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In the supplementary material, we provide a more detailed discussion about ro-
tational symmetry and provide proofs for our claims in Sec. 1. We further provide
additional results of our approach in Sec. 2.

1 Rotational Symmetry
We start by introducing the notation and definitions as per Sec. 1.1, followed by proofs
of claims in Sec. 1.2. In Sec. 1.3, we discuss two of the limitations in our approach of
reasoning about the rotational symmetry.

1.1 Notation and Definitions
Rotation Matrix. We denoted a rotation for an angle φ around an axis θ using a
matrix Rθ(φ). For example, if the axis of rotation is the X-axis, then

RX(φ) =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ


Order of Rotational Symmetry. We say that an object has an n order of rotational
symmetry around the axis θ, i.e., O(θ) = n, when its 3D shape is equivalent to its

shape rotated by Rθ

(
2πi

n

)
,∀i ∈ {0, . . . , n− 1}.

The minimum value of O(θ) is 1, and attained for objects non-symmetric around
axis θ. The maximum value is ∞, which indicates that the 3D shape is equivalent
when rotated by any angle around its axis of symmetry. This symmetry is also referred
to as the revolution symmetry [1]. In Fig. 1, we can see an example of our rotational
order definition. For a 3D model shown in Fig. 1 (a), the rotational order about the Y
axis is 2, i.e., O(Y) = 2. Thus for any viewpoint v (cyan) in Fig. 1 (b), if we rotate
it by π about the Y-axis to form, vπ = RY(π)v, the 3D shapes will be equivalent

∗1Enric Corona and Kaustav Kundu are with Department of Computer Science, University of Toronto
ecorona@cs.toronto.edu
†2Sanja Fidler is with Department of Computer Science, University of Toronto, and the Vector Institute

fidler@cs.toronto.edu

1



X Y

Z

X

Z

θ

v

vπ

π
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Figure 1: Order of Rotational Symmetry

(a) Oblique View (b) Top-down view

Figure 2: Illustration for Claim 1. For the two axes shown, Ocube(θ) = 4 and
Ocube(φ) = 4. Equivalent views repeat every 2πi

nθ
when rotating around the axis

θ. From Claim 1, an axis φ′ = Rθ

(
π
2

)
φ (for i = 1) will have rotational order,

Ocube(φ′) = 4.

(Fig. 1 (right)). The 3D shape in any other viewpoint (such as, vπ/4 or vπ/2) will not
be equivalent to that of v. Similarly, we have O(Z) = ∞. In our paper, we only
consider the values of rotational order to be one of {1, 2, 4,∞}, however, our method
will not depend on this choice.

Equivalent Viewpoint Sets. Let us define the set of all pairs of equivalent viewpoints
as Eo(Y) = {(i, j)|vj = Rθ(π)vi}, with an symmetry order o ∈ {2, 3,∞}. Note that
E1(θ) is a null set (object is asymmetric). In our case, we have E2(θ) ⊂ E4(θ) ⊂
E∞(θ) and E3(θ) ⊂ E∞(θ).



1.2 Geometrical Constraints on Orders of Rotational Symmetry
about Multiple Axes

Claim 1. For an object x let two non-collinear axes θ and φ have orders of rota-
tional symmetry, Ox(θ) = nθ and Ox(φ) = nφ. Then, ∀i ∈ {0, . . . , nθ}, the order

of symmetry around the axis Rθ(
2πi

nθ
)φ is also nφ, i.e., Ox

(
Rθ

(
2πi

nθ

)
φ

)
= nφ.

Similarly ∀j ∈ {0, . . . , nφ}, Ox
(
Rθ

(
2πj

nφ

)
θ

)
= nθ. We provide an illustration of

this statement with an example in Fig. 2.

Proof. Since Ox (φ) = nφ, for any viewpoint v, the 3D shape of the object x, is

equivalent to that from the viewing direction, vjφ = Rφ

(
2πj

nφ

)
v, ∀j ∈ {1, . . . , nφ −

1}. Also Ox(θ) = nθ implies that x is equivalent from the viewpoints, v and viθ =

Rθ

(
2πi

nθ

)
v for any i ∈ {1, . . . , nθ}. Similarly, x is equivalent from vjφ and vi,jθ,φ =

Rθ

(
2πi

nθ

)
vjφ. If we can prove this claim for any arbitrary, i and j, then we are done.

For ease of notation, we replace the symbols, vjφ, v
i
θ, v

i,j
θ,φ by vφ, vθ, vθ,φ, respectively.

Now, let us consider a point pφ along the φ axis, an unit distance away from the
origin, O. We rotate the polyhedron, P (from the vertices, v, vφ, pφ andO) by an angle

of
2πi

nθ
around the axis, θ, i.e., each of the vertices are rotated by Rθ

(
2πi

nθ

)
. After

the rotation, v and vφ would coincide with vθ and vθ,φ respectively. The axis, φ would

become φ′ = Rθ

(
2πi

nθ

)
φ and pφ would be transformed to pφ′ = Rθ

(
2πi

nθ

)
pφ.

