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Irregularly-timed datasets arise all the time 

• Most patient data, gene assays irregularly sampled through time. 

• All sorts of observation models (likelihoods), not just Gaussian 

• Most large parametric models in ML are discrete time: RNNs, HMM, DMM



Project to discrete time?

• Binning: End up averaging many entries per bin, or leaving bins empty 

• Imputation: Need to solve original problem, messes with uncertainty



Latent variable models
• Hidden Markov Models, Deep Markov Models 

• specify p(z), p(x | z) 

• Can integrate out z however you want! 

• Variational inference, MCMC 

• A neural net or whatever can specify 
proposal or approx. posterior

https://pyro.ai/examples/dmm.html

p(x) = ∫ p(x |z)p(z)dz

• [Krishnan, Shalit, Sontag]

https://pyro.ai/examples/dmm.html


Latent variable models

• Can use a neural net to guess optimal 
variational params from data 

• Structure of recognition net an 
implementation detail 

• Only there to speed things up. 

• Just needs to output a normalized 
distribution over z

https://pyro.ai/examples/dmm.html

https://pyro.ai/examples/dmm.html


What about 
continuous time?
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Autoregressive continuous-time?
• ODE-RNN: 

• Between datapoints, dh/dt = f(h(t)) 

• At observations, h(t)’ = g(x_t, h(t)) 

• h represents belief state (like in an RNN) 

• Separates belief update due to time 
passing vs seeing data.  Good!



• z(t) represents true state of 
system at time t 

• Need to approximate posterior 
p(z_t0 | x_t1… ) 

• Well-defined state at all times, 
dynamics separate from inference

ODE latent-variable model

zt0
zt1 ztNzti

ODE Solve(zt0 , f, ✓f , t0, ..., tN )

x̂t0 x̂t1 x̂ti x̂tN



• Can do VAE-style inference with an RNN encoder 

An ODE latent-variable model







Mujoco: State versus Belief states

• States are more 
interpretable than 
belief states 

• True dynamics 
are deterministic



Physionet: Predictive accuracy



Poisson Process 
Likelihoods

• Model joint p(obs, time)  
instead of p(obs | time) 

• Non-intervention model



Code available
• Latent ODEs for Irregularly-

Sampled Time Series 

• Yulia Rubanova, Ricky T. Q. 
Chen, David Duvenaud 

• https://github.com/
YuliaRubanova/latent_ode

zt0
zt1 ztNzti

ODE Solve(zt0 , f, ✓f , t0, ..., tN )

x̂t0 x̂t1 x̂ti x̂tN

https://github.com/YuliaRubanova/latent_ode
https://github.com/YuliaRubanova/latent_ode


Limitations of Latent ODEs

• Deterministic dynamics! 

• State size grows with 
sequence length 

• Special time t0, only reason 
about z_t0

zt0
zt1 ztNzti

ODE Solve(zt0 , f, ✓f , t0, ..., tN )

x̂t0 x̂t1 x̂ti x̂tN



Let’s be like a Deep Markov Model

• Nonlinear latent variable with 
noise at each step: 

• Could add more steps between 
observations. 

• Infinitesimal limit some sort of 
stochastic ODE…?

zt+1 = zt + fθ(zt) + ϵ

https://pyro.ai/examples/dmm.html

https://pyro.ai/examples/dmm.html


Stochastic Differential Equations

dz
dt

= f(z(t)) + ϵ“ ”

dz = f(z(t))dt + σ(z(t))dB(t)

• Implicit distribution over functions



Life is an SDE
• natural fit for many small, unobserved interactions: 

• motion of molecules in a liquid 

• allele frequencies in a gene pool 

• prices in a market 

• Interactions don’t need to be Gaussian; as long as 
CLT kicks in, you get Brownian motion 

• Let’s put neural networks into SDE dynamics and fit 
giant SDE models to everything!

dz = fθ(z(t))dt + σθ(z(t))dB(t)
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How to fit ODE params?

