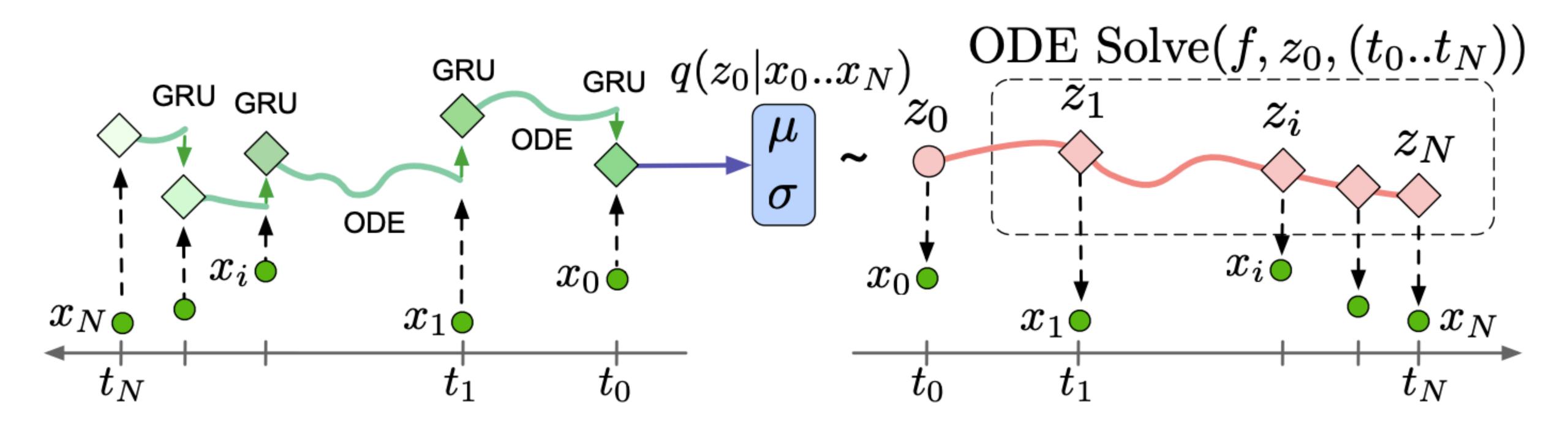
 $||\Delta h||$ (RNN)



