
Problem Solving
Problem → prove lower bounds → may need to change problem if too hard
 
Design an algorithm
                                    do better
Analyze algorithm
 
Program

Problem (Bentley)
Given numbers        find a sub-block (contiguous subsequence)             with maximal sum. 

Example
Input: 1, -6, 3, -1, 4, 2, -3, 2

Output: 8     ———————————

Algorithm 0
Brute force
1) ans = 0

2) for i = 1 to n do 

3) for j = i to n do

4) sum = 0

5) for k = i to j do

6) sum += a 

7) if sum > ans then ans = sum

8) return ans

Analysis
Lines 5-6:            for some constant  .  depends on compiler/ machine

             
Lines 3-7:          for some constant   depending upon compiler or machine

Total time:              

In fact, is      

e.g.                   ops sec     sec      years

Algorithm 1
Idea - don't recompute sum from scratch
1) ans = 0

2) for i = 1 to n do

3) sum = 0

4) for j = i to n do

5) sum += a 

6) if sum > ans then ans = sum

7) return ans

Analysis
     

Algorithm 2
Idea - divide and conquer
solve(       ) 

Maximum Subarray Problem
January-08-13 2:51 PM

   CS 341 Page 1    



solve(       ) 

1) if n = 1 then return max(  , 0)

2) ans = max{solve(      
 
 

 
   
), solve( 

 
 

 
     

     )} 

3) ansl = sum = 0

4) for i =  
 

 
  to 1 do

5) sum = sum +   

6) if sum > ansl then ansl = sum

7) ansr = sum = 0

8) for i =  
 

 
  + 1 to n do

9) sum = sum +   

10) if sum > ansr then ansr = sum

11)return max(ans, ansl + ansr)

Analysis

      
     if    

   
 

 
         otherwise

   log   

Algorithm 3
Dynamic programming
Let   be the maximum sum over all blocks that end at  

   ma             

ANS = 0

b = 0

b = max{b +   ,   }

ANS = max{b, ANS}

FOR j = 1 .. n

}

RETURN ANS

    runtime
Any algorithm must take     , so it is     

   CS 341 Page 2    



3SUM Problem
Given n numbers        and a target  does there exist             such that           ? (not necessarily distinct)

Example
30, 12, 8, 37, 33, 82     
                      

Algorithm 1

return Yes

if ai + aj + ak = t then

for k = 1 to n

for j = 1 to n

for i = 1 to n

return No

Runtime      

Algorithm 2

Let                      

Let                   

If  and  have a common element return Yes, else return No
Check by soring A and B individually, then scanning through each simultaneously.
(In class sorted    and checked for pair of elements each in a different set, but this is simpler)

Make  :      
Make  :     

Sort A:     log          log        log   
Sort B:    log   

Scan:      

Total Runtime:     log   

Algorithm 3

                    

                  

Pre-sort input. Get   and  sorted automatically. 

return Yes

if Ai and B have a common element

for i = 1 to n

return No

Pre-sort input:    log   

Repeated  times        runtime
Check if   and  have a common element:     

Full In-Class Algorithm
Sort input array a

Bi = t - an-i for i = 1 to n

Generate B:

Ai  = { ai + aj | j = 1 to n }

Merge sorted Ai and B to obtain Ai  B (also sorted)

return Yes

If Ai and B have a common element

for i = 1 to n

return no

3SUM Problem
January-10-13 2:56 PM

   CS 341 Page 3    



Common Summations

   
 

   

               

   

 

   

 
      

   
          

    for    
    for    
     for    

Harmonic Series

 
 

 
  

 

   

 ln      

Stirling's formula:

log      log  

 

   

  log      

lim
 → 

    

    
      

            iff1.

lim
 → 

    

    
      

            iff2.

lim sup
 → 

    

    
     const   

            iff3.

lim inf
 → 

    

    
     const    or  

            iff4.

Connection with Limits

Example

for j = 1 to n do          

for k = 1 to i do     
for l = 1 to i do           

for i = 1 to n do

Total:

       

 

   

          
 

   

                  

Proof of Harmonic Series Sum Value

 
 

 
  

 

   

  
 

 
  

 

 

     ln   

Build-Heap Example

j = 1

j = 2j

while j ≤ n do

for i = n down to 1 do

 steps total. What is  ?

