
(+ 1 1)
Adds 1 and 1

(+ 1 2 3 4 5)
Adds 1 through 5

(functions arg arg arg arg …)

(* (+ 1 1) 2)

s-expressions or RedExp

RedExp:

Eg. (+ 1 1)
Reduce Expression

REPL:
Read, Evaluate, Print Loop

Semicolons - ; - are the comment character.
2 is standard

Code is saved in the definitions (top) window. Bottom is command-
line style

(define VAR_NAME REDEXP) - defines a variable, specifically a named
constant

(number? 10) evaluates to true. Checks data type of argument
passed

(number? true) evaluates to false

'dog - a symbol. Pronounced "quote dog". Different than strings
(symbol? 'dog)
(symbol=? 'dog 'dog) - true
(symbol=? 'dog 'cat) - false checks if two symbols are the same

(< 1 2) - boolean expression
(if CONDITION IF_TRUE IF_FALSE)

(define (double x) (+ x x))
Function definition
Consumes x and returned x doubled

(exact? 2/3) A predicate that tells you whether the number was
exactly calculated.

Racket is a dialect of Scheme
Contains a number of sub dialects

"training wheels"
How to Design Programs uses teaching languages or dialects

Function notation
+: number X number X …. --> number
The domain is some dimension of numbers and returns a number

Any computation that can be computed can be expressed as a single
expression. A

Racket
September-14-10 12:35 PM

 CS 145 Page 1

Alan Turing - Turing Machine
The Turing machine is a model of computation.
A machine which can read, write, and exist in a certain state, as well as a tape of infinite length.

Can only read, write something and change state - depending on the current state, move the tape
and repeat.

Can compute any computable result. However, some programs are impossible to compute on a
Turing machine, such as the halting problem - whether a given program with halt on a given input.

Finite State Machine
A Turing Machine with finite memory. Aka a Finite Automaton

λ - Calculus
Invented by Church
A very simple method of expressing functions.

x (variable)•
 (are λ - expressions)•

Ex. (λx ∙ X y z) w ⇒ w y z○

λx ∙ e (function with variable x e is a λ-expression) - x is substituted into function•

λx ∙ λy ∙ x "true"•
λx ∙ λy ∙ y "false"•

(λx ∙ λy ∙ x) a b ⇒ (λy ∙ a) b ⇒ a○

(λx ∙ λy ∙ y) a b ⇒ (λy ∙ y) b ⇒ b○

"If true then a else b"•

(λt ∙ λa ∙ λb ∙ t a b) (Condition If_true If_false) "if"•
(λx x x) (λy y y) "infinite loop"•

Syntax: A λ-expression:

Combinator Theory
Using 3 functions, K, S, and I.
You can write any function with just K, S, and I

K
S
T

Combinator expression:

RAM Model (e.g. C/C++)
You have infinite RAM, which can be indexed. You can read and write to a given index in RAM.

Models of Computation
September-17-10 2:48 PM

 CS 145 Page 2

Sign Function (Signum)

 ()

(sgn -10) ;; -1•
(sgn 10) ;; 1•
(sgn 0) ;; 0•

In scheme:

Define new signum function:

;; signum: number -> number
;;returns -1 if number is negative; +1 if positive; 0 if 0
;; example (signum 99) is 1

(if (> n 0) 1 0)))
(if (< n 0) -1

(define (signum n)

(signum -876);; -1
(signum 0);; 0
(signum 77);; 1

Nested ifs can be replaced by cond:

[(< n 0) -1]
[(> n 0) 1]
[(= n 0) 0])) or [else 0]))

(cond
(define (signum n)

[] brackets are treated the same as () but conventionally
used in conditional statements.

Factorial

 ()

, n ∈ ℕ

[(= n 0) 1]
[true (* n (cond (- n 1)))]))

(cond
(define (fact n)

;; returns m× k!

[(= k 0) m]
[else (fact-times (* m k) (- k 1))]))

(cond
(define (fact-times m k)

The advantage to the second function is that it
keeps the expression constant. (fact n) produces
an expression of size n.

Complexity
Number of steps for factorial:
a + bn
Linear time algorithm

Digits
;; digits: number -> number
;; returns the number of digits in a given number

(digits 2146); 4
(digits 0); 1
(digits 42) ;2

()

 +

(define (digits n)
 (if (< -10 n 10)
 1
 (+ (digits(quotient n 10)) 1)))

Tail Recursion

Ex.

[(= n 0) 0]
[(= n 1) 1]
[else (+ (fibo (- n 1)) (fibo (- n 2)))]))

(case
(define (fibo n)

Functions, Substitutions, Recursion
September-21-10 11:27 AM

 CS 145 Page 3

(define-struct couple (him her))
;; This defines several statements:

(make-couple exp1 exp2)

(define franks (make-couple (+ 1 2) (+ 3 4)))

(couple-him franks) ; 3
(couple-her franks) ; 7
(couple? franks) ; true
(couple? 42) ; false

(define fronks (make-couple franks 42))

Franks

3 7

Fronks

Franks

3 7

42

Instead of nested boxes we use box-and-pointer
diagrams.
(define-struct couple (a b))
(define c1 (make-couple 1 2))
(define c2 (make-couple 'hello 'there))
(define c3 (make-couple c1 c2))
(define c4 (make-couple c3 3))

c4

3

c3

c2

1 2

c1

'hello 'there

Example use of Structures

Quadratic Field

 +

(define-struct quadratic-field (a b r))

(+ (quadratic-field-b a)(quadratic-field-b b))
r)

(make-quadratic-field (+ (quadratic-field-a a) (quadratic-field-a b))

0))

(if (= (quadratic-field-r a) (quadratic-field-r b))
(define (add-qf a b)

(+ (* (quadratic-field-a a) (quadratic-field-a b))
 (* (quadratic-field-b a) (quadratic-field-b b) (quadratic-field-r a)))
(+ (* (quadratic-field-a a) (quadratic-field-b b))
 (* (quadratic-field-b a) (quadratic-field-a b)))
r)

(make-quadratic-field

0))

(if (= (quadratic-field-r a) (quadratic-field-r b))
(define (mult-qf a b)

Structures are new data types and will be incompatible with most other premade functions.

(define-struct mark (m))

(define mark->number mark-m)
(define (mark-number x) (mark-m x))
Those two statements are equivalent

Abstraction: "bunch of numbers"
{1, 2, 3}
{1, 5, 1, 6}
{1, 1, 5, 6}

Multiset with 2 or more numbers

2 nums:

1 3

3 nums:

1

2 3

… etc. Many different representations.

This are all members of an equivalence class. Can choose a
specific member of the equivalence class for representation.
This is known as a canonical representation.

In this case, we chose the representation in which the numbers
are stored in order and pointers originate from the 2nd
element.

1

3 2

1

3 2

2

3 1

(define-struct bunch-pair (a b))

;; bunch twin: num X num -> bunch
;; returns a bunch containing exact n and m

(make-bunch-pair m n))
(define (bunch-twin n m)

(make-bunch-pair n (make-bunch-pair m q)))
(define (bunch-triple n m q)

(define (bunch-many n)

[(= n 2) (make-bunch-pair 1 2)]
[else (make-bunch-pair (bunch-many (- n 1)) n)]))

 (cond

(define (bunch-union b1 b2) (make-bunch-pair b1 b2))

;; is e a member of b?

Binary Tree
A tree node is either empty or

Tree Tree

Information is stored by 'decorating' the tree.

Builtin type:
DrRacket - empty
Anything else - null

Data Structures
September-21-10 12:41 PM

 CS 145 Page 4

;; is e a member of b?

(cond
[(and (number? (bunch-pair-a b)) (= e (bunch-pair-a b))) true]
[(and (number? (bunch-pair-b b)) (= e (bunch-pair-b b))) true]
[(and (bunch-pair? (bunch-pair-a b)) (bunch-member? e (bunch-pair-a b))) true]
[(and (bunch-pair? (bunch-pair-b b)) (bunch-member? e (bunch-pair-b b))) true]
[else false]))

(define (bunch-member? e b)

 CS 145 Page 5

Running Time or Time Efficiency
T(n) - number of steps required to evaluate a problem of size n

Examples:
 () + - linear
 () + - exponential
 () lo - logarithmic
 ()

 +
 + - polynomial time

 ()
 +

Space is another quantity that is monitored.