Time

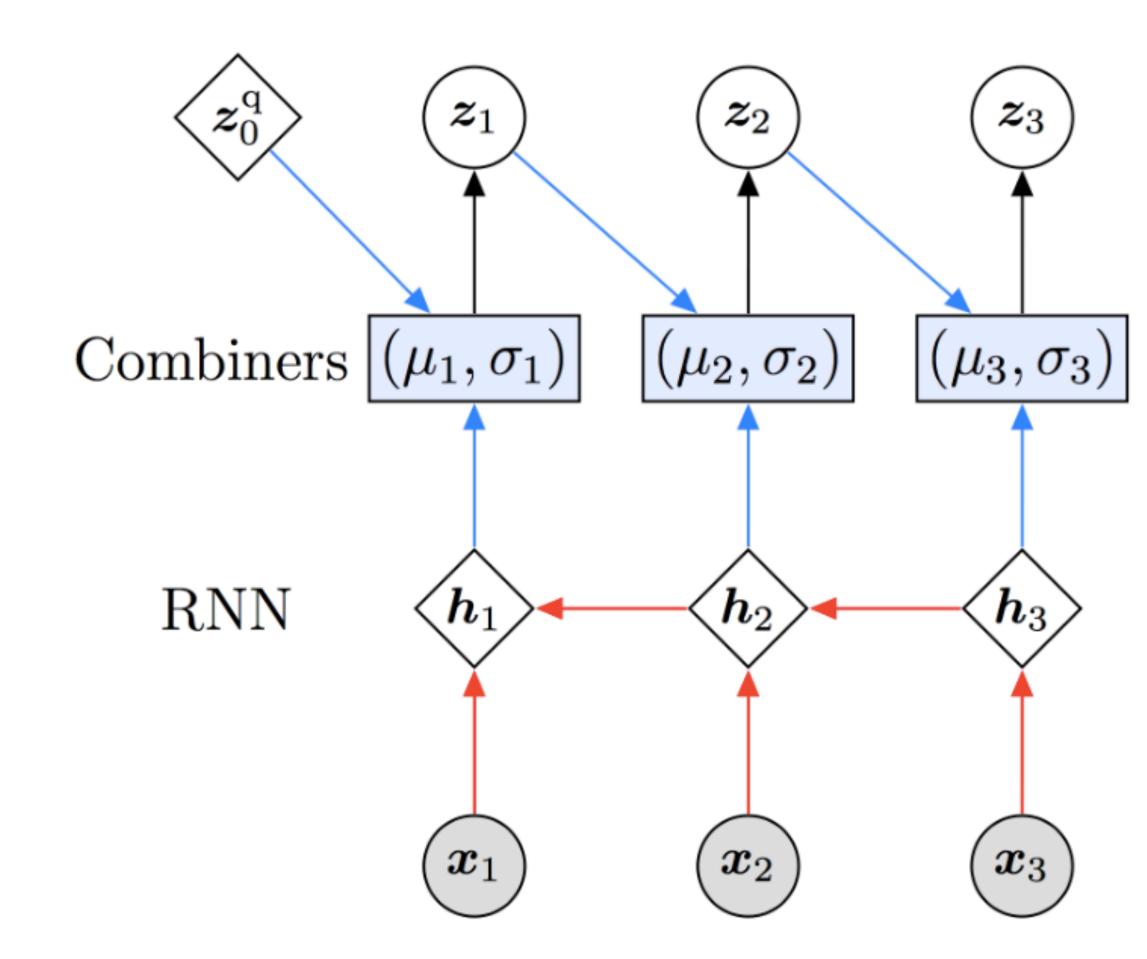
An ODE latent-variable model

Can do VAE-style inference with an RNN encoder



Latent variable models

- Can use a neural net to guess optimal variational params from data
- Structure of recognition net an implementation detail
 - Only there to speed things up.
 - Just needs to output a normalized distribution over z

