Introduction to Differential Equations (DE's)
September-10-12 2:01 PM

Algebraic equation: x> —3x +1 =0
Two numbers x4, x, make this an identity

DE for unknown functiony = ¢(t), t eI S R
- tisindependent variable
- yis dependent variable
’" ’ ’ d 1] " d? ”
y" —3y"+y =0wherey =d—¥=¢) (t)and y =d—t32/=¢) (t)
when substitute y = ¢(t) into DE, we get identities for t € [

Example: Newton's Second Law
d?y
m— =F
dt? .
F is force, may depend on t,y,d—};

For vertical motion of small object of mass m, known

Free fall:
m

F =-mg, g= 9.815—2
Solve the DE

d?y
"flﬁ
Yy =-g
Solve by using antidifferentiation

dy
i —gt1+ G
y(@) = —Egtz + Gt + G,

This is a two-parameter family of solutions

=—-mg

State of motion in mechanics is given by y(t) and % ®)

Given initial conditions at t = 0: y(y) = y, and % (0) = vy whatis y(t) att > 0?
Cl =7y

G =yo
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Modeling with DE's
September-12-12  1:39 PM Example: Free Fall
d?y
dt?
g is a given constant/parameter

General Solution to DE

Contains arbitrary constants General Solution
2

t
Initial Conditions (IC) y=-g5+Gt+ G

What it sounds like: initial conditions that allow the general Cl_and C, are arbitrary constants an_d they make this a general solution
solution to the DE to be fixed to a single result Itis a two-parameter family of solutions
Autonomous DE Initial Conditions (IC's) att = 0

d
The independent variable does not appear. y(0) = y,, d_y (0) = v,, given
In this situation we can introduce a new dependent variable t

dy Look at the general solution and find C; and C, in general solution to accommodate the IC's
for e where t is the independent variable. y(0) = C, = v,

y dy
—(t) = —gt+(y, ——0)=¢C =
Classification of DE's =9t a O =G=2
For some F: R™*? - R . .
M F(ty,y', .., y™) = 0isan n™ order differential PartlcularZSqutmn
equation. Generally non-linear y=-97 +vot + ¥,

dry which satisfies both the original differential equation and the initial conditions.
Where y(™ = o’ n=0,12.. As such, it predicts y(t) atany t > 0 and % (t)att >0
We solved an Initial Value Problem (IVP) — a DE plus IC's

Linear Differential Equation

ag(Oy™ +a; (Y™ + -+ a1 (Y + @Oy = g(©) Drag
Coefficients a;(t) are given functions of t as is the term g(t) Generalization of the model for motion in a field of gravity (2nd law of motion)
d*y dy
For g(t) # 0, this is a linear, non-homogeneous, n'" order a) mae = M9V
Differential Equation y is the friction/drag coefficient —always opposes motion
If g(t) = 0V t € I then the DE is called homogeneous. Changing Gravity
If y is "large", force of gravity is given by
G Mm
(R +y)?
d?y Mm dy
— = —G— —yy—
b mdtz (R+y)? vy dt
This equation is called autonomous since the independent variable t does not appear, only its
derivatives.
For a)
Introduce new dependent variable v(t) = % and write
(2 _
Mmooy =-mg —yv
dy
ac Y

So we now have a system of two first order DE's

Forb)
dv Mm
ma T CmRyo Y
dy
a="

Rocket burning fuel
Rocket burning fuel, expelled at (%) at velocity w relative to rocket

Mass of rocket:
m(t) =mg—rt
d?y Mm(t) dy

mO Gz =™ =GRy e
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Solutions
September-14-12 1:34 PM

™ F(t,y,y', ...,y(”)) =0

Explicit Solution
A function ¢ (t) that, when substituted for y in the DE (*), satisfies
this equation for all t € I is called an explicit solution.

Implicit Solution

Arelation G(x,y) = 0, for some G: R? - R is said to be an
implicit solution to the differential equation

F(x, v,y .. ,y(")) = 0, for some F: R**2 - R on interval x € [ if it
defines one or more explicit solutions on /

Solutions of 15t order Differential Equations
™ % = f(t,y) for some f:R? > R
Subject to the initial condition y(t) = v,

The Existence and Uniqueness Theorem
for the Initial Value Problem (IVP) (*)

If f and Z—; are continuous functionson R =

{(t,y)la <t <b,c <y < d} that contains the point (ty, Vo) then
the IVP (*) has a unique solution y = ¢(t) in some interval
a<ty—6<t<ty+8<b
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Explicit Solution Example
t2 dy
PO =—g5tnt+ro5=—g

Show that

m Y,
17=——y—g+(fe m

is a general solution for
dv

m-—+yv=-m
ac Ty 9
Implicit Solution Example
Show that relation x? + y? = c for some positive constant c is the implicit solution to
y%+x=0forx€1

Use implicit differentiation assuming y is a function of x
i(x2+ Z_o)=2x+2 ﬂ—0=2(x+ d—y)=0

dx y 4 dx y dx

x% + y? = c defines a circle so there are two explicit solutions:

y = V¢ — x2 for x € [—v/c,V/c]

Initial-Value problem for n'" order DE
F(t,y,..y™)=0,t el

General solution y = ¢(t) = ¢(t; Cy, Cy, ..., Cy)
In general, there will be n integration constants

Find (4, ..., C,, to accommodate n initial conditions:
y(to) = ¥o
y' (o) =0

y® D (to) = ym-1)

Example
Does the DE % =— % have a unique solution such that
a y =2 Xo=1,y0=2 _
Yes, for —/5 < x <5, y=+5—x2
b) y(1) =0, X =1y0=0 _
No unique solution. Both y = +V'1 — x? are solutions

General solution x? + y? = C

Solution Methods

Direction Fields for 1st order DE's

d . . .

d—’; = f(t,y), we can generate a picture of the family of solution curves that correspond
to general solutions.

. . . d
Look for isoclines with constant slope d—z =c

Example
dy  x
dx ~ y
_x
Y= c

Rays exiting from the circle are isoclines.

Autonomous Equations
For autonomous DE % =f()
1) Look for equilibrium solutions such that % =0.Solve f(y) =0

Example

dv

dt ~ g mv

W_os Y =05 v, = — 22 = Terminal Veloci
Pri g mv- vy = y erminal Velocity



Euler's Method

September-17-12 1:34 PM

Numerical Approximation for 15t-order DE's
Euler's Method

dy
IVP: T f&y),  yd =0
Find approximation for exact solution

y=9¢@®), ¢'©O=f(to®), Pto) =o

Use partition of t-axis
t, = tg +nh, n=012,.., h = step size

Linear approximation:
y = ¢(to) + @' (£ (¢ — to)
y=¢tn) + ¢ (tn-1)(tn — th_y1)

Approximation:
d(tn) ~
@' (tn) = f(tn»¢(tn))~f(tn:3’n)

Yn =Yn-1t f(tn—l:Yn—l)(tn - tn—l)

AMATH 251 Page 4

Example
Euler's Method for
y =tJy, y(1)=4, h=01

n to Euler's Exact
0 1 4 4

1 1.1 4200 4.213
2 1.2 4425 4452
3 1.3 4.678 4.720
4 1.4 4959 5.018
5 1.5 5271 5.318
Example

y=y, y0)=1

Evaluate y(1) using Euler's method
Exact: y = e, y(1) = e = 2.718 ...

N h y(1)
1 1 2

2 0.5 2.250
4 025 2441
8 0.125 2566
16 0.0625 2.638



Dimensions of Physical Quantities Free Fall

September-17-12 2:02 PM d_zy =F v = ﬂ
™dez ' dt
. . " N [ J 1— = LT
In mechanics, all physical quantities have dimensions of form dt t
MH# « Mass
L* « Length ldtZ] [ LT=?
TT < Time
|F| = l o ZJ MLT 2
Consistency Requirements
1) Dimensional Homogeneity of equation:
May only add, subtract or equate quantities that have the same Work
dimension. W = dey
2) Quantities having different dimensions may only be combined by
multiplication of division (W] = UF dyJ — [Flly] = MI2T2

Notation for quantity Q has dimension [Q] = MKIAT®
Free fall with Drag

A+ B =I|C] = [A] = |B] = [C] dv
[AB] = [A]|B] m—-=-mg—yv= force
l J — AJ Dimension of drag coefficient
B ] = [F] MLT 2 -
W=~ r+ =
Dimensionless time Using dimensionless time:
v' = —g — L v notice v(t) = u(r)
y _1m dv _dudt vy ')
bl =7 dt —drdt m.
Y, 14
- : : —u'(1) = —g — —u(7)
Define dimensionless time: m m
— Y d—u- =u= —m
T= Et dr )
)4
tl=|—t|=1
1) =[]
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Solving First Order DEs

September-19-12 1:25 PM

Types of 1%t Order DE's
That can be solved analytically
dy
a - f(x, }’)
1) Separable Equation
fGy) = g)p(y)
2) Linear Equation

dy _
Tx +P(x)y = Q(x)

3) Exact Equation
M(x,y)dx + N(x,y)dy =0
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Separable DE

1
Letp(y) = )

fy) = gp(») « [h(y)dy = g(x)dx|

LetHO) = [h)dy,  60) = [ gGax

Solution is given by
Hy)=6()+C
In general this is implicit

Example

xdx +ydy = 0 & xdx = —ydy
a2 — _ 42 K
2T T
x2+y2=C

Example

Recall example of a body experiencing gravity and drag force

dv y

—=—g——0, tp) =0

dt 9 m v v(to)

Define dimensionless time 7 = —t

v(t) = u(r), where T dtd

Define terminal velocity
mg
vy = —
Ty
so that
du
dr

du
=—|drt
u+ v,
Influ+v=—-1+K
lu + v;| = eKe™®

—ve—u

v, +efe ™, u>-v,
—v,—eXe T, u<-v,
Define C = +CeX,C € R
u(t) =—v,+Ce™™

Y
v(t) = —v, + Cem®

_Y _r .
v(t) = voe mt — v, (1 —e mt), lim v(t) = —v,
t—oo
Stable equilibrium solution where % =0=2v=—v

Population Growth
y = number of species at time t = 0 with y(0) = y, > 0
Simple equation of growth withrate r > 0

dy
a7

K is the carrying capacity of the system

This is an autonomous equation, there isno tin f(y) =r (1 - %) y

Equilibrium solution:

r(l—%)yzO—){;;l:z

f'(K) = —r < 0= Stable

f'(0) =r > 0 = Unstable

Stable equilibriums have f(y) < 0 unstable have f(y) > 0
d

d’f’ =r (1 - %) y by separable variables

Solve
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[Erreraild|
——~=r|dt
_Y
y(1-%)
Partial fraction decomposition
1 1 1

(1-2) vy y-kK

y(1-%) ¥ 7

Inly| —=Inly — K| =rt + C;
y

In |__IZ| =rt+(

yy -
A +eclert — Czert
y-K —
K .
y= 1—_C—3€_—rt general solution

where C; = 1/C,

Initial Condition y(0) = y, =
Ky,
Yo— (o — K)e™"t

y:

Second Order Des with missing independent variable
dzy dy dy
g—ﬁ =F (y,a), no t soletv(t) = It

v

I F(y,v)

Letv(t) = v(y(t)) and use chain rule.

