
Terminology
Problem
Given a problem instance, carry out a particular computational task.
Problem Instance
Input for the specified problem
Problem Solution
Output (correct answer) for the specified problem instance.
Size of a problem instance
Size(I) is a positive integer which is a measure of the size of the instance I.

Example: Sorting
Problem instance I: 5, 1, 4, 3, 7
Output: 1, 3, 4, 5, 7
Size(I) = 5

Example: Matrix Multiplication
Matrices

Algorithm
An algorithm is a step-by-step process for carrying out a series of computations, given an arbitrary problem
instance I.

Algorithm solving a problem
An Algorithm A solves a problem if for every instance of , A finds a valid solution for the instance I in finite
time.

Program
A program is an implementation of an algorithm using a specified computer language

In this course, our emphasis is on algorithms (as opposed to programs or programming)

Algorithms and Programs
For a problem , we can have several algorithms.
For an algorithm solving , we can have several programs (implementations)

Design an algorithm that solves → Algorithm Design•
Assess correctness and efficiency of → Algorithm Analysis•
If acceptable (correct and efficient), implement . •

Algorithms in practice: Given a problem

Machine has only CPU and RAM•
Any memory access is constant time•

Arrays work as expected○

Linked lists are possible ○

load/store/compare/add/multiply data stored in cells in constant time•

Infinite amount of memory•
Program is stored in memory•

RAM (Random Access Machine)

Example: Pseudocode of Matrix Multiplication

C[i,j] := A[i, 1] * B[1, j]

C[i, j] = C[i, j] + A[i, k] * B[k, j]

for k from 2 to n do

od

for j from 1 to n do

od

for i from 1 to n do

od

How many primitive operations?
 multiplications
 additions
Total arithmetic operations
Using order notation, running time is

A better algorithm: Strasen69

Algorithms
September-11-12 3:03 PM

 CS 240 Page 1

Order notation
Know all of the order notation symbols
The functions are asymptotically non-negative

O-notation

 if there exist constants and such

that for all

 grows no faster than

 -notation

 if there exist constants and such

that for all

 grows no faster than

 -notation

 if and

o-notation

 if for all constants there exists a constant

 such that for all

 grows strictly more slowly than

 -notation

 if for all constants , there exists a

constant such that for all

 grows strictly more rapidly than

Analysis
Create formula expressing program. If can simplify exactly then
get running time. Using inequalities gives or and need
both to get

Work inside out of loops

Properties

 for any constant 1.

 •
 •
 ma •
 ma •

If and then 2.

ma 3.

Exercise: Show ma

 4.

Exercise
 5.
 log 6.

Assume

Big Ω
 grows no slower then
Example
 log since log

Big θ
 grows at the same rate as

Directly from definition:
 an

N.B. to show both in proofs

Little o
 grows slower then
Example

Example

Let be given

Order Notation
September-13-12 2:39 PM

 CS 240 Page 2

Abstract Data Type (ADT)
A description of information and a collection of operations on that
information

The information is accessed only through the operations

How the information is store (data structure)•
How the operations are performed (algorithms)•

We can have various realizations of an ADT, which specify:

Notation for Trees
Height
The height of a node is the number of edges in the longest single
path down to leaf

Depth
Number if edges in single path up to root

⇒ root has ma imal height height of tree

Dynamic Arrays
Linked lists support O(1) insertions, deletions but element access costs O(n)
Arrays support O(1) element access, but insertion/deletion cost O(n)

Dynamic arrays offer a compromise:
O(1) element access, and O(1) insertion/deletion at the end.

Allocate one HUGE array, and only use the first part of it•

(Amortized analysis is required to justify the O(1) cost for insertion/deletion at
the end— CS341/466)

Allocate a small array initially and double its size as needed.•

Two realization of dynamic arrays:

Stack ADT

push: inserting an item•
pop: removing the most recently inserted item•
Items are removed in LIFO order. We can have extra operations: size, isEmpty, and top.•

Stack: an ADT consisting of a collection of items with operations:

Applications: Addresses of recently visited sites in a Web browser, procedure calls.

