
Note
Notes on blackboard are frequently missing words/parts of sentences or have other "typos" so if 
you can't make sense of some notes it's probably because it actually doesn't make sense as written.

Matchings•
Connectivity•
Planarity•

Graph Theory

Concepts
Matchings
Does a perfect matching exist?
Simple proof that one exists: find one.
How to prove that no perfect matching exists?
If odd number of vertices then definitely not.

Example

No perfect matching
      
number of components of     with an odd number of vertices is larger than  

Connectivity
Menger's Theorem

Planarity
Can prove a graph is planar by drawing it on a plane.
How to prove a graph is not planar?
Non-planar examples:
       

Can prove non-planar by finding subgraph that is a subdivision of   or     

Colouring
Not easy to certify that a graph is not 3-colourable.
Easy to certify not 2-colourable: No cycles.

Intro to Graph Theory
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Isomorphism
An isomorphism from a graph G to a graph H is a bijection 
from     to     such that if         and    then 
         and if    then          

Notation:
   means           

Graph
vertices     
edges     - unordered pairs of vertices

Automorphism
An automorphism of G is an isomorphism of G to itself.

For example, with G the first 5-cycle, the bijection
0→1  1→2  2→3  3→4  4→0
is an automorphism. 

Vertex Transitive
A graph is vertex-transitive if, for each pair of vertices 
   there is an automorphism of the graph that maps  to 
 .
(If G is vertex transitive it must be regular)

Circulants
A class of vertex transitive graphs.
We construct  as follows. Choose a positive integer  
and such that          0 1     1 

0   a)
if    then     b)

Choose a subset L of  0 1     1 such that 

We declare      to be an edge if      

Example
       1  1 

   2  2 

Graph Equality

This isn't a graph. It is a picture of a graph. The vertices are not labelled.

G H

G and H are not equal, but they are isomorphic
Mapping:

G → H

0 0

1 2

2 4

3 1

4 3

Can verify that all edges and non-edges match up.

Note: Since    , the mapping given above is not an automorphism on  

Example Vertex-Transitive Graphs

Automorphisms & Products
September-09-13 11:51 AM
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Cubelike Graph
The vertices of a cubelike graph are the binary vectors of length d. (So 
there are 2 vertices)
Choose a subset  of non-zero binary vectors of length  

Two vertices  and  are adjacent if their difference      
A cubelike graph is regular with degree    

Statement
If  is cubelike (on 2 vertices) and  is a binary vector of length  , the 
bijection        →     given by
             
is an automorphism of  

Remark
If      then              . So there is an automorphism 
that maps  to  .

Products
Cartesian Product
Suppose  and  are graphs. The Cartesian product      is defined 
as follows.

     and      a)
     and      b)

Two pairs        and        are adjacent if

Remark
     and      are not equal in general (because           
         ), but these graphs are isomorphic, the map that sends 
     to      is an isomorphism.

Remark
The d-cube is the Cartesian product of  copies of   

Direct Product
   
The vertex set is          and        is adjacent to        if 
     and      

Example
   00 01 10 11 
   01 10 

If   3,    001 010 100 we get

Proof of Statement
If         , then
                           
Hence              iff      
Therefore            iff    . ∎ 

Example Cartesian Product
  1  2        
 1     1     1   
     |               |             |
 2     2     2   

Example Direct Product
       1  2  3

11 12 13

21 22 23

31 32 33

Products
September-11-13 11:32 AM
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Certify connected by providing paths from each node to a common node
Certify not connected by partitioning the vertices into 2 sets such that there are no 
edges between them.

Any non-leaf vertex in a tree is a cut vertex.
A cycle does not have a cut vertex.

Example

 is a component. 

Notes on 2-Connectivity
Any cycle is 2-connected. No tree is 2-connected because any 2-connected graph 
contains a cycle.
A 2-connected graph cannot contain a cut vertex. 

Example Blocks

A block is an induced subgraph.
(1) Blocks are the triangles
(2) Only block is the whole graph
(3) Blocks are the edges (with endpoint vertices)

Cut-vertex
A cut-vertex in a graph  is a vertex  such that    has more 
connected components than  does. 

Subgraph
           
 subgraph if           and          

Induced subgraph: Pick vertex set, all possible edges 
between those vertices
Spanning subgraph:          

Special cases:

Component
We could define a component of the graph  to be subgraph  
such that  is connect and if   is a subgraph of  that properly 
contains  , then   is not connected. 

We can say  is a maximal subgraph of  that is connected. Where 
maximal is defined via inclusion. 
 is inclusion-maximal.

2-Connected
A graph  is 2-connected if each pair of distinct vertices   are 
joined by two distinct paths,  and  so that                
(We say  and  are internally disjoint)

Block
A graph is a block if it is connected and does not have a cut vertex.
A subgraph  of  is a block if it is maximal (by inclusion) subject 
to not having a cut vertex and being connected.

Lemma
Suppose      are edges in a connected graph  . If  and  lie on a 
cycle, and  and  lie on a cycle, then  and  lie on a cycle.
Proof in Notes

One consequence of this is that "is equal to or lies on a cycle with" 
is an equivalence relation on the edges of  . The equivalence 
classes are the blocks of  (but we haven't proved this yet).

Theorem

 is 2-connecteda)
Any two edges lie on a cycleb)
Any two vertices lie on a cyclec)

For a connected graph  on at least three vertices, the following 
statements are equivalent:

Proof of Theorem
a ⟺  ince 2 internally disjoint paths between 2 vertices form a cycle.

such that each edge is adjacent to one of the vertices. Then there is a cycle connecting 
the edges ⇒ connecting the vertices.

b ⇒ c Given 2 vertices  pick two distinct edges  distinct possible because ≥ 3 vertices 

a ⇒ b?
We prove that if  is 2-connected then any two distinct edges lie on a cycle.
Let  and  be distinct edges with the vertex  in common. (Other vertices  and  , 
respectively).
Since  is 2-connected,    is connected. So there is a path  in    joining  and  .
This path together with the path  →  is a cycle that contains  and  .
Now we prove the claim by induction on the distance between  and  .

Suppose  and  are joined by a path of length  
Let  be the edges on this path overlapping  .
Assume that  is minimal. By induction on  , we have that  and  lie on a cycle. By the first 
part of the proof,  and  lie on a cycle.
By the lemma, it follows that  and  lie on a cycle. ∎ 

Connectivity
September-11-13 12:09 PM
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2-Sum
Suppose  and  are graphs where                
and      is an edge in  and in  .
The 2-sum of  and  is the vertex set          
The edge set is the symmetric difference          of     and 
    

Theorem
If  is the 2-sum of two 2-connected graphs, then  is 2-connected.