• Don’t backprop through solver:  High memory cost, extra numerical error 

• Alexey Radul: Approximate the derivative, don’t differentiate the 
approximation!

∂L
∂θ

= ?

L(θ)



Continuous-time Backpropagation
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Continuous-time Backpropagation
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(Pontryagin et al., 1962):• Can build adjoint dynamics with autodiff, 

compute gradients with second ODE 
solve: 

def f_aug([z, a, d], t):
return [f, -a*df/dz, -a*df/dθ)

[z0, dL/dz(t0), dL/dθ] = 
ODESolve(f_aug,  
[z(t1), dL/dz(t1), 0], t1, t0)



O(1) Memory Gradients

• No need to store activations, 
just run dynamics backwards 
from output. 

• Easy to run ODE backwards, 
just run negate dynamics and 
time: 

• back_f(z, t) = -f(z, -t)

Adjoint State
State



Why not repeat same trick?

• If an SDE is just “an ODE with noise”, why 
not apply same adjoint method?



Need to store noise

• Reparameterization trick: Use 
same noise from forward pass 
on reverse pass 

• Infinite reparameterization 
trick: Use same Brownian 
motion sample on forward 
and reverse passes.
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Brownian Tree

• Can ‘zoom in’ arbitrarily close at any point 

•  splittable random seed ensures all entire sample is consistent



Brownian 
Tree
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What is “running an SDE backwards”?
• Me: Let’s just slap negative signs on 

everything and hope for the best

• Xuechen and Leonard:  What does 
that even mean?  Much later: 
Actually we proved that’s correct.

• Builds on results from Kunita 2019.

• Adjoint formula is analogous to ODE.

0 1
t

Z
t

True solution

Itô Reverse

Strat Reverse

dz = − f(z(−t))dt + σ(z(−t))dB(−t)



Generalize adjoint to diffusion func

• Dynamics already 
known 

• Diffusion adjoint 
almost the same as 
drift adjoint. 

• Just more vector-
Jacobian products!



Time complexity (fixed-step)

• Just solving forwards costs O(L) time. 

• Time more like O(L) when dynamics are expensive 

• Okay!  Now we can fit SDE paths to data…



Need Latent (Bayesian) SDE
• Can’t just fit SDE to maximize likelihood - optimal 

solution has no randomness and just hugs data 

• Define prior and approx. posterior implicitly:

dzp = fθ(z(t))dt + σθ(z(t))dB(t)



Variational inference
• Define prior and approx. posterior implicitly:

dzp = fθ(z(t))dt + σθ(z(t))dB(t)
dzq = fϕ(z(t))dt + σθ(z(t))dB′ (t)

u(t) =
fθ(z(t)) − fϕ(z(t))

σθ(z(t))

2

2



Latent SDEs: 
An unexplored model class

• Define implicit prior over functions with neural nets for 
dynamics (like GP hyperparams) 

• Define implicit approximate posterior through neural 
nets for dynamics (variational params) 

• Define observation likelihoods.  Anything differentiable 
wrt latent state will work (e.g. text models!) 

• Train everything jointly with ADVI.  Should scale to 
millions of params.  Can use Milstein solver for 
diagonal noise.
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Limitations
• SDE solvers much lower-order convergence 

than ODE solvers 

• (e.g. Milstein order 1 vs RK4) 

• Non-diagonal noise requires Levy areas 

• Diagonal noise requires funny parameterization 

• Need jump-style noise?  (e.g. hit by a car) 

• Not scalable in input dimension (diffusions)?



From “Handbook of Statistics”, Mubayi et al, 2019.   
Line means "can be used to construct", but not "contains"

SDEs vs GPs

• Distinct sets of 
priors over 
functions 

• Easy to 
construct non-
Gaussian SDE



Future work:

• Skipping short-scale dynamics between  
observations (mixes back to prior) 

• Infinitely deep Bayesian neural networks 

• Code in a week or two (prototype)



Thanks!

Xuechen Li, Leonard Wong, Ricky Chen, Yulia Rubanova, 
David Duvenaud

brain


