
Latent Stochastic Differential Equations

Xuechen Li, Leonard Wong, Ricky Chen, Yulia Rubanova, David Duvenaud
 University of Toronto, Vector Institute

brain

[Hegde et al., 2018]

Irregularly-timed datasets arise all the time

• Most patient data, gene assays irregularly sampled through time.

• All sorts of observation models (likelihoods), not just Gaussian

• Most large parametric models in ML are discrete time: RNNs, HMM, DMM

Project to discrete time?

• Binning: End up averaging many entries per bin, or leaving bins empty

• Imputation: Need to solve original problem, messes with uncertainty

Latent variable models
• Hidden Markov Models, Deep Markov Models

• specify p(z), p(x | z)

• Can integrate out z however you want!

• Variational inference, MCMC

• A neural net or whatever can specify
proposal or approx. posterior

https://pyro.ai/examples/dmm.html

p(x) = ∫ p(x |z)p(z)dz

• [Krishnan, Shalit, Sontag]

https://pyro.ai/examples/dmm.html

Latent variable models

• Can use a neural net to guess optimal
variational params from data

• Structure of recognition net an
implementation detail

• Only there to speed things up.

• Just needs to output a normalized
distribution over z

https://pyro.ai/examples/dmm.html

https://pyro.ai/examples/dmm.html

What about
continuous time?

Ordinary Differential Equations
• Vector-valued z changes in time

• Time-derivative:

z

t

Ordinary Differential Equations
• Vector-valued z changes in time

• Time-derivative:

z

t

+

• Initial-value problem: given , find:

Ordinary Differential Equations
• Vector-valued z changes in time

• Time-derivative:

z

t

+

• Initial-value problem: given , find:

Exact

Ordinary Differential Equations
• Vector-valued z changes in time

• Time-derivative:

z

t

+

• Initial-value problem: given , find:

Exact

Ordinary Differential Equations
• Vector-valued z changes in time

• Time-derivative:

z

t

+

• Initial-value problem: given , find:

Exact

Ordinary Differential Equations
• Vector-valued z changes in time

• Time-derivative:

z

t z(t + h) = z(t) + hf(z, t)
• Euler approximates with small steps:

+

• Initial-value problem: given , find:

Exact
Euler

Ordinary Differential Equations
• Vector-valued z changes in time

• Time-derivative:

z

t z(t + h) = z(t) + hf(z, t)
• Euler approximates with small steps:

+

• Initial-value problem: given , find:

Exact
Euler

Ordinary Differential Equations
• Vector-valued z changes in time

• Time-derivative:

z

t z(t + h) = z(t) + hf(z, t)
• Euler approximates with small steps:

+

• Initial-value problem: given , find:

Exact
Euler

Ordinary Differential Equations
• Vector-valued z changes in time

• Time-derivative:

z

t z(t + h) = z(t) + hf(z, t)
• Euler approximates with small steps:

+

• Initial-value problem: given , find:

Exact
Euler

Ordinary Differential Equations
• Vector-valued z changes in time

• Time-derivative:

z

t z(t + h) = z(t) + hf(z, t)
• Euler approximates with small steps:

+

• Initial-value problem: given , find:

Exact
Euler

Ordinary Differential Equations
• Vector-valued z changes in time

• Time-derivative:

z

t z(t + h) = z(t) + hf(z, t)
• Euler approximates with small steps:

+

• Initial-value problem: given , find:

Exact
Euler

Ordinary Differential Equations
• Vector-valued z changes in time

• Time-derivative:

z

t z(t + h) = z(t) + hf(z, t)
• Euler approximates with small steps:

+

• Initial-value problem: given , find:

Exact
Euler
Adaptive Solver

Ordinary Differential Equations
• Vector-valued z changes in time

• Time-derivative:

z

t z(t + h) = z(t) + hf(z, t)
• Euler approximates with small steps:

+

• Initial-value problem: given , find:

Autoregressive continuous-time?
• ODE-RNN:

• Between datapoints, dh/dt = f(h(t))

• At observations, h(t)’ = g(x_t, h(t))

• h represents belief state (like in an RNN)

• Separates belief update due to time
passing vs seeing data. Good!