           

     
 

 
     

Total    log  (Stirling's formula)

Tight bound

   log
 

 
  

 

   

      log  log   

 

   

     log 

 

   

  log  

 

   

     log     log         

     

Asymptotic Notation
January-15-13 2:56 PM

   CS 341 Page 4    



Recursion Tree Method1.
Master Method2.
Guess-and-check3.

Thee methods of solving recurrences

Expand for  iterations to get a tree of terms•
Set  to reach the base case•
Sum across rows, levels•

Recursion Tree Method

Master Theorem
Let

      
   

 

 
        if     

 otherwise

Set   log  and pick    
Case 1:                        

Case 2:                     log   

                    

Case 3:
    

    
    is increasing              

Guess and Check Method

Guess the solution         •
Verify by inductive proof•
Fill in constants•

Exactly what it sounds like.

Example Recurrence Relation

      
   

 

 
     for    

 if    

Example of Master Method
Merge sort:
   ,    ,       
  log    
Case 2 so         log  

Example 2

      
   

 

 
      for    

 if    

             

          
  

     
     is increasing

Case 3 so           

Example 3

      
   

 

 
         if    

 if    

  log                  

                

Case 1 so               

Example 4

       
 

 
     

              
  log    
Case 2 so        log   

Example 5

        
 

 
     

          log   
 

 
  

 

 
 
      

      is increasing

Case 3          

Example 6

        
 

 
    

 

log 
    

   
Case 1: No
Case 2: No
Case 3: No

The master theorem does not apply.
By recursion tree method:

     
 

log 
      

 
   

log  
 
    

         
 
 
    

log  
 
    

         

    

 
     

log   
        

      

   

   
 

log   
        

      

   

   
 

 
  

    

   

     log log   

    log log   

Example Guess and Check
Example 1

      
   

 

 
      for    

 if    

Guess         

          for    
Base case:    

        
 

 
       

    

 
         

 

 
           

  
 

 
          

 

 
       

Inductive step:

Pick    

Solving Recurrences
January-17-13 2:47 PM

   CS 341 Page 5    



Pick    
Know           

        
 

 
                 n  

           

Example 2

      
   

 

 
       

 

 
     for    

 for    

Guess         

Base case:            for    

         
 

 
   

 

    
 

 
   

 

   
 

 
      

 

 
               

Inductive step:

Problem. Instead assume
           

Base case:                for        
Inductive step:

         
 

 
   

 

       
 

 
   

 

                    

Set         . So 
                     

   CS 341 Page 6    



Divide into subproblems•
Recurse•
Combine solutions•

Divide and Conquer

Domination
A point  dominates point  iff        
A point  is maximal for a set  if no point in a set  dominates it.

Maximal Problem
Find all maximal points in the set  .

Brute-force algorithm
For each    count # of points    that dominate  .  If no points domination  then return it.
     

Divide and Conquer
Maximal(       )

Input        a list of 2D points pre-sorted by x coordinate

If    then return     

           Maximal(      
 
 

 
   

)

          Maximal( 
 
 

 
     

     )

i = 1

i = i + 1

while      and          do

return                    

Analysis

      
   

 

 
        if    

 otherwise

        log   

Have initial sorting as well that takes time    log   

There is a    log   bound for comparison-based algorithms1)
Can get    log   without divide and conquer (DAC)2)
DAC solves more general "dominance counting" problems3)

Notes

If the points are already sorted then we can solve this in     time and dominance counting in      log  
      time (2010)

Union of Intervals Problem
Given n intervals                          
Compute their union
Output sorted list            

representing intervals                              

Note that 
                  

 
 
    

     
 
      

      

So

if n == 1 then return        

          Union(             
 

 
   

  
 
 

 
    )

       = Union(   

 
  

   

 
  

        )

Union(                         ):

Divide and Conquer
January-17-13 3:45 PM

   CS 341 Page 7    



         = Union(   
 

 
     

  
 
 

 
                )

return Merge_Intervals(a, b)

Merge_Intervals a, b:

i = 1, j = 1

if  is odd then {k++,      }

i++

if   <   then

if  is odd then {k++,      }
j++

else

do {

} while i != len(a) || j != len(b)

return          

Elements are considered for inclusion in sorted order1.
If      and   and   are being compared, we must have had        2.

Observations

Analysis

      
   

 

 
        if    

 otherwise

        log   

   CS 341 Page 8    



Closest Pair Problem
Given a set  of points in 2d find a pair      with the smallest distance

                             
                          

Brute-force approach:      time

First idea: Divide vertically
Get minimum distance for left and right sides. Then only have to look with in min distance of the 
vertical dividing line for other pairs. 