Corollary
If      are 2-connected and             2 then    is 2-
connected.

Lemma
If  is a connected vertex-transitive graph on at least three vertices it 
is 2-connected.

Proof of Theorem
Suppose  is the 2-sum of   and   .  (using vertices  and  ). Let  denote the edges   . 
Suppose  and  are distinct vertices in   . Since   is 2-connected, there is a cycle in   that 
contains  &  . If this cycle does not contain  then  &  lie on a cycle in  . 
If  is in this cycle, we note that there is cycle in   containing  and  so there must be a path 
between  and  that does not contain  . Using this path we can construct a cycle in  through 
 &  .
Similarly, any two vertices in   lie in a cycle in  .

So suppose     and     

Proof of Lemma
The proof depends on the claim that if  is a cut vertex and  is an automorphism then     is 
a cut vertex. To prove the claim, we show that                
For this we just need to check that the restriction of  to      u is an isomorphism from     
to        . This restriction is a bijection and it is an isomorphism because  is.
This shows that if  is vertex transitive and one vertex is a cut vertex, all vertices are cut 
vertices.
But if  is connected, it has a spanning tree  . If this vertex  has degree one in  then  is not 
a cut vertex in  . i.e.      is connected.
Therefore,     is connected and so  is not a cut vertex in  . ∎ 

Read through section 1.4 (on blocks)

2-Connectivity
September-16-13 12:00 PM
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Matchings
A matching on a graph is a set of vertex-disjoint edges.

A matching  is maximal by inclusion if there is no matching  such 
that    and    .

Vertex Cover
A vertex cover in a graph is a set of vertices such that each edges of the 
graph contains at least one vertex in set. 

König's Theorem
In a bipartite graph, the max size of a matching equals the minimum 
size of a vertex cover.

Lemma (3.1.2)
Suppose  and  are vertices in a graph  and no matching of 
maximum size misses both of them. Suppose   and   are maximum 
matchings that miss  and  , respectively. 
Then there is a path of even length in      that joins  to  . 

Corollary
In a bipartite graph, the set of avoidable vertices is an independent set.

Avoidable
There exists a maximum matching that does not cover it

Independent
No two vertices are adjacent

Proof
Exercise

Definition
    is the maximum size of a matching in  

Lemma (3.1.4)
If  is a graph and       then 
                     
If equality holds, every maximum matching of  pairs vertices of  with 
vertices of    

Claim
If  is maximal (by inclusion) such that equality holds in    then each 
vertex in     is missed by a matching of     with maximum size.

Example Maximal Matching by Inclusion
1  2  3  4
 23 is maximal by inclusion

If  and  are matchings, each component of the subgraph with edge set    has 
degree   2
Since the max degree of a vertex in the graph is at most two, its components are paths & 
cycles. 

Proof of Lemma (3.1.2)
The subgraph with edge set      is a disjoint union of paths and even cycles. Since 
 is not covered by   and  is not covered by   , both  and  are the ends of paths.
Note that if some path in      has odd length then it is an augmenting path for 
     

Suppose that there is a path in      that covers  but not  . Denote it by  . Then  
has even length & the edge of  on  lies in   . 
Then          (    = the edges of  ) is a matching of maximum size that misses  
and  . Since there is no such matching,  and  must like on the ends of a path in    
  .  ince this path has even length  we're done. ∎ 

     consists of even paths & even cycles. •
 and  lie on the ends of paths.•
If the path  ion  does not cover  , we can construct a matching of maximum size 
that misses  and  .

•

Outline

Proof of Lemma (3.1.4)
Let  be a maximum matching and let           - the edges of  lying in 
       ( is a matching)
Then                
where         and             , each edge in     contains at least one vertex in 
 , so           
Therefore,                 
Proof of Claim
Now suppose that  is maximal such that equality holds. Then                 

Note that    holds with equality for    . If  is a vertex in  that lies in every 
maximum matching, we may take      

Such an  does exist.

                      1
            1
                                      

Assume by way of contradiction that there is a vertex  in      that lies in each 
maximum matching of      . I claim that the set      satisfies    with equality. Since  
 lies in each maximum matching of      , we have

This is impossible because we chose  to be maximal. Hence there is no vertex in      
that lies in every maximum matching of      . ∎ 

Proof of König's Theorem
Exercise
Outline: Choose  maximal so that equality holds in    . Then      is an independent 
set so  is a cover.

Matchings & Covers
September-18-13 12:00 PM
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Avoidable
A vertex in a graph is avoidable if there is a maximum matching that does 
not cover it. A vertex that is not avoidable is covered 

Factor-Critical Graphs
A graph is factor-critical if it is connected and each vertex is avoidable.

Lemma 3.2.1
Let      be distinct avoidable vertices in  . Then if no maximum matching 
misses  and  , and no maximum matching misses  and  , then no 
maximum matching misses  and  .

It follows that if there is a path in  from  to  , no max matching misses 
both  and  .

Proof
Exercise (use induction the length of the path)

So if  is connected and each vertex is avoidable no maximum matching 
misses two vertices.
Thus if  factor critical, a max matching covers all but one vertex.
(Thus       is odd) 

For a graph  we use odd   to denote the number of odd components of  . 
(A component of  is odd if       is odd).
If  is a perfect matching and  is an odd component of      , then some 
edge of  contains a vertex in  and a vertex in  . 
( pairs a vertex of  with a vertex of  ).

Exercise
If odd           , then  not have a perfect matching.

Tutte's Theorem
A graph  has no perfect matching if and only if there is a subset  of     
such that odd           .

Tutte-Berge Theorem
For any graph  , the number of vertices missed by a maximum matching is
ma 

      
 odd            

Corollary
A cubic graph with at most 2 cut-edges has a perfect matching.
(Cubic = 3-regular)

Proof of Lemma 3.2.1
Let   be a maximum matching that misses  .
Suppose  is a maximum matching that misses  and  . 

 and  are covered by   and  is covered by  . 
Consider the subgraph formed by the edges of     . One component of this 
subgraph is a   -path (by Lemma 3.1.2). By the same argument, on component of 
    must be an   -path. Since both paths contain the edge of  on  , they must be 
equal. Hence    . 
Since    , the matching  does not e ist. ∎ 

Notes about Factor Critical Graphs
                 
If  is chosen maximal so that equality holds then each vertex in      is avoidable. So 
each component of      is factor critical.
If  is vertex transitive and connected then either  has a perfect matching or  is 
factor critical.

A factor-critical bipartite graph must be   .
The cycle   is factor-critical. Any connected vertex-transitive graph on an odd 
number of vertices is factor-critical.