• z(t) represents true state of
system at time t

• Need to approximate posterior
p(z_t0 | x_t1…)

• Well-defined state at all times,
dynamics separate from inference

ODE latent-variable model

zt0
zt1 ztNzti

ODE Solve(zt0 , f, ✓f , t0, ..., tN)

x̂t0 x̂t1 x̂ti x̂tN

• Can do VAE-style inference with an RNN encoder

An ODE latent-variable model

Mujoco: State versus Belief states

• States are more
interpretable than
belief states

• True dynamics
are deterministic

Physionet: Predictive accuracy

Poisson Process
Likelihoods

• Model joint p(obs, time)
instead of p(obs | time)

• Non-intervention model

Code available
• Latent ODEs for Irregularly-

Sampled Time Series

• Yulia Rubanova, Ricky T. Q.
Chen, David Duvenaud

• https://github.com/
YuliaRubanova/latent_ode

zt0
zt1 ztNzti

ODE Solve(zt0 , f, ✓f , t0, ..., tN)

x̂t0 x̂t1 x̂ti x̂tN

https://github.com/YuliaRubanova/latent_ode
https://github.com/YuliaRubanova/latent_ode

Limitations of Latent ODEs

• Deterministic dynamics!

• State size grows with
sequence length

• Special time t0, only reason
about z_t0

zt0
zt1 ztNzti

ODE Solve(zt0 , f, ✓f , t0, ..., tN)

x̂t0 x̂t1 x̂ti x̂tN

Let’s be like a Deep Markov Model

• Nonlinear latent variable with
noise at each step:

• Could add more steps between
observations.

• Infinitesimal limit some sort of
stochastic ODE…?

zt+1 = zt + fθ(zt) + ϵ

https://pyro.ai/examples/dmm.html

https://pyro.ai/examples/dmm.html

Stochastic Differential Equations

dz
dt

= f(z(t)) + ϵ“ ”

dz = f(z(t))dt + σ(z(t))dB(t)

• Implicit distribution over functions

Life is an SDE
• natural fit for many small, unobserved interactions:

• motion of molecules in a liquid

• allele frequencies in a gene pool

• prices in a market

• Interactions don’t need to be Gaussian; as long as
CLT kicks in, you get Brownian motion

• Let’s put neural networks into SDE dynamics and fit
giant SDE models to everything!

dz = fθ(z(t))dt + σθ(z(t))dB(t)

Related work 1

• Tzen + Raginski: Deep LVMs
become SDEs in the limit.
Variational inf framework. Forward-
mode autodiff.

Related work 1

• Tzen + Raginski: Deep LVMs
become SDEs in the limit.
Variational inf framework. Forward-
mode autodiff.

• Peluchetti + Favaro: Worked out
SDE corresponding to infinitely-
deep convnets with uncertain
weights

Related work 1

• Tzen + Raginski: Deep LVMs
become SDEs in the limit.
Variational inf framework. Forward-
mode autodiff.

• Peluchetti + Favaro: Worked out
SDE corresponding to infinitely-
deep convnets with uncertain
weights

• Jia + Benson: Added countably
many discrete jumps to latent ODEs

Related work 1

Related work 2

• Thomas Ryder, Andrew Golightly, A Stephen
Mc-Gough, and Dennis Prangle. Black-box
variational inference for stochastic differential
equations.

Related work 2

• Thomas Ryder, Andrew Golightly, A Stephen
Mc-Gough, and Dennis Prangle. Black-box
variational inference for stochastic differential
equations.

• Pashupati Hegde, Markus Heinonen, Harri
Lähdesmäki, and Samuel Kaski. Deep learning
with differential gaussian process flows.

Related work 2

• Thomas Ryder, Andrew Golightly, A Stephen
Mc-Gough, and Dennis Prangle. Black-box
variational inference for stochastic differential
equations.