Shamos Algorithm

if n ≤ 3

  = median x-coordinate of P          

               
                                 
   ClosestPair(  )

  = ClosestPair    

  min       
                                                      
   log   

δ = min{δ,         } 

for j =          as long as                
for i = 1 to L          

ClosestPair(P)

Observation 1
Only need to look at points within  of   

Observation 2
Only need to compare points such that            
Solution must be within some     rectangle
Observation 3
We can bound the number of points in each such rectangle. There are at most 6 points.

Analysis

        
 

 
       log   

        
 

 
        

Tree method:

        
 

 
       log            log   

        
 

 
                 log   

Improvement: Pre-sort the points according to x and y coordinates.

No need to sort on each recursive step.         
 

 
           log   

Closest Pair
January-24-13 2:31 PM

   CS 341 Page 9    



Large Integer Multiplication

             

Given to n-bit numbers              

Compute                 

Algorithm
Idea: Divide  and  into blocks of 

 

 
 digits

             
   
   

   
  

  
   
  

        
 
       

             
   
   

     
  

     
        

 
       

        
 
             

 
                                

 
          

         
 

 
              

No improvement
A clever idea:
                                        

Now have 3 multiplications, 6 additions

divide A into A', A''

divide B into B', B''

  := Mult(A', B')

  := Mult(A'', B'')

  := Mult(Α'+Α'', Β'+Β'')

return                   
 

 
     

Mult(A, B) 

Analysis

        
 

 
                           

Refinements
3-way divide
Can do with 5 multiplications, messy formula

        
 

 
                           

4-way divide
Can do with 7 multiplications

        
 

 
                           

In fact, we can get        for any  by dividing enough times.

Current best algorithm:
Schontage, Strassen (1971)    log  log log   

Furer (2007)    log         

log  
is the number of times you need to apply log  to  to get  .
If   log log log  then log    

Large Matrix Multiplication

Large Multiplication
January-29-13 3:09 PM

   CS 341 Page 10    



Large Matrix Multiplication
Given 2 matrices         

Compute the    matrix     

Standard Method

           

 

   

for j = 1 to n

for i = 1 to n

     time

Strassen Algorithm (1969)
Partition:

   
     

   
     

     
     

   
     

 

    
                   

   
                   

 

8 additions, 4 multiplications

         
 

 
               

A clever idea:
            
            

           
            

                 
                 
                 

    
                 

   
                 

 

         
 

 
                            

Note
This algorithm is not often used for floating point matrices because it accumulates errors 
quickly. 
It is good for large integer multiplication.

It has applications to other operations (e.g.     , inverse, determinant) and to graph 
problems

Another algorithm:
Pan(1798)

              
 

  
                    

Best so far:
Vassilevska- Williams
         

   CS 341 Page 11    



Given  numbers        (unsorted) and  , find the  th smallest element. 

Algorithm 1
Sort and choose  th    log   

Algorithm 2
Remove largest element  times      

Algorithm 3
Make a heap and remove the k largest elements      log   

Algorithm 4
Quick-select (see CS 240)
Choose pivot and recurse on appropriate half. 

Works well with random pivot.
Deterministic version: 
Break the numbers into groups of 5. Choose the pivot the be the median of the medians of those 
groups of 5.

Claim
If  is the index of the median of medians  then
  

  
      

  

  
   

 
 

  
    groups    such that     

and each such group contains   numbers   at least 
  

  
  numbers are   

Similarly, 
  

  
  numbers are   

       
 

 
      

  

  
         

        
 

  
    

       

   

     

Median Algorithm
February-05-13 2:32 PM

   CS 341 Page 12    



Incrementally build solution•
At each step, choose what seems to the best at the moment•
Optimization problems (find solution maximizing or minimizing 
some function)

•

Advantages: simple and fast•
Disadvantages: may not be correct•

Greedy Algorithms

Example: Coin Changing
Find minimum number of coins adding up to  
With Canadian currency can repeatedly pick largest possible coin. 

Example
Given  intervals                          

find the maximum number of disjoint intervals. 

Idea 1: 
Pick interval of minimum width. Does not work
Counterexample:
_____ _____

    ___

Idea 2:
Pick interval that conflicts with the fewest other intervals. Also does not work. 
Counterexample:
  ___     ___

  ___ ___ ___

___ ___ ___ ___

___         ___

Least number of conflicts is the middle interval in 2nd row when 3rd row is optimal.