"More Efficient"
 () +
 () +

Which is more efficient?
 () ()
 () ()
 () ()

 max()

 [because n ⇒ n]

 +

 +

 []

 +
 + (+)
 () ()

"More Efficient"
b is more efficient than a if for all C ∃
such that ∀ n
 () ()

Notation for Asymptotic Efficiency
o (little-oh)

 is ()

 is ()

 ()

 ()

 + is (+)

 () is the set of all function that are more
efficient than T

 + ∈ (+)

What would be correct, but nobody uses:
λn. n+ ∈ o(λn. +)

f(x) is o(g(x))

If f(x) is ()

2f(x) is ()

 () + is ()

Efficiency
September-24-10 2:30 PM

 CS 145 Page 6

Binary Tree
Empty or

t1 t2

Where t1 and t2 are trees

Notation:
ε - empty
∙ - one node

Building a tree with n ≥ 1 nodes

 ≤ k n nodes

n - k - 1 nodes

Linear Trees

Right Linear

Info about Trees
Size - number of nodes
Cormack's definition:

∙ is
Height - ε is

Other definition:
Height- ∙ is

Note:
No overloading in Racket
Overloading is defining more than 1 function
with the same name, determine correct one by
and type of parameters.

Order in Trees
a < b < c < d < e

Decorate (annotate/label) trees
(define-struct dot (L R label)

(make-dot empty empty l))
(define (smart-dot l)

Sets: (Multisets have repeated elements- sets do not)

Set Tree

{} ∅ ε

{a} ∙ a a

{a, b} a -> b, b<- a, b -> a, a <- b

{a, b, c} a-> b - c … etc. Many trees

Down to n! ways of representing a set.
Can reduce the number of tree combinations by using a linear tree (right linear tree)

Suppose we have a total orderin ⇒ Then we can represent as an ordered linear tree - 1 possibility

Infix-ordered tree
or Binary Search Tree

Breadth First Ordering

Trees - Recursive Data Structures
September-28-10 11:46 AM

 CS 145 Page 7

Built in type called pair

(cons 42 empty)
-construct called cons (not make-pair)

Ex. (define q (cons 10 (cons 20 (cons 30))))
Gives 10 -> 20 -> 30
(first 1) is 10
(rest q) is ∙ - ∙
(rest (rest q)) is ∙
(first (rest (rest q))) is 30

List Construction
Empty or
(cons x list)

(list 10 20 30)
produces 10 -> 20 -> 30

In racket
(first x) is (car x)
(rest x) is (cdr x)

(car (cdr (cdr q)))
⇒ (caddr q)

Lists in Beginning Student
September-28-10 12:39 PM

 CS 145 Page 8

Binary Tree

Does this tree contain a node decorated with n?

N = 99 yes
N = 77 no

If so, give me the node (aka, give me the subtree rooted at the node.)

Abstract
The tree represents the set S= {1, 2, 5, 6, 10, 15, 99}
Is n ∈ S

If S is a decorated binary tree
(define-struct node (left right key))

[(empty? t) false]
[(= n (node-key t)) true]
[(tree-member (node-left t) n) true]
[(tree-member (node-right t) n) true]
[else false]))

(cond
(define (tree-member t n)

Or

(or (= n (node-key t))
 (tree-member (node-left t) n)
 (tree-member (node-right t) n))))

(and (not (empty? t))
(define (tree-member t n)

This search takes linear time in the size of the tree

Binary Search Tree
Previous (tree-member t n) works but can be made more efficient

[(empty? t) false]
[(= n (node-key t)) true]
[(< n (node-key t)) (tree-member (node-left t) n)]
[else (tree-member (node-right t) n)]

(cond
(define (tree-member t n)

This search takes linear time in the height of the tree.
From linear to logarithmic in n

AVL Tree
A near-min height binary search tree

Binary Search Tree

Insert: 2.5

Delete 2

Building Trees
empty
(make-node …. (make-node (…..)) …)

Pseudo-Function
(random n) ⇒ some int in [n)

Generator Function
(define (gen-min-tree n m)
 (if (= n 0) empty
 (make-node (gen-min-tree (quotient n 2) m)
 (gen-min-tree (- n 1 (quotient n 2)) m)
 (random m))))

Reuser Functions
When combining tree, link to the tree as a whole without re-building the
entire tree.
Only have to build "spine" of tree, all of the branches off of it can be reused.

Delete min of 4-> (3, 5)

Trees - Searching
September-30-10 11:31 AM

 CS 145 Page 9

Test
Scheme expressions
Substitution
Variables
Functions
Counting Evaluation Steps
Structures and Types
Trees (Including linear trees)
Counting Trees
Building, Searching, Combining, and Destroying Trees

Not Test
Models of computation
Lambda calculus
Asymptotic Analysis
Lists

Midterm Topics
October-01-10 2:30 PM

 CS 145 Page 10

Balanced Tree
Size-Balanced
A tree is balanced if there are the same number of nodes on each side of a node (± 1) and all sub -trees are balanced.

Path-Balanced
The shortest path from root to node is the lon est path from root to leaf node -1

A path/size balanced tree always produces a min height tree.

Height Balanced
The height of 2 sub-trees differs by at most 1.

Perfect Tree
 nodes and min height

Complete Tree
A path-balanced tree such that the left sub-tree must be at least as big as the right sub-tree.

AVL Tree
A height-balanced BST

Heap (Min-Heap)
Complete tree + height ordered (not BST)
Every node is greater than its parents.

Deleting from a heap:
Remove top, promote the lowest node from its two children and repeat.
Finally, move leafs laterally until the heap is complete

Inserting into a heap:
Insert into bottom and 'bubble' up

Heap allows Priority Queue

Digital Search Tree (Trie)

Represent numbers as trees:

The tree is a binary representation for each number.
Size is independent of the number of elements represented, based only
on the height of the largest binary number stored.

Types of Trees
October-01-10 2:39 PM

 CS 145 Page 11

Abstract Data Type
A data type where the actual mechanism
for storing the data is unimportant.

Big-Oh Notation
 ∈ ()
g is asymptotically no larger than f

 ∈ () means ∈ O(f)
f is asymptotically no smaller than g

 ∈ () means ∈ (g) and ∈ ()

Definition of O(f)
f(n) ∈ O((n)) if
∃ c ∃ s.t. (such that)
∀ f(n) ≤ c (n)

AVL Tree

BST•
Height Balance•

An AVL tree has the invariant:

Modules
Imported via:
(require "avl-cs145.ss")
When building a module must use full language

(provide insert-avl delete-avl node-left … etc)

The AVL Tree is opaque
Cannot print the tree
Cannot make-node (forgery)
Cannot change avl-tree (tampering)

Modules help reduce the complexity of your code by separating it into manageable chunks. For n

lines want approximately
 modules with

Use beginning student with list abbreviations•
Use Version 1.1 of av1-cs145.ss•
Test!•

Testing

Assignment - Implement a "set" abstract data type
~10 things to implement (functions + helpers)

Unit test:
Test each small section of code individually
Then start to test groups of code.

(check-expect (+ 1 2) (- 4 1)) <- Magic pseudo function

Order Notation for Efficiency
Course Webpage has a good document on efficiency

The set of all functions that are asymptotically no larger than f•
O(f) where f is a function.

Often instead of O(f) we say O(f(x)) or O(f(n)) or O() etc.