• Pashupati Hegde, Markus Heinonen, Harri
Lähdesmäki, and Samuel Kaski. Deep learning
with differential gaussian process flows.

• Markus Heinonen, Cagatay Yildiz, Henrik Man-
nerström, Jukka Intosalmi, and Harri
Lähdesmäki. Learning unknown ODE models
with gaussian processes.

Related work 2

• Thomas Ryder, Andrew Golightly, A Stephen
Mc-Gough, and Dennis Prangle. Black-box
variational inference for stochastic differential
equations.

• Pashupati Hegde, Markus Heinonen, Harri
Lähdesmäki, and Samuel Kaski. Deep learning
with differential gaussian process flows.

• Markus Heinonen, Cagatay Yildiz, Henrik Man-
nerström, Jukka Intosalmi, and Harri
Lähdesmäki. Learning unknown ODE models
with gaussian processes.

• C. Garcıa, A. Otero, P. Felix, J. Presedo, and D.
Marquez. Nonparametric estimation of
stochastic differential equations with sparse
Gaussian processes.

Related work 2

• Thomas Ryder, Andrew Golightly, A Stephen
Mc-Gough, and Dennis Prangle. Black-box
variational inference for stochastic differential
equations.

• Pashupati Hegde, Markus Heinonen, Harri
Lähdesmäki, and Samuel Kaski. Deep learning
with differential gaussian process flows.

• Markus Heinonen, Cagatay Yildiz, Henrik Man-
nerström, Jukka Intosalmi, and Harri
Lähdesmäki. Learning unknown ODE models
with gaussian processes.

• C. Garcıa, A. Otero, P. Felix, J. Presedo, and D.
Marquez. Nonparametric estimation of
stochastic differential equations with sparse
Gaussian processes.

Related work 2
• All use Euler discretizations.

Not clear what limiting
algorithm is (e.g. enforces
invariants?), and not
memory-efficient.

• Thomas Ryder, Andrew Golightly, A Stephen
Mc-Gough, and Dennis Prangle. Black-box
variational inference for stochastic differential
equations.

• Pashupati Hegde, Markus Heinonen, Harri
Lähdesmäki, and Samuel Kaski. Deep learning
with differential gaussian process flows.

• Markus Heinonen, Cagatay Yildiz, Henrik Man-
nerström, Jukka Intosalmi, and Harri
Lähdesmäki. Learning unknown ODE models
with gaussian processes.

• C. Garcıa, A. Otero, P. Felix, J. Presedo, and D.
Marquez. Nonparametric estimation of
stochastic differential equations with sparse
Gaussian processes.

Related work 2
• All use Euler discretizations.

Not clear what limiting
algorithm is (e.g. enforces
invariants?), and not
memory-efficient.

• Not even going to discuss
methods that require solving
a PDE - not scalable.

• Thomas Ryder, Andrew Golightly, A Stephen
Mc-Gough, and Dennis Prangle. Black-box
variational inference for stochastic differential
equations.

• Pashupati Hegde, Markus Heinonen, Harri
Lähdesmäki, and Samuel Kaski. Deep learning
with differential gaussian process flows.

• Markus Heinonen, Cagatay Yildiz, Henrik Man-
nerström, Jukka Intosalmi, and Harri
Lähdesmäki. Learning unknown ODE models
with gaussian processes.

• C. Garcıa, A. Otero, P. Felix, J. Presedo, and D.
Marquez. Nonparametric estimation of
stochastic differential equations with sparse
Gaussian processes.

Related work 2
• All use Euler discretizations.

Not clear what limiting
algorithm is (e.g. enforces
invariants?), and not
memory-efficient.

• Not even going to discuss
methods that require solving
a PDE - not scalable.

• We want to use adaptive,
(high-order?) SDE solvers.

How to fit ODE params?

∂L
∂θ

= ?

L(θ)

How to fit ODE params?

• Don’t backprop through solver: High memory cost, extra numerical error

• Alexey Radul: Approximate the derivative, don’t differentiate the
approximation!

∂L
∂θ

= ?

