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4. Full results

- c e FiK . - PoS (34 lang.) NER (34 lang.) NLI (12 lang.) QA (11 lang.) Total (91)
1. Motivation: mftlgatmg realignment oo AL 2t Taco. BT F+ Tace E| E+]F1 &1 Z1[E] 2
failures DistiMBERT
Fine-tuning Only 3.8 - - 825 - - 601 - - 381 - - | - -
e Multilingual Language Models (mLMs) like XLM-R and mBERT facilitate cross-lingual iﬂié?ﬁiﬁﬁ;ﬁ (front) ;(732 8 gi gig i) ;1 212 i) 2 ggi i ; 2 gg
transter ALIGNFREEZE (back) 774 0 30 837 4 17 619 1 6 391 2 5 7 58
e Realignment techniques improve multilingual alignment but can degrade performance mBERT
in some tasks and some languages Fine-tuning Only 770 - - | 857 - - 66.3 - 571 - - - -
Full realignment M6 1 32 864 19 4 674 0 b29 11 0 |31 44
Realignment seemed to have a detrimental impact on some features learned during pre- ALIGNFREEZE (front) 792 0 32 86.7 1 6 (677 0 10 553 9 0 10 48
training. But what features? ALIGNFREEZE (back) 793 1 30 8.5 12 6 675 0 10 537 11 0 24 46
What are the layers for which realignment is the most detrimental XLM-R Base
and can we mitigate this effect? Fine-tuning Only 809 - - 849 - - 739 - - 61.2 - - | - -
) Full realignment 81.3 1 11 8.3 8 8 1732 8 0 [594 10 O |27 19
ALIGNFREEZE (front) 81.7 0 18 848 11 4 736 6 0 |59.1 10 0 27 22
ALIGNFREEZE (back) 809 7 4 (89 13 7 729 11 0 580 11 0 42 11
Total of #] and #71 by task /102 /102 /36 /33 /273
Full realignment - 2 M1 - 30 33 - 11 13 - 6 6 |64 125
ALIGNFREEZE (front)] - 0 & - 13 31 | - 7 18 - 9 2 43 135
). Some context on realignment ALIGNFREEZE (back) - 8 64 | - 29 30 - 12 16 « - 11 10 (73 115
#7T: number of target languages for which the realignment accuracy is one standard deviation

-» Il est bien trop t6t pour tirer des conclusions concretes et
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- » [t 1s far too soon to draw hard and onclusions.

From Gaschi et al. (2023)
The encoder-only multilingual model (mBERT, XLM-R, etc...) is trained with a contrastive
loss to minimize the distance between translated words with respect to unrelated ones:

Depending on the results of each of the freezing method, we should understand better

above the simple fine-tuning baseline
#.: number of target languages for which the realignment accuracy is one standard deviation
below the simple fine-tuning baseline

Findings

e Full realignment fails in many cases (as already shown in previous literature)

e AlignFreeze (front) mitigates the failures of full realignment to some extent

5. Results across languages
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3. Contribution: A freezing approach Languages
Results on PoS with XLM-R
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whether lower or upper layers are negatively impacted by realignment, i.e. whether low-
level syntactic features or high-level semantic features are affected.

Languages

Results on NLI with XLM-R

Realignment impacts the whole model for all languages, but it is the most detrimental to

the lower layers.

6. Conclusion

¢ ALIGNFREEZE SHOWS THAT REALIGNMENT HAS A PARTICULARLY DETRIMENTAL IMPACT ON LOWER LAYERS

e NEW LEAD FOR IMPROVING REALIGNMENT: PRESERVE LOW-LEVEL FEATURES

e NO ONE-SIZE-FITS-ALL SOLUTION; RESULTS VARY ACROSS TASKS, LANGUAGES, AND MODELS.

¢ FURTHER RESEARCH NEEDED TO OPTIMIZE FREEZING STRATEGIES AND ANALYZE LANGUAGE-SPECIFIC EFFECTS.

BTEX TikZposter