Greedy Algorithm

choose interval [a, b] with smallest b

remove [a, b] & all  intervals intersecting it

repeat {

}

Implementation
Naïve:      
Sort and scan    log   

Correctness Proof
To show there exists an optimal solution consisting of all the chosen intervals.
Let   be any optimal solution. 
Let        be the leftmost interval in   

Let      be the leftmost interval chosen by our algorithm.
We can safely swap        with      
Then                      would be a valid solution with the same number of 
intervals. 
Repeat argument ignoring        and        ∎ 

Greedy Algorithms
February-05-13 3:17 PM

   CS 341 Page 13    



Fractional Knapsack Problem
Given "values"          and "weights"          
Capacity    

 a imi e      

 

   

 such that      

 

    

  

over            

Greedy Solution
Repeatedly pick  as much as possible of item  such that 
  

  
  is maximized over remaining items. 

Correctness
To show  optimal solution    

    
      

  with   
    for all iterations

Proof:  (Assume ratios are distinct)
Consider the first iteration.
Suppose   

    

Know   
       

    

Find another item  with   
   

Increase   
 by 

 

  
  , decrease   

 by 
 

  
  where    is sufficiently small

     
 

 

   

 is unchanged but

     
 

 

   

 increases by    

 

  
      

 

  
      

  

  
    

  

  
       

  Contradiction
Repeat argument for other iterations

Stable Marriage Problem
Given  candidates and  employers,
and a preference list (a permutation of employers) for each candidate

We can't have both  prefers   over  and   prefers  over   
and a preference list (a permutation of candidates) for each employer

Example
              

              

              

              

              

              

              

              

Bad Idea:
Brute force      

Start with any matching1.
While  to unstable pairs      and        replace with new matchings       and       2.
Can also be slow (may not terminate) 

The "Natural" Algorithm

("next" means candidate which has not yet been contacted by  ) 
// E makes an offer to C

pick  = next best candidate in  's preference list a.

If  is unmatched or  prefers  over  's current employer   then unmatch       and match      b.

While  unmatched employer  do {1.

The "Real Life" Greedy Algorithm (Gabe, Shapley 1962) 

Run on example:
     

           

  :     

  :     

Solution
                               

Analysis
Each employer makes   offers so   iterations
Spend   time to make a table of        position of    in     s preference list
So b takes     time
 Whole algorithm runs in      time. 

Proof: Some candidate is unmatched because there are  possible candidates and at most    matches.
Claim: in b),  exists.

Proof of Correctness

More Greedy Algorithms
February-07-13 2:51 PM

   CS 341 Page 14    



Proof of Correctness
Matching is stable
Proof by contradiction:

 prefers   over  i)
  prefers  over   ii)

Suppose we have matched pairs                     

ii     makes offer to  before   

  both  and   have made an offer to  
   prefers  over   

  Contradiction with i

   CS 341 Page 15    



Example: Binomial Coefficients

 
 
 
  # of size k subsets of        

 
 
 
   

 if     or    

 
   
   

   
   

 
 otherwise

Divide and conquer algorithm:
                            

Instead, fill record temporary values in a table

n \ k 0 1 2 3 4 5

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

     time
Can be more careful and do it in      time

Largest Common Subsequence (LCS)
Given 2 strings            and            ,     
Find the maximum string      such that
          
 
          

where 
          
          

Brute-force  Check all subsequences in A  B          

Dynamic Programming
Let       be the length of                 
Base case:                for             

                   

If      then 

       ma                    
Otherwise

Base cases:
                 

Example

L O G A R

i \ j 0 1 2 3 4 5

0 0 0 0 0 0 0

A 1 0 0 0 0 1 1

L 2 0 1 1 1 1 1

G 3 0 1 1 2 2 2

O 4 0 1 2 2 2 2

R 5 0 1 2 2 2 3

Dynamic Programming
February-12-13 3:16 PM

   CS 341 Page 16    



0/1 Knapsack problem
Given values             and weights          
capacity W (integers)

Find subset           maximizing    
 
   such that    

 
     

Define a sub-problem

       ma    

 

   

 s t     

 

   

    over all          

Find answer:       

           
           

Base cases:

Recurrence: 

        
ma                          if     

        otherwise
 

Analysis
     , but  may be arbitrarily large. 

Can we have a polynomial algorithm in  ? 