L(θ)

Continuous-time Backpropagation

∂L
∂zt

=
∂L

∂zt+1

∂f(zt, θ)
∂zt

∂L
∂θ

= ∑
t

∂L
∂zt

∂f(zt, θ)
∂θ

Standard Backprop:

Continuous-time Backpropagation

∂L
∂zt

=
∂L

∂zt+1

∂f(zt, θ)
∂zt

∂L
∂θ

= ∑
t

∂L
∂zt

∂f(zt, θ)
∂θ

Standard Backprop:

∂
∂t

∂L
∂z(t)

=
∂L

∂z(t)
∂f(z(t), θ)

∂z

∂L
∂θ

= ∫
t0

t1

∂L
∂z(t)

∂f(z(t), θ)
∂θ

dt

Adjoint sensitivities:
(Pontryagin et al., 1962):

Continuous-time Backpropagation

∂
∂t

∂L
∂z(t)

=
∂L

∂z(t)
∂f(z(t), θ)

∂z

∂L
∂θ

= ∫
t0

t1

∂L
∂z(t)

∂f(z(t), θ)
∂θ

dt

Adjoint sensitivities:
(Pontryagin et al., 1962):

Continuous-time Backpropagation

∂
∂t

∂L
∂z(t)

=
∂L

∂z(t)
∂f(z(t), θ)

∂z

∂L
∂θ

= ∫
t0

t1

∂L
∂z(t)

∂f(z(t), θ)
∂θ

dt

Adjoint sensitivities:
(Pontryagin et al., 1962):• Can build adjoint dynamics with autodiff,

compute gradients with second ODE
solve:

Continuous-time Backpropagation

∂
∂t

∂L
∂z(t)

=
∂L

∂z(t)
∂f(z(t), θ)

∂z

∂L
∂θ

= ∫
t0

t1

∂L
∂z(t)

∂f(z(t), θ)
∂θ

dt

Adjoint sensitivities:
(Pontryagin et al., 1962):• Can build adjoint dynamics with autodiff,

compute gradients with second ODE
solve:

def f_aug([z, a, d], t):
return [f, -a*df/dz, -a*df/dθ)

Continuous-time Backpropagation

∂
∂t

∂L
∂z(t)

=
∂L

∂z(t)
∂f(z(t), θ)

∂z

∂L
∂θ

= ∫
t0

t1

∂L
∂z(t)

∂f(z(t), θ)
∂θ

dt

Adjoint sensitivities:
(Pontryagin et al., 1962):• Can build adjoint dynamics with autodiff,

compute gradients with second ODE
solve:

def f_aug([z, a, d], t):
return [f, -a*df/dz, -a*df/dθ)

[z0, dL/dz(t0), dL/dθ] =
ODESolve(f_aug,  
[z(t1), dL/dz(t1), 0], t1, t0)

O(1) Memory Gradients

• No need to store activations,
just run dynamics backwards
from output.

• Easy to run ODE backwards,
just run negate dynamics and
time:

• back_f(z, t) = -f(z, -t)

Adjoint State
State

Why not repeat same trick?

• If an SDE is just “an ODE with noise”, why
not apply same adjoint method?

Need to store noise

• Reparameterization trick: Use
same noise from forward pass
on reverse pass

• Infinite reparameterization
trick: Use same Brownian
motion sample on forward
and reverse passes.

ts te

t

B
(t

)

Brownian Tree

• Can ‘zoom in’ arbitrarily close at any point

• splittable random seed ensures all entire sample is consistent

Brownian
Tree

ts te

t

B
(t

)

What is “running an SDE backwards”?

0 1
t

Z
t

True solution

Itô Reverse

Strat Reverse

dz = − f(z(−t))dt + σ(z(−t))dB(−t)

What is “running an SDE backwards”?
• Me: Let’s just slap negative signs on

everything and hope for the best

0 1
t

Z
t

True solution

Itô Reverse

Strat Reverse

dz = − f(z(−t))dt + σ(z(−t))dB(−t)

What is “running an SDE backwards”?
• Me: Let’s just slap negative signs on

everything and hope for the best

• Xuechen and Leonard: What does
that even mean? Much later:
Actually we proved that’s correct.