Proof of Tutte-Berge Theorem
First, each matching in  misses at least odd           vertices. So we have 
       2    ≥ odd           for any subset  of     .
We have to show that equality holds.
If each vertex in  is avoidable, each component in  is factor critical and we may take 
   . 
Otherwise, choose  maximal such that                  

Then   2       2         2           2             

Here each component of     is factor-critical and so odd              2       
∎ 

Proof of Corollary
Assume  is a cubic with at most two cute edges. Assume by contradiction that  does 
not have  a perfect matching. 
Choose a subset  of     such that odd       is maximal (So odd       ≥ 2). 

Claim:
Each odd component of      is joined to  by an odd number of edges - there are an 
odd number of vertices of even degree in each such component and each vertex of 
even degree is joined to  by an odd number of edges. 
If a component of      is joined to  by exactly one edge, this edge is a cut edge.

It follows that 3 odd        2  2 a lower bound on the number of edges joining  
to a component of      . But odd        2 ≥    

It follows that on average each vertex of  is jointed to at least 
      

   
      3 vertices in 

     . This is impossible, so we cannot assume that  has no perfect matching.

Factor-Critical Graph
September-23-13 12:03 PM
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Cut Vertex
A cut vertex in  is a vertex  such that      has more components than  . A block is a 
connected graph with no cut vertex. Any block is either   , or it is 2-connected. 

The block-cut vertex graph of  is defined as follows. Its vertices are the cut vertices and the 
blocks of  . There is an edge joining a cut vertex to a block fi the block contains the cut vertex 
(and there are no other edges).
The block-cut vertex graph is bipartite, by definition. In fact, it is a tree if the graph is connected. 
(Exercise.)

Cut Vertex
September-27-13 11:32 AM
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a set of verticesa)
a set of edgesb)
a relation of    such that each edge is related to 1 or 2 vertices.c)

Multiple edges & loops - if we want to permit these, we should define a graph to consist of

An edges that is related to just one vertex is a loop.
If  is a graph with no loops and no multiple edges, we say it is a simple graph.
In general, we use sim   to denote the graph we get from  by deleting all loops and replacing all 
multiple edges by single edges. 

Example Minor

A minor is not necessarily a subgraph.
  is a minor of the Petersen graph but not a subgraph.

Proof of Lemma
Starting with  , contract all the vertices of   . Since   is 2-connected, there is a   -path in 
         so this leaves us with                  

Proof of Theorem
Suppose       and    is not 2-connected. Assume     .
Claim: The vertex produced by contracting  is a cut vertex.
Claim:  looks like

     is 2-connected?
See notes (check each pair of vertices in 4 cases)

Deletion
Delete edges.
Any graph we produce from  by deleting edges is a 
subgraph of  

Contraction
Combine vertices (delete edge between).
In general this produces loops & multiple edges.
Contracting edge  in graph  , denote    

Minor
We say  is a minor of  if it is isomorphic to something 
produced by deleting & contracting.

deleting vertices-
deleting edges-
contracting edges-

A minor is any graph we get from  by 

Subdivision
Subdividing an edges means to add a vertex in that edge. 
(  becomes      were  is a new vertex)

 is a subdivision of  if  can be produced from  by 
subdividing edges. 

Lemma
If  is the 2-sum of   and   and   is 2-connected, then 
  is a minor of  .

Theorem
Let  be a 2-connected graph with at least three vertices. If 
      then either      of    is 2-connected. 

Contractions & Deletions
September-30-13 11:38 AM
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Lemma (1.6.1) 
Assume  is the 2-sum of 2-connected graphs   and   with             
     . If  is a cycle in  that passes through  and  , and uses vertices in 
             and in              , then  is the 2-sum of a cycle in   and a 
cycle in   

Lemma (1.6.2)

if    then  is the 2-sum of   and   a)
if    then         is the 2-sum of   and   b)

Suppose  is 2-connected and      is a cutset in  . Then there are 2-connected 
graphs   and   such that                  and 

Theorem

 is a cyclea)
there is an edge  such that      is 2-connected.b)
 is the 2-sum of a 2-connected graph and a cycle. c)

If  is 2-connected, one of the following holds

Proof of Lemma (1.6.1)
Read notes

Proof of Lemma (1.6.2)
Assume    . Then  is the 2-sum of graphs   and   . We must show that   

and   are 2-connected. 

Exercise: prove that any two vertices in   lie in a cycle (See notes)

Otherwise,      . If     then    is not 2-connected (the image in    of  is a 
cut vertex and so      must be 2-connected.
∎ 

Proof of Theorem
Call a subgraph  of  a good subgraph if it is a cycle, a 2-connected subgraph of 
 plus an edge, or a 2-sum of a 2-connected graph and a cycle.
Since  is 2-connected, it contains cycles and so it has good subgraphs. 

If  is a spanning subgraph of  and  is good then  is good. (Why? Can keep 
adding edges according to rule (b) )
If there is no good spanning subgraph choose a good subgraph  with as many 
vertices as possible. Since  is connected there is a vertex  in  adjacent to 
vertex  not in  . Since  is 2-connected,  has a neighbour  in  . Since  is 2-
connected, there is a cycle containing the edges   and   .

Building 2-Connected Graphs
October-02-13 11:43 AM
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Directed Graph
Consists of a vertex set and an arc set of ordered pairs of vertices. 

Oriented Graph
Directed graphs where any two arcs are joined by at most one arc.

Underlying Graph
Each directed graph has an underlying graph which has the same vertex set and has    if 
and only if   or   is an arc in the directed graph.

Connectivity
A directed graph is weakly connected if its underlying graph is connected. A weak 
component is a component of the underlying graph.

A directed graph is strongly connected if, for each pair of vertices    , there is a path on 
the directed graph from  to  .

A strong component  of a directed graph  is a sub-directed graph of  which is maximal 
subject to being stringly connected.

Lemma False
A directed graph is strongly connected if and only if each pair of vertices lies on a cycle. 
False. Counterexample: 

Lemma
If  and  are distinct strong components of a directed graph and there is an arc from a 
vertex    to a vertex    , then there is no   where    and   where    and   
 

Theorem
Let  be a directed graph whose strong components are        . Let  be the directed 
graph with        as vertices, where        is an arc if    and there are vertices 

    and     such that   is an arc of  . Then  is acyclic - it contains no cycle.

Source and Sink
A vertex in a directed graph is a sink if its outdegree is zero. 
It is a source if its indegree is zero.

Lemma
If  is a weakly connected directed graph and for each vertex  , the indegree and 
outdegree are equal, then  is strongly connected.

Orientation
If  is a directed graph constrained by assigning an orientation to each edge of  ( 
undirected), we say  is an orientation.

Lemma
If  is 2-connected, it has a strongly connected orintation.

Proof
Exercise

Remark
A connected graph has a strongly connected orientation if and only if it does not have a cut 
edge. 