Edit Distance
Goal: Minimize the number of operations that transform string        into        

substitution•
insertion•
deleting•

Edit operations:

Application

How many mutations between Human and Chimp DNA?   Edit distance1.
Which bases in humans correspond to which bases in chimps?   Sequence alignment2.

Compare sequences of DNA

Needleman-Wunsch Algorithm
Define        edit distance between      and      
         atch Deletion  nsertion  state of last (column?) in alignment

        
        

Base case:

Recurrence

        
min                                    if      

min                                             if      

Analysis
     time
     space

If you do not need alignment information, can do in   min      space.

Hirschberg's trick•
Can be careful and get alignment in   min      space

Example
BANANA & PANDA
C

P A N D A

i \ j 0 1 2 3 4 5

0 0 1 2 3 4 5

B 1 1 1 2 3 4 5

A 2 2 2 1 2 3 4

N 3 3 3 2 1 2 3

A 4 4 4 3 2 2 3

N 5 5 5 4 3 3 3

A 6 6 6 5 4 4 3

Π

More Problems
February-26-13 2:33 PM

   CS 341 Page 17    



Π

P A N D A

i \ j 0 1 2 3 4 5

0

B 1 M I I I I

A 2 M M I I I

N 3 M D M I I

A 4 M D D M M

N 5 M D M M M

A 6 M M D M M

BANANA

PAN-DA

 f only want distance  we don’t need the full   table space. Can just use 2 rows: the current row and the previous row. This will not give you information 
about the alignment of the strings. 

   CS 341 Page 18    



Matrix Multiplication Order
Given n matrices, want to compute the product
         

        

          

Dimensions:         

The number of multiplications required to multiply matrices of dimension    and    is    

Multiplying pairs of matrices in different orders will affect the number of multiplications required. 

Solution
Store partial solution
       min cost to compute      

Base case:
         

       min
           

                          

Algorithm

j = i + l

       min
           

                          

for i = 1 to n - l do

for l = 1 to n - 1 do

Analysis
     time
     space

Matrix Multiplication Order
February-28-13 2:46 PM

   CS 341 Page 19    



Perform dynamic programming, but instead of computing all previous results iteratively, 
perform the computation recursively from the end. At each recursive call, use the value in the 
cell table if it is available, otherwise compute and save the value. 

Memoization
February-28-13 3:37 PM

   CS 341 Page 20    



Graph Definition
A graph        
   A set of vertices

       directed
    undirected

     : a set of edges

           

Representations
Adjacency Matrix
   matrix  

         if        
 otherwise

     space 
Good for dense graphs - when  is close to   

Can check adjacency:     time
Enumerate all neighbours of  :     time

Adjacency List
For each node, store a linked list of its neighbours. 
Space:

             

 

   

       out deg   

 

   

        

Enumerating all neighbours of  takes   out deg    time. 

Note

            
For a connected, directed graph

      
      

 
        

For a connected, undirected graph

Breadth First Search
Search nodes with FIFO ordering. 

Tree edges (edges to new nodes found by BFS)•
Forward edges (link to descendant node)•
Backward edges (link to ancestor node)•
Cross edges (link to already-found unrelated nodes)•

Get the following types of edges:

Implementation
Given directed graph        and    , traverse all vertices readable from  

for each    mark  as undiscovered1.

insert  to  and mark  as discovered2.

while  is not empty3.

remove head  of  4.

for each         do5.

if  is undiscovered then6.

insert  to tail of  7.

mark  as discovered8.

      // Creates a tree rooted at  9.

BFS(G, s) // use a queue Q

Analysis
Lines 5-9   out deg    

Depth First Search

mark s "discovered"1.

for each         do {2.

if  is "undiscovered" then {3.

DFS(G,v)4.

Π[v] = s5.

}6.

}7.

mark s as "finished"8.

DFS(G, s) 

Explore the whole graph

for each    , mark v "undiscovered"1.

for each    do2.

if  is "undiscovered" then DFS(G,v)3.

      4.

DFS(G)

Analysis

     out  deg   

 

   

        

Graph Search
February-28-13 3:49 PM

   CS 341 Page 21    



Unweighted Shortest Path
Given directed graph        and      
Find path from  to  of shortest length (# of edges). 

Bipartiteness / 2-colouring
Given undirected graph        decide whether  can be 
partitioned into      disjoint such that          and   
  or vice versa. 

Topological Sort
Given a directed graph        return a vertex order such 
that       ,  appears before  . 