Chain rule:

dv dvdy dv dv 1F( ) ind dent
—_—=— = —_—0 — = —

it dydr v oo dy v Y, V), y independen
In mechanics, F(y,v) = f(v) separable DE

w_f&)

dy v



More SOlVing In ;rzlschanics, 2™d Newton in 1-D

September-21-12 1:37 PM mo5= F(y), missing independent variable t

dy

ac '

L) © = v(y(©)

Existence and Uniqueness Mge = 7Y assume vl = vy

v _dvdy _ 2 o vindependent”
Theorem at —ayat - Vay’ Y ndep
dy dv
I ft,y) =—-P(t)y +Q(t) mvd—y = F(y), separable eq

af _ _
fey)yand = -P©) mfvdv: fp(y)dy
2 2

If P(t) and Q(t) are continuous in mv = —)
interval I containing the initial point t_0 2 +UQ) =€ = const =m 2 +UGo)
then there exists a unique solution to Uly) = — f F(v)d
IVPforallt €] ») (dy

Conservation of energy
ICatt =0,y(0) = y,,v(t =0) =v(y =yy) = vy

Solve for v(y) = W(y)

Subinto 1
dy
i W)

Solve as separable DE
dy

——=t+C
w(y) 2
Escape velocity
d?y Mm
—=—G-——=—=F
M ez (R+y)? 2
U GmM
= =——
Y R+y
mv>  GmM _mv§ GmM
2 R+y 2 R

Minimum speed to send rocket to space
escape velocity:

Cases of DE's that may be converted to separable DE's
Homogeneous
1) Example
dy
dx
Use substitution
y(x)

206 ==

Assignment Q1

= =9(%)

X

d
2) d_ic] = g(ax + by),a,b = const
Define Z(x) = ax + by(x)

Linear Equations

dy
=Py +0QW®

given function of t

ICy(ty) = to

Solve by Method of Integrating Factors

(see problem 39 in Sec.1.2, page 26 for Method of Variation of Parameters)
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Bernoulli's equation

d
d_Jt/ =p)y=2ty",r+1
Define z(t) = y'~7(¢),

d
d—i + (1A -rp)z=>0-r)y()
Assignment Q2
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Exact Differential Equations
September-24-12 1:28 PM

Exact Equation
(*) M(x,y)dx + N(x,y)dy = 0

This differential equation is called an exact equation
if there exists a F(x,y) thatis C! such that
) OF (x,
)__ (xy) and N(x,y) = ( y)

Its general solution is given by F(x, y) =C

Test of Exactness

Let M(x,y), N(x, y) (x V), and — (x y) be
continuous functlons on a simply- connected domain D
inR?

Then M (x, y)dx + N(x, y)dy = 0 is an exact equation
if and only 1f (x y) = (x, y)inD
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Exact Solution Proof

If y = ¢p(x) is a solution to (*) then upon substitution into F(x,y) = C, use Chain rule

F(x,qb(x)) =C
d
i Fay =0
aF LOFOy _
ox ay ax
dy dy _M&xy)
M(xy) + NG y) dx 0 dx~  N@&y)

Proof of Test of Exactness
Show f exact, then there exist F, M = Z—i and N = %5

y

Differentiate
oM 9°F
6y 6y0x
N _ 9*F
ox 6x6y

a2F
Since —— Pyox and ﬁ are continuous
Other way

Assume—(x y) =M(x,y) and (x y) = N(x,y)
Integrate with respect to x, keep y fixed.

Flx,y) = f M(x,y)dx + K()

Define Q(x, y) such that (x y) = M(x,y)

oF _9Q oo
a—y—(x,y) = a—y—(x.y) +K'(y) =N(x,y)
Use this to determine K (y)

) = _%
K'(y) =Ny 3y ()

This must be independent of x, derivative with respect to x must vanish.

d aQ oN oN 920 N b
a-[N(x,y)—Ey(x,y)]—a(, ) — axay( x,y) = x(X.y)—gy—a;(x,y)—a(x.y)—@(
_ON M _

Toax  dy

Example

Solve the differentiation equation

ay x> —y 2

4 —x)d 24 x)dy =0
oy ¥ e (y—x)dx + (y* + x)dy
M=y-x* N=y’+x

Test for exactness

i-(y—xz) =1 =—6;M(y2 + x)

Integra’cea (1) =y—x?

F(x,y) =xy—1x +K©)

Z—f}-(x,y) aay(xy—lx )+K’(y) =x+K'()=y*+x
K@) ——i+C

Putting together
3

F(x,y) = y—+xy——+C

Initial condition: (x,y) = (0,0) gives C = 0

a0

ax

)



Second Order Differential Equations Modelling with 2nd -order DE's with constant coefficients
September-24-12  2:10 PM Mechanical sprint -mass oscillator

E

dzy dy dy > I:a"(k
qe2 =F(t'Y'E)r1C}’(to)=t0ra(to)=y1 m
~N,
| /
Standard Form of Linear Q
(Non-Homogeneous DE)
Y +p@y+ 9@y =f© | g

Given the three functionsp, g, f of t

Standard Form of Linear With Constant Coefficients

ay" +by' +cy=f(t)
a, b, ¢ are constant

F,,; external force

E,. restoring force of spring

F, drag force

Origin is the equilibrium position (unstretched spring)

E. = —ky, k = spring constant
Y

Fy=—-y—,
d 14 dt

Displacement of the mass m from equilibrium position follows 2 Newton
2

dy
m——= =F +Fg+ Foxt

y = drag coefficient

d%z
d®y dy
mﬁ + }/E-I- ky = Fext(t)

y' + 6y +wly=g(t)

6= o= damping factor
k .
w= o frequency of oscillator
[6]=lw] =T
g0 = Fe®

m

Linearization of Pendulum

443% -
Ny
AL

Linear Displacement
y=160
Forces acting tangentially
Fy= o _ L
a= Vg TV M ae

F. = —mgsinf

d?y
mw =F +Fg+ Foxt

do do .

mL a2 + YLE +mg sin 6 + F,,.(t)
But this is not linear — sin 8

For small angular displacements: |y| < L, |6] < 1
3

. ¢
sin 6 —9+?+~--

Drop all powers but the leading one

sinf = 6
0" + 680" + wbh = apy ()

F, t)
6= E' w = Zr Aoyt (t) = EmL

Initial Conditions
y(0) =0,y (0) = v,

Electrical Oscillator: Series RLC Circuit

AMATH 251 Page 11



L = inductance
C = capacitance
R = resistance

State of the RLC circuit is defined by
q = charge on plates of capacitor
i = current through circuit
Lg] = C, units Coulomb
. dq
L dtd ol
. q q
[i] = || ===
dt [t]
e(t) = given source of voltage
le] [UJ lenergy]l MI?T2
el=|—|=— =
q Lal ¢

CT™1

= MI*T~2C™!

Kirchhoff's Voltage Law ]

e(;q: ) ;qVC;UR ) L%+%+Ri
LE +RE+E: e(t)

q"+68q +wlqg=g@) (»

EZZ-, w:\/%, g(t):e—(LE)—

Initial Conditions

dq .
q(0) = qo, E(t) =l

Equivalent DE for Current
dq

i(t) =—(¢

i©) = (0

Differentiate (*)

i"+6i'+wii=g'(t)

Initial Conditions
. dq .
i(0) = E(O) = loz

di d?i
i'(0) = —(0) = — =2
(0) = 2:(0) = 75 (0) =
To geti’(0), sett = 0in (*)

e(0) R

'(0) = ¢"(0) = q(0) = 8q'(0) = @?q(0) = == =Tl — @0
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Theory of 2"? order linear DE's

September-26-12 2:08 PM

d? d
T2 =POT Oy = f© ()

Initial Conditions y(ty) =Yy, y'(ty) = Y; (%)

Existence and Uniqueness Theorem

If p(t), q(t), and f(t) are continuous functions on some interval I,
which contains ¢y, then there exists a unique solution to the
differential equation (*) for all t € I; which satisfies the initial
conditions.

Linear Operator
Define linear operator

. d? d
L=—+p@®)—+q(t
dtjrp( ) ta®
(x) & L[y] = f(t) « Non-homogeneous equation
L[y] = 0 « Homogeneous differential equation, when f(t) = 0Vt € I

Theorem

If y; (t) and y, (t) are sufficiently differentiable on the interval I and
C; and C, are any constants then

L[Ciy1 + Gyl = G L[y ] + CoLIys]

Corollary (Superposition Principle)

If y; and y, are any solutions of the homogeneous DE L[y] = 0

then the linear combination y = C;y; + C,y, is also a solution to that
same DE.

Linear Independence
Two functions y; and y, are said to be linearly independent on
interval I iff neither is a constant multiple of the other.

Fundamental Set (Basis)

If y; and y, are solutions of the homogeneous DE (*) that are linearly
independenton I then they are said to form a fundamental set, or
basis, of solutions.

Theorem: Representation of General Solution to (*)
Representation of general solutions to homogeneous, linear, second-
order differential equation.

If y, (t) and y, (t) are linearly independent solutions of linear DE ()
on I, then every solution of that equation is give by

y(6) = C1y1(6) + Gy, (1)

where C; and C, are arbitrary constants that may be determined from
the ICs (*x*)

Comment
ty € 1,Y,, Y are arbitrary.

Wronskian
The Wronskian of two functions y; and y, is defined by

W)@ = P10 0] = 5,000 - 0%

Abel's Theorem for Wronskian
For any two solutions of the DE (*), y; (t) and y, (t)
2

. d d R R
L=—m+tp@+9®,  Lhnl=0 Liy]=0
then

Wlyy, yol(8) = Ce~ TP, C = const

Corollary
Wly1, y21(t) is either never zero or always zero on I

so the value of C = W{y,,y,](t,) depends on point t,
Theorem

If y, (t) and y, (t) are any two solutions of (*) on I, then they are
linearly dependent on [ iff their Wronskian is identically zero on I.
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How to represent every (general) solution to 2" order homogeneous linear DE

A) Need y,; and y, linearly independent
Forget solutions to (*) which are identically zero on I (trivial solutions)

Note

Ify(t) = u(t) + iv(t) is a complex-valued solution of DE (*) with real-valued coefficients,

so are its real u(t), and imaginary iv(t) parts.

Proof of Theorem (Solution to IVP)
y(to) = Cry1(ty) + Gy, (k) = Yo
Y'(to) = Ciy1(to) + Gy (o) = 1y

Yo y2(to)

Y1 y5(to) _

y1(to) ¥2(to)

y1(to)  ¥2(to)

C, = I _ Yay1(6) = Yayi(to)
270 Wlyy, y21(to)

_ Yoy3(te) — Yiya (o)
Wlyy, y21(to)

1=

Proof of Theorem
1) Assume y,(t) = Ky, (t)
Wly1,y2] = y1 (OKy1(0) — y1(OKy, (£) = 0
2) WIlyy,y,] = 0. Assume that y, (t;) # 0 for some t,!
Th Wiy yl®) vy —y1y. _ d (y2)
2 - 2 ~ar L.
yi(@© Yi dt \y;
t
= ﬂ—) = const = K
Yi(t)
= y,(t) = Ky, ()

Proof of Abel's Theorem
ForLly] =0
- 2 d
I=— —
i +p() at q(®) )
If y; and y, are solutions to L[y] = 0 then
Wiyl =
Y1 Y2
is given by

w(t) = ce~Ip®at — W(to)e_I:o p(s)ds

=Y1Y2 —V1Y2

Proof

y1 + py; +qy1=0

y2 +pry2 +qy. =0

dW ! ! I n ! !

E =Y1Y2 tY1Y2 — Y1 Y2 —Y1Y2

=y1(0 +py2 + qv2 — Py — qy2) — 1 + Y1+ ay — py1 — QY)Y
W' = —py1y3 — qy1y2 + pY1Va + qy1y2 = —p(1y2 — ¥1y2) = —pW(¢)

‘Z—'f = —p(OW (L) = W(t) = ce=/P()ds



Solving 2™ order DEs with constant coefficients
October-01-12 1:32 PM

Fundamental Solutions

Find the fundamental solutions to

ay" +by' +cy=0, a # 0, b, c are constants
- y1(t) and y,(t)

Assume solution in form y(t) = et with A being a parameter
y'(t) = e, y'(t) = 12eMt
S (@ +bi+c)er=0>al>+bl+c=0
Solve the characteristic equation (auxiliary equation):
arl?+bAl+c=0= 1y, =%(—bi\/ﬁ—4ac)
These two roots give us y; (t) = et1t, y,(t) = ef2t
These are linearly independentiff 4, # 1, & b? # 4ac
1) Distinctreal roots, b > 4ac
2) Distinct complex roots b? < 4ac = A1, = utiv
Y12 = eFtelVt = ekt(cos(vt) + i sin(vt))
Use y; = et cosvt, y, = e#sinvt
3) Equalroots, A, = A,, b? = 4ac

Example

Solve the IVP for

y'=y'=2y=0, y(0)=1, y'(0)=0
Characteristic equation
A—1-2=0>1,=21=-1

General solution:

y = Ce?t + Cret

y0)=C;+C, =1
y'(t) =2Ce? — Cret =y’ (0)=2C;—C, =0
1 2
Ci==,0,==
173273
and the solution is

y(t) = % (e?t +2e7h)

Example
y'=2y"+5y=0, y(=1y(0)=0
A2-21+45=0, Ap,=1=%i2
y(t) = Cret cos(2t) + Cpet sin(2t)
y(0)=¢ =1
V' (t) = (Cy cos(2t) + C,sin(2t))et + (—2C; sin(2t) + 2C, cos(2t))e’
Y'(0)=C +2C,=0
1

sz—E

We only have y; (t) = e?1t

Use reduction of order, assuming 1
y,() =Ky, (t) > K({t)=t+C y(t) = et (cos(Zt) - Esin(Zt))
Alternate method