Proof of Lemma
Assume by way of contradiction that  is not strongly connected, and let 
       be its strong components. Let   be the directed graph with 
       as vertices, as defined before.

Exercise
Any acyclic directed graph has both sinks and sources. 
Idea: Take longest path. Not a cycle so first vertex is source, last is sink. 

We can assume without loss that     is a sink.
Note that in any directed graph, the sum of the indegrees is equal to the 
sum of the outdegrees. 
We also note that since   is a sink, if        then 
outdeg  

    outdeg    

(Because if        and        then   is not an arc). We have

 indeg  
   

 

       

  outdeg  
   

 

       

  outdeg    

 

       

  indeg    

 

       

But since there are vertices in   dominated by vertices not in   , the 
last sum is greater than 

 indeg   

 

       

So we have a contradiction, and we conclude that  is strongly 
connected. ∎ 

Example
Directed Circulants

Choose an integer  and a subset  of     0. Define a digraph with 
vertex set   where   is an arc if and only if      
The map   that sends  to          is an automorphism. It 
follows that all in-degrees are equal and all out-degrees are equal. So for 
each vertex, the in-degree is equal to the out-degree. Hence if a directed 
circulant is weakly connected, it is strongly connected.

Directed Graphs
October-04-13 11:33 AM
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Menger's Theorem
Let  be a directed graph and let    be distinct vertices in  .

The maximum number of arc-disjoint    paths equals the minimum size of 
a set of arcs  such that there is no st-path in    .

Submodular Functions

         ≥              

Let  be a set and let  be a real-valued function on the subsets of  . We say 
 is submodular if, for each pair of subsets      of  , 

Note
Menger's Theorem implies that if       ≥   1 and there is no vertex 
cutset of size less than  , then any two vertices are joined by  internally 
disjoint paths. 

Example Submodular Functions

        
Example 1

Example 2
Let  be a directed graph. If       , let     be the number of arcs in   such that   
 and    . (So     counts incomming arcs). 

Claim:  is submodular.
                          arcs between   and   
Proof: Exercise

Let  be the vertex set of the graph  . If    , let     count the edges   with    ,   
 .

Example 3
Let  be the biparition with colour classes  and  . If    , define 
           = vertices adjacent to something in  

Proof of Menger's Theorem
The proof goes by induction on the number of arcs in the directed graph. Consider 
subsets that contain  but not  . Let  be the minimum value of     for such subsets, 
where  is defined as in example 2.
We have to prove that there are  arc-disjoint paths from  to  .

Call a subset  tight if       

Claim
If  and  are tight, so are    and    . 

Proof
If  and  are tight,
2           ≥               
     so      
             ≥  ⇒                

Suppose   is an arc in  that is not incomming to some tight subset (not incomming to 
any). Then when we delete   we still have       for each tight subset of       . So 
Menger's theorem holds in       (by structural induction). This gives us  arc-disjoint 
st-paths in       and these are arc-disjoint paths in  . 

Claim
There is an arc   , where    and   is is incoming for some tight subset. 

Proof
Otherwise, there  is only one arc on  and it is   and   1 and we are done.

Let  be the intersction of all tight subsets for which   is incoming. Note that  is tight. 

Menger's Theorem
October-09-13 11:42 AM
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Theorem
Let  be a graph with at least five vertices. If  is 3-connected, 
there is an edge  such that sim       is 3-connected.

Proof of Theorem
Assume  is 3-connected.             . Suppose that      is a cutset in      
If              , then      is a cutset in  , which is impossible. So there is a vertex z 
in  such   and the contraction of  is a cutset in     . Then        is a cutset in  . 

So if     is not 3-connected, there is vertex z which the vertices of  forms a cutset of  
of size three. Choose  so that the largest component of   cutset is as large as possible. 
Let  be this component.
Since  is a cutvertex in          , it follows that  has a neighbour not in        . 
Denote this neighbour by  and let  be the edge   . Suppoze    is not 3-connected. 
Then there is a cut vertex  in         . Se show that    .

Since    is 2-connected and        is a vertex cutset in    , by Lemma 1.6.2 it follows 
that        is 2-connected. Since neighter  nor  are vertices of  and  is a cut 
vertex in         , it follows that       
If       , then             is connected graph with more vertices than  , and it is 
contained in a component of           . This a contradiction to the assumption that for  
in     , the contraction    is not 3-connected. ∎ 

3-Connected Graphs
October-16-13 11:47 AM
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Graphs have parallel edges, no loops.

Spanning Tree

 is a tree (connected, acyclic) •
         •

A spanning tree of a graph  is a subgraph  of  such that 

Notation
    is the # of spanning trees of  .

   is  with  removed•
   is  with  contracted•

For       

Keep parallel edges, remove loops. 

Lemma 1
If       then                     

Laplacian of a Graph
Given a graph  

Degree Matrix
The degree matrix     has     labelling both sides.

         
deg   if    

0 otherwise

Adjacency Matrix
The adjacency matrix     has     labelling both sides.

         
  edges between      if     

0 if     

Laplacian Matrix
The Laplacian Matrix of G is
              

Write  for     when  is clear from context•
If       then     denotes  with rows and columns 
indexed by  removed.

•

 is a square matrix,       is  with i-row and j-column 
removed.

•

      1 2     •

Notation

Lemma 2
For any graph  , det    0

Lemma 3
If       and     then 
det       det            det             
   is the vertex in    for the contracted   .

Theorem
Let  be a graph with       ≥ 2. Then for any       ,
     det      

Corollary
          for  ≥ 2

Proof of Lemma 1
Spanning trees of  that do not contain  
 (bijection)
Spanning trees of    

Spanning trees of  that contain  
 
Spanning trees of    

Since each spanning tree of  either contains  or it does not,
                  

Proof of Lemma 2
Let   be the all one vector of length n.
Then      ⇒ det    0

Proof of Lemma 3
Note that     and          have all of the values being the same, except
                     1

Cofactor expansion

det       1       det        

 

  column inde 

   

det       det              1      1  det         
 det            det         det             det             
∎ 

Proof of Theorem
Let       

Suppose  is an isolated vertex
Let           be the components of       
Then 

      

     0  0

0       0
    
0  0      

 

 hen det      det      

 

   

 0

(Lemma 2)

In general, apply induction on       ,        0
det       det            det                                   

Proof of Corollary
Let  be the    1     1 all-one matrix. Note that 
                
where   is the size  identity matrix

             ⟺           
So  is an eigenvalue of         ⟺    is an eigenvalue of  

(n-2) copies of 0
The eigenvalues of    0  0     0    1

(n-2 copies)
Eigenvalues of  ,         1

det               

Spanning Trees and Laplacians
October-18-13 11:32 AM
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Incidence Matrices over  
Let  be a graph with  vertices and  edges. Choose an orientation of  . We 
construct the incidence matrix of this orientation as follows. The rows correspond 
to the vertices and the colums correspond to edges.
The   -entry of the indices is 1 if vertex  is the head of the  th arc, -1 if it is the tail, 
and otherwise 0.