 ∈ () g is asymptotically no larger than f
 ∈ () means ∈ O(f) or f is asymptotically no smaller than
 ∈ () means ∈ (g) and ∈ ()

Properties
If f(x) is O(g(x)) and h(x) is O(g(x))
Then
f(x)+h(x) is O(g(x))
c× f(x) is O(g(x))

Definition
f(n) is O(g(n)) means
There exists c > 0
There exists
Such that for all () ≤ ()

Example:
Prove + is ()

 ≤
 ≤ ()
 ≤ ()

 + ≤

So

Disproving:
∃foo bar (For all variable boolean)
⇒ ∀foo

Significant Orders
O(1) - Constant Time
O(n) - Linear Time
O() - Quadratic Time

Abstract Data Types
October-05-10 11:28 AM

 CS 145 Page 12

O() - Quadratic Time
O() - Polynomial Time

O()
O(lo) - log

 CS 145 Page 13

Function expressions:
(define (double x) (+ x x))
Is equivalent to
(define double (lambda (x) (+ x x)))

Pass functions as arguments
(define (double x) (+ x x))
(define (square x) (* x x))
Can be expressed as one function with

(define (twice f x) (f x x))

;; takes two functions and a value, returns a value
(define (both f g x) (f (g x)))

Polymorphic type: α, β, γ, etc.
;; compose: (β - γ) X (α - β) - (α - γ)
;;takes two functions and returns a function
(define (gcompose f g) (lambda (x) (f (g x))))

(define (stutter f) (lambda (x) (f (f x))))

Lambda Calculus
(define mytrue (lambda x y) x))
(define myfalse (lambda x y) y))
(define (myif b t f) (b t f))

Implementing a struct using lambda
(define mycons (lambda (car cdr) (lambda (b) (myif b car cdr))))
(define (myfirst mylist) (mylist mytrue))
(define (myrest mylist) (mylist myfalse))

(define (twice f x) (f x x))
(define (four f x) (twice f (twice f x)))

(define (gcompose f g) (lambda (x) (f (g x))))

(define (stutter f) (lambda (x) (f (f x))))

(define mytrue (lambda (x y) x))
(define myfalse (lambda (x y) y))
(define (myif b t f) (b t f))

(define mycons (lambda (car cdr) (lambda (b) (myif b car cdr))))
(define (myfirst mylist) (mylist mytrue))
(define (myrest mylist) (mylist myfalse))

;; with normal list
(define (doublel1 l) (if (empty? l)
 empty
 (cons (+ (first l) (first l))
 (doublel1 (rest l)))))

;; or, lambda expression to avoid calling twice
(define (doublel2 l) (if (empty? l)
 empty
 (cons ((lambda (x) (+ x x)) (car l))
 (doublel2 (rest l)))))

;; alternatively, can use let
(define (doublel3 l) (if (empty? l)
 empty
 (cons (let ((x (car l))) (+ x x))
 (doublel3 (rest l)))))

(define (myempty? l)
 (if (empty? l)
 mytrue
 myfalse))

;; map lambda list
(define (mymap f l) (myif (myempty? l)
 empty
 (mycons (f (myfirst l))
 (mymap f (myrest l)))))

(define a (mycons 2 (mycons 3 empty)))
(mymap add1 a)

Functional Abstraction
October-07-10 11:30 AM

 CS 145 Page 14

Can be represented by a list of pairs. For a directed raph the pair (A B) means A → B

To remove duplicates

(cons x y)
y))

empty
(sort l symbol<?)

(foldr (lambda (x y) (if (or (empty? y) (not (symbol=? x (car y))))
(define (dedupe l)

(string-cis? (symbol->string a)(symbol->string b)))
(define (symbol<? a b)

Syntax of foldl
(foldl [function] [identity] [list])
Eg. (foldl + 0 (list 1 2 3))
Eg. (foldl max -inf.0 (list 1 2 3))

Sorting
(sort …)

Ex.
(require "avl-cs145.ss")

empty
(listavl (foldr (lambda (e s) (insertavl s e))

(define (mysortd l)

Insertion Sort

[(empty? l) (cons e l)]
[(> e (car l)) (cons (car l) (insert e (cdr l)))]
[true (cons e l)]))

(cond
(define (insert e l)

(foldr insert empty l))
(define (myinsertsort l)

Elements in current + result = elements in input1.
Result is ordered2.

Invariant for Insertion Sort:

Ex

Current Result

(2 6 3 9) ()

(6 3 9) (2)

(3 9) (2 6)

(9) (2 3 6)

() (2 3 6 9)

 ()

Selection Sort
Invariant - the same
Take the largest element in current and add it to the result

Current Result

(2 6 3 9) ()

(2 6 3) (9)

(2 3) (6 9)

(2) (3 6 9)

() (2 3 6 9)

 ()

Merge Sort

Union of the sub-lists is equal to the input list1.
Elements in each sub-list are sorted2.

Invariant:

Steps Result

0 ((2) (6) (3) (9))

Lists and Graphs
October-14-10 11:34 AM

 CS 145 Page 15

0 ((2) (6) (3) (9))

1 ((2 6) (3 9))

2 ((2 3 6 9))

Log n steps, O(n) time per step
Sorting takes O(n log n)

Streams
(define ff (+ …)) - is evaluated immediately
(define (f) (+ …)) - is evaluated when (f) is called

(g lambda () (+ 1 2 3))) <- a 'promise' or passing something to a function that is to be evaluated
later

 CS 145 Page 16

Using gedit

Runtime plugin (ctrl-R)
RunC gedit

"This software runs on Linux and it runs on Mac. It does not run on
Windows. You say 'wait a minute, I'm addicted to Windows.' Get over it."

Evil

Ex. (random 10) ; magic
-procedural, not functional programming

Pseudo-functions

Needs input to be of the form of a scheme expression
(read) - implements a stream: input

Test for end of file: (eof-object? x)

(display) - outputs the parameters and returns #<void>

Could output multiple values and hide output through
(define (discard x) (void))

(discard (list (display Hello) (newline)))

But this is almost the same as
(begin (display Hello) (newline)) - returns the result of the last evaluation

More Evil
Assignment
(define x 3)
(set! x 4) <- changing the value of the variable x

Pure Evil
Mutation

(define-struct foo(a b) #: mutable #:transparent)

(define f (make-foo 1 2))
(define q (list f f))
(foo-a f) ;1
(foo-b f); 2

f ; (foo 1 2)
q; (list (foo 1 2) (foo 1 2)

(set-foo-b! f 42)

f ;(foo 1 42)
q; (list (foo 1 42) (foo 1 42))

(set-foo-a! f f)

q; (list #0=(foo #0# 42) #0#)

Destructive Data Structures
Allows you to modify trees etc. without reconstructing the entire tree.
Instead, changers the pointers of notes, or removes nodes.

Programs that do stuff in the real world
October-19-10 11:39 AM

 CS 145 Page 17

Copy

(generate
…
))

Exercise (define copy t)

(define (tcopy t)

[(empy? t) empty]

(tcopy (node-left t))
(tcopy (node-right t)))])

(make-node (node->data t)
[else

(cond

Without recursion, keep a list of all the nodes stepped through from the top to the bottom
This would be a stack

Models of Computation
Finite state machine - finite stream

Finite state machine + stack ⇒ push down automaton

Finite state machine + stacks ⇒ Turin machine

RAM can be used in place of stacks

Queue
Cons - front of list
Snoc - end of list

ADT Queue, will have mutable head pointer and mutable tail pointers

Data Structures
October-21-10 12:36 PM

 CS 145 Page 18

Concrete approximation of the RAM model

C is not high level, just syntax for a computer

C
#include<stdio.h>

int main()

int c;

c = getchar();

printf("The answer is %d.\n", c);

{

}

Character encoding in ASCII - 7bit
Type man ascii to see the table (in terminal)

Other character encoding:
BCD - 6bit
EBCDIC - 8bit
Ctrl-D is -1, or EOF

Comments
/* This is a comment
That spans multiple lines*/

// This is a single line comment

Functions
int mydouble(int x)

return x * x;

{

}

Modules
Specification and Definition (header)

Specification
mydouble.c
int mydouble (int x)

return x * x;
{

}

Header
mydouble.h
int mydouble(int x);

Including the Module
#include "mydouble.h"

RunC

Ctrl-R to run
Ctrl-V when you're done

Suppose file is called answer.c
Then when run in a folder with
answer.in.something it will use this file as input
and output to
answer.out.something

If there is an answer.expect.something
It will compare the two in
answer.check.something

C - RunC
October-26-10 11:30 AM

 CS 145 Page 19

(Real) Machine Organization [Architecture]

RAM
Stack of bytes with addresses

Operations on RAM:
Fetch: Returns a byte stored at an address
Store: Stores a byte in an address.