Since rotation is an isometry, the angles are preserved under the rotation transfor-

mation. Thus, the angle between vθ and vθ,φ would remain as
2πj

nφ
, i.e., ∠vθOvθ,φ =

2πj

nφ
. Similarly, ∠vθOpφ′ = ∠vθ,φOpφ′ = π/2. Thus, rotating vθ by

2πj

nφ
around the

axis, φ′ would give us vθ,φ.
Now since, the 3D shape is equivalent between the following pair of viewpoints,

(v, vφ), (v, vθ) and (vφ, vθ,φ), thus it would be equivalent from vθ and vθ,φ. Thus if
Ox(φ) = nφ, then Ox (φ′) = nφ.

Similarly, we can prove that, ∀j ∈ {0, . . . , nφ}, Ox
(
Rθ

(
2πj

nφ

)
θ

)
= nθ.

Please note that here the equivalence corresponds to that of the entire 3D shape and
not the projection of the 3d shape onto a plane at a particular viewpoint. Considering
the latter is more difficult, we leave it for future work.

Corollary 1. An object is a sphere iff two non-collinear axes have infinite order rota-
tional symmetry.

Proof. If an object x is a sphere, it is symmetric about all directions. Thus it has infinite
order rotational symmetry in any pair of axes. Let us now prove the opposite, i.e., if



Figure 3: Illustration for Corollary 1. Please see text for details.

two non-collinear axes have infinite order rotational symmetry, then the object has to
be a sphere.

Case 1: Let us first prove this corollary for the special case where the two axes are
orthogonal to each other. That is, we aim to show that if any two orthogonal axes have
infinite order rotational symmetry, then the object is a sphere. Let X and Z axes have
infinite orders of rotational symmetry, i.e.,Ox(X) = Ox(Z) =∞. Thus from Claim 1,
Ox
(
RZ

(π
2

)
X
)

= Ox(Y) = ∞. Since all orthogonal axes have infinite order
of rotational symmetry, then the object’s shape is equivalent when viewed from any
direction. This is only possible for a sphere.

Case 2: Here we prove the corollary for the more general case where the two non-
collinear axes are not orthogonal to each other. If we can show that there exist two
orthogonal axes which have infinite order of rotational symmetry, then we can follow
Case 1 and claim that the object is a sphere.

We let the two axes X and Y′ lie on the X −Y plane with an angle of θ between
them and Ox(X) = Ox(Y) =∞. Let, X = (a, 0, 0) and Y ′ = (a cos θ, a sin θ, 0), as
shown in Fig. 3 (a). The rotation of Y ′ about X by an angle α has the following form:

pX(α) = RX(α)Y ′ =

 1 0 0
0 cosα − sinα
0 sinα cosα

 a cos θ
a sin θ

0

 =

 a cos θ
a sin θ cosα
a sin θ sinα


Here, pX(α) is the parametric equation of a circle on the Y − Z plane with

the center at (a cos θ, 0, 0) and radius a sin θ. The line joining Y ′ and pX(π) =
(a cos θ,−a sin θ, 0) will form the diameter of this circle, as shown in Fig. 3 (b). Thus,
Ox (pX(α)) =∞,∀α ∈ [0, 2π).

Similarly, for every pX(α) we can rotate it about the Y′ axis and those points will
have rotational order as∞. Every point in the solid arc between pY ′,X(π) and pX(π)
can be obtained from a point pX(α) rotated on Y ′. Thus all the points along the solid
arc (lying on the XY plane) shown in Fig. 3 (c) will have order of rotational symmetry
∞. We can continue this process until the solid arc crosses Y (as shown in Fig. 3 (a))
the axis orthogonal to X (on the X − Z plane) and this will happen for any θ > 0
as the arc keeps getting bigger. Thus, O(Y ) = ∞. Since two orthogonal axes have
rotational orders as∞, we can use the previous case to show that this object can only
be a sphere.



Corollary 2. If an object x is not a sphere, then the following conditions must hold:

(a) It can have up to one axis with infinite order rotational symmetry
(b) If an axis θ has infinite order rotational symmetry, then the order of symmetry of

any axis not orthogonal to θ can only be one.
(c) If an axis θ has infinite order rotational symmetry, then the order of symmetry of

any axis orthogonal to θ can be a maximum of two.

Proof.

(a) This follows directly from Corollary 1.
(b) Let us assume that an axis φ is not orthogonal to θ and Ox(θ) = ∞,Ox(φ) =

n > 1. Also, let us rotate θ to θ′ = Rφ
(
2πj

n

)
θ for some, j ∈ {1, . . . , n− 1}.