Lemma 1
Let  be a graph with Laplacian matrix  . If  is the incidence matrix of an 
orientation of  , then      

Lemma 2
If  has  vertices and  components then rank       

Corollary 1
If  is connected then     0 iff  is constant.

Exercise
The sum of the columns of  indexed by a cycle is zero if correctly oriented.
The set of columns is linearly dependent if the edges form a cycle.

Lemma 3
A set of columns of  is linearly independent if and only if the corresponding 
subgraph has no cycles - i.e. it’s a forrest. 

Proof of Lemma 1
The entries of    are the inner product of the rows of  . The inner 
product of a row with itself is the degree of the associated vertex. The inner 
product of rows  and  ,    , is zero if    and is  1  1   1 if      

Linear Algebra
If     →  is a linear transformation then 
dim range     dim ker     dim domain    

Proof of Lemma 2
We think of  as mapping in vector   to    
So the domain is   and the image is the row space. We can compute 
dim row space if we have the dimension of the kernel.

If  is a column of  with    1 and     1 then     0 iff      . So 

     for every pair of vertices    such that    . We see that     0 iff  

has the same value for all of the vertices in each component. 

The vectors constant on components form a vector space of dimension  . 
hence dim ker      . 
rank    dim domain     dim ker        

Note
If  is the incidence matrix of an orientation of  , then 
               of components of  

In constructing the incidence matrix, multiple edges cause no problems -
we just get a number of copies of the same column. If  is a submatrix of  , 
formed by choosing some of its columns, then  is the incidence matrix for 
a spanning subgraph of  . If the subgraph is  then
rank            components        components    

Proof of Lemma 3
If  is a subgraph of  and contains a cycle  , then the columns of  
indexed by the edges of  are linearly dependent. So if a set of columns is 
linearly independent, the subgraph has no cycles. 
We have to show that if  has no cycles, then the columns are linearly 
independent. 
If  is a forest,           components     rank   
 is the incidence matrix of  
If rank   is equal to the number of columsn of  then the columns are 
linearly independent.

Incidence Matrices
October-21-13 11:44 AM
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Barycentric Embedding
If        are vertices in   , their barycentre is 

 

 
          

Assign vectors        to each vertex in  (where        a)
If          then  must lie at the barycentre of its neighboursb)

If  is a graph and  is a subset of vertices of  , we can construct an 
embedding of  in   as follows:

Convex Sets in   

A subset  of   is confex if, for each pair of points      , all points on 
the line segment joining  to  belong to  . 
If  and  are vectors in   then the line segment that joins them consist 
of all vectors     1      0    1

Convex Combination
We say  is a convex combination of        if              

where   ≥ 0 and    
 
  1

If  and  are convex sets, so is    . 

Convex Hull
If     then the intsersection of all convex sets that contain  is a 
convex set and is called the convex hull of  .

Lemma
If  is a finite set of points, then the convex hull of  consists of the convex 
combinations of the elements of  . 

Barycentric Embedding
Suppose we have embedding of the vertices of  in   . This embedding is barycentric at the 
vertex  if

   
1

  
     

 

   

Here,   is the image of the vertex  and   is its degree.
Equivalently, 

        

 

   

 or         

 

   

 0

The coefficients of this last equation are entries in row  of the laplacian of  .
In practice we proceed as follows. Choose a cycle  such that     is connected and embed the 
vertices of  as the vertices of a regular polygon in the plane. We want to find an embedding 
that is barycentric on the vertices not in  . 

Our data structure is a        2 matrix 

 
  

 
   

 

Where the rows of   give the embedding of the cycle

 
       

   
   
     

  
  

 
   

   
 
 
0
 

thus our barycentric condition is equivalent to 
   
           0

If    
  exists then        

     
   

In particular, if    is invertible, then    has a unique solution. I claim that    is invertible if 
    is connected. To see this, let  be the sincidence matrix of  . Then we can write

   
  

 
   

 

Now,      and

 
  

 
   

    
     

    
    

       
 

   
     

        
 
 

We have rank       
   rank     (by linear algebra)

We assume that  is connected. We are also assuming that     is connected. Given these 
assumptions. we need to show that the rows of    are linearly independent.

The proof of this is an exercise.

Planarity
October-23-13 12:10 PM
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Planar Graphs
In this context, our graphs need not be simple. (So a graph is a set of 
vertices, a set of edges, and an incidence relation on vertices and edges).

A drawing of a graph in a surface divides the surface into faces. All faces 
must be topologically equivalent to discs. (The technical term is that the 
embedding is cellular) 
A drawing of a connected graph in the plane with no crossings is called a 
planar drawing or a planar map. 

Each planar map has vertices, edges, and faces. This gives us an incidence 
relation between edges and faces.

Lemma
Suppose  is a 2-connected graph with at least three vertices. Then in any 
planar drawing of  , each face is a cycle and each edge lies in eactly two 
faces. 

If  is planar, so is any minor, and so is any subdivision.

Proof of Lemma
(Sketch - see notes for details)
Note we can construct any 2-connected graph starting from a cycle by adding edges or by 
subdividing edges. The proof is by induction on the number of edges. 

Planar Graphs Cont.
October-28-13 12:09 PM
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Chord and Bridge

a chord, ora)
a subgraph of  formed by a component of     together with the vertices on  
adjacent to the component and edges these vertices to vertices in the 
component.

b)

Let  be a graph and let  be a cycle in  . A chord is an edge of  that joins two 
vertices of  but is not an edge of  . A bridge of  is either 

Feet 
The vertices of a bridge that are on the cycle are called the feet of the bridge.

Span
If  and  are consecutive feet on the cycle, the path in the cycle joining these is a 
span of the bridge.

A bridge   avoids a bridge   if all feet of one bridge are contained in one span of 
the the other. Two bridges that do not avoid each other are said to overlap.

If  is a cycle in a graph  and  is a bridge then in a plane drawing, all vertices 
of  lie in the same face of  .

i)

If   and   are overlapping bridges then they lie in different faces.ii)

Remarks

Overlap Graph
If        are the bridges of a cycle, the overlap graph of  has these bridges as 
vertices and two bridges are adjacent if they overlap.

Claim
If  is planar and  is a cycle, then the overlap graph relative to  is bipartite.

Peripheral Cycles
A cycle  in a graph is peripheral if     is connected. That is, if  has at most one 
bridge.