Typically there are addresses
 - old, 16 bit
 , 32 bit
 , 64 bits

ram.ss
ram-init b ;; creates a new RAM with b-bit addreses
ram-fetch ram addr ;; fetches byte at addr from ram
ram-store ram addr byte ;; new ram with byte stored at addr

ram implementation is fairly similar to generate, but initial state is RAM and no result
use standard input/output

Byte Representation
Unsigned Integer 0 - 255

 () () ()
 ()

Signed - Two's Compliment -128 to 127

Little Endian
1 0 1 0 1 0 1 0 (1 + 4 + 16 + 64)

Big Endian
1 0 1 0 1 0 1 0 (128 + 32 + 8 + 2)

When declaring variables, the names represent memory addresses. - Environment

In C a statement like

tmp1 = tmp + fib1
tmp2 = tmp1 + 1 (where 1 is saved as a literal in ram)
fib1 = tmp2

fib1 = tmp + fib1 + 1 is broken into:

When using a 4-byte word to represent an integer, you essentially have a base 256 number.
Can store values from

Byte
8 bits - each bit is 2 states

Computer Architecture
October-26-10 12:14 PM

 CS 145 Page 20

A C program is a set of compilation units.

A procedure in C:

int a = x + 1
return x + a;

int foo (int x){

}

Frame or Activation Record - stores the variables used in a procedure
(Also known as a stack frame)

Parameters are copied into the frame, computation is performed on the frame, the return value is
copied back, and then the frame is destroyed.

When using recursion or calling other functions, a frame is built for each new function call. This
operates as a stack.

C Memory Organization
Given a RAM

Literal Pool•
Static Variables•
Stack•
Heap•

C divides the RAM into 4 sections:

Data Storage

Literal Pool
Is where literals (e.g. numbers and explicit strings) are stored for computation

Static Variables
Location of variables that are not declared inside any procedure. The variable does not move, it is
persistent.

int a; when outside of a function/procedure will be saved here

Stack
Location for frame allocation. In the stack, frames are allocated sequentially.

int a; when inside a function/procedure will be saved here

Heap
General purpose data structures.
Accessed using malloc

-finds 10 bytes and returns the address
ex: a = malloc(10)

Memory is returned by free(a)

Memory must be freed!

int * a = malloc(sizeof(int)); will be saved in the heap

Program
Translation of C code.

Pointers
int * x; x is a pointer to an integer
x = malloc(sizeof(int));

*x = 42; (sets 42 to the memory location of x)
x = 42; (sets x to 42 - in other words *x will point to the memory location of 42)

*x = *x +1, will add 1 to the memory location at x

x + 1 will in fact increment x by 1 × (sizeof (*x))

int y;
& y is the pointer to y

Creating an array
int *w = malloc(1000 * sizeof (int))
*w is the first integer in the array
*(w+1) is the second integer in the array etc.

Libraries

#include <stdio.h>
#include <stdlib.h>

malloc is included in stdlib

C Program
October-28-10 12:15 PM

 CS 145 Page 21

Syntactic sugar: x[i] means *(x+i) , which is also equal to i[x]

Dangling reference - a pointer to deallocated memory.

 CS 145 Page 22

Parts of a C program

Directive
#include <stdio.h>
Compiler pastes stdio.h into your program

Declarations
int x;
Static storage in RAM

static int x;
If don't use static, if you compile the file with static int x; with another file, when you declare int x;
in the new file they will be treated as separate variables - if don't use static, they will be the same
Similar in idea to (do not provide x) - if such a function existed

Good practice to use static

Compilation
Compilation takes a bunch of .c files and runs them through a compiler (GCC) and outputs and
executable image. (.exe on windows) - Machine Code or Binary Code
The executable image is run through a loader and loaded into RAM. Then the CPU executes it.

Linking
Combining multiple executable image files.

Bootstrapping (Booting)
Aka IPL - Initial Program Load
The loader is run by a further smaller loader, that is loaded by a further smaller one, etc. Until get to
a hardcoded loader (in ROM often)

What happens when you hit Ctrl-R
Comes across #include statements in the code.

Uses recursion to include all reachable #include files in all the files accessible from the initial file.

Image files created from all the .c and .h files reachable through include.
Image files is saved as a, but can be overridden with -o [name]

gcc bar.c foo.c bif.c baf.c -o x
Will create x, a executable image file with bar.c, foo.c, bif.c, and baf.c
Run with ./x

Other gcc flags: --std=c99

With RunC , after loaded into RAM, valgrind loads the file
Valgrind will prevent your program from using uninitialized RAM

Valgrind runs much slower than bare machine code, the price of security.

Computer History

Stored program computer
John van Neumann
The concept of saving the program in RAM

Jaquard, invented the programmable loom using punched holes
Player Pianos operate on a similar concept

Creator of the Difference Engine and the Analytical Engine•
Ada Lovelace programmed for these engines. •

Charles Babbage, Ada Lovelace

1920-1930
Telephones / Switches
Discovered you could construct mechanical relays. Used for amplification - low amount of power to
an electromagnet could close a switch allowing more power through the relay.

Latch, relay which stays in the last position it was set to. A bit

Delay line: A relay connected to a loop, sends current through the loop, when the current returns it
triggers the repeater and sends another pulse of current through the loop. Also known as a shift
register.
A modern possible alternative for solid-state RAM is to use a light-based delay line.

Tutorial
October-29-10 2:44 PM

 CS 145 Page 23

A modern possible alternative for solid-state RAM is to use a light-based delay line.

Claude Shannon
At MIT. For master's degree he discovered a way to simplify switches with boolean algebra.
Went to work for AT&T, and WWII happened. He invented a science known as information theory.

RAM storage with CRT. When the electron strikes the phosphorous screen, it will dislodge an
electron which is collected. If, however, light is shining on the phosphorous, the electron will not be
emitted.

Display all the dots with the CRT - light or dark. Then repeat to check to where the screen is lit.

CORE RAM
A grid of wires with a magnetic core at each intersection. Can pass current through the wires to
magnetize the magnetic core in one of two directions.

Modern Ram
Static Ram
A huge array of latches
Expensive but fast

Dynamic
Similar to CORE RAM, but uses capacitors instead of magnetics cores.
Dynamic because the memory is not saved long, instead the memory is constantly read and re-
written.

 CS 145 Page 24

Variables
.c and .h

In .c have
directives and declarations

regardless of whether the computer is 32 or 64 bits
int x; 32 bit word in static area of RAM [2's compliment number]; sizeof(int) = 4

on a 64 bit machine this would be a 64 bit word; sizeof(int *) = 8
int *p; 32 bit word in static area of RAM [address] sizeof(int *) = 4

Static area is initialized to zero.

x 0

p 0 or NULL

NULL is a macro in stdlib.h (#define NULL 0)

*p = malloc(sizeof(int));
malloc returns uninitialized memory in the heap

Procedures
int foo(int a, int b, int *c)

[local declarations and statements]
int q; -4 bytes on the stack (in a frame)
q = 42;
printf("%d\n",q);

z is initialized to 0. So doing something like this lets you keep a counter for how
many times a function is called or keep a value between multiple calls of a function.

static int z; z is stored in static memory, however it is still local, can only be accessed by foo

int *w;
w = &z;
printf("%p\n", w);

{

Statements (Imperative)

Evaluates the expression e and stores it in the memory location of x
e can be a constant, a variable name, a function call, expressions combined by operators

Assignment: x = e;

Boolean: false = 0, true = not zero
 equality check (NOT)

&& - AND operator. Uses short-circuit evaluation

|| - OR operator. Also uses short-circuit evaluation

Logical:

& - Bitwise AND
| - Bitwise OR
^ - Bitwise XOR
<< - left shift, shifts bits to the left

When shifting to the right, the signed bit is replicated on the left as new bits
The type of shifting depends on whether the number is signed or unsigned.

>> - right shift, shifts bits to the right.

Bitwise:

Expressions
*e pointer dereference
&e address of
+e
-e
!e
 [] [] (+)

Control Structures
If
if (e) [statement]
else if () [statement]
else if () [statement]
else [statement]

Each successive if is a new if/else statement

However, suppose you wanted one of the [statements] to be an if statement. Where does the next else
match up to?