Assume A, = A; + €,andlete - 0
General solution:

y(t) = creMt 4 cpet2t = (¢p 4 cpet)etrt
Expand with Maclaurin series

€? €’
y(t) = (C1 +Cy + Coet + Cz7t2 + szﬁ + --->e’11f

How can we write this as
y(t) = Aet cos(2t + a)

cos(2t + a) = cos(2t) cosa — sin(2t) sin a

y(t) = et g (COS(Zt):/Z_—S —sin(2t) \%) = get cos (Zt +arctan G))

C; and C, depend on € so that

lim Cye = K, = finite const

€0 - Example

Ll_r)r())(Cl + C,) = K, = finite const y'+2y'+y=0 y(0)=1y'(0)=0
y(£) »eso KieMt + Kytetzt AP4+224+1=QA+1)%=0=21=2,=-1
Conclusion y(t) = Cre™t + Cote™t

If y,(t) repeats y, (t) then just multiply y, (t) by a single factor of t y(0)=C =1

V' (t) = —Cie ™t + Ce™t —tCre™t

. . Y0 =-C+C=0C=C0=1
Ton-Homogenfousdlz.mear Ecziuatlon YO = (1 + et
LIyl = f(v), L :F+p(t)a+q(t)

Let yp(t) = Cyy1(t) + C,y,(t) be general solution of associated linear
equation: e.g. L[y] = 0

and let y, (t)be any particular solution of the non-homogeneous equation

Z[Yp] =f(®)

Then the general solution of the equation is
y(@) = yn(®) + ¥ (1)
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Superposition Principle for Non-Homogenous Linear DEs

October-03-12 1:26 PM

General Solution to Linear Second Order Non-Homogeneous DEs
Lyl = f(®
2 d

. d
L=z +p® +a®
yr(t) = v, (t; ¢4, c;) = general solution of associated homogeneous equation
Lly,l =0 .

¥p (t) = particular solution ofL[yp] = f(t)

Then the general solution of L[y] = f(t) is
y(©) = yp(t; 1, c2) + y,(8)

Comment
If£(8) = f1(t) + f>(t) and y, (£) and y,, (t) solve L[y, | = £ (t) and L[y,,] =
f2(t) then y, ) = ¥y, (£) + 3, (£) solves Ly, ] = £(8)

Method of Undetermined Coefficients
DE with constant coefficient
ay'" + by’ +cy=f(t), a # 0,b,c = const

Iff(t)is
e polynomial in t
* exponential e*!
¢ sin(ft) or cos(ft)

e or product of the above

Use Method of Undetermined Coefficients
1) f(t) = t™, assume y,(t) = Ag + Ayt + -+ + Apt™
2) f(t) = e** assume y,(t) = Ae**
3) f(t) =sin(Bt) or f(t) = cos(pt) assume
¥p(t) = Acos(Bt) + B sin(ft)

Exception

If £(t) reproduces any of the functions in the basis of solutions v, (t), y,(t) to
the homogeneous DE, then just multiply your assumption for y,(t) by a
single factor of t.

Method of Variation of Parameters (or Constants)
fory" + p(®)y’ + q(®)y = f(t)

If we have a fundamental set of solutions y, (t), y, (t)
Recall yy, () = c1y,(£) + +c272(t)

To find particular solution
Assume y, (t) = K; (£)y;(t) + K, (£)y,(t)
Need to determine functions K;, K,

Yp(8) = K{(©)y1 (1) + K3 (D), (8) + K1 (O)y1(£) + K, (£)y,(t)
Assume K{ (£)y;(t) + K5 (£)y,(t) = 0
¥y () = K{(©y1(8) + K (0)y3(8) + K1 (D1 (0 + K2 (0)y3 (8

Sub into initial DE

Yo oYy +qy, = f(6)

K (1" +py1 + qy1) + K. (07 + pys + qy2) + K{(0)y1(8) + K5 (0)y,(8) = f(b)
K{(®y1 () + K;(Dy,(t) = £(t)

1) K{(®y1(0) + K30y, (&) =0
2) K{(Dyi(®) + K3 (0)y; () = f(©)

Wronskian W [y;, y,] = y1 (£)y5(t) — y1(£)y,(t)

e Y2(Of ()
O TR L0)
Ko - OO

Wlys, y21(6)

Quiescent Initial Conditions
Compare solutions to the IVPs
) y'-y-2y=0, »0=1 y(0)=0
o2t 2 -t
= y(t) 3 et + 3 e
2) y'—y-2y=e7t y(0) = -1, y'(0)=0
t

4 5
= y(t) 2662t+§e“—§e‘t
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Example
Findy,(t) toy"” —y' —2y =3t

Lety,(t) = At + B, A, B are undetermined coefficients
w® =4, yw®=0

W —yp—2y=—-A-2(At+B) =3t
t(2A+3)+A+2B=0

Since t and 1 are linearly independent functions

3 3
2A+3=0, A+ZB=O:A=—E, B=Z

3 3
() = 5ttty
Example
y'—y' —2y=et

yp(t) = Aet,  y,=Ae',  y =Aet
DE: (A—A—2A)et =et

1
(2A+1Def=0=4=—

1
yp(t) = _Eet

Example

Y-y —2y=e”
yp(@®) =4et, Yy () =—4e”t,  y'() =A4e”t
(A+A-28)et=et

t

What went wrong?
Recall: linearly independent solutions of the associated homogeneous DE
were 1 (t) = €%, y,(t) =e~*

Fory” —y' — 2y = e~ assume y, (t) = Ate™*
) =A1 —t)e™t,  y (@) =A(=2+0)e"t

1
A(—2+t—1+t—2t)e‘t=e‘t:>A=—5

t —_
yp(t) = _§e ¢

Example

Solve IVP for

y'=y' =2y=e"t, y0=1 y(0)=0
V() = 131 (8) + 2, (t) = cre? + cpe™t

t —_
yp(t) = _§e ¢

y(©) = yp(®) + y, (6
y(0)=c;+c;=1

1-t
e—t

y'(t) = 2c,e?t — cet —

1
y’(0)=261—cz—§=0
4 5

6126,6225

4 5 t
. Xt 2 e b ¢
= y(t) ge’ tge Tt tze
Example
y'+2y +y=e"
Recall }; = A, = —1,y;(t) = e7¢, y,(t) =te™?
yp(t) = At?e™t

t

Example
""—y' — 2y =sint
¥p(t) = Asint + B cost
¥p(t) = Acost — Bsint
yp' (t) = —Asint — B cos t

(—A+B —2A)sint+ (—B—A—2B)cost =sint
—34A+B=1-3B—A=0
3 1

=1 B=1w

1 .
() = E(cost —3sint)



2) y'—y—-2y=eTF, y(0) = -1, y'(0)=0

4 t
_F e 2 et ot
=>y(t)—ge +9e 3¢

Difference is solutions of the IVP y"' —y' — 2y = e~%, y(0) = 0,y'(0) =0
With 0 for initial conditions, called Quiescent initial conditions.

4 1 5 2 t
(X _ 22t (2 _f\,-t L -t
Yo® (9 5)16 + (9t 3)e 3°

S 2t -t _
Yo (t) g€ g€ 3¢

¥0(0) =0,  y,(0)=0

Solution to the IVP with Quiescent initial conditions. y(t,) = 0, ¥'(t,) = 0

Integrate formulas for K{, K; such that K;(t;) = 0,K,(t;) =0

 [(n@f@
Ky () = LO—W(T) dr

t
Kz(t):f n@f@
to

wW(r)
Recall y(t) = K, (£)y,(t) + K, (t)y,(t)

Green's Propagator
t
v = [ s
to
y1(@y () — y1 (), (1)

Gn = Y1 (@5 (1) — y1 (Dy,(7)
~ R d? d
Llyl = f(t), wherel = =t ”(t)ﬁ +q(®)

G(t,7) serves in some sense as an inverse of Z[y]
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1 .
RAGES E(cost —3sint)

Example of Method of Variation of Parameters

. 1
Find y, (t) fory"’ +y = csc(t) = prves

Fromy” +y =0, 22+ 1=0, A1, =+i
vy, (t) = sint,y,(t) = cost

Y1 Y2 sint cost .
Wt=| |=| DY | =—sin?t—cos?t=-1
© yi Y3 cost —sint
y,f cost
Ki(t)=-"=——
HO) W T sint

cost )
K (t) = mdt =—In|sint|

yif _ sint

K®=- w sint

K,(t) = —t

¥p(t) = K1 ()y1(6) + K2 (£)y,(t) = sintIn|sint| — tcos t
Example - Multiplication by t for constant coefficients
Find y, (t) fory” —y' — 2y = et

Recall y; (t) = e?t, y, = et

Use method of variation of parameters
W(t) = —e?te™t —2e%te™t = -3¢t

et 1
K{(t) = ——Sefe_t = §6‘3t

e?t 1
Ky(t) = 3676_t =-3

1 t
Kl(t)z—ae‘“, Kz(t)=—§

1 t 1
o T om3tp2t Dt — -
Wp(0) = —ge e —e 5¢

but e~ is linearly dependent on y, so

t -t

_ge
t

t —_
Yp(t) = —56

1
Ya(t) = cre? + (Cl ——) et



Oscillator DE and Resonance
October-10-12 1:31 PM

Recall: mechanical and electrical oscillators
¢ Mass on spring, possibly damped
d’y = dy
mﬁ +}/E+ ky = Fext
e RLCcircuit
L d2i+Rdi+ 1. de(®)
a2 tat et T Tar

Both systems are described by
Yy +2{wy’ + w?y = f(t)
where y(t) = y(t) or i(t)

F, 1de(t)
f@) = ;_n‘ oL
|k 1
w= - Or\/T_C
w = natural frequency
y R 1
= ovim "2V

{ = damping parameter. Normally { > 0

Assume harmonic forcing
f(t) = F cos(Qt)

F = amplitude, F > 0

Q = frequency

Free Oscillations

First consider free oscillations with f(¢t) = 0
The associated homogeneous DE

Y+ 2wy —w?=0

Aside: we could use dimensionless time T = wt

A +2lwr+w?=0

dz=—w (( + \/ﬁ)

Determinant cases:
1) ¢ > 1: overdamped motion of oscillator

() = Cle—((_‘/ﬁ:l)wt + Cze_(5+\/ﬁfl)wt

2) ¢ = 1:critically damped oscillator
yr(t) = cie™“tM + ¢ te @t
3) ¢ < 1:underdamped oscillator

yr(t) = et (cl cos (\/ 1- (Zwt) + ¢, sin (\/1_—_57(1)15))
= ce "t cos (\/_Tﬁwt + F)
¢; and ¢, are determined by initial conditions: y(0) = y,, y'(0) = v,

Forced Oscillations
f(t) = F cos(Qt)
¥+ 20wy + w?y = f(t)

General solution: y(t) = y, (t) + yp(t)
Yp(t) = Aq cos(Qt) + A, sin(Qt) = Acos(Qt — ¢p) = A cos(Q(t — o))
Undetermined amplitude, phase shift

Steady-State Response
Since y, (t) persists, ¥, (t) is called steady-state response.

Transient Response
Since y,, (t) — 0, it is called the transient response of the system.
The initial conditions are "forgotten".

Solving

To determine 4 and ¢ assume complex-valued solution Y (t) = y(t) +

iz(t)
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y" + 2{wy’ + w?y = F cos(Qt)
iz" + i2{wz' + iw?z = iF sin(Qt)
Y +20wY’ + w2Y = Fel®t

Find particular solution ¥,,(t) and take y, (t) = Re[Yp (t)] = Re[yp )+
izp(®)] , ' ,

Assume Y, (t) = ae'®t where a = |a|e! ¥9(@ = e~ = Y, () =
Aei@t-9)

Re[Y,(t)] = Acos(Qt — ¢)

Yy (6) = iQAe! Q=)

Y,y (£) = Q2409

(02 + 2i{wQ + w?)Ae' O = Feit

(w? — Q% + 2i{Q)A = Fe't = F cos(¢) + iF sin(¢)
=

(w? —Q%)A =F - cos(¢)

2{wQA = F - sin(¢)

l(wZ _ QZ)Z + 4(20)202]142 — FZ

Solution to Forced Oscillations
F

T J(wZ—02)? + 420202

QZ
$ = acos (J(wz —02)? + 4{2w29.2>

Remark: Notation in textbook
a=F-G>iQ)
= |a| = FIG(IQ)|

GGl =5 = — 2
@) e

Analyze this as function of "reduced” frequency%

Resona nce
For0 < ¢ < , there is a local maximum in the plot of |G (iQ)|.