Theorem
Suppose  is a 3-connected. A cycle  in  bounds a face iff and only if it is periperal.  

Proof of Theorem
First, suppose  is peripheral . Then it has exactly one bridge ( is not a cycle) 
and in a planar drawing this bridge lies in one face of  . The other face of  is a 
face of the graph.
For the next step, we claim that if no two bridges overlap then  is not 3-
connected.
If two bridges of  overlap, then they must be embedded in different faces of  . 
⇒  is not a face of the drawing of  .

Bridges & Cycles
November-01-13 11:38 AM

   CO 342 Page 18    



A cycle in a graph is peripheral if       is connected. Equivalently,  has 
only one bride. We proved that a face in a planar drawing of a 3-connected 
graph is peripheral. Conversely, any peripheral cycle must bound a face.

Corollary
A 3 connected graph has at most one drawing in a plane, up to reversal. 

Kuratowski's Theorem
Theorem
A graph  can be drawn in the plane iff it does not have a subdivision of   

or     as a subgraph.

There is also a minor version: (equivalent)

Theorem
A graph  can be drawn in the plane iff it does not have   or     as a 

minor.

Lemma
Let  be a cubic graph. If a graph has  as a minor, then it contains a 
subdivision of  

Remark
If  contains a subdivision of  , then  is a minor of  

Lemma 2
If  contains   as a minor, then it conatins a subdivison of   or     .

Proof of Corollary
For a  3-connected graph, the faces are precisely the peripheral faces.

Example of Different Embeddings

Two different embeddings. Faces have different number of edges so not the same.

Difficulty in proving 2 versions of Kuratowski's Theorem equivalent
Petersen graph

Has a   minor but does not have   has a subdivision.

Proof of Lemma
The proof is by induction on              .
If              then the result is true, because    

 Board says "  subdivision of  ", but that doesn't make sense to me).

Now suppose there is an edge  such that  is a minor of    . By induction, since  is 
cubic    contains a subdivision of  . Hence  contains a subdivion of  . 

So we may assume that for edge  ,    does not contains  as a minor. So there is an 
edge  such that    has  as a minor. If the image of  is not in the copy of  , then 
   has a subdivision of  that does not use this image, and  has a subdivision of  . 
So  is equal to    where  is a subgraph of  that contains  . By induction,    
contains a subdivision   of  and   contains  .
The degree of  in   is three. So the two vertices of  in  have dgree at most three in 
 . 

Proof of Lemma 2
We proceed by induction on the number of edges. If   is a contraction of a proper 
subgraph of   , then this contraction has a   or     -subdivision and so, by induction, 

 has one too.

Kuratowski's Theorem
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Theorem
Let  be a peripheral cycle in a 3-connected graph. If  is planar, the 
barycentric enbedding relative to  is a planar drawing. 

 is embedded as a convex polygon.

Proof of Theorem
We establish a sequence of claims

Claim 1
Let  be a line in the plane that is not parallel to any edge of the embedding and meets the 
embedding of  in two paints. Then ther vertices on one side of  or on  induce a connected 
graph.

For any vertex below the line, either it is on the cycle, or it has a vertex below it (relative to 
the line - since cannot have all neighbours on one side and no edges parallel to  ) or it is on 
the same point as all its neighbours. In the 2nd case we can keep going to lower vertices 
until reach case 1 or 3.
So there is no difficulty unless there is a vertex which is embedded at the same point as 
each of its neighbours. In this case, let  be a connected component of the graph induced 
by the vertices maped to the same point as  . There is a vertex  in  adjacent to vertices 
not in  . From this we can go "uphill" or "downhill" to edges not parallel to  . 
Not always,  could contains a point in  , but fine in that case.

Claim 2
There is no vertex such that  and all its neighbours lie on the same line  .

Let  be a component of the subgraph of  induced by the vertices that are on  , and have 
all their neighbours on  . 
If all vertices of  lie on a point, then pick  such that it intersects  twice.
We can assume that  contains  . Let  be the set of neighbours of vertices in  that are 
not in  . Let   and   be the sets of vertices above and below  . Then   and   are 
connected. If we contract   and   and  to single vertices then the subgraph formed by 
those vertices and three vertices from  is   . 

Claim 3
Let     be an edges that is not on  and      be the two faces of  on  .
Let  be the line through the images of  and  . Then all vertices of   lie on one side of  , 
and all vertices of   lie on the other. 

Claim 4
The boundary of each face is a convex polygon. 
Outline of proof: each edge determines two half-planes; each face is the intersection of half-
planes determined by its edges.

Claim 5
The interiors ofo the faces of disjoint.

November-06-13 11:36 AM
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We work with incidence matrices over   .
The incidence matrix of a graph  over   has rows indexed 
by vertices, columns indexed by edges, and the   -entry is 1 
if the    vertex is on the    edge. Otherwise it is 0.

Lemma
rank       where         ,  is the number of 
components, and  is the incidence matrix of  .

Edge Cut
If      is a partition of     , we say that the edges that 
connect a vectex in  to a vertex in  form an edge cut (or a 
cut). The empty set is a n edge cut.

Claim
    is an edge cut if and only if  is bipartite. 

Theorem
The edge cuts of  form a vector space of   . 

Fundamental Edge Cut
If  is a spanning tree on  and       then    has 
exactly two components, which partition     . This gives us 
an edge cut called the fundamental edge-cut relative to  

Example Incidence Matrix

0

3

     

     5            1
2                         4

Incidence matrix
Vertices  0 1 2 3 4   
Edges  02 03 04 13 14 1  24 2  3  
Incidence matrix

 
 
 
 
 
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0
0 0 0 0 0 1 0 1 1

 
 
 
 
 

  

The row space of  is a subspace of   
 . Its dimension is at most 6. (        ), but the sum of 

the rows is 0. So its dimension is at most 5. 

Remark
If  is a vector space of dimension  over   , then     2 . (Look at all linear combinations 
of basis vectors.) 
Each row of  determines a set of edges, the subset of     consisting of the edges that 
conatin a given vectex. We say each row of a characteristic vector (of a subset of     ). 
Addition mod 2 of characteristic vectors scorrespond to symmetric difference of subsets.

Proof of Lemma
Suppose     0. If             , this means that       0 and, since we're working 

mod 2, we have      if           

Se the "left nullspace" of  has dimension  . 
Hence rank       
∎ 

If a set of edges forms a cycle in  , then the sum of the corresponding columns of  is zero.
As before (with the oriented case over  ), a set of columns is lienarly independent if and only 
if the edges form a forrest.

Proof of Theorem
The row space of  consists of the characteristic vectors of the edge cuts. 

Claim
If  is binary    is the characteristic vector of an edge cut. 