Using arrays•
Using linked lists•

Realizations of Stack ADT

Queue ADT
Queue: an ADT consisting of a collection of items with operations:
enqueue: inserting an item
dequeue: removing the least recently inserted item
Items are removed in FIFO order.
Items enter the queue at the rear and are removed from the front.
We can have extra operations: size, isEmpty, and front.

Using (circular) arrays•
using linked lists.•

Realizations of Queue ADT

Priority Queue ADT

insert: inserting an item tagged with a priority•

Also called extractMAx○

deleteMax: removing the item of highest priority•

Priority Queue: An ADT consisting of a collection of items (each having a priority) with
operations:

Applications: typical "todo" list, simulation systems

The above definition is for a maximum-oriented priority queue. A minimum-oriented priority
queue is defined in the natural way, by replacing the operation deleteMax by deleteMin.

Heap
Lemma
Height of a heap with n nodes is log

Proof:
Suppose that the height of the tree is .

⇒ log so log

⇒ log log

Abstract Data Type
September-18-12 2:40 PM

 CS 240 Page 3

Node is larger than its children
Binary tree is nearly complete, last row is filled on the left.
Can be stored in an array row by row.

HeapInsert
Insert in last position and 'bubble up'. Swap new node with parent if it is larger. Keep doing this until parent is
larger or the node becomes the root (largest). log

Replace root node with right most node on level •

If node is smaller than any children, swap with the larger child.○

Repeat until larger than the children or is a leaf○

'bubble down'•

 log •

HeapDeleteMax

Heapify
How to initialize a heap from arbitrary array

Put items in nearly complete binary tree•
For i = 0 to n-1, bubble up at position i•
Runtime:•

Cost of bubble up is proportional to depth of node○

Depth of each node is log ○

Number of nodes to process is n○

 runtime○

Upper bound•

Worst case when initial ordering is in increasing order ○

need to bubble-up to root each time○

height of tree is lg ○

Lemma: At least

 nodes have depth ○

In worse case # swaps for bubble-up at level h-1 or h is h-1○

overall # swaps is

 log ○

Lower Bound (On Worse case)•

So in the worse case, has running time log •
We don't qualify "worst case". Just "running time" is assumed to mean "worst case running time"•

Top-Down creation of heap

Starting from end of the array, bubble-down each node in turn.•
Consider node, by level•

level # nodes height of nodes

0 h

1

2

…

 0

•

Lemma:
Lemma: For … number of nodes with height is

Total number of swaps is

Bottom-Up creation of a heap

Lower bound is because the loop iterates times•

So the running time of bottom-up heap creation is

Heapsort
heapify(A, n)

A[n-i-1]=heapDeleteMax(A, n-i)

for i=0 to n-1 do

 log

Heap
September-25-12 2:38 PM

 CS 240 Page 4

Scan array k times, delete max each time1)

Sort numbers, then return 2)
 log

If the next element in A is larger than min of heapa.
Remove min from heapb.
Insert element of Ac.

Heap: Build a min-heap of size k3)

Return minimum element of heap, this is the largest
 log
Heapify, call delete max times4)
 log

Find kth largest in array … of numbers

Average Case Analysis
Example

print "Hello world!"

for i = 1 to k do

foo1(k)

What is the average case number of calls to print? Assuming uniform distribution of

Average Case Running Time of Quick Select
Assumption 1: Keys are distinct
Observation: Behaviour of algorithm depends on relative ordering, not actual values
Therefore can assume that inputs are integers … n
Need to consider all possible orderings.

Assumption 2: Uniform distribution

Let be the cost of a quick select
There are possible choices of pivots

At least half of all the problem instances will have

 and hence will have recursive

call with size at most

Selection
Find element at position
Suppose … contains distinct keys
Position of # of keys in …

Quick Select Algorithm
Find pivot, center around the pivot, and recurse on
one of the halves (or return the pivot)

Best case:

Worse case

Selection Problem
September-27-12 2:33 PM

 CS 240 Page 5

Example

k = value of a fair die toss

print("Hello World!")

for i = 1 to k

foo2 ()

Here the expected runtime is

A has (n-1) 1's and 1 n

pre: A(0..n-1) is a permutation 1,…,1,n

k = 0

print("Hello World!")