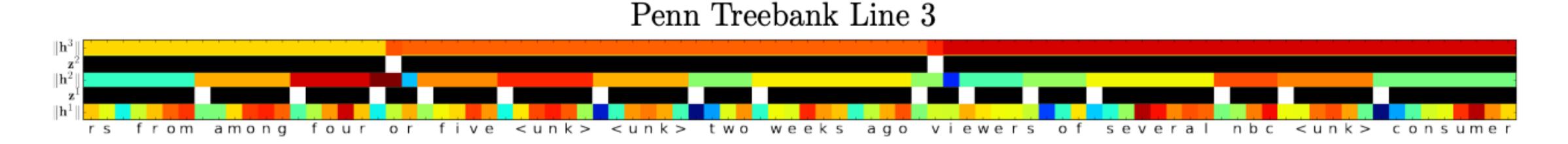


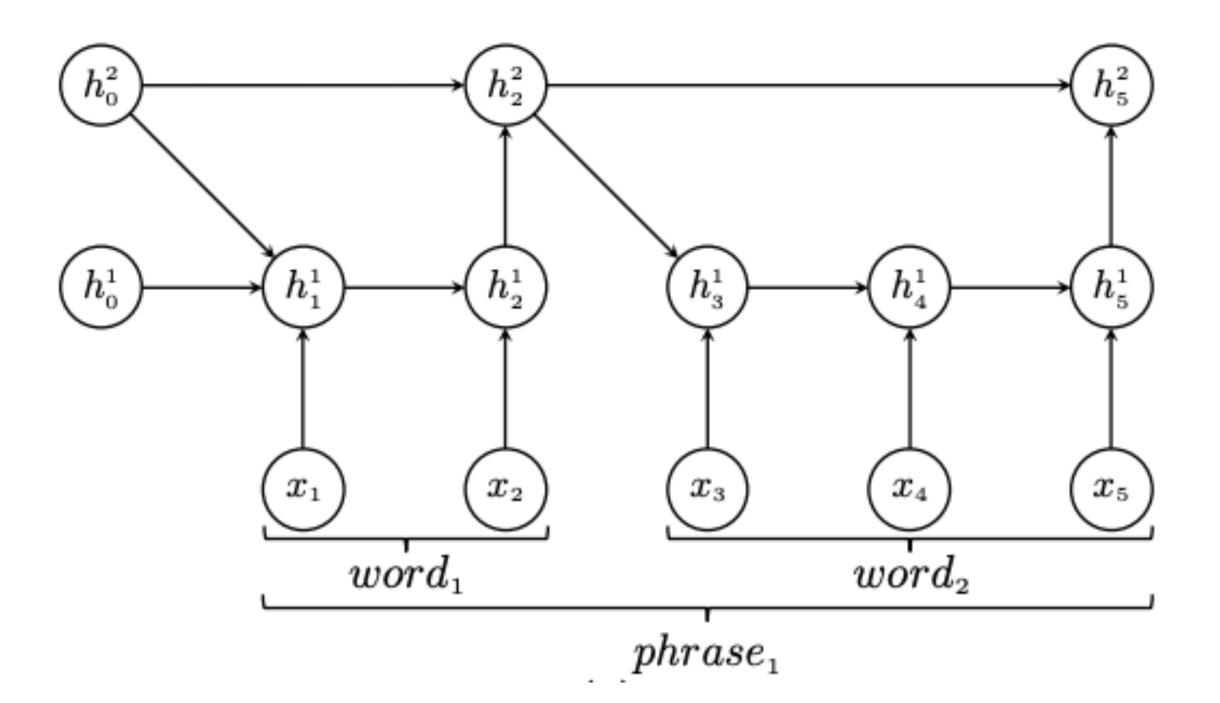
https://pyro.ai/examples/dmm.html

Multi-scale RNNs: 2016

HIERARCHICAL MULTISCALE RECURRENT NEURAL NETWORKS

Junyoung Chung, Sungjin Ahn & Yoshua Bengio *

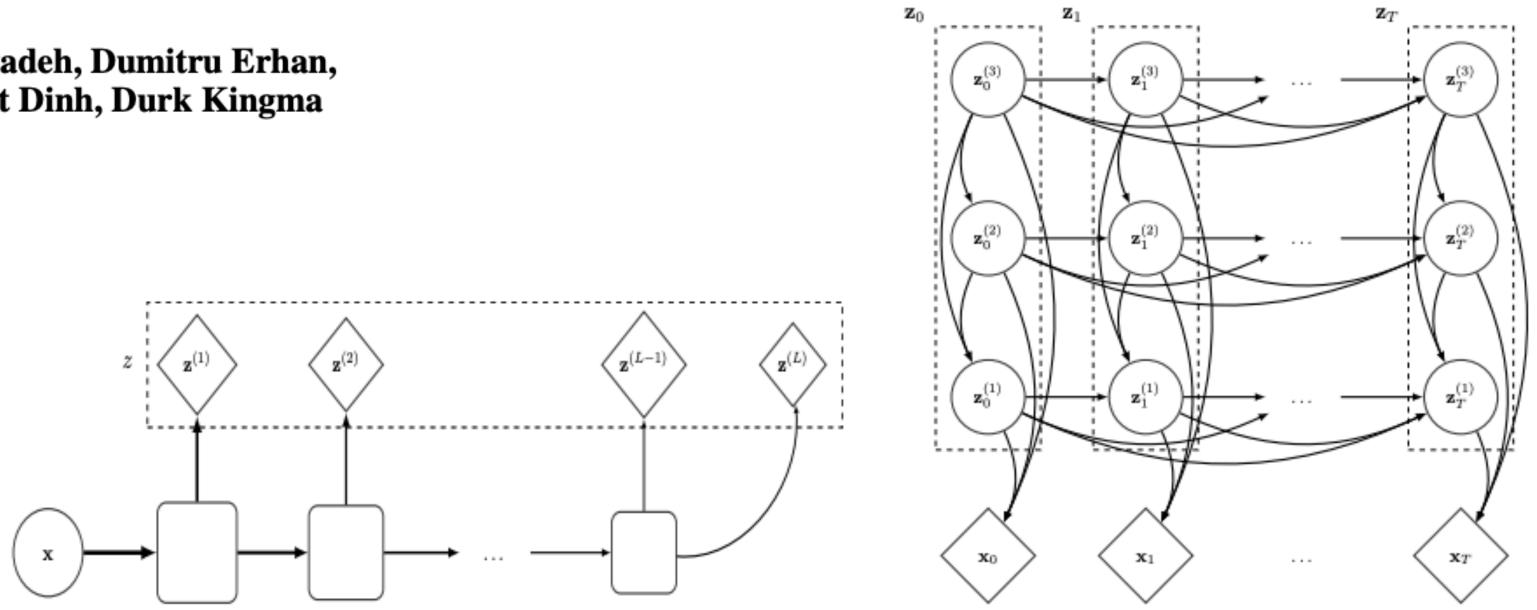




Multi-scale Markov models: 2020

VIDEOFLOW: A CONDITIONAL FLOW-BASED MODEL FOR STOCHASTIC VIDEO GENERATION

Manoj Kumar^{*}, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey Levine, Laurent Dinh, Durk Kingma Google Research, Brain Team



 $\prod_t \prod_l p(\mathbf{z}_t^{(l)} \mid \mathbf{z}_{<t}^{(l)}, \mathbf{z}_t^{(>l)}).$

Figure 1: Left: Multi-scale prior The flow model uses a multi-scale architecture using several levels of stochastic variables. **Right: Autoregressive latent-dynamic prior** The input at each timestep x_t is encoded into multiple levels of stochastic variables $(\mathbf{z}_t^{(1)}, \ldots, \mathbf{z}_t^{(L)})$. We model those levels through a sequential process

Problems with Discrete Time

- Need to choose discretizations, mixing times without gradients
 - Probably want state-dependent step sizes
- Finest scale determined by sampling rate
- Can't apply to irregularly sampled data easily