Cuts and Flows
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The row space of the incidence matrix of  a graph is the cut space of the graph. What is the kernel of 
 ? If  has exactly  components then rank             and so
dim ker                     

Suppose    0 and let  be the subgraph formed by the edges in the support of  .
(So  is the characteristic vector of its support.)
If       then the  entry of    is the number of edges on  and in  mod 2. 
Thus    0 if and only if each vertex in  has even degree.
So ker   contains all cycles. 
A graph is even if all of its vertices have even degree. A connected even graph is also called an 
Eulerian graph. 

The kernel of  can be called the flow space of  - it consists of all characteristic vectors of even 
subgraphs of  .

If  is an even subgraph and       then it contains a cycle  a)
If   is  with the edges of  deleted then the characteristic vector of      is the sum of the 
characteristic vectors of  and  .

b)

  is even.c)

What is the subspace of ker   spanned by the cycles? In fact it is ker   . To see this we have to 
verify the following claims:

So our claim follows by induction on       .

Each chord in a spanning tree determines a unique cycle, a so-called fundamental cycle relative to 
the tree. For a fixed tree, the fundamental cycles are linearly independent (prove it) and so they 
form a basis. 

 →  educed  ow  chelon  orm →       

      
   

 
         0

So each row of     
  1 is orthogonal to each row of  . 

Even Graphs
November-13-13 11:34 AM

   CO 342 Page 22    



Let  be a plane graph with dual   

If  is not a loop and not a cut edge then1.
           
 is the edge in   that corresponds to  
If  is not a loop2.
           

     

Remark: if  is a loop then        

Claim
If  is connected then   is connected.

Note
If the set of edges  is a cycle in  then its image in   is an edge cut.

We make use of the incidence matrix of  . The vectors in the row space of the incidence 
matrix  are the characteristic vectors of edge cuts. The vectors in ker   are the 
characteristic vectors the the even subgraphs. 
If  is planar and has no cut vertex, each face is bounded by a cycle. Since each edges lies 
in exactly two cycles, the sum of the characteristic vectors of the faces is 0.
The matrix with these vectors as its rows is the incidence matrix of   . Denote this by   . 
Each row of  has dot product zero with any row of   because the rows of   are the 
characteristic vectors of cycles in  . So      0

Exercise
Let  be a planar graph with no cut vertex. 
Let        be a st of faces of  . If the sum of the characteristic vectors of these faces is 
zero then        is the complete set of faces.

Corollary
  is connected

Lemma
Let  be a planar graph. Then  is bipartite if and only if   is even.

Proof of Lemma
If  is bipartite then the all-ones vector 1 lies in the row space of  . 
Conversely, if 1        then  is bipartite. So if  is bipartite, each 
vector in ker   is the characteristic vector of an even subset.
It follows that each edge cut in   has even size
So each vertex in   has even degree.
For the converse, suppose  is even. Then   1  0 and so 1  ker   .
hence 1         so   is bipartite.

Duals
November-13-13 12:14 PM

   CO 342 Page 23    



       •
                       (with some caveats)•
(if  is a loop,        )
If  is the set of edges of a cycle in  , then its image in   is an edge cut.•

Duality

Lemma
If  is a connected, planar graph then   is connected.

Lemma 2
If  is the edge set of a spanning tree in the plane graph  , then the image of   in 
  is a spanning tree. 

Corollary (Euler) 
IF         and         and  has a planer embedding with  faces, then   
    2.

Lemma 3
Two edges of a graph lie in a minimal edge cut of  if and only if they lie in a block 
of  . 

Corollary
If  is planar and 2-connected the any dual of  is 2-connected.

Proof of Lemma
Let  be a spanning tree of  . Successively delete the chords of  from  . The 
dual   of  is a graph with one vertex, so it is connected.
Since   is reached from   by contraction,   must be connected.

Proof of Lemma 2
Since  contains no cycles, its image in   does not contain an edge cut. So if 
we delete the image of  from   , the graph left is connected. i.e.   is the edge 
set of a connected spanning subgraph of  .
But if    then    contains a cycles and therefore its image in   contains 
a cut edge. So     image of e is not connected. Thus the imate of   is 
connected but any edges is a cutedge. Hence it is a tree. ∎ 

Proof of Corollary (Euler)
If  is a spanning tree in  then           is a spanning tree in   . Now 
         1 and the number of edges in a spanning tree of   is   1.
So   1    1                              .
∎ 

Proof of Lemma
If  and  are edges in the same block of  , there is a cylce  that contains 
them. Then    has no cycle and so it is a subset of     for some spanning 
tree  . The edges that join the two components of    form a minimal edge 
cut which contains  and  . 

[Proof incomplete. Rest will be provided in course notes].

Proof of Corollary
By the lemma, "is equal to a lies in minimal edge cut" is an equivalence 
relation on the edges of  and the equivalence classes are its blocks.

If   has a cut vertex it has more than one block, and so  has more than one 
block. ∎ 

Duals Cont.
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A knot is a closed loop in 3-space. A link is a collection of disconnected knots.

Unknot

Link Example

Drawings are projections on the plane of a 3d object.

Trefoil

Shadow graph
4-regular graph on 3 vertices

Question
How can we determine the number of components of a link from its shadow?

Colouring
The dual of a shadow graph is bipartite. Can 2-colour the faces. For every vertex, colour the two 
opposite faces the same colour.

There are 2 other plane graphs that can be created: the vertices are faces of the same colour in the 
2-colour (either all black or all white) and vertices edges between faces of the same colour. These 
graphs are duals of each other.

Example

Shadow Graph
Every link diagram has an underlying graph.
The vertices are the crossings and the paths between them 
are the edges.
This may have loops and multiple edges.
It is called the shadow of the link diagram.
This is a plane 4-regular graph

The shadow is a connected even graph, thus it is Eulerian. 

Eulerian Walk
An Eulerian walk in a graph is a walk that uses each edge 
at most once. A closed Eulerian walk that uses every edge is 
an Eulerian tour. 
Two Eulerian closed walks are equivalent if they differ only 
in the choice of starting vertex, or in the choice of directed. 
An equivalence of closed Eulerian walks is Eulerian cycle.

An Eulerian cycle in a (4-regular) plane graph is straight if 
we leave a vertex by the edge opposite the one we came in 
(relative to the embedding). In a shadow of a link each 
component of the link determines a straight Eulerian cycle. 
These cycles partition the edges of the shadow.

An Eulerian partition of G is a partition of the edges into 
Eulerian cycles.

Each Eulerian partition of a 4-regular graph determines a 
partition of the four edges at each vertex into two parts. 
There are three ways of dividing  a set of size four vertices 
into three parts and it follows that a 4-regular graph on  
vertices has 3 Eulerian parittions. 