This is the resonant frequency.
1
If¢> =

Zero Damping

(=0

y" + w?y = F - cos(Qt)

Y () = ¢; cos(wt) + ¢, sin(wt) /- 0
Persists for all t

Yp(t) = Acos(Qt — ) =
Alw?-02%) = Fcos(d)) =

0z — cos((t)

Recall
2{wQA = F sin¢

General solution
y(©) =y () +y,(©)

What happens as Q = w
"Borrow" part from y;, (t) and consider quiescent system
y(0)=10,y'(0)=0

F F
Ya® =7 r O~

sin(Q;wt).sin(Q;wt)

O—w QO+ w

cos(wt)

yq() = 2F

Beats
¥q(t) consists of a large amplitude and large period sine wave filled with a
small amplitude wave. These are known as beats

F
V() =0 5o t sin(wt)

This is a linearly-increasing amplitude sine wave.
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Resonance Amplitude

V(1 —x2)%2 +4(0)x2
1

V(@ —x2)? + 4(0.25)2x2
1

V(1 —x2)2 + 4(0.5)2x2
1

Ja-rra(g)s
1

V(1 —x2)2 + 4(1)2x2
1

V@ = x2)2 + 4(2)2x2

Ay
9,75 L 9,75
£.5
3.25
. ! 0
| 0
|
Resonance Phase
( (1—-=x2)
arccos
V(@ = x2)2 + 4(0)2x2
( (1-x2)
arccos
V@ —x2)2 + 4(0.25)2x2
( 1-x%)
arccos
V(@ —x2)2 + 4(0.5)2x2
(1-x2)
arccos
<\](1 —-x2)2 + 4(\/—_)2352
( (1—x2
arccos
Ja—x27+ 4(1)2x2
( (1-=x2)
arccos
WA =22 +4(2)%
] T
0 270

A



t) = ey =— t sin(wt T T T T T T T T T T T T T T T T T
yq( ) Q-w 20 ( ) | 570 0 1 2 3 .
This is a linearly-increasing amplitude sine wave.

=t

— —gi { { { { —40

AMATH 251 Page 19



Systems of First Order DEs

October-15-12 1:55 PM

Phase Portrait
The phase portrait of the solution is the description of a
solution to the DE as a circle on the y and i plane.
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Homogeneous Undamped Oscillator
Solve IVM for homogeneous equation
y'+wly=0,  y(0)=y,y'(0) =v

Characteristic equation

M +w?=0> 1, =+tiw

Y () = y(t)c; cos(wt) + ¢, sin(wt)
Yo =1¢C1=Yo

y'(t) = —wc, sin(wt) + wc, cos(wt)
y'(0) = wey, = vy

y(t) =y, cos(wt) + %sin(wt)
v(t) = vy cos(wt) — wy, sin(wt)
y(t)
v(t)
y(t)] _ [ cos(wt) sin((ut)] F;g]
w

v(®) —sin(wt) cos(wt)
w

The vector ] defines the state of the system at time t > 0

=

Describe the state for the system by a curve in the (y, g) plane.

Rewrite y"' + wy = 0 as a system of equations for state variables
dy

ac "V
D = v _ k
dr @YoM TTY
dy
diy®) _ldel_1 0 1y
&[V(t) = |av =|_or ol &9
dt

Define the vector

N 4]
0 = v(t)]

so the system (*#*) becomes

dx(t) , 0 1
T M x(t) where M = [—w2 O]

This looks like a separable equation
x(t) = eMtx(0)
Matrix exponential:
1
e[—z)z é]t _ [ cos(wt) Zsin(wt)]

—wsin(wt) cos(wt)

y@®) = [y¢+ (%)2 sin(wt + &)

U(t)_ 2 Vo 2
i y0+(w) cos(wt + &)

where & = arcsin [ —22= 2
i)
v Vg2
24 (2} = -0
=7 +(5) =+ ()
This is a circle on the y, — % plane. Phase portrait

Recall w = \[E
m

Multiply by S and obtain

2 2 2 2
y v Yo Vo
k¥—+m—=k—+m—
2 2 2 2
This equation represents conservation of energy.

2



Laplace Transform Consider the oscillator DE y"’ + w?y = f(t)
f (@) = periodic forcing
October-17-12 1:38 PM

Example:

Integral Transform
An Integral Transform is a linear operator that maps
functions y(t) € V,, to functions Y (t) € Vy, defined by

B
Y(s) = L K(s,t) - y(t)dt -F(f_]

a, B
K (s, t) is called the Kernel

Laplace Transform
; +

Laplace transform of f(t), defined on t € [0, ©) is the
function F(s) defined by

F(s) = J’ e StF(t)dt How do we solve this?
0 1) Undetermined coefficients
for solutions over intervals when f(t) is continuous

Note .
2) TheG 's funct
In this course, s is real but in general it is possible that s € ) € reents unetion
C yq(t)=f G(t—s)-f(s)ds
0
Notation What about higher-order linear DE's with constant coefficients ?

These arise with coupled oscillators.

F(S) = L{f(t)} y(n) + an—ly(n_l) 4ot alyl + apy = f(t)

The domain of definition of F(s) is the set of all s values for
which the integral exists (converges).
Note: since F(s) involves an improper integral

A
F(s):/}mf e Stf(t)dt
0

3) Can use undetermined coefficients
AMtap A+t @At ag=0
This has n complex roots

4) The Green's function, but what is G (¢t — s) for the n-th order DE?

Note

L is alinear operator
L{ci f(O) + +c29(0} = o1 LIF(O} + c2L{g (O}

Example PWC Function with Jump Discontinuities

Piece-Wise Continuous U—e
A function f(t) is piece-wise continuous (PWC) on finite
(bounded) interval I c R if it is continuous at every point

of I except possibly for a finite number of points¢; €1,
where f(t) has (finite) jump discontinuities. /

| -
That is, ~

lim f(¢), lim f(¢)existbut lim f(¢) # lim f(t)
t-t; ¢_>t;.r tot; t_>t]+

Exponential Order
Exponential Order P
Example

A function f(t) is said to be of exponential order « if there F() = e7t - cos(2¢) is of exponential order 7
exist constantsa, M > 0,T > 0, such that IF (0] o7t

If(O < Me* fort =T ot = oat |cos(2t)| < e’ *<1fora>7

Equivalently, [f(t)| € 0(e®")

Example
. t) = t7 is of exponential order

Theorem: Existence of £ {f((z)l P
If £ (¢t) is piecewise continuous on some finite interval [0, T] —at t7e” % < t7 e Ftmax
forany T > 0 and f(t) is of exponential order a, then
L{f (t)} exists for all s > « Example

X f@® = et? is not of exponential order
Existence of Laplace Transform 1G] :

1) f(t) is piecewise continuous (PWC) on [0, T], and pat t-at

2) f(t) is of exponential order a This is unbounded
then
F(s) = L{f(0)} = f eStF(t)dt Proof of Theorem

0 Sketch

exists fors > a

[oe) T o)
f e Stf(t)dt =f e_“f(t)dt+f e Stf(t)dt
0 0 T

Aside: Triangle Inequality A exists
X

N N N
Need to show
ZC]'S ZC]' Slejl A
—~ — — . _st
j j j A%L e Stf(t)dt
Corollary converges.
L
[F()l <~ A A A e~ (=T _ o=(s—®)A
N lim f e Stf(t)dt < lim f e St f(0)|dt < lim f e G-t = imM—————
for some L >0 Ao ) Ao Jr A-o | A—co s—a
= limF(s)=0 s—a>0s0e-6—M4
S—00

Examples of Laplace Transform
1) Unit Function
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00

1 1
e Stdt = lim - (1 —e™54) =—, s>0
Ao § N

fo=1 =]
0
2) Heaviside unit step function

0 t<O0
H(t)=U(t)=u(t)={1 t>0
a) Shifted U(t — ¢) = U(t) ={(1J s

forc >0,
e o A e—SC
LU} = f e StU(t — c)dt = f e Stdt = lim f e Stdt = —, s>0
0 c A—>o0 c s
b) Indicator function for interval t € [c,d], d = ¢ >0
Ugq@®)=U(t—¢c)—U(t—d)

=S¢ _ ¢ —sd

L{U4®)} = E——S—
3) f(t) = ek, k = const
1

o A
L{et} =f e Stektdt = lim f e~(-Rtgr = , s>k
o A o s—k

f (@) = cos(wt), sin(wt)

L{cost} = f e St cos(wt) dt
0
or write using previous result f(t) = e

L{elwt} Ts—iw
4) Llcost) = £{Re(et)) = Relcfe'!]] = Re (-——) = Re(
. s+ iw w
) ctsing) = im0 = i
6) f(t)=t"e*, nez*, k=const

L{trekt} = f the~Mt gt = magic = .
0

iwt

s s> Re(iw) =0

s+iw) s
s2 4+ w? s2 + w?

. Sk

gn
f(t) — _ekt — tnekt
dk™ an

n  kt an kt 1
rfenet) = S cle) = 5 (=3)
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Laplace & Inverse Laplace Transform

October-24-12 1:59 PM

Common Functions

() = L7HF ()} F(s) = L{f ()}
1
1 -, s>0
S
ekt 1
pa— s>k
tn n!
F’ s>0
sin(wt) w_
52+ w?’ s>0
cos(wt) s $>0
x% + w?’
Inverse Laplace Transform
f@® = L7HF ()}
Linear operator
LTHCF(s) + GG ()} = CLLTHF ()} + CGLTHG ()}

L1 of Proper Rational Functions
P(s olynomial

F(s) = o) _ polynomial
Q(s) polynomial

Use partial fraction decomposition

deg P < degQ

Properties (Theorems) of £
1. First Shift Theorem
If F(s) = L{f ()} exists, then L{e** ()} = F(s — k)

AMATH 251 Page 23

Results of Laplace Transform

1
L{ekt} = % s > Re(k)

Letk = iw, w €R
L{cos(wt)} = Re[L{e''}] = Re

(—w)=
s —iw s% + w?

L{sin(wt)} = Im[L{e'?}] = Im (;_1—W) = ﬁ

Let k =real- valued parameter

Okt _ nkt
Since akne gn o . '
n
Lltnekt :——:——(——):——, >k
e} = e e s—k) "G S
Settingk = 0
n!
L{t"} = T $>0
Example of Inverse Laplace Transform
Find £~ {F(s)} for
F( )_14+7s—3s2_ 7 3
$)= s2(s+2)  s2 s+2
1 1
-1 _ -1 74 _ 2,2t
(F(s)} = 7L" { } 3L {S = 2} =7t —3e
F(s) = 1 _ 1 1 1 N 1 1
VG- DGI+D 25241 2 s2+1

2 s—1
1
L7YF(s)} =Eet —Ecost—isint

Example
Show that

f(t)=f0°°““i”‘) x=f, VE%0

t
F(s) = LF@O} = [ et U ﬂx) ]d - f U ~Stsin(tx) dt] dx
Y
Ty x s+ x? SR
_f‘” dr 1 an " =F.1
_0x2+52_ arcan§|§=0—2~s
T 1 4 1 m
— — izl 2
f®= {2 s}_z‘C {s} 2
Proof of First Shift Theorem
L{ek () = j e=Stekt {(1)dt = f e~G=tF(P)dt
0 0
Example
L{e2 sin(36)} = L{sin(30)} - (—3—) | -3 ___3
¢ s ik (25423 T\ 2732 lsoga0) " (54 2)249 52+ 4s + 13
Example
2s+3 2(s—3)+9 2s+9
-1 —r-1 — p3tp-1
£ {sz—6s+25} £ {(5—3)2+16} et {52+42}

o) ] o o ]
e (ZL { +42} 4!: T e 2cos(4t)+4sm(4t)



Laplace Transform and DEs
October-26-12 1:33 PM

Theorem (Laplace Transform of Derivative)
If £(¢) is continuous and f'(t) isPWCon 0 < t < 4 (any A) and f(¢) and
f'(t) are of exponential order a, then

LF O =s-LFO}-f(0, s>a

Generalization
F), (@), ..., f™D(t) are continuous and £ ™ (t) is PWC and are all of
exponential order a then

LF™©) = s"LIFO) = ") = sm2F7(0) = = FD(0)

Solving Differential Equations with Laplace Transform
DEint

!