Output Format Specifiers
%d - integer
%p - pointer
%x, %X - hexadecimal

More C
November-02-10 11:32 AM

 CS 145 Page 25

match up to?

if (e) if(foo) [statement] else; // else; does nothing but clarifies the usage of else
else if () {if (bar) [statement]} // enclosing in braces also work.
else if () [statement]
else [statement]

If/Else if structure:
if (e) {

} else if(){

} else if (){

}else {

}

While
while (e) [statement]
works like a generate statement over all of RAM

Documentation: Describe an invariant, understand what is happening to the variables.

For
for (; ;) [statement]

Equivalent to

[statement]

while (){

}

Common for idioms:
for (i=0; i < 10; i ++){
}

Do While
do [statement]
while (e)

Structures

int a;
int *p;

struct foo{

}; //MUST HAVE A SEMICOLON AT THE END

global declaration:
struct foo f;
- creates a structure in the static memory location.

f.a = 42;
f.a = f.a + 1; or f.a += 1

struct foo y;
y.a …

int bar(){

}

If want to be lazy:
typedef struct foo myfoo;
myfoo ; struct foo x;

myfoo *z = malloc(sizeof(myfoo)); or malloc(sizeof(struct foo));

(*z).a = 42;
(*z).p = malloc(sizeof(int))
*((*z).p)=45;

struct foo g = *z;

Instead of (*z).p, can say x->p

saying

int a;
struct foo{

 CS 145 Page 26

int a;
int *p;

} a, b, c; will declare a, b, and c to be struct foo in whatever location the code is written (static or frame)

 CS 145 Page 27

Linked List

int data;
struct node *rest;

struct node{

};

It is possible to declare
struct node *p; without the declaration of struct node in the given file.

Tree

int data;
struct node *left, *right;

struct node{

};

struct node *a = malloc(sizeof(struct node));
struct node *b = malloc(sizeof(struct node));
struct node *c = malloc(sizeof(struct node));

a->data = 3;
a->left = b;
a->right = c;
b->data = 2;
c->data=4
b->left = b->right = c->left = c->right = NULL;

could made this easier with:

struct node *temp = malloc(sizeof(struct node)); if returning memory use malloc otherwise the
frame will disappear and the memory will go with it. temp is on the frame, malloc is on the heap.
temp->data=d;
temp->left=l;
temp->right=r;
return temp;

struct node * make_node (int d, struct node *l, struct node *r){

}

struct node * t = make_node(3, make_node (2, NULL, NULL), make_node(4, NULL, NULL));

void delete_tree(struct node *t)

return;
if (!t) // aka t==NULL

delete_tree(t->left);
delete_tree(t->right);
free(t);

{

}

delete_tree(t); // must delete the tree before the program ends

struct node *x = make_node(42, NULL, NULL);
struct node *y = make_node (65, x, x); called sharing or aliasing
What happens when you try to delete y? x will be freed twice = bad

Can avoid this problem by not sharing or fixing delete
Fixing Delete:
Find all of the nodes that are reachable from t with no duplicates and delete those

Garbage Collection
Copy Collection
Break RAM into two parts, allocating new memory into one. Once that gets full copy everything into the
other - of course only that is reachable will be copied. Erase everything in the in the original area, repeat.

Requires identifying the root pointers (in C the root pointers are in the static and stack memory locations.
If something in the heap isn't reachable from those locations it isn't reachable at all)

In C there is no garbage collection - cannot move memory around.
In general, half of RAM will be usable before it starts to become slow to find new memory.

Object Oriented

int x, y, z;
int double(int x) {return x + x} // Cannot say in C, can say in c++, called a method

struct foo { // or class

}

int w;
struct bar extends foo{ //not real C/C++ syntax

}

Structures in C
November-04-10 11:31 AM

 CS 145 Page 28

}

Can do "object oriented" in scheme

(define c (fabricate steel plastic))
(define (driveto city) …)
(define (crush) …)
(define (fill as)…)
(list driveto crush fill))

(define (make-automobile steel plastic)

(define mycar s p)
((first mycar) 'Toronto)

Polymorphism
Templates, allowing you to use various types for the same purpose

 CS 145 Page 29

Program in Scheme but every function must yield void

(define (double x) (+ x x) (void)) // returns void but no useful information
(define (double x) (display (+ x x))) // returns void
cannot use (double (double x))

(define (double x f) (f (+ x x)))
(double 4 display)
(double 4 (lambda (x) (double x display)))

f is a continuation. A lambda that describes everything that remains to be done in the program.

(double 4 (lambda (x) (double x display)))
CPS - Continuation Passing Style

Steele's Masters Thesis → Rabbit

Scheme turns every function you create into one of the CPS. It is possible to access the hidden
continuation function
(define (double x) (call/cc (lambda (c) (+ x x))))
(double 4)
>> 8

Call/cc takes the continuation function and replaces c with it.

You can stick c in the lambda and it'll end the computation earlier. c acts as return
(define (double x) (call/cc (lambda (c) (c 42) (+ x x))))
(double 4)
>> 42
Does not compute (+ x x)

(define (foo X C) (if (= X 6) (C 42) X))
(define (double x) (call/cc (lambda (c) (foo x c) (+ x x))))
(double 4)
>> 8
(double 6)
>> 42
(double (double 3))
>> 42

Version of this in C is setjump and longjump

(define q 34)
(define (foo X C) (set! q C) (if (= X 6) (C 42) X))
(define (double x) (call/cc (lanbda (c) (foo x c) (+ x x))))
(double 4)
>> 8
(q 33)
>> 33

Continuation Passing
November-05-10 2:34 PM

 CS 145 Page 30

Types in C
short, long / int, long long, char
signed, unsigned

short - 16 bits / 2 bytes / -65536 to 65535
int - 32 bits / 4 bytes

64 bits on 64-bit machine-
long - 32 bits on 32-bit machine

long long - 64 bits / 8 bytes
char - 8 bits / 1 byte / may be signed
char, signed char, unsigned char are all different types

getchar(); return int, not char
Returns -1 or something in 0-255

Casting
char c;
long i;
(long)c + i;

Floating Point (aka inexact)
float, double

float: 32 bits: IEEE standard

1bit 8 bits 23 bits

sign exponent
-128 to 127

binary fraction

Specific values used to represent 0, -infinity, infinity, NaN

double: 64 bits:

1 bit 11 bits 52 bits

sign exponent binary fraction

Register
Can declare variables to be in the register
register int x;

Strings
'a' is an int
sizeof('a'); returns 4

char x = 'a';
char *s = malloc(10 * sizeof(char))
s[0] = 'h';
s[1] = 'i';
s[2] = 0;

h i \0

Must null terminate the string.
Characters are ASCII stored in an integer

Unicode

naïve 1 int / code point
observation: all the "real" stuff is < 65536
So most of Unicode can be represented in one short.

About 1 million different code points, 0-127 is ASCII

UTF-8
Variable length byte encoding for Unicode
8 bits, if first bit is 0 then the remaining 7 are an ASCII character.
If the first bit is 1, then there are more bytes, each byte has a 1 in front
if there is another byte used in the representation.

char *t = "hi";
this puts 'h', 'i', 0 in the literal pool
t points to the literal pool.

Data Types
November-09-10 11:30 AM

 CS 145 Page 31

t points to the literal pool.
t[1] = 'z'; <- usually not allowed by the compiler. If it works then
printing "hi" would print "hz"

Stack Allocation
char x[10];
int y[3];
Will create memory locations in the stack
x is a char* and a pointer to 10 chars
char *p = x;

x[0] = 35; or 0[x] = 35; or *(x+0) = 35; or *x = 35;

The size of the stack frame is variable. Allowed to say something like
int y[n];

Works also in other memory locations:
global
char x[10];
static char x[10];

Initialize Arrays (on static/stack)
int x[3] = {10, 20, 30};
char c[3] = {'h', 'i', '/0'}; also char c[] = {'h', 'i', '/0'};
char s[3] = "hi"; <- this makes no sense, does not treat "hi" like normal
Completely different from char *z = "hi"; Creates z on stack, creates
"hi" in literal pool, points z to hi.

int x;
char y;

struct f {

};

struct f p = {100, 'q'};

 CS 145 Page 32

Language
A set of strings

Have a string, is this string in the language L?