Knots and Links
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Link diagram → shadows  4-regular plane graph)
Components of the link correspond to straight Eulerian cycles in the shadow; we get a straight 
Eulerian partition.
Each plane Eulerian graph has a bipartite dual and so has two face graphs - one on the one faces and 
one on the black.

Medial Graph

Let  be a plane graph. The vertices of its medial graph are the edges of  . The edges of  are 
adjecent in     if they have a vertex in common and lie in the same face.
Note that     is 4-regular and plnar.
More importantly           . Equilvalently,  and   are the face graphs of     .

What do the straight Eulerian cycles in     correspond to in  ?

Bicycles
Let  be a vector space of   . If    then
            0                 
Note:   is a subspace of  .

       1)
If  is a subspace of  then dim     dim    dim   2)
 ogether  1     2  ⇒        3)
If  is the cuspace of  and  is the flow space of  then     4)
So the bicycle space of  is     5)

Claims

What is the dimension of     

Proof of Lemma
We have a linear transformation that sends a binary vector  to   . We view this as a map acting on 
       ; its image consists of all vectors of the form     . i.e. it's col     

So          →         
and ker   is the bicycle space. By the rank + nullity theorem,
dim col       dim ker   dim col      rk       

 his gives the statement of the lemma. ∎ 

Bicycles
A subset  of     is a bicycle if it is both a (edge?) cut 
and an even subgraph of  . 
The empty set is a bicycle.
A graph with no nonempty bicycles is pedestrian. 

The set of bicycles of  is the intersection of the cutspace 
and flow space of  . 

Lemma
If  is the incidence matrx of  (over   ) then 
dim           rk     

Bicycles and Medial Graph
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Tutte Polynomial
let        be a graph. Let     denote the number of ocmponents 
of  and for each    , let      deonte the number of components of 
     . The Tutte Polynomial        is defined by

            1              1              

 

   

Lemma

If  is a loop, then                   1)

If  is a cut-edge, then                   2)

If  is not a loop or cut-edge, then 3)
                           

Let        be a graph and let    

If        are the blocks of  then 

            
     

 

   

4)

                if  is planar.5)

More Properties of   

Tutte Polynomial Examples
   

         1       1       1

   
         1       1          1       1         1  1   

           1       1          1       1       1    1   
where  : 

For bigger graphs, we would like a better way to compute   

Proof of Lemma
Proof of (1) and (2) are exercises.
If will be useful to view the edges sets of    and    as subsets of  ; in particular, 
                   

           ○

            ○

                       ○

Since  is not a cut-edge•

           ○

             1○

                            ○

Since  is not a loop•

Some observations:

 ow               1                  1                     

 

        

     1              1              

 

     

     1              1              

 

   
   

 lso                1                  1                     

 

        

     1                1                  

 

     

     1                1                  

 

     

     1              1              

 

   
   

Adding these two expressions together we get

                        1              1              

 

   

        

∎ 

Why do we care about Tutte Polynomials?
  contains lots of information about  .
For a connected graph  ,

Interesting Example 1

   1 1    0         0              

 

   

A term in the above sum is non-zero ( 1) iff       1  0 and               0 ⟺
      1 and                   1

Therefore, a term is nonzero iff the corresponding subgraph is a spanning tree of  ⇒ 
   1 1 is the number of spanning trees of  .

Interesting Example 2
Let       denote the number of proper  -colourings of  (recall Assignment 7, 

Question 6). Then          1          1    0 

Why?

   1    0                1              

 

   

    1                         

 

   

    1                  

 

   

⇒   1          1    0     1          

 

   

Exercise

 how           1          

 

   

Interesting Example 3
Let  be the flow space of  and let  be bet the cut space of  . Then
     1  1   2         number of bicycles in  

Tutte Polynomial
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Subspace Sum
If  and  are subspaces then their sum is 
                 
It is the smallest subspace that contains  and  .
Also,             

Characterization of Edges
Suppose       and  does not lie on a bicycle. Then if  is the characteristic vector of a bicycle,       0
So       0 for all  in         and therefore                   
Hence      , i.e. it is the sum of a cut and a flow (So  is the symmetric difference of a cut and a flow).
Suppose      where  is a cut and  is a flow. Then  lies in the cut or the flow, but not both.
If  lies in the cut then            and therefore    is a flow. (It is a bicycle in    )
On the other hand, if  lies in  then      and    is a cut (It is a bicycle in    )
Suppose            where     are cuts and     are flows. Then we have          where     

is a cut and     is a flow.

Since  does not lie in any bicycle, it follows that if    then     (&  is of cut type).
If    then     and we say  is of flow type.
Thus we have a partition of the edges of  into 3 classes - bicycle, cut, and flow.

Bicycles and Left-Right Walks

Green is left-right walk

Ribbon Graph

The core of a left-right walk consists of the edges it uses just once.

Lemma
The core of a left-right walk on a planar graph is bipartite.

Proof
I claim that any left-right walk on  is a left-right walk on the dual (Exercise).
Let  be a left-right walk on  . Then each vertex of  is visited an even number  of times by  .
If we delete an edges visited twice by  , whats left is still even. So the core is an even subgraph. It is also an even 
subgraph in the dual, so it is a cut in  . Therefore, it is a bicycle. ∎

Cuts and Flow Type
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Double Occurrence Words
Suppose we have the shadow of a knot. We can number the crossings. Then if 
we walk around the knot, we can list the crossings in the order we meet them.
A double occurrence word is a sequence formed by elements of  1     
where each integer occurs exactly twice.

Which double occurrence words come from the shadow of a knot?
We can convert double occurrence words to graphs known as chord 
diagram.

There is another graph whose vertices are the chords where two chords are 
adjacent if they intersect. This is called a circle graph (an intersection 
graph).

Claim
The circle graph of a knot shadow is even.

The circle graph is even if, in the double occurrence word, the number of 
symbols between two occurrences of the same symbol is even.

Consider the portion of the straight Eulerian tour between the two times we 
are at crossing  . Assume we have 2-coloured the faces of the knot shadow.
As we move around the loop, the colours of the faces of the left alternates. 
When we return to crossing  , the face on our left is the same colour as the 
face on our left when we started. Hence the loop passes through an even 
number of crossings.

We can split each crossing in the knot shadow to produce a bent Eulerian 
tour. This gives a chord diagram which is planar. And a chord diagram is 
planar if and only if its intersection/circle graph is bipartite.

Example

Associated double occurrence word:
1 2 3 4 5 6 2 1 6 3 4 5

Associated chord diagram

Associated circle/intersection graph

6 flips in the double occurrence word resulting in a bent Eulerian tour
1 2 3 6 2 1 6 5 4 3 4 5
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