Algebraic equation in s

Solve algebraic equation in s
l
Solution of DE in ¢t

Solving Secord Order

L (6) = s2L{F(OY = sf(0) — £7(0)

Theorem (Derivative of Laplace Transform)

If f(t) isPWCon 0 < t < A, and is of exponential order « then
LEmF©)}) = (—D*F™(0)

where F(s) = L{f ()}

Non-Constant Coefficients

Can handle DEs with non-constant coefficients
L{y" — ty] = 0, Airy function

s2Y(s) —sy(0) =y () +Y'(s) =0
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Proof of Theorem
f'(t) has finite jumps at ty, t,, ..., t, € (0,4)

o0 A
L{f' (©)} =f e St (t)dt = limf e St (t)dt
0 a=® Jg

t t, A
[ [ [
0 ty tn

Integrating by parts in each
=ste(e) |f=t1 +emstF(D) |t=t2 bt emSt(D) |t=A
=e e te
f t=0 f t=ty f t=tp

ty ae—st ty ae—st A ae—st
-] o [ 0T [ 07
ae—st

at B
= —f(0) + e AF(A) +5 f =St F (D)t
0

= —se St so

L{f' (1)} = /}im [—f(O) +eSAf(A) +s fwe‘“f(t)dt] =sL{f(t)} - f(0), s>a
—00 0

Example
Use L to solve the IVP
y'+2y +y=4et, y(0) =1,y'(0) =2

LU" +2y" +y} = Lise'}

4
S2¥(5) = 5y(0) = ¥'(0) + 2[s¥ (5) - y(O] + ¥Y(8) = —5
4

Y(s)(sz+2$+1)—s—4::
s+4 N 4 _ s2+3s
s242s4+1 (s—=1D(s2+25+1) (s—1(s+1)2

Y(s) =

Partial Fraction Decomposition

vy A B € _(A+B)s + QA+ CO)s+A-B—C
A s+l G+ D2 G —-D(s + 12
A+B=1 24+C=3, A—-B—-C=0
A=1, B=0, C=1
1 1
YO =3t Gvoe
1 1
—_r-1 — r-1 -1 — ot Lot
y(6) = LMY ()} = £ {5—1}“ {(s+1)2} elit-e
Proof of Theorem
© d‘n o Ooane—st o)
s - —st — — 4\ ,—St
F (s)—dsnf0 e Stf(t)dt fo PP f®)dt J;(t) e Stf(t)dt

= (—D”fO " f(Odt = (=D L{t" f(1)}



L of an Integral
October-29-12 1:27 PM

L of an Integral
If f(t) is PWC and of exponential order a then

L{ | tf(r)dr} = S L)

Second Shift Theorem

If F(s) = L{f (t)} exists for some s > a, and c is a positive
constant, then

L) - f(t — )} = e™SL{f ()} = e"*F(s)
Conversely, if £(t) = L7{F(s)}, then

L Ye SF(s)}=UEt —o)f(t—c¢)

Recall U.(t) = U(t — c) is the shifted Heaviside function

Remark
LU - c)gt)} = e L{g(t + )}
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Proof of L of an Integral

t
Letg@® = [ f@dr,  g©=FO, g0 =0
LFO=L{g' O} = sL{g®)} — g(0) =sL{g(®)} m

Example: RLC Current

L

L = inductance
C = capacitance
R = resistance

Solve for i(t) with IC's i(0) = iy, q(0) = qq
Kirchhoff's Voltage Law

P T G
—_— —_——= *
dt d’ c=eO®

i) =4

i(t) = it t

Write q(t) = qo +J i(t)dt
0

Take L of eq. (*)

LL{' (0} + +RLUO} + Zl:ﬁ{q ®} = L{e®)}

Lls-1(s) =i + R - 1(s) + % [L{qo} + L{J-ti(r)dr}] = E(s)
0

LsI(s) — Liy +R1(s)+%~gs9+l-@—5(s)

cC s
Solve for I(s)

Proof of Second Shift Theorem

LU - Of (t =)} = JmU(t —Of(t - c)dt = Jme-“f(t —o)dt, letr=t—c
0 c
= J’ e S+ f(r)dr = e‘csf e STf(t)dT = e"SF(s)
0 0

Example

2 1

LEEU(E — 1)} = e SL{(t + 1)?} = e~5(L{t?} + 2L{t} + L{t) = e~ (é +5+7)

=S
=?(5‘2 +2s+2)

Example

Le_zs—u 0l =U(t-2 =-2)-UCt-2
{?_}_ =2 {S_Z}Hz—z_ =20 |t—>t—2_(t_ ) UE-2)

Example
Second shift theorem:

_(5e7 (-4 _ o 56-4
T AR e

With first shift theorem:
=U 2 ar —SS =U 2 itg 3
=U(t-2) (e T43%) iy (t—2) - (e*5c0sBt))tor-2

= U(t —2)5e*¢ 2 . cos(3(t — 2))

Example

Solve IVP

y" +y = f(t) where
t, 0<t<m

f@) =42r—-t, n<t<2m, y(0) =0, y'(0) =0
0, t>2m

L'+ Ly} = LFO)}
52Y(s) = sy(0) —y'(0) + Y(s) = F(s)
1
Y(S) =mF(S)
f@®) =tlU@®) -U(t-n)]+QQr—-)[Ut—r)—U(t —2m)]
f@=t-U®)—-2(t—m)-U(t—m)+ (t—-2m)U(t — 2m)

1—2e7 7 4 e—27'rs 1—e TS 2
F(s) = L{t} — 2e"™SL{t} + e~ 2™ L{t} = > _( > )

N S
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s2(s2+1)

- o)

11 1 )
G-y = s

—20(t —n)[,_l{

1 _ 1
ST 1—)} U2y {—52(52+_1)}

tot-m

y®)=t-sint =20 —m)- [t —m —sin(t — )] + U(t — 2n)[t — 2 — sin(t — 2m)]

t —sint, o<t<m
y(@t) ={—t+2m+3sint, n<t<2m
—4sint, t>2m

tot-2m



Periodic Functions
October-31-12 1:34 PM

Periodic Function
A function is periodic with period T > 0iff f (¢t + T) = f(¢t)

Theorem

If £(¢) is periodic with period T and is piecewise continuous on
[0, T], then

T
L) == | estrear
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Proof of Theorem

T o0
F(s) = L{F(D)) = fo e~StF(O)dt + fT e=StF(E)dt

Lett

=t—-T

T - 00 T o
F(s) = fo e=StF(D)de + jo e=STN f(z 4 T)dr = fo e=StF(D)de + fO =S £(7) dr

T o T
=f e Stf(t)dt + e‘STf e S f(r)dr =f e Stf(t)dt + e 5TF(s)
o 0 0

Alternate proof:

Define window function

0<t<T
t>T

fr@®) =

{f(t)

T o0
[ errade = [ e @ = Fr)
0 0

Represent entire f(t) as series
[ee]

F© = frlt=kT)UE = kT)
k=0

FT(S)
1 —e”

Example
Square-shaped "sine" function of period T. Letc = g

1,

f® =

F(s) =L{f®} =

F(s) =

-1,

N-1

O<t<T
- 2

T<t<T—2
2= =2c

FT(S)

— —sZc

N-1

LF©) = Jim z L{fr(t = kDU — kT)} = Jim Z Fr(s)e ™7 = Fy(s) lim =—— 1- —
k=0 k=0

g—c T=2c 1—e ¢S @ CS_ g—2cs (1 _ e—CS)Z
Fr(s) = f e‘“dt—f e Stdt = - =
0 %:c S S
1 (1-e®)P 1 1-e®
s l—e )1 +e ) s 14ecs

Now find inverse

L7YF(s))

where F(s) is in the above form

LYF(s)} = Z(—ukrl{
k=0

Alternately

F(s)

f® =L

Example
Solve the IVP

d’y
de?

+y=f@©,

YF@s)=1+2

Z( 1)k —kcs — _Z( 1)kle—kcs _ e—(k+1)ch

k=1

y(0) =0,

kcs _

—(k+1)cs

y'(0)=0

wheref(t)=1+ZZ(—1)kU(t—kc), c=

T

2

k=0

Square wave forcing with period T = 2¢ and frequency Q = z?ﬂ

2
Recall: The natural frequency of % + y is 1 with period 2

Resonance occurs when Q = 1

}+ZZ( kL~ { 2_+1

k=1

kes

L on DE:
s2Y(s) +Y(s) = F(s)
Y(s) = ( ) whereF(s) =
1
Y(s) = T D 1+ZZ( Dke —’“S]
y@© =L {s(sz+1)
_ 1 . 1__ s
£ 1{5(525}—T)}_L 1{5 s2+1

} 1—cost

}

i +ZZ( 1)kekes

|

1 1+ Z(_l)ke—kcs + Z(_l)k+1e—(k+1)csj = 1(1 + Z(_l)ke—kcs>
s k=1 - k=0 s k=1

Z(—l)kU(t —ck)

e—NSt

e—sT

} = Z(—l)"(U(t —ke) = Ut — (k + 1))
k=0



—kcs
-1 {QZTD} =U(t —c)[1 — cos(t — kc)]

y(@t)=1—cost+2 Z(—l)kU(t — kes) [1 — cos(t — ko)]
k=1
What happenswhenQ - 1,0rc =m
Recall Midterm Question #4
y'" +y =sin(Qt)
sin(Qt) — Qsin(t)
WO =

L'Hopital'sruleas Q - 1

L ® 1t t
2Sln 2 cos

y@&) =142 ) (=1 Ut —ck) —cost —2 Y (=1)¥U(t — ck) cos(t — ck)
= f(t) — cos(t) (1 +2 ) Ut- kTr))

What happens when ¢ = (2l + 1)m, [ =0,1,2,3, ...
cos(t — k(21 + Dm) = (—1)*CHD cos(t)

y(©) = f(t) - cos(t) (1 +2 Z(—l)Zk(”l)U(t kL 1)n)>
k-1

Fourier Series

4 1
f@ = ;Z m—l . sin((21 + 1)Qt)
=0
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Convolution
November-02-12 1:58 PM

Convolution Function
If f(t) and g(t) are PWC on t € [0, ) then their convolution is
function h(t) define on t € [0, ) by

t
no = [ £ -Dg@dr= ¢+ g)®
0

Notation and Properties
1) Commutativity: f xg =g * f
2) Distributivity: f* (g, + g2) =f *g1 + [ * g2
3) Associativity: (f * g) *h = f = (g * h)

Convolution Theorem

If F(s) = L{f (t)} and G(s) = L{g(t)} and they exist for s > a, then
L{f 9O} =F(s)G(s), fors>a

L7YF(s)G()} = (f * 9)(®)

Using Convolution Theorem to solve nt! order linear DE
with constant coefficients
any™ +an_1y™ D 4+ a1y’ +agy = f(1)
with IC's
using L:

Initial Conditions F(s)
Y(s)=—
ApS" 4 @y 1SVt ag  apst+ 4
Assuming quiescent state, all IC's =0
Ya(s) =Y (s) = G(s)F(s)

where
F(s) = L{f ()}

G(s) = = Transfer function
©) aps™+ ay_1s" 144+ a;s +aq

g(t) = L7HG(s)} = Green's function
t

Yq(@®) =y = L7HG()F(s)} = J. gt —o)f(r)dr
0

Pulse (Impulse Response)
What happens when f(t) is a narrow pulse at say, ¢ > 0

t
y() = gt — c)f f(@)dt = g(t — c¢)Area(pulse)
0
Consider ¢ - 0%, theny(t) = g(t)
Another name for Green's function is the Impulse Response
Alternately, if

y(t) = L~YG(s)F(s)} then
y(s)~g(t) = L7HG(s)} when F(s) = 1
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Proof of Commutativity
Letu=t—1, du=—dt

t 0 t
. 9)© = [ fe=0g@ade = - [ Fagle ~wdu = [ g -wradu =g+ H®

0 t 0
Proof of Convolution Theorem

oo t [°<] 00
L + [ et [ e drdt= [ e=st [ ue-nfe— drd
@ <9 fo e fo f(t-Dg(drde io e fo (t = Df(t — Dg(Ddrdt
=f (f e-Sfu(t—r)f(t—r)dt>g(r)dr=f L{U(t = DF (¢ — Thg(t — T)dr
0 0 0
= F(s)f e STg(r)dt = F(s)G(s)
0