for i = 1 to A[k] do

foo3(A)

prints in best case: 1
prints in worst case: n

Average runtime

pre: A[0...n-1] is permutation of 1, 1, …, 1, n

k= random integer in range 0...n-1 // uniform

print("Hello World!")

for i = 1 to A[k] do

foo4(A)

Let be input . Expected running time is

 e p

Let be input …

 e p

Does not matter what array is past in, worst case expected runtime is

 e p

Choose-Pivot 3
Non-random pivot selection with good worst-case

Group elements in

 groups of at most 5 elements1)

Get median of each group 2)

⇒

 of are

⇒ at least elements in are
⇒ at leas elements in are < g

If for odd
Recursively compute the median of … 3)

 4)

Runtime

Average Running Time
Average over all inputs

Expected Running Time
Average over all possible random choices

Worst-Case Expected Runtime
 e p ma

 e p

Randomized Algorithms
October-02-12 2:33 PM

 CS 240 Page 6

Theorem
The worst case runtime of every comparison based sorting
algorithm is log

Counting Sort
Count how many of each key value, then put elements in correct
position.

0 ≤ A[i] < k, 0 ≤ i < n

(A really consists of key-value pairs)

C ← array of size k, = 0

increment C[A[i]]

for i = 0 to n - 1

C[i] ← C[i] + C[i - 1]

for i = 1 to k - 1

B ← copy(A)

decrement C[B[i]]

A[C[B[i]]] = B[i]

for i = n - 1 to 0

Runtime
cost is if then the runtime is

Last loop is backwards to ensure stability

Radix Sort
Idea

Consider keys as d-digit base-k numbers-

Modify counting sort to handle large keys

Fact

For , every integer can be written as

for unique

Write numbers as tuples, of , left pad with 0's as needed. Sort
from least significant place to most significant using stable sort
(counting sort) on only that digit.

Comparison Model

Comparing two elements-
Move elements around-

Only data accesses are

Goal
Lower bound for # comparisons required by any comparison based sorting algorithm

Idea
Model execution of algorithm on all inputs using a decision tree

Structure

leaves = # internal nodes + 1-

Each node has zero or two children

Example sorting decision tree

 __
 / < ___
 __ / <
 / < _

 < ___
 \ —
 __ —
 __

Internal nodes : comparison-
Result of comparison : edge-
Leaf nodes : result(sorted)-
Worst case : height of tree-
Average case : Average depth of leaves-

Notes

Proof of Theorem
At least one leaf node for each possible input.
⇒ At least leaf noes
⇒ at least nodes in tree

⇒ height lg lg

 lg

 log

Sorting Algorithms
October-04-12 2:35 PM

 CS 240 Page 7

Multi-Way Search Tree

each node has at least 2 children•
each node with children … stores keys s.t.

•

for all stored in the subtree rooted at we have

•

An ordered tree such that

Start at root•
if for some then done•
else recursively search in subtree rotted at s.t.

•

Search

multi-way-search trees•

allowed 1 or 2 key-value pairs per node○

each non-leaf node has 2 or 3 children•

all leaves at same level•

always fill leaf nodes○

if overflow, promote middle element○

insert•

height of tree grows iff root •

2-3 Trees

Search is easy•
Insert may involve splitting/promotion•

fusion may repeat up to root○

deletion may involve transfer or fusion•

h increases only if root splits•
h decreases only if root's siblings fuse and root becomes
empty

•

Summary

each node has keys○

each non-root node has keys○

Same idea as a 2-3 tree•

Implementation:•
Chose d so that a node with 2d KVPs fills a disk sector•
goal: minimize disk access•
keep root in RAM•

16 million ○

3 disk accesses ○

eg: , n = 16 million•

B-tree of min size d

[1, 2]○

insert 1, 2•

 ⇒ ← → ○

insert 3•

 ← → ○

insert 4•

 ← → ⇒ ← → ○

 [3]

insert 5•

 ← → ○

 [3]

insert 6•

 ← → ○

 [3]
 ← → ○

 [3] [7]
 ← ← → → ○

 [3] [5]

insert 7•

Example Construction of a 2-3 Tree

Example B-tree of min size 3
 ← →
insert 0
 ← →
 ← →
 [4, 5, 6]
delete 10
 ← →
 [4, 5, 6]
 ← →