Then, from Claim 1, Ox(θ′) = ∞. But now two non-collinear axes, θ and θ′

have infinite orders of symmetry. From Corollary 1, this cannot be true for a
non-spherical object. Thus we have a contradiction. Thus n = 1.

(c) It can be proved similarly to the previous part, except that with n = 2, the two
axes are collinear. Thus n can be either 1 or 2.

Since in our experiments none of the objects is a perfect sphere, we use these con-
straints to improve the accuracy of our symmetry predicting network.

1.3 Limitations of our approach
To reason about rotational symmetry, we use the notion of equivalence between 3D
shapes. However, in most practical settings and in our experiments the input is a 2D
image, which is the projection of the 3D shape onto an image plane. Thus the occluded
part of the 3D shape is not visible in the input. For the viewpoints from which the 3D
shapes are equivalent, their corresponding projections will also be equivalent. However
the opposite is not true, i.e., it is not necessary that two equivalent projections will have
equivalent 3D shapes from their corresponding viewpoints. This problem arises be-
cause the back-projecting a 2D image into 3D can have infinite solutions. This cannot
be handled by our derivations here.

Moreover, while considering rotational symmetry, we establish equivalence be-
tween pairs of viewpoints which are rotations about either X,Y or Z axes. Since we
do not reason about pairs of viewpoints which are rotated about any arbitrary axis, our
approach does not avoid all the false negative examples in the training data. A trivial
extension of our approach to compute rotational orders about any arbitrary axis would
scale linearly in both computation and memory costs, which makes this unfeasible.

2 Additional Results
We provide additional quantitative results in Sec. 2.1 and qualitative results in Sec. 2.2.



(a) Timestamp-based split (b) Object-based split

N = 80 discretization scheme

N = 168 discretization scheme

Figure 4: Recall vs spherical distance

2.1 Pose Estimation
In Fig. 4(a) and (b), we plot recall vs the spherical distance between the predicted
viewpoint and the GT viewpoint. The first and second rows depict the results from the
N = 80 and N = 168 discretization schemes respectively. We can see that across dif-
ferent discretization schemes, reasoning about rotational symmetry on a large dataset
is essential for achieving a good generalization performance.

2.2 Qualitative Results
Rotational Symmetry Prediction. We show examples of the CAD models obtained
along with their inferred symmetry in Fig. 5 and Fig. 6. One of the primary reasons
for failure is the non-alignment of viewpoints due the discretization. Another reason
of failure is that examples of certain order classes are not present in training. For
example, the objects in the bottom left of Fig. 5 (xxi, xxii, xxiii) has O(Z) as 8, 12
and 13 respectively, which was not present in the training set. The orders inferred in
all these cases were ∞. This leads to false positive examples when training for pose
estimation.

Since our input is a 2D image, but we reason about the equivalence of 3D shapes, it
can confuse the network. An example of this can be seen for the order prediction along
the Z axis in Fig. 5 (ii). A viewpoint from the positive Z direction would indicate the
order to be 4, but from the negative Z direction it should be inferred as∞. However



X ∼ 2, Y ∼ ∞, Z ∼ 2. X ∼ 1, Y ∼ 1, Z ∼ ∞. X ∼ 2, Y ∼ 2, Z ∼ ∞. X ∼ 1, Y ∼ 1, Z ∼ 1.

(i) (ii) (iii) (iv)

X ∼ 1, Y ∼ 1, Z ∼ 1. X ∼ 1, Y ∼ 1, Z ∼ 1. X ∼ 1, Y ∼ 1, Z ∼ 1. X ∼ 1, Y ∼ ∞, Z ∼ 1.

(v) (vi) (vii) (viii)

X ∼ 2, Y ∼ 2, Z ∼ ∞. X ∼ 1, Y ∼ ∞, Z ∼ 1. X ∼ 1, Y ∼ 1, Z ∼ ∞. X ∼ inf, Y ∼ 2, Z ∼ 2.

(ix) (x) (xi) (xii)

X ∼ 1, Y ∼ ∞, Z ∼ 1. X ∼ 2, Y ∼ ∞, Z ∼ 2. X ∼ 2, Y ∼ 2, Z ∼ ∞. X ∼ ∞, Y ∼ 2, Z ∼ 2.

(xiii) (xiv) (xv) (xvi)

X ∼ ∞, Y ∼ 2, Z ∼ 2. X ∼ ∞, Y ∼ 2, Z ∼ 2. X ∼ 1, Y ∼ ∞, Z ∼ 1. X ∼ 2, Y ∼ ∞, Z ∼ 2.

(xvii) (xviii) (xix) (xx)

X ∼ 2, Y ∼ 2, Z ∼ ∞. X ∼ 2, Y ∼ 2, Z ∼ ∞. X ∼ 1, Y ∼ ∞, Z ∼ 1. X ∼ 2, Y ∼ 2, Z ∼ ∞.