Strongly Connected Components
Given a directed graph        

   in some component   path    and    
Partition  into components such that

Run BFS1.
Return path from  to  in BFS tree2.

Unweighted Shortest Path Algorithm

Run BFS(G,s)1.

colour  red if  is on odd levela.
colour  blue if  is on blue levelb.

For each    2.

For each     if     same colour return no3.

Bipartition Algorithm

      time

Run BFS1.
Record when each node is marked finished. 2.
Output nodes in reverse order.3.

Topological Sort Algorithm

If a cycle is detected, fail. 

      

Correctness
Need to show         , u comes before  in reversed order.
         

 discovered first
BFS will go down edge  →  so  finished before  
 comes before  in reversed order

Case A:

 is discovered first. No cycle so     so BFS below  finishes before 
searching  so  finished before  . 
so  comes before  in reversed order. 

Case B:

Run DFS(G)1.
Number vertices in order of finish2.
Form transposed graph   (reverse direction of each edge in  )3.
run DFS    preferring higher-numbered vertices4.
return DFS trees from 4 5.

SCC Algorithm

Correctness
Taka a DFS tree  of   

Let r be root, u be a node in  

 has a higher number than  (if not, pick  first)1.
 a path  →  in  (since  →  in   )2.

Suppose not.

 discovered first in DFS(G)
   finished before  
  Contradiction with  

Case A:

 discovered first in DFS(G)
  again   finished before  
  Contradiction with  

Case B:

 a path  →  in  :3.

       a path    4.
If  a path          in same tree5.
If we find one of them in DFS of   will find the other one.

Proof in 5 easy steps:

Graph Problems
March-07-13 2:46 PM

   CS 341 Page 22    



Minimum Spanning Tree
Given a weighted undirected connected graph        , 
and weight function    →   . Want to find a connected 
subgraph  using all the vertices and minimizing the total 
weight of its edges. 

Observation: The optimal subgraph must be acyclic. 

Kruskal's Algorithm (Min-weight spanning tree)
T = ∅

pick next shortest edge  

insert  into  

if      does not contain a cycle

repeat {

}

Sort the edges w.r.t. weights (increasing)1.
Create set        2.
for each edge    in sorted order if  and  are in different sets then select   and 
union the two sets. 

3.

More detailed implementation

Analysis
Line 1:    log  

Union of two disjoint sets1.
Find pointer to set containing given element2.
       , amortized time ( is inverse Ackermann function) 

Lines 4-5: Union-find data structure. Supports

Total time    log      log  

log   log   log 

Graph is connected so       
      

 
     

Correctness
Lemma
The shortest edge  bweteen  and    must be in the minimum spanning tree   

Proof
By contradiction.  Suppose     .       contains a cycle  
 contains another edge   between  and    
Then            is a tree with weight                       
Contradiction.

So each edge     inserted to  by Kruskal's algorithm is a correct MST edge.

Prim's Algorithm (1957)
        ∅

pick shortest edge   with    ,      
insert  into  ,   into  

while    {

Detailed Implementation

       min
   

            

     the     obtaining this minimum
      

Q = V1.

key[v] = ∞    V-{S},  key[s]=02.

while Q ≠ ∅3.

pick    with smallest       4.

print      and remove  from  5.

for each         do {6.

if    and             {7.

                   8.

}9.

}10.

}11.

Maintain:

Analysis

Line 4:     , line 5     

lines 6-8 take   deg    time 
Line 8: constant time, called     times 

Option 1: No data structure

      deg   

 

   

               

Total:

Option 2: Store keys in a heap / priority queue

CHANGE-KEY in   log   
Supports EXTRACT-MIN in   log   time

   log    deg   log  

 

   

     log    log       log   

Total:

Min-Weight Spanning Tree
March-14-13 3:30 PM

   CS 341 Page 23    



EXTRACT-MIN in   log   •
DECREASE-KEY in     amortized time•

Option 3: Use a Fibonacci Heap

Line 4:   log   
Line 8:     amortized

   log    deg      

 

   

     log     

Total:

   CS 341 Page 24    



Shortest Path
Given a weighted, directed graph        and      . 
Weight    →   

Find path from  to  minimizing

          

 

   

All-pairs Shortest Path
Given weighted directed graph       ,          .
Find shortest path between all pairs of vertices.
(assumption- no negative-weight cycles but negative-
weight edges allowed)

Shortest path on DAG
Given weighted DAG        ,       
Find shortest path from  to  

Dijkstra's  Algorithm