Solving IVP

ay”" +by' +cy=f(@1®), y(0)=y,,y(0) =y,
a(s?Y(s) = syp — y1) + b(sY(s) — yp) + c¥(s) = F(s)

a, b, ¢ const

Y(s) = (as + b)yy + ay, F(s)
T st ¥ bs e as?+bs+c
) _ 1 . 1 _ , .
Define G(s) —( —a52+25)+c with g(t) = L71{G(s)} = Green's function, then
_ . ((@@s+ Dby, +ay .
= —_—_— F
y(s) = £ { e LG (IR}
(as + b)yy + ay; f‘”
N Nt A —_
£ { as?2+bs+c + 0 9t —Df (e
1
G(s) = ———— Is the transfer function
as?+bs+c



Dirac Delta Function
November-05-12 1:48 PM

Dirac's Delta "function" (distribution)
Consider rectangular pulse at some t = ¢ > 0

! ¢ <t<c+ ¢
Set—o)=4{¢ “72 )
0, otherwise

o 1 C+§
Area=f 65(t—c)dt=zf Edt=1
o €

Sampling Function
Let f(¢) be continuous on interval containing c. Define the sampling function

sl = [ f©ae-oar
€ €
) ) 1 C+§ . f(6) c+§
S[f(t),cl = 613(1)1+ Self (), cl = EIL%LZ fc—i f®de = Ell)r(r)lJr — fc—f dt = f(c)
2 2
c —g <f<c+ 2 is given by the Mean Value Theorem

Using 8¢ (t — ¢) in S.[f(t), c] gives representation of Dirac's function, that is its
"Sifting" property.

f FOS(t - ) dt = f FO6(t — )t = f(c)f_ 8(t— )t = f(c)

Definition of §(t)
f f(®)8(t)dt = £(0) V functions f

B 0, t#0
80 = {undefined, t=0
Properties of §(t)

1) Even (symmetric)
§(=t) =6(t)
2) Scaling
1
6(Kt) =—6(t
800 = 8
3) f s(dt=1
4) Si_fting

[ rwswa= o
5 [ rosoa=-ro

Laplace Transform of Dirac Function
Need to modify definition of £

L@y = [ et

0

L)} =sF(s) — f(07)
L5} = f Cestsde = e [ s(dr = 1
0~ 0~
Convolution
t
f gt -1 f()dr
o

y@)=| gt—-18(@)dr=g(), fort >0
o-

Note: Relation of §(t) to U(t)

t
0, t<0
f_w(?(r)d‘r = {1, £>0
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Example: Newton's law with pulse force
F(t)=fo-6(0)

dv
m— = F(t) = Integrate from
dt o-

T, f " ra
—dt = t)dt
™o at -
mv(0*) —mv(07) = f,
Instantaneous change of momentum

Transfer Function and Impulse Response for RC-filter

Input voltage e(t)
Output voltage v(t)

q(®) = Cv(®)

KVL: e(t) = Ri(t) + v(t)

dv
RCE +v=ce(t)
ForIC:v(07) =0

use L:

RCsV(s)+V(s) = E(s)
V(s) 1

CO =5 Res+1

9(®) = L7G(s)} = % eRC, >0

Example

Drug absorption in body
A pill is taken at time ty = 0, tq, ty, ... and amount of drug is given by

d
=y f©

r is release rate, f(t) is drug intake

N
FO) =80 +8(t—t;) +8(t — t) + - = Za(r —t)
j=0

ICy(07) =0
Using £
sY(s) +rY(s) = F(s)
F(s)
i) = s+r
N N ¥
F(9) = Lf0) = » £(6(t— 1)) = Y et8(t—t)de =y e
Jj=0 j=0 =)
Transfer function G(s) = ﬁ
il e=Stj N
y(t) = L7HG(s)F(s)} = ZL—l {;?} - e—r(t—:j)U(t _ t]-)
Jj=0 j=0

Using Convolution Theorem

t L
y(@®) = f gt —Df(@dr = 2f e TED§(r - ¢)dt
0~ =0
N ¢ N
= Z e‘r(t_ti)f §(t—t;)dr = Z e u(t - )
=0 o j=0
After the Nt™" interval,
1— e—NTT
yitw) = e T
Steady state:
o—T
1-— e—rT



Stability of a System

November-07-12 1:59 PM

Zeroes and Poles
In general,

_ L(output) B P(s) , _
G(s) = ZGnpud = 06)’ n' = deg(P) < deg(Q)=n

Q(s) is the characteristic equation, polynomial of degree n

' (s=2Z)(s—-2y) ..(s—Z)
(s—p)™(s—p)m2..(s — pk);cn"
Aside: if pf = 0 + iw;

(s =pf)(s+p;) = (s -

All poles of G(s) are e1ther real or complex-conjugate pairs.

G(s)=K

m; = multiplicity of jt" pole pjsothatm; + my+--+m =n
Roots of P(s) are zeroes of G(s)

Roots of Q(s) are poles of G(s)

By partial fraction decomposition
k. mg A(lj)

G(s) = =
j=1l=1 (5 - Pj) !

Green's function = impulse response
He have terms of the form
(l;) 1
Y th .
Lt o= A(.t’) etojeltwj
(s—p)’ 7=

Stability
A system is asymptotically stable iff
tlim gt)=0

Theorem

A system is asymptotically stable iff all the poles of the transfer
function G (s) are located in the left half of the complex s-plane.
(Re(s) < 0)

If any poles are on the imaginary axis then the system will not be
asymptotically stable.

BIBO Stability

Bounded Input Bounded Output
If the forcing | f (t)| < M then the response is also |y(t)| < M,

AMATH 251 Page 31

—iw;)(s—oj +iw;) = (s—a]) + wf

Proof of Theorem (using BIBO Stability)

t
¥ = [ gt - D@

0
(O = |f; 9t —Df@dz| < [lg(t = DIIfDldr < My [ylg(t -
Dldr = M, [}1g(w)ldu < My iff g; < 0 forall j
Harmonic Forcing
f(£) = Fycos(Qt) = FyRe(e™%) =

S

F(s) =L{f(O} = bhare=

F,
O G +i(s—i)
Laplace transform of response is
Y(s) =G(s)F(s) = Fy ———~——<G(s)
A(.lf)

= Z Z (_S—]pj)q

B(l’)

Y(s)__cz_ﬂ s+iQ ZZ(S_pj)j

L

Find C; using "Cover-up Rule"

i
Cy = lim (s —iY(s) =Fy 20 G(+iQ) = —G(+LQ)
(l])

FOG(LQ) FOG( LQ)
Y= Tat st Zz(s
Fo GU) | Fy G(=i0) _ G (i)
25—tz s+ o e[__a]

_p])l

= Y,s(s) = Steady state

Z —]—l] = Y;s(s) = Transient State

y() = L7V ()} + L7V, ()} = FoRe[G (i) - €] + y,,.(£)

Ves (£) = FoRe[|G(iQ)] - e r9I6iDN ¢i0t | = Fy| G (i) |cos[Qt + arg[G (iQ)]

= FyA(Q) cos[Qt — ¢p(Q)]

L
L1 5

(5 —Pj)lj




Systems of DEs Mixing Problem

Tank contains chemical.
Contents are well-mixed and concentration is uniform in V.
Inflow is constant rate f;,, at concentration c;,,

November-09-12 2:06 PM

. . [fm] = L3T—1
Methods of Solving Linear System of DEs )] = ML-3
1. UsingL [W';] _ M

2. Deduce 2™? order decoupled DEs for m, (t) and m,(t) (by
eliminating state variables)

. Mass of chemical at time t determined by mass-balance

3. Use matrix or vector DEs m
dat = finCin = foutCout

Vector / Matrix Calculus

Just integrate / differentiate each element individually. m(t)

Find Cout(t) = m

Equilibrium Solutions Vol f fluid i Ki
If just trying to find the steady state solutions you can set the dl(} ume of fluid In taniis

derivatives to 0 and solve the system. = fin — fout

Consider f;;, = four = f sothatV = const
Coupled Tanks

Two tanks have flow into each other

fiio W

f2Va =1

itV -V,

fiiVy -

State variables:
amount of chemical in tanks 1 and 2
m4 (t) and m,(t)

dmy m, my
3 = ik +f272— (1 +fz)V—1

dm, my m,
T (61 +fz)71— (fi +fZ)V_2

ICsm;(0) =0, m,(0) =0

™

"forcing” term is f; ¢,

Matrix/Vector Method (for Example)
Let #(t) = [ml(t)], #(0) = [ml(o)

m,(t) m,(0)
Forcing
f — lf 18m
_hth o h
— Vi V2
A+ _fith
V2 V2

Now (*) may be rewritten as

dx(t) _ 4o z
= AX() + f

Using Laplace Transform term-by-term

To simplify things,letV; =V, =1, f; =3, f, =1
sMy(s) — M;(0) = §%“ + M,(s) — 4M, (s)

sM,(s) — m,(0) =?‘)1'£’11(5) —4M,(s)

(s +4M, — M, ==

—4AM; +(s+4)M, =0
By Crammer's Rule
3cip

s -1 3¢y,
o= 10 s+4 _(S+4)T_ s+4 3¢in
17 s+4 -1 (s+4)2—-4 (s+2)(s+6) s
-4 s+4
3%‘" is the Laplace of the forcing
—5**__is the Transfer function G,(s)
(5+2)(s+6)
(s + 43¢,

GrGTe MO = LML) = -

s+4 %‘
—4 0 4 3¢ 12¢,
M. = = it 1L
2(5) |s+4 -1 (s+2)(s+6) s s(s+2)(s+6) ()
-4 s+4
Gy(s) =

5+2)(s+6)

~ B B 1
my(t) = L7H{M, ()} = 12¢;, L1 {mm}
1 1 1 1 1

1
my(t) = ¢ — ECine_Zt + Ecine_a
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The % term becomes the steady state solution, while the other poles become the transient part.

Recall

m,(t)
Cout(t) =
out VZ

lim m, (t) = ¢,
t—oo

= M,(t)

The terms

3 1
—3 cne 2t + 3 cipe ot
are the transients (= 0 as t = o)

Obtaining Just Steady-State
We could obtain steady-state values for m, (t) and m,(t) by settingm/ (t) = 0and m5(t) = 0
in the original system (*)

These are called the equilibrium solutions.

0 =3¢, + m3? — 4mS!
0 =4mS? — 4m3?

=t = ms =,

Decoupling Equations
Method 1
From (**)
2¢i,

(s +2)(s+ 6)My(s) = (s? +8s + 12)M,(s) = 1T
By initial conditions, m,(0) = 0, m5(0) = 0
L-1{s2M,} + 8L-1{sM,} + 12£-1{M,} = 12¢, L1 {%}
my +8mj +12m, = 12 ¢, U(t)

Method 2

Using equation 2 from (*)
d

Emz = az‘l-ml - 4-m2

my = 4m| —4m;

From equation 1

my = 4(3¢, + m, —4m,) — 4m),

From equation 2: 4m; = m), + 4m,

my = 12¢;, + 4m, — 4m), — 16m, — 4m),
my +8m) +12m, =12 ¢,
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2nd Order Systems of DEs

1:28 PM

2™ Order system of 15¢ order DEs
for state variables x(t) and y(t)

dx
{Zi? =p(tx,y) x(to) =xo
OFRF:

y
Fri q(t,x,y) y(te) =yo

p,q are generally non-linearly

Matrix Notation

Define the vector-valued function ¥(t) = igg
L [p6xy)
t,x) =
p(t, %) q(tx, y;
o _ s _[*o
IC: #(ty) = %o = [}’0]

So that system (*) is written as
dx

I =p(t, x)

If t is missing in p then the system is autonomous.

Linear Systems

B(t, %) = AT+ f (1) ;
_[*11 Qa2 z_|h

A= | 7=[l

Qz1 Q22
Normal form of a linear system
dx AR+ f
2 AR
dt

Generally non-homogeneous system.

Iff = 07, then homogeneous system
dx

2 az
ac

Calculus of Matrices
dx
ahl=|%
atlyl = |dy

dt.

In general, A= [au]

dA [da”

@l ol

d ! !
—-(AB) =A'B +B'A

fA(t)dt = Uai,-(t)dt]

Basic Theory For linear Systems
Existence and Uniqueness Theorem

If a;j(t) and f;(t) are continuous on / and contain t;, then for any IC

%(ty) = X, there exists a unique solution ¥(t) ¥(t) to the IVP
dx Mitf ) =7
—=AX+f, X =%

dt 0 0

on the whole interval I.