(xxi) (xxii) (xxiii) (xxiv)

Figure 5: Symmetry Prediction Results

the network in our approach predicts a single prediction of∞.

Pose Estimation. Fig. 7 depicts successful results of our approach on the real dataset.
We also show the successful results on the validation set of the synthetic dataset
in Fig. 8, Fig. 9 and Fig. 10. For the input image shown in the left column, the depth
image of ground truth (GT) coarse pose, followed by top-4 predictions from our ap-



X ∼ 1, Y ∼ 2, Z ∼ 1. X ∼ 2, Y ∼ 2, Z ∼ ∞. X ∼ 1, Y ∼ 1, Z ∼ 1. X ∼ 1, Y ∼ 1, Z ∼ ∞.

(i) (ii) (iii) (iv)

X ∼ 1, Y ∼ 1, Z ∼ 1. X ∼ 2, Y ∼ 2, Z ∼ ∞. X ∼ 1, Y ∼ ∞, Z ∼ 1. X ∼ 2, Y ∼ 2, Z ∼ ∞.

(v) (vi) (vii) (viii)

X ∼ ∞, Y ∼ 2, Z ∼ 2. X ∼ 2, Y ∼ 2, Z ∼ ∞. X ∼ 2, Y ∼ 2, Z ∼ 2. X ∼ 1, Y ∼ 2, Z ∼ 1.

(ix) (x) (xi) (xii)

X ∼ 2, Y ∼ 2, Z ∼ ∞. X ∼ 2, Y ∼ 2, Z ∼ ∞. X ∼ 1, Y ∼ 1, Z ∼ 1. X ∼ 1, Y ∼ 2, Z ∼ 1.

(xiii) (xiv) (xv) (xvi)

X ∼ 1, Y ∼ 1, Z ∼ 1. X ∼ 1, Y ∼ 1, Z ∼ 1. X ∼ 1, Y ∼ 1, Z ∼ ∞. X ∼ 1, Y ∼ 1, Z ∼ ∞.

(xvii) (xviii) (xix) (xx)

X ∼ 2, Y ∼ 2, Z ∼ ∞. X ∼ 1, Y ∼ 1, Z ∼ 1. X ∼ ∞, Y ∼ 1, Z ∼ 1. X ∼ 1, Y ∼ 1, Z ∼ 1.

(xxi) (xxii) (xxiii) (xxiv)

Figure 6: Symmetry Prediction Results

proach. In the last column, we mention the distance of the best match from the top-4
predictions to the ground truth, dsymrot, best. The results have been sorted in decreasing
order of performance of dsymrot, best. We also draw a green colored box around the best
match among the top-4 predictions.

Failure Cases: We show the failure cases in Fig. 11. We draw an orange colored
box around the best performing match among the top-4 predictions. In some cases



(rows (a) and (b)) even though none of our top-4 predictions match with the GT, the
spherical distance can be very close to that of the GT.

Most of the errors are due to the coarse discretization (rows (d) and (f). If the actual
pose lies in between two neighboring viewpoints, some discriminative parts may not
be visible from either of the coarse viewpoints. This can lead to confusion in the
matching network. Failure cases in rows (c), (e) and (i) show that the top-k predictions
have similar orientation, but the differences in the intricate details is what differentiates
it from the GT pose. For synthetic objects, shadows and occlusions can make the
problem challenging (rows (g) and (h)).



Input GT Top-4 Predictions dsymrot, best

4.62◦

5.93◦

5.94◦

6.37◦

8.21◦

8.40◦

12.68◦

12.78◦

Figure 7: Successful Results: Qualitative results for pose estimation on the real
dataset.



Input GT Top-4 Predictions dsymrot, best

1.49◦

2.02◦

2.34◦

2.35◦

2.79◦

3.08◦

3.34◦

3.37◦

Figure 8: Successful Results: Qualitative results for pose estimation on the synthetic
dataset.



Input GT Top-4 Predictions dsymrot, best

4.19◦

4.23◦

4.26◦

4.42◦

4.76◦

5.85◦

6.52◦

6.96◦

Figure 9: Successful Results: Qualitative results for pose estimation on the synthetic
dataset.



Input GT Top-4 Predictions dsymrot, best

7.73◦

8.36◦

8.63◦

8.64◦

9.21◦

Figure 10: Successful Results: Qualitative results for pose estimation on the synthetic
dataset.



Input GT Top-4 Predictions dsymrot, best

(a) 8.61◦

(b) 9.75◦

(c) 15.38◦

(d) 15.78◦

(e) 17.05◦

(f) 21.14◦

(g) 39.77◦

(h) 44.65◦

(i) 87.49◦

Figure 11: Failure Cases: Qualitative results for pose estimation.
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