0 1
t

Z
t

True solution

Itô Reverse

Strat Reverse

dz = − f(z(−t))dt + σ(z(−t))dB(−t)

What is “running an SDE backwards”?
• Me: Let’s just slap negative signs on

everything and hope for the best

• Xuechen and Leonard: What does
that even mean? Much later:
Actually we proved that’s correct.

• Builds on results from Kunita 2019.
0 1

t

Z
t

True solution

Itô Reverse

Strat Reverse

dz = − f(z(−t))dt + σ(z(−t))dB(−t)

What is “running an SDE backwards”?
• Me: Let’s just slap negative signs on

everything and hope for the best

• Xuechen and Leonard: What does
that even mean? Much later:
Actually we proved that’s correct.

• Builds on results from Kunita 2019.

• Adjoint formula is analogous to ODE.

0 1
t

Z
t

True solution

Itô Reverse

Strat Reverse

dz = − f(z(−t))dt + σ(z(−t))dB(−t)

Generalize adjoint to diffusion func

• Dynamics already
known

• Diffusion adjoint
almost the same as
drift adjoint.

• Just more vector-
Jacobian products!

Time complexity (fixed-step)

• Just solving forwards costs O(L) time.

• Time more like O(L) when dynamics are expensive

• Okay! Now we can fit SDE paths to data…

Need Latent (Bayesian) SDE
• Can’t just fit SDE to maximize likelihood - optimal

solution has no randomness and just hugs data

• Define prior and approx. posterior implicitly:

dzp = fθ(z(t))dt + σθ(z(t))dB(t)

Variational inference
• Define prior and approx. posterior implicitly:

dzp = fθ(z(t))dt + σθ(z(t))dB(t)
dzq = fϕ(z(t))dt + σθ(z(t))dB′ (t)

u(t) =
fθ(z(t)) − fϕ(z(t))

σθ(z(t))

2

2

Latent SDEs:
An unexplored model class

• Define implicit prior over functions with neural nets for
dynamics (like GP hyperparams)

• Define implicit approximate posterior through neural
nets for dynamics (variational params)

• Define observation likelihoods. Anything differentiable
wrt latent state will work (e.g. text models!)

• Train everything jointly with ADVI. Should scale to
millions of params. Can use Milstein solver for
diagonal noise.

Early latent SDE results

• OU prior,
Laplace likelihood

Early latent SDE results

• OU prior,
Laplace likelihood

Early latent SDE results

• OU prior,
Laplace likelihood

• Inference problem is more
local in time than for ODE
(recognition net can steer
posterior sample towards
data)

Early latent SDE results

• OU prior,
Laplace likelihood

• Inference problem is more
local in time than for ODE
(recognition net can steer
posterior sample towards
data)

Early latent SDE results: Mocap
• 50D data, 6D latent space, sharing dynamics and recognition params

across time series (11000 params)

Early latent SDE results: Mocap
• 50D data, 6D latent space, sharing dynamics and recognition params

across time series (11000 params)

Limitations
• SDE solvers much lower-order convergence

than ODE solvers

• (e.g. Milstein order 1 vs RK4)

• Non-diagonal noise requires Levy areas

• Diagonal noise requires funny parameterization

• Need jump-style noise? (e.g. hit by a car)

• Not scalable in input dimension (diffusions)?

From “Handbook of Statistics”, Mubayi et al, 2019.
Line means "can be used to construct", but not "contains"

SDEs vs GPs

• Distinct sets of
priors over
functions

• Easy to
construct non-
Gaussian SDE

Future work:

• Skipping short-scale dynamics between
observations (mixes back to prior)

• Infinitely deep Bayesian neural networks

• Code in a week or two (prototype)

Thanks!

Xuechen Li, Leonard Wong, Ricky Chen, Yulia Rubanova,
David Duvenaud

brain