Superposition Theorem

Write X = AX + fas L[%] = f where [ = I% — A, I = Identity Matrix

is linear operator

Development of Superposition

If #; (t) and X, (t) are two solutions to the homogeneous system L[¥] =
then any linear combination of ¢;%; (t) + ¢,%,(¢) is also a solution to

L[#] = 0 where ¢, and c, are arbitrary scalar constants.

Given X(t) = ¢;%1(t) + X, (t)
what do we require of
x12(t)

. %11 () S
0o =[] amano =12
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to be able to solve the IVP at ¢,?

Example: Predator-Prey Model
(Lotka - Volterra egs.)

Let
x = # of prey species
y = # of predator species

dx b

gt = ax — bxy
y = —

g = o dy

Linear Systems Examples
Coupled Mixing Tanks

dm1
—— = —4m; + my + 3¢y
dt
() dm
l —3 = 4m1 - 4m2
dt
s _ M1 -4 1 * _ [3¢in
x_[mz]‘ A=1, —4]' ]

1. Solved (*x) by £

2. Decoupled 2™ order DEs for m4(t) and my(t)
my + 8mj, + 12m, = 12¢;,
m,(0) =0, m5(0) =0

2™order DEs may always be written as 2" order system

Example: Mechanical Oscillator

dv
m—=—ky —yv + F(t)

dt
State variables: y(t) and v(t) = dt
Y] _ y
E[v] - _r [v] + _F(t)
m m m
RLC Circuit
di d
LE+q+Rl—e(t) i(t)=—q
State variables: v(t) = %, i(t) = C—
0 1
d v c |l
all=| s Gl ]z]
L

Product Rule for AB
AB = [z aikbkj]

—(AB)

Note,EB +AE¢BE;+EA

day. | dby;|  dA
Zd (alkbk])] [Z = by Za’lk it dtB

+A dB
dt



x11C1] [x1202] _ [Xn xlz] [C1

X=oxtox = [lecz X22C2 X21 X2211C2

X (t) is solution matrix generated by 4, or
dx Az

ac

x(t) = X(t)¢

Att = ty: X(t)C =X,

Need: X(t,) is invertible at ¢,

< det(X(tp)) #0
< columns ¥, (ty) and ¥, (t,) are linearly independent.
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Theory of Linear Systems
November-16-12 1:29 PM

Properties from Linear Algebra
For square matrix X and vector ¢, the following are equivalent:
e X isinvertible
e det(X) #0
e columns of X are linearly independent
« X& =0 has only trivial solution for ¢

Notation
For two vector functions
S x11(t o x1,(C
qo =10 ge=[n0
le(t) Xzz(t)
> Cq
and scalar constants ¢q,c; = ¢ = [CZ]

Define matrix function X(t) = [¥;(t) %,(t)] so thatlinear combinations read
c1%1(8) + %, (8) = X(t)¢

Linear Independence
Two vector functions x; (t) and x,(t) are:

a) linearly independent on I iff eq. X (¢)¢ = 0 has only trivial solution ¢ = [g] for
allt el

b) linearly dependent on I iff eq. X (t)¢ = 0 has nontrivial solutions ¢ # [8] for all
tel

Caution
We combine two concepts of linear (in)dependence

Lo TE L Lo 1
xX,(t) = [t] = t[l] and x,(t) = [1]
clearly X, (¢t) and ¥,(¢) are linearly independent
S S _[attc1_ 0 o
1%, () + %, (t) = [clt i Cz] = [0] Sc=c=0
Fundamental Set
A set of solutions {X, (t), ¥, (£)} to a homogeneous system X' (t) = AX(t) that are
linearly independent on I is called a fundamental set of solutions, and the solution
matrix X (t) = [X;(t), %,(t)]is called the fundamental matrix.

Use determinant of X (t) to test for linear independence.

Wronskian
Wronskian of any two vector function ¥, (t), X,(t) is

Wl 2] = det(X(0) = [0 F1200] = 11 (000(0) = 12021 ©

Theorem
If ¥, (¢t) and X, (t) are solutions to X' = AX on I, then their Wronskian is either
identically O, or never O forallt € I .

Can be proved with Abel's Formula
Abel Formula

t
WE, Z](E) = W 3y, #,)edo 7O 4

Example
Comment Midterm Q5
Fora 2™ order DE y" + p(t)y' + q(t)y =0 1 1
etx(t) = [y’(t)]' )= [—q(t) —p(t)] 2.(0) = [t] () = [ tIn(t)
dz . . V12 1 1’ 2 1+ 1In(t)
@ et [] 0
. Vi Y2 o=|_1 1x@®, i=12
WXy, X,] = Wlyy, y2] = |y£ y£| t2 t |
- _qt tlnt | _
WXy, %,](t) = |1 1+lnt| =t#0fort+#0

Theorem

Let ¥, (t), X,(t) be solutions to X' = AX on I

Then X, (t) and ¥, (t) are linearly independent on [, iff W[¥,,X,](t,) # 0 for some t, €
1
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Theorem

If ¥, (t) and X, (t) are any two linearly independent solutions to X’ = AX on interval I,
then every (i.e. general) solution to ¥’ = A¥ may be written as X(t) = ¢;%;(t) +

%, (t) = X(£)¢

- _[€ . >
We may determine ¢ = [cﬂ for arbitrary IC Xy atty, € I

> > x1(to)
X(ty) = X9 = [
( O) 0 xZ(tO)
Xo = X(t)¢ = ¢ = X"1(ty)Xo

Non-Homogeneous System

=A%+ f(O

The general solution ¥(t) = X(t)¢ + %, (t) where X,, is a particular solution to the non-
homogenous equation.

Solve IVP X(ty) = % = X(t5)C + X, (to)
Solve for ¢ = X~ 1(ty) (550 - a_c'p(to))
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Linear Systems With Constant Coefficients
November-16-12 2:12 PM

Homogeneous Case

=A%
a1 A1z

A= [ ] const
a1 azzl”

Assume #(t) = et

where 7 is a constant vector

2'(t) = 1eMP = A%(t)

1eD = Ae?tD, eM 0
Eigenvalue problem for A:

Av = A, or(A—ANv =0

For 2 X 2 matrix we have two eigenpairs (14, 7;), (A5, ¥5)
where A, ; are solutions to characteristic equation
x(2) = det(A — A = (a11 — D(azz — ) — 1202, = 0

%,(t) = eMtpy, fz(t) = ehetp,
ettty ety 2420 |V Viz N
Wz, %,1(6) = = eUutiat | | = e @t det(v)
s ehity,, eety,, V21 V22

where V = [¥; vz]

2nd Order Systems, homogenous, const. matrix
(Review of above)

Constant matrix 4, x' = AX

Assume #(t) = e %, ¥ const.

Eigenvalue Problem (4 — A1)7 = 0

eigenpairs (11, 71), (A2,7,)

Solution
%) = eMtiy, %) = eht,
W%y, %,](t) = e+t det(V), V = [y,7,]

Result Linear Algebra

Eigenvectors corresponding to distinct eigenvalues are linearly independent, giving
det(V) =0, W(t) # 0 vt

Complex Eigenvalues
If A = a + ip is an eigenvalue of A with eigenvectors sU =1+ iW then1=2*=a—

—

if3 is also an eigenvalue wand with eigenvector ¥ = ¥* = Ui —

Let ¥(t) = eMtp = e(@HBI (5 4+ jw) = e®(cos Bt + i sin Bt) (U + iw) =
e% (i cos ft — W sin ft) + ie* (i sin St + W cos ft)

Linear independent solutions are
1
#1(t) = Re(%(®)) = 3 (R(t) + #* () = e (@ cos ft — W sin Bt)

%, = Im(2(1)) = 51; (R(®) — #*(®)) = e* (i sin Bt + W cos Bt)

So, solution matrix

X(@©) =[%() %] =e*VR(t), where
S _ [ cospt sinft

Vi vl RO = [— sin Bt cosﬁt]

Equal Eigenvalues

Two cases
a) Two linearly independent eigenvectors
b) 1 eigenvector
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Mixing Tanks Example
Mixingtanks V; =V, =1

m; =—-(itfom + fom,
my = (fy +fz)m1 -+ f2m

o) = [m 0
Example with (1; # 4;)
fl =3 f2 =1
X' =A%

4 1
o

deta-a) =" =040 -4=0420+6) =0
=2 dp=—6

ami=[2 L nel]

A—Azl=[i ; ﬁz=[_12]

H@=e2l],  HmO=e| L], W0 =4

Example with Complex Eigenvalues
-2 6

A= [_3 4]

det(A—A) =2%2-21+10=0

M=1+3i, A,=1-3i

A_’M:[_l—l_i 131‘]

C1=dv+ 20, =025 = 1] = [+ [
% (t) = et ([ﬂ cos 3t — [_01] sin 31_») — et [COS 3Ct0:-3stin St]
[sin 3t —cos 3t

Xy(t) = et
2(0) sin 3t

Check the Wronskian

=}l R

21 2¢|1 —1|| cos3t sin3t|_ o
Wiy, %;] = e?A det(V) det(R(t)) =e | | |—sin 3t cos3tl =€
Example
Type a)
a=| 0 -1

! I
mp; = —my, mp; = —my

det(A-AD)=1+1)?=0

X' = A%

00
Pick Standard Basis

s=lil 5=

2@ =et [3] 2,0t = et [‘1’]

Type b)
Coupled tankswith f; =1, f, = 0
my=-my, Mpy=m;—m;

det(A—AD = (1 +1)2

M=A=-1
@-an=[7 {
A-A)1B=0
L, v

= [vﬂ =
v, = anything = 1
i 0
v= [1]

) =eMp=et [(1)] = [eqt]

Try %5(t) = tX,(t)
Does not work

Repeated Eigenvalues
In general, for repeated eigenvalues 1, = 1, = 4 assume the solution to
X' = Ax in the form
x(t) = teMp + et ¥, W, const
() = eMP+ At e“” + AeMw
() AZ(t) = te™AD + et AW
Multiply (*) by e~ # 0 and get
tA-ADB+(A-ADW -9 =0
First we solve t(A — A)% = 0, then solve (4 — ADW =



A-2D=>
A-D)*W=A-ADB=0
(A — AI? is the zero matrix by the Cayley Hamilton Theorem

SoxX(t) =e v = [eqt]
Xp(t) = tX,(t) + e~tw
O L -=0=0 wer

10
w, = anything = 0

= _ WM
w= [Wz]
Check Wronskian

-t
Wi R0 =0 o o]=—e*<0
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Phase Plane Analysis

November-23-12 1:31 PM

Phase plane analysis for autonomous systems

dx dy

2= faw,=9xy)

Solutions x = x(t), y = y(t) represent a parametric curve in the x-y-plane =
phase plane

Parametric curve = phase portrait

Critical Point
A point (x,, y,) defined by f(x,,v.) = 0and g(x.,y.) = 0is called critical,
equilibrium, or stationary point.

Stability
A critical point (x,, y.) is called
a) Asymptotically stable iff
lim x(t) = x., lim y(¢) = y.
b) Stable iff
O =22+ G0 -y )2 <m vt >0
¢) Unstable

Linear autonomous Systems (274 order)
f(xy) = ag1x + a2y + by
906, y) = az1x + azy + by

%=A£+b, x=[;]

di - o - >
—=0=AX+b=>%=—-A"1D
dt }
Let{(t0 = (1) =%, S =47

Critical Point at the origin of the phase plane
(A - /11,21)'31,2 =0, X12() = ell'ztﬁl,z

If Re(1,) < 0 and Re(4;) < 0, the origin is stable critical point

Linear Isomorphism

Two sets of points Q,Q, S R? are linearly isomorphic if there exists an
invertible matrix V such that Q, = VQ,

Q,={Vx:x€Q}

Note
V=8, )= AV = [AB, Ab,] = [4dy Aoyl = [ az][

AV =VD=>A=VDV!
¥ =AX=VDV ¥ = V¥ =DV~ 1¥

L 0
0 A

] =VD
Let£(t) = V1%(t) = & = D&
Proper vs. Improper Nodes

For a proper node, all lines coming in are straight lines. Improper nodes have
curved lines.
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Examples of Phase Portraits

For 2™ order autonomous linear, homogeneous systems ¥’ = AX witha

critical point (0, 0).
Assume AV, = 1,9;, AD, = A,V, with
V=1[8 vl ¥1, ¥y, lin. indep.

(1) Equal Eigenvalues Example
-1 0

Decoupled tanks, 4 = [ {) _1] .