Trees
October-16-12 2:31 PM

 CS 240 Page 8

Open addressing-

two independent hash functions, -

If so, insert in alternate location

may displace another item○

If get into a cycle then rehash○

always insert into -

Cuckoo Hashing

Reverse of insert-

keep directory/root as small as possible-

Leaf node with same local depth○

agree on first bits.○

merge with "buddy" if possible-

Extendible Hashing Delete

Example of Cuckoo Hashing

 , but is occupied-

kick out , insert into -

insert into or -

Insert into

0 1 2 3 4

Example of Extendible Hashing

 is the local depth

keys in had leading bits in common-
 of each block

exactly pointers to block B

Example (L=5, S=2)
insert 01001 into initially empty ext. hash table
 → |

Insert 00001
 → |
 [00001]

insert 01110
 → |
 [00001]
 → |

 → |
 → |
 [| 01110]
 → |
[11] ^

Insert 11100 and 10110
 → |
 → |
 [| 01110]
 → |
[11] ^ [11100]

Insert 01010, 11101, 01011, 00000 (exercise)
 → |
[0001] ^ [00000]
[0010] ^
[0011] ^
 → |

Hash Tables
October-25-12 2:31 PM

 CS 240 Page 9

 → |
 → |
 [01011]
 → |
[0111] ^
 → |
[1001] ^
[1010] ^
[1011] ^
 → |
[1101] ^ [11101]
[1110] ^
[1111] ^

delete 01011
 → |
[001] ^ [00000]
 → |
 [01010]
 → |
 → |
[101] ^
 → |
[111] ^ [11101]

delete 01010
 → |
 [00000]
 → |
 [01110]
 → |
 → |
 [11101]

 CS 240 Page 10

kd-tree
Search Running Time
Runtime is bounded by number of calls to

Multidimensional Data
November-08-12 3:05 PM

 CS 240 Page 11

eg. {00, 110, 111, 01010, 01011}○

Stores a collection of binary strings•

Assumption: Strings are prefix-free•
Runtime analysis takes length of string into account.•

Binary Tries (or Radix Trees)

Prefix-Free
No string is a prefix of another

Compressed Trie (Patricia Tree)
KMP
Guess index:
Check index
Both monotonically nondecreasing
Main loop invariant: … …

 is string to be searched
 is desired substring.

Algorithm:

i++; j++

Case 1: and •

Return i-j;

Case 2: and •

i++

Case 3: and •

Case 4: and •

Keep the same○

Decrement by correct amount. ○

Main idea of KMP: shift pattern certain amount right

Choose maximal such that
 … …

While do

KMP Failure Function

 a)
For , is length of largest prefix of … that is also a suffix of … b)

The failure function for pattern …

Usage
 and ⇒

Example of KMP Matching
T=bacbababaabbcbab
P=ababaca

b a c b a b a b a a b c b a b

a

 a b

 a

 a

 a b a b a c

 (a(b(a b

 (a b

 a b a

 a

 a

 a b

Example Construction of KMP Failure Function
Let
P = a b a c a b a
 j | 0 1 2 3 4 5 6

F(j)| 0 0 1 0 1 2 3

Compressed Multiway Trie
Store string to be searched in a suffix trie
For each suffix, store node in a compressed trie. The node contains the initial and final
indices of the suffix. Internal nodes store initial and final indices of the substring
represented by that node.

Tries and String Matching
November-13-12 2:32 PM

 CS 240 Page 12

Non-Prefix Free Example
Decoding Dictionary

 → … …

E 1010

S 11

O 1011

Y 01

N 0110

Coded Message: 01101011
Can be decoded as NO or as YES

Length of Trie Encoding
Let S be array of n characters and frequencies,
Let T be any encoding Trie
Length of encoded text is

 occurences of length of co e for

 epth of leaf containing

 the eighte path length of T

Theorem (Length of Huffman Tree)
For a Huffman tree ,

bad if data changes structurea.
fastb.

Stop adding1.

temporary poor compressiona.
Clear and start with fresh dictionary2.

maybe complicated or expensivea.
Discard least frequently used3.

Increase k (size of output)4.

LZW Dealing with Full Dictionary

Compression
November-22-12 2:53 PM

 CS 240 Page 13