A → A a b c d or A → A a b c d
Linear Grammar - have only left recursion or only right recursion.

regexp - regular grammar

Finite state machines recognize regular languages.

Remove the restrictions of recursion on the right

If can answer with a stack, the language is called a context-free language (push down
automaton)

N → A hello B (replace then with A and B)
Unrestricted but size of left must be smaller than size of right

Context-sensitive language. Phrase structured grammar

Two stacks: Turing machine, can do anything.

Stick whatever on the left or on the right
N a B b → C b N a

Unrestricted Language

Noan Chonsky 1959

Strings
#include <string.h> // C strings, strings in general

char *x = "abc"; // literal pool
char q[] = "abc"; // stack
char *p = malloc(100)
p[0] = 'a';
p[1] = 'b';
p[2] = 'c';
p[3] = '\0';

Create string with 1000 a's
char *s = malloc(1001);
for (int i = 0; i < 1000; i++) s[i] ='a';
s[1000] = 0;

Read from input
char *s = malloc(1001);
int i, c;
for (i = 0; EOF != (c = getchar()); i++) s[i] = c;
s[i] = 0;
free(s);
// BAD, messes up with input greater than 1000 characters.

foo *q = realloc(p, n)
// p is a pointer, n is an integer - size of bytes
// malloc(n), copies everything in p to the beginning of q, frees p

in the previous for loop could say

s = realloc(s, i+1001)
if (i%1000 == 999)

However far more efficient to resize when ⇒

String Library Functions
Can access help through man [library function]

// O(n) time, where n is the length of the string
strlen(s); // the length of the string s not counting the null terminator

// O(n) time
strcpy(a, b); // copies the contents of b into a. A must be big enough or it will overflow the array

// does not copy a null terminator if n stops it before reaches the null in b
strncpy(a, b, n); // copies the first n bits of b into a, copies 0's after reaching null in b

strcpy(a + strlen(a), b);
strcat(a, b); // concatenates b onto a. a had better be big enough

// aka returns a suffix of a beginning with the first occurrence of c
//a suffix of a string is itself a string.

char * x= strchr(a, c); //returns a pointer to the first occurrence of c in a.

Strings
November-11-10 11:30 AM

 CS 145 Page 33

//a suffix of a string is itself a string.
// returns null if not found

strchr_n(a, c);// like strchr but returns a pointer to the null terminator of a if c is not found.

// returns a prefix of s terminated before any character in p
// if called again it starts from where it left off and returns the next bit terminated
before a character in p
// Useful for braking up a set of strings separated by delimiters.

strtok(s, p); // returns char* , s, p are strings

// O (strlen(a)*strlen(b))
char *x strstr(a, b); //returns a pointer to the first occurrence of b in a, or NULL if not found

memcpy(a, b, n); //copies the first n bytes of b into a

ex. memset(s, 'a', 1000); s[1000] = 0;
memset(s, c, n); // copes c into s n times

 CS 145 Page 34

ML
Stands for "Meta Language"

Designed for LCF theorem prover
Robin Milner

Designed for automatic theorem proving

Standardized in 1990, SML (Standard ML)

Basis for F#
Forked in 1985: CaML - Categorical abstract Machine Language

Implementation SML/NJ

Expressions
SML compiler has a REPL like DrRacket
Semicolons are used to tell the interpreter to evaluate the expression
They are used much more infrequently in programs

1+2;
> val it = 3 : int
Note the inference of the type

Declarations
val x = 1;
> val x = 1 : int

val y = 1.2;
> val y = 1.2 : real

x+3
> val it = 4 : int

fun sqr x = x*x;
 val xqr fn : int → int
We can add type annotations as needed
fun sqr (x : real) = x*x;
 val sqr fn : real → real

Ascription is useful in clarifying intent and debugging type errors.
ML has a fixed set of overloaded operators.

ML will use type variables for polymorphic functions
fun id x = x;
> id = fn : 'a -> 'a

val y = id 3;
> y = 3 : int

Functions in ML have exactly one parameter ("curried")
fun sumSqrs x y = x * x + y * y;
 val sumSqrs fn : int → int → int

Tuples
val x = (true, #"z");
> val x = (true, #"z") : bool * char

There are selector functions for tuples, but they are usually deconstructed using petterns
Tuples can be used to group multiple parameters to a function

val add fn: int * int → int

fun add(x, y)= x + y;

Here (x, y) is a pattern
add is the same as op +
There aren't 1-tupes but the 0-tuple () handy
It’s the sole value of the type unit the equivalent of # void in Scheme

Binary tupled functions can be made into infix operators.
infix add;
> infix add

3 add 4;
> val it = 7 : int

We could also have done it this way
infix add
fun (x add y) = x+y;

*SML (Standard Meta Language)
November-16-10 11:31 AM

 CS 145 Page 35

fun (x add y) = x+y;

infixr makes the operator right-associative.

Lists
[1, 2, 3];
> val it = [1, 2, 3] : int list

1 :: 2 :: 3 :: [];
> val it = [1, 2, 3] : int list

[1] @ [2, 3];
> val it [1, 2, 3] : int list

Ampersand is append, :: is concatenate

fun append([], ys) = ys
| append(x::xs, ys) = x:: append(sx, yx);
 val append fn: 'a list * 'a list ⇒ 'a list

Append is the same function as op @

An alternative:

[] ⇒ yx
(x::xs) ⇒ x :: append(xs y);

case sx of
fun append(xs, yx) =

_ acts as a wildcard in pattern matching ("don't care")
(M as m::ms)
Will allow you to use either M or m, ms

Local definitions
fun split [] = ([], [])
| split [a] = ([a], [])

let
 val (mx, nx) = split cs
in
 (a::ms, b::ns)
end

| split (a::b::cs) =

Mutual recursion

oddlen [] = false
fun

| oddlen (x::xs) = evenlen xs

evenlen [] = true
and

| evenlen(x::xs) = oddlen xs

Finite State Machine
Want to implement the finite state machine shown
In this implementation, there is a function corresponding to each state

zero [] = true
| zero (#"0"::xs) = zero xs
| zero (#"1"::xs) = one xs
| zero _ = false

let fun

one [] = false
| one(#"0"::xs) = two xs
| one(#"1"::xs) = zero xs
| one _ = false

and

two [] = false
| two(#"0"::xs) = one xs
| two(#"1"::xs) = two xs
| two _ = false

and

end

val myNumbers =

User Defined Types
type intpair = int * int
intpair is a type synonym (like typedef in C)

datatype suit = Heart | Spade | Diamond | Club
datatype value Ace One … Jack Queen Kin

 CS 145 Page 36

datatype value Ace One … Jack Queen Kin
type card = suit * value

| Node of 'a * 'a tree * 'a tree
datatype 'a tree = Empty

tree is a type constructor (as are &, -> , list)
Empty and Node are data constructors

fun contains Empty _ = false

x = y
orelse contains lt y
orelse contains rt y;

| contains (Node(x, lt, rt)) y =

 val contains fn : ''a tree → ''a → bool

''a representa an edgetype

Exceptions
The handler must produce a value of the same type as the expression to which it is attached

exception DivByZero;

fun safeDif (_, 0) = raise DivByZero
| safeDiv (x, y) = x div y;

val quot = safeDiv (3, 0) handle DivByZero => 0

A similar mechanism is provided in Racket

I/O
the ML standard basis library proveds many I/O functions.
We will mention only one here:
print "Testin …\n";

The string concatenation operator ^ is handy

Reference Types
Like Scheme, ML is not pure, but mutation is used sparingly
the data constructor ref provides the equivalent of boxes in Scheme

val x = ref 5
> val x = ref 5 : int ref

val y = !x
> val y = 5 : int

x := y + 1;
> val it = () : uint

Types
Type errors in ML often appear incomprehensible.
Sometimes we are prevented from writing code in a fashion that seems natural to us because of
restrictions in the type system.
In order to understand how the ML compiler does type inference, we add types to the lambda
calculus.
This was first done by Church in the 1930's, but we use a style closer to that of Curry's work in the
same period

Untyped Lambda Calculus

A variable (x, y, z), etc)

An abstraction λV.E where V is a variable and E is an expression

Applications E1 E2 where E1 and E2 are expressions

An expression is either:

Computation in the untyped lambda calculus proceeds by substitutions
(λx.y)z → y

We now add types to get the simply-typed lambda calculus
The only difference is that the variables used by abstractions are annotated with types
Computation is unchanged

Simply-Typed Lambda Calculus

A base type (t1, t2) or

T → T where G and T are types

A type is either:

The type constructor → is ri ht associative

 CS 145 Page 37

Our goal is to be albe to make type judgements
What is the type of λx:t .x ? t → t
What about λx:t .λy:t →t .yx? t → ((t → t) → t)

Logic
 ⊢α the statement "From the set of propositions we can prove the proposition α
A proof is a tree built from applications of inference rules.