L=l=-1  v=[] =[]

0 1
dx ¢
=—x=>x=ce "—>0

5
y "
—=—y2y= 0
dr y=y=cCce =
Eliminate t

C2
y = C—xl, c#0

1
Solutions are lines of the form y = cx

(0,0) is a "proper node", asymptotically stable.

Y

10

A A

I
b
b
LV
vl
i
'
t
f
t

4

\

T e
T
T
N
RN

T e
RN
NS
-5
NN
NN
NN
-10
_10 -5 0 5
X

1o

(2) Distinct Real eigenvalues with same signs

tecf = [¢], & =g

-2 o
D_[O —6]
3 -
§=—2§:>E:cle 2t
d—z=—617=>r]=c2e‘6‘
c
:nzc—j$3:c§3, ¢ #0

Solutions are cubic curves going into 0
(0,0) is "improper node", asymptotically stable.

Y

10

e e

e

-10

-10 -5 0

Recall
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Coupled tanks with 13, f, =1
¥=axo A= [_44 —14]
h=-2 w=[], h=-6 #=[1)]

2(t) = [;] =ce?t [;] + c,e 6t [_12]

x =cie ?t+ ce”

y = 2cie”%t — 2c,e7 0

Using the linear isomorphism get skewed version of previous result.
(0,0) is "improper node", asymptotically stable

(3) Real Eigenvalues with Opposite Sign

2 _ nZ _ 3 0
f-n o=[p 4
2—5223{:{:51(23‘—)00
n -

G NN =ce -0

This produces a "saddle point". Along a single axis, lines are convergent.
Other axis is divergent. All lines approach divergent axis.

Example
#=ai, A=[} 1. =3 =0 2
a=-1 U= [—12]

2=l-vi=[ Hlfol-ae bl e[t

Get skewed saddle point.

y

1o

=

N /
[ 7
AR )
[ ;
IR
Ty '
oy f
[ '
[ ;
I j
_5/‘ _/ ?
/ !
/ |

=10
-10 -5 0 5 10

(4) Complex Conjugate eigenvalues

A=axip, v=utiw

Recall: solution matrix

X() =[4,(@) % ()] =e*VR(t) whereV = [% 3], R(t) =
cosfBt sinfit

[— sinft cos ﬁt]

General solution: write
e=[c]
=le,

() = X(t)C = e®VR(t)¢

R cos Bt sinft]c1 cos(Bt — 6) [

R(o)c = [— sinﬂﬁt cos[;’t] [Cz] =¢ [— sin(ﬁﬁ‘t -0’ €= C% + C%
> cos(Bt — 8)

Let £(£) = ce® [— sin(ft — 6)]

In polar coordinates: Let 8 = —t

& = ce™ cos(BO + 6)

n = ce”sin(B0 + &)

We have "spiral point", which is stable if « < 0 and unstable ifa > 0

If @ = 0 then solutions circle about spiral point.

Example
A= [}g g;], a=1, B = 3 = Unstable
V= [1 0 ]
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\\\\'\'\\\.
NN NN R e

-10
=10 -5 5 10

Example: Undamped Harmonic Oscillator

dv dy k

mE:—ky, E—v, w= -

21 _ gz > _[Y 70 1
x' = Ax, x—[U], A_[—w2 0]
det(A—2AD =224+ w?=0

Mz = Fiw, (a=0)

(0,0) is "center" and (neutrally) stable.

A-AD3=0=9= [11)]

sas[) 5= el
=] it )
le

.
/7 A
/77 NN
o 7 VA
[ A
f L
g )
o -
I =
L -
Ly -
-5 \ ,\ / /‘
NN -
N -
-10 / /
-10 -5 ; 5 10
Recall energy conservation:
dv
dv_dr_ v
dy dy v
dt

1 1
mvdv = —kydy = Emvz + Eky2 =



Non-Homogeneous Systems

November-26-12 2:07 PM

Solving Non-Homogeneous Systems with Constant Coefficients
F=AR4f(0),  E(t) =%

General Solution

X(t) = 12, (1) + 2%, (1) + X, ()

where ¥;, X, are solutions to homogeneous system
X(O¢ = ¢, (8) + 2%, (0)

IC: X(ty) = X(to)C + %, (tg) = %,
=7 =X"1(ty) (9_5)0 - fp(to))

Methods for Finding Particular Solution
1) Usel
2) Undetermined coefficients for "simple" }?(t)
3) Variation of constants

Method of Variation of Constants for linear nonhomogeneous systems
In general, A = A(t)
dx

L =ADIHO (), ) =T

Assume we have a fundamental matrix
X(t) for homogeneous system, X' = A% (*)
X)) =[x %O H=4%, =A%
Recall
5 5 s 4
General solution for x(t) = X(t)¢, ¢ = [cﬂ
B

To handle non-homogeneous system (**), assume

(@) = X(@©)u(o), ut) =?
() = X' ()ut) + X@©)u'(t) = A(t)X(t)lj(t) +£(®)
= (X'() —AMX®)U® + X' @) = f(©)

1. X(t) satisfies X' (t) = A(D)X ()
Proof: X(t) = [¥,(t) %,(t)] = [A%, A%,] = AAX

> X©E' @) = £(©)

1. X(t)isinvertible forallt € I

() = X"1Of )
i) = f X YOf()dt +¢

t >
ut)=c +f X~1(s)f(s)ds

to

t
) =X+ X®) | X (s)f(s)ds
to
X(t)C is general solution of homogeneous equation
t

X® | X7 1(s)f(s)ds = %,(t) = particular solution
to

Solve IVP: t, € 1
X(tg) = X9 = X(tg)C+ 0= ¢ =X"1(t9)%o

t
2(6) = X(OX~Ut)Zo + X(© | X~1(s)f(s)ds
to
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Example: Solution with Undetermined Coefficients

Use method 2 for coupled tanks with

hs {?)z ) 4 1
- m —

*() = [m;(t) ’ A=[4 —4]
fo = [381"

S s _ P —=
Assume X, (t) =p = [Pz] = const

0= () = A%y (®) + f(¢) = % = 471 = ci 1]

Solve the IVP, ¥(0) = [8]

SR g 1 R R O ]
V=B —2]

3.

3 n

ve=[; Hllal=lal=1al=] 1

_Zcin

_E —Zt_l -6t 1

SO R A B

__e—Zt +_e—6t +1
2 2



Evolution Matrix Justification of ®(t1 + t;) = @ (t)P(t,)

November-30-12  1:40 PM Point pairs f(0) = &, f(t:) = b, f(t;)=¢
b= ®(t)a
¢= ‘b(tz)g = O(t)d(t)a

Evolution Matrix Example

Evolution matrix ®; (t) generated by A at t, € I is the fundamental matrix Coupled tanks, f; =3, =1

X(t) whose i column is the unique solution to the IVP ¥’ = A%, %(ty) = A= [—44 14]' f(t) _ [3Cm

b;, where Ei is the it" vector in the standard basis. 1 1
h=-2, 171=[2], L=-6 v=|"]

-2
Standard 2D basis -2t —6t
SN X(t) = A5 Az 1=1|¢€ e
{by, by} = {[é],[gl} () [el 11711 e2,] 2p=2t  _g—6t
Recall XO=[, )= #l=v
R _ - 1
1) = X)X (tp)by 3 2
2 () 17 X710) = =v!
X (t) = X)X 'by 1 1
=y, () = [} 0] = XOX ()|, b, 2 4 1 1 1
—Zt +Ze —6t _e—Zt__e—6t
[, (0 = X(OX (1) (1) = X(DX1(0) = 2 1 1
- ] N . o2t _ =6t =2t 4 6t
where X(t) is any fundamental matrix for X' = A%
Note . s _[m@@71_70
X(OX1(s) = XOX ()X (E)X(S) = By (VDT (5) Solving the IVP: %o = || o) =]

5 = (f Ecine_z(t_s) + §cine_6(t_5)
Therefore solution to system can be rewritten () =0+ 2 2 ds
t N 3cipe "2 — 3¢, e72(ES)
£(0) = 0, 0 + 04, (0) | D7 () G5)ds 3 3 e
to =5 Cin [2] J e 2(t=9qs + 5 Cin [_2] J e 5(=5)gs
0 0
. . . t
Properties of Evolution Matrix for Autonomous Systems f e—2(t=5) g — 1(1 —e2t)
1) For autonomous systems, we have "Time-shift immunity" 0, 2
If £(¢) is solution to &' = AZ, then #(¢) = &(t — ) is solution to &’ = e—6(t=5) gs = l(l —e™6t)
AX o T 6
D, (t) = Po(t — to) = P(t — to) forany tg € I _}e,% 1 _
2) @(0) = I (Also applies to non-autonomous) x(t) = ¢ 1°¢ my (t)
3) @'(t) = A®(t) (Also applies to non-autonomous) " 1— 3 o2t 4 1 —o|  Ima(®)
4) O(t; +t3) = P(t2)P(t1) 2 2°

5) &71(t) = d(-t)

"Proof" of eA! = & (t)
6) ®(t) = et —I+tA+ A2 _IZ——AJ

Recall, A = VDV~ where D = [A 0]
0 Az

¢ N at) 1
#(t) = eAt-tx, +f A= f(3)ds ; 1 |; J! 0 | o
o ) _IZ VDIV =V Z [0 A]] =y © o) v
() =Pt —to)Xo+ | P(t—s)f(s)ds, where ®(t) = X()X1(0) 0 Z—,—
fto = J!
1 1
Using L to find ®(t) _ylett 0 ot Lyfert 3 2
Q'(t) = A®(), P(0) =1 B [ 0 et - —2] [ 1 1
L{@' (O} = sL{e ()} - @(0) = AL{P(D} (+) 2 4
Solve (*) for L{®(t)} Example
GI-AL{e®}=1 Tankswithfi =1, , =0
= L{e)} = (sA-D7! A= [—1 0 ] A=A = —1
o(t) = L7H(sI - ™Y 1 ’ 1T
L~ is computed element-wise. I ACE [ 9 ], () = [ - ]
te”

xo=[% 5] x@=[) }J=x-10
wo=xoc0=[8 SR Il =

Proof ®(t) = e4t

el = Mt (A=At = e"t<1 +t(A+D+ 522—' A+D*+ ) ;o u=Lk=-D
(4+n*=0 '

(el )=l

Example of Using L to solve ®(t)

4 1 L [s+4 -1
A= L s-asPL
s+4 1
1 -
-1 s+4 _|G+2)(s—-6) (s+2)(s+6)
(1= 4) “Gtaz- [ 4 s+4]_ 4 s+4

(s+2)(s+6) (s+2)(s+6)
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o(t) = L&S+Z;j—6ﬁ L&s+2is+6ﬁ

L{(s n 2)4(31+ 6)} L1 {(s +Sz)+(f n 6)}

1
-2t —6t -2t —6t
se +-e —e ——e
2 4 4
1 1
-2t -6t _6_2[ +_e_6t

2 2

(s+1D% s+1



Qualitative Analysis of Nonlinear Systems
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| y I
2
~NNN
Example N
Lotka-Volterra equations NN
for predator(y) - prey(x) model
dx_( )dy_( ) 1.8 SO
a SV =9y AU RN
f =ax —bxy
g = cxy—dy AR T
LA
1) Critical points: f =0, g =0 ' ot
a. ((Zi, 03 P
b (55) -
Note: If (x(O),y(O)) are both positive, then so are x(t), y(t) . -~
1 dx ’
Yars ey
dinx _ a—by = x(t) = cel (a-byat
dt
]
Linearization o 0.5 : 18
Lingz;(rize about pdo)i/nts (a) and (b) X (2.04783,1.85417)
a) Priakad T —dy
a=[0 °] i
- . 1 . 0 | Close | Config | Replot | Zoom | Save | Integrate | Plot Versus t
oo hma a=[l] -] |
_eeat[l ~at[0 y I
X(t) = cqe [0] + cye 1 5

~ 0

u_[1

_ b d[l

W_c al0

Example

d%e ) g

Wz—wzsme, w= |7

Definev=‘;—9

d6 0 X
— ] - =

Frinana

dv

(-1.71362,4.88703)

P —w?sinf - 6, = nm, n=0+1,+2,..
Linearize about 6,
sin@ = sin6,, + cos 6, (0 — 6,,)
[wZ( 1)n+1 0]
S 1
nodd A, = w, ¥ = [w] N=—w, 5, =|_ |

AMATH 251 Page 46