The Curry-Howard Correspondence
Logic corresponds to Programming Languages
The proof of α is the typin of α
For more: see Philip Wadler, "Proofs are Programs."

Theorems of Simply-Typed Lambda Calculus
A term is closed if it has no free variables
A term T:τ is well-typed if it can bet shown to have that type

Strong Normalization
When we try to type the Y-combinator, we run into problems
Consider typin λx.xx
Just because we cannot type self-application doesn't mean we can't do recursion in some other
fashion.
However, the strong normalization theorem suggests that the simply-typed lambda calculus is a
weak model of computation - not Turing Complete

Theorem
Every reduction sequence of every well-typed term of the simply-typed lambda calculus is of finite
length

To gain more power, we must extend the simply-typed lambda calculus with a construct for
recursion (which breaks strong normalization).

Extensions
We can extend the simply-typed lambda calculus to bring it closer to typed functional languages
such as ML.
For example, we can add Bool and Nat as base types, and constructs such as let and if.
We need inference rules for these.

Progress and preservation theorems can be proved for these extensions.
We still have not modelled type inference when annotations are absent or optional, as in ML
We also need many versions of, e.g., the identity function.

See Wikipedia on "type inference"

 CS 145 Page 38

Glasgow Haskell Compiler

Whitespace is significant, block syntax like python
Can override with {} and ;

Value definitions: var = expr
Function definitions: fname par par … expr

Types: Int, Real, Char, Bool
type variabes are in lower case
:: "has type" and : means "cons"
Type constructors → [] ()
String is a list of characters, [Char]
Lambda expressions \x → x*x

Comments --

Code Example, Permute List
perms1 :: [a]→[[a]]

perms1 [] = [[]]

perms1 (x:xs) = addtoAll x (perms1 xs)

addToAll x [] = []

addToAll x (p:ps) = addToOne x p ++ addtoAll x ps

addToOne x [] = x

addToOne x (y:ys) = (x:y:ys) : consOnEach y (addToOne x ys)

consOnEach y [] = []

consOnEach y (p:ps) = (y:p) : consOnEach y ps

Running Haskell
Interpreter ghci, similar to sml
ghc resembles gcc

ghc expects main to be defined:
main :: IO()
main - print (perms [1, 2, 3, 4])

To avoid parantheses, the function application operator $ (with lowest precedence) is used:
main = print $ perms [1, 2, 3, 4]

Any two-parameter curred function can be used as an operator:
5 'div' 2

Any operator can be used as a function: (*) 3 4

(:[7]) - appends 7 to the arguments
One argument can be supplied: (3:) - function conses 3 onto argument

perms1 = foldr addToAll [[]]

addToAll x concat . map (addToOne)
. operator composes two functions f . ⇒ f((x))

addToOne x [] = [[x]]
addToOne x (y::ys) = (x:y:ys) : map (y:) (addToOne x ys)

Haskell has overloaded operators, and users can define their own
sqr x = x*x
:type sqr
 sqr :: (Num a) ⇒ a→ a

:type is a command to ghci
Num is a type class

Haskell has if-then-else with Boolean literals True and False, and logical connectives &&, ||, and not

Guards are a convenient alternative in definitions

| otherwise = -x
abs x x x

*Haskell
November-18-10 11:30 AM

 CS 145 Page 39

onenote:#x§ion-id={0F7C6AB1-B6E8-498B-AE99-7A77809B5CF2}&page-id={36274C24-4171-45AE-BF9B-B8F4C2D7C1FB}&end&base-path=TURING/Users/Eric/Documents/OneNoteNotebooks/CourseNotes/CS%20145.one

Haskell has let expressions similar to ML:

sqr1 = x*x
sqr2 = y*y

let

sqr1 + sqr2
int

The use of where is more restricted, but it can scope across guards

List comprehension:
myMap f sx = [f x | x <- xs]
myFilter p sx = [x | x <- sx, p x]

cross xs ys = [(x, y) | x <- xs, y <- ys]

perms2 [] = [[]]
perms2 xs = [y:p | (y, ys) <- sels xs, p <- perms2 ys]

sels [] = []
sels (x:xs = (x, xs) : [(y, x:xs) |(y, ys) <- sels xs]

Haskell allows type synonyms using type and algebraic data types declared using data
Unlike ML, data constructors may be curried

Laziness
Scheme and ML use eager evaluation: the leftmost, innermost expression is evaluated.
This means, for example, that all arguments to a function are evaluated before the function is
applied to them.

Haskell uses lazy evaluation: the leftmost, outermost expression is evaluated.
In effect, expressions are not evaluated until necessary.

As a simple example of laxiness, short-circuiting Boolean operators can be functions

myAnt :: Bool → Bool → Bool
myAnd False _ = False
myAnd _ x = x

Typing myAnd False undefined into GHCi produces False as expected
In fact, undefined is defined in the Prelude as undefined = error "Prelude.undefined"

ones = 1 : ones

could also say
ones = [1, 1..]

nats = 0 : map (+1) nats

or
mats = [0, 1..]

odds = filter odd nats

or
odds = [1, 3..]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

primes1 = sieve[2..]

sieve (p::ns) = p : sieve [n | n <- ns, n 'mod' p /= 0]

oprimes = 3 : filter isPrime[5, 7,..]

possDivz n = takeWhile (\p → p*p ≤ n) oprimes

notDiv n p = n 'mod' p \= 0

isPrime n = all (notDiv n) (possDivs n)

where

primes2 = 2 : oprimes

Immutable Arrays
Here's an example of crating a one-dimensional immutable array from a list of (index, value) pairs
sqrx = array (1, 100) [(I, i*i_ | i <- [1..100])]

Terminal Command Equivalents
-- interact :: (Strin → Strin) → IO ()

 CS 145 Page 40

--UNIX 'cat'
main = interact id

-- UNIC 'wc -1'
showln = (++) . show
main = interact $ showln . length . lines

linemap f = interact $ unlines . f . lines

-- Unix 'head -10'
main = linemap $ take 1-

-- Unix 'grep a'
main = linemap $ filter $ elem 'a'

Type Classes
Type classes offer a controlled approach to overloading

The Eq class
Types in this class provide == and /=

Can create a member of eq with derive Eq

The Ord Class
Ordering

Monads
The Monad type class abstracts a common computational pattern.
One of the simplest instances is the Maybe type/
We can start by thinking of it as:
data Maybe a = Nothing | Just a

The idea is to use Nothing when an error occurs, and Just to wrap a value for continued
computation.

When composing functions with maybe
chain :: Maybe Int → (Int → Maybe Int) → Maybe Int
chain Nothing _ = Nothing
chain (Just r) f = f r

The chain function is already specified by the Monad typeclass and Maybe provides the above
definition
There, chain is called >>= (pronounced "bind")

The State monad
Monads hides plumbing
The plumbing hidden by the Maybe monad is the wrapping/unwrapping of the value.
What plumbing is involved in manipulating state?
If the computation is tail-recursive, we can put state in an extra parameter (an accumulator).
It's harder with a more general computation (e.g. on trees)

Testing in Haskell
HUnit: unit testing (modelled on JUnit)

QuickCheck: Randomized testing of properties of code

 CS 145 Page 41

Vector
ADT for a fixed length sequence

Create
Index - select element
Set - change element

Operations:

Scheme
(define v (vector 10 20 30))
(vector-ref v 2) ; 30 O(1) time
(vector-size v); 3
(vector-set! v 2 42) O(1) time
(vector-rev v 2) ; 42
(vector->list v)

Strings in scheme are vectors of characters

C

vector_user.c
#include "vector.h"

vector foo = vector_create(10, 20, 30);

int j = vector_ref(foo, 2);

vector_set(&foo, 2, 42);

vector.h
// 3D vectors of ints

typedef struct vector vector;

int i, j, k;

struct vector {

};

vector.c
#include "vector.h"

vector r;

r.i = a;

r.j = b;

r.k = c;

return r;

vector vector_create(int a, int b, int c){

}

if (!i) return v.i;

if (i == 1) return v.j;

return v.k

int vector_ref(vector v, int i) {

}

// wrong - v is passed by value not reference

if (!i) v.i = e;

else if (i==1) v.j = e;

else v.k = e;

return;

void vector_set (vector v, int i, int e){

}

// correct version - pass the pointer of v

if (!i) v->i = e;

else if (i==1) v->j = e;

else v->k = e;

return;

vector * vector_set (vector * v, int i, int e){

}

Vector.h allows you to help prevent
tampering. If you move the definition of
struct vector to vector.c and make
vector a pointer it is difficult to access
the workings of the structure.

For added security can hash the vector
with a signed cookie. Makes it almost
impossible to create a vector with
different data but the same signature.

vector.c
#include "vector.h"

int x[3];

struct vector {

};

return v->x[i];

int vector_ref (vector v, int i) {

}

vector r = malloc (sizeof (struct vector));

r->x[0] = a;

r->x[1] = b;

r->x[2] = c;

return r;

vector vector_build (int a, int b, int c) {

}

free(v);

void vector_delete (vector v) {

}

vector.h
// 3D vector of ints

typedef struct vector * vector;

// Hands off!

vector vector_build(int, int, int);

Make the Vector more general

vector.h

typedef struct vector * vector;

vector vector_build(int, int);

void vector_delete(vector);

int vector_len(vector);

vector.c

#include "vector.h"

//Approach 1

int len;

struct vector {

Vectors/ADTs in C
November-23-10 11:29 AM

 CS 145 Page 42

typedef struct vector * vector;

vector vector_build(int, int);

void vector_delete(vector);

int vector_len(vector);

int vector_create(int, int);

#include "vector.h"

//Approach 1

int len;

int x[]; // woah, this has no memory malloced for it.

// It is a pointer to zero integers

// It will be at the end of the vector struct, although

// maybe not guaranteed to be so.

struct vector {

}

vector r = malloc(sizeof(struct vector) + len * sizeof

(int));

r->x[i] = e[i];

for (int i = 0; i < len; i++) {

r->len = len;

return r;

vector vector_built (int len, int *e) {

}

free(v);

void vector_delete(vector v) {

}

//Approach 2

vector r = malloc(sizeof(struct vector));

r->x = malloc(len * sizeof(int));

r->x[i] = e[i];

for (int i = 0; i < len; i++)

r->len = len;

return r;

vector vector_build(int len, int *e) {

}

free(v->x);

free(v);

void vector_delete(vector v) {

}

// For both approaches

return v->len;

int vector_len (vector v) {

}

// bounds checking

v->x[pos] = e;

return 0; /succeed

if (pos >= 0 && pos < len) {

}

return 1; //fail

int vector_set(vector v, int pos, int e) {

}

// or could use exit(0) - good

// exit(number ≠ 0) is bad

// ends the program, in unix can write echo $?

// to find the error code

// exit is equivalent to return from main

// alternate

#include <stdlib.h>

// has the global value errno

v->x[pos] = e;

errno = 0;

return;

if (pos >= 0 && pos < len) {

}

errno = 1;

void vector_set (vector v, int pos, it e) {

}

// perror prints an error message

return v->x[pos];

if (pos >= 0 && pos < len) {

}

int vector_ref (vector v, int pos) {

} // how do you indicate error?

// could request a flag from the user and use that

int r;

int status;

typdef struct {

} int_status;

int_status stat;

stat.status = 0;

stat.r = v->x[pos];

return stat;

if (pos >= 0 && pos < len) {

}

int_status vector_ref (vector v, int pos) {

 CS 145 Page 43

}

stat.status = 1;

return stat;

} // probably the best approach to deal with errors

But what if you want to store things in the array other than ints

Generic
(labmda (something)

int len = 3;
something x[];

struct vector {

}
)

Instantiation
(vector char) foo;
(vector avltree) bar;

Could build a generic as:
#define vec(t, n) \

int len = 3 \
t x[]; \

typedef struct { \

} n

vec(char, vecchar);
vec(int, vecint);
// defines vecchar a vector of chars
// defines vecint, a vector of ints

// Another Way

#include "t.h"

int len;

t *x;

struct vector {

}

t.h

typedef struct t_struct * t;

//operations on t

t_create;

t_create_array;

t_copy;

t_delete;

t.c

int i;

char c;

struct t_struct {

}; // more space than needed

int i;

char c;

union t_struct {

}// union stores i and c

// to the same place

 CS 145 Page 44

Many Form Ism

Strong/Weak Typing
Scheme has strong typing, types
are enforced by the compiler

C has weak typing, types can be
treated as other types.

Polymorphic Function - Works on many types
Polymorphic ADT - data structure and functions on many types

Many Types

Dynamic (Run-Time) Polymorphism
Dynamic Typing

Scheme

Static typing
Loopholes for polymorphism

C

Polymorphism
Parametric Polymorphism (templates, generics)
(lambda (t) …) where t is a type

Ad Hoc Polymorphism

Unions in C-

foo(int)○

foo(char)○

Overloading-

Pascal → variant records-
(void *)-

Finite number of alternatives, each coded separately

void * x;
(char *)x[i]; // will work… if you declared memory anyway

bar;
int foo (int *q) {

}
foo(x); // will also work

Inheritance-

 with ops f, g, h
 with ops f g h j

Inclusion Polymorphism

C polymorphism

int r = 0;

r += 1;
for (int i ; i ≤ n ; i++)

return r;

int sumto (int n) {

}
Specifically for integers

int r = 0;

r += i[a];
for (int i = 0; i < n ; i++)

return r;

int sumto(int n, int *a) {

}
int x[] = {10, 20, 30};
sumto(3, x);

double xx[] = {1.2, 2.3, 3.4}
sumto(3, xx); //type error

int sumto (int n void *a) … but how do you fill out the body

int r = 0;

r += ref(i);
for (int i = 0; i < n ; i++)

return r;

int sumto (int n, int ref(int)) {

}
ref is a pointer to a function in codespace

int x[] = {10, 20, 30};
int foo(int i) {

Polymorphism
November-30-10 11:29 AM

 CS 145 Page 45

return x[i];
int foo(int i) {

}
sumto (3, foo);

#include "elem.h"

elem r = zero;// zero must be defined in elem.h (or you could pass zero as a parameter)

r = plus(r, ref(i));
for (int i = 0; i < n ; i++)

return r;

elem sumto (int n, elem ref(int) {

}

Void pointers!

void * r;
copy (&r, accum);

copy(&r, plus(r, ref(i)); // copy should be destructive
for (int i = 0; i < n; i++)

return r

void * sumto (int n, void * ref(int), void * accum, void * plus (void *, void *), void copy (void ** to,
void * from)) {

}

 CS 145 Page 46

Manitoba Beginner's Language

Elementary and Intermediate examples
Design criteria
Language definition
Compiler
(Minimal) deployment experience

1974 4th year class project

What's changed?
2006 perspective

Mabel
December-02-10 11:32 AM

 CS 145 Page 47

(Finite Automaton)
S: A finite set of states
i ∈ S: Initial state
f S: Final states
 : finite set of symbols (alphabet)
 : →

Bubble Diagram

The state machine M:

S = {1, 2, 3, 4}
i = 1
 { }
f = {3, 4}
T =

c a t

1 2 - -

2 - 3 -

3 - - 4

4 - - -

Language: L(m) ={ca, cat}

If change T to

c a t

1 2 - -

2 - 3 -

3 - - 4

4 - 2 -

L(m) is now infinite
L(m) {ca cat cataa cataat caataataa … }
ca|ca(taa)*

Spam

Finite State Machine
December-02-10 12:18 PM

 CS 145 Page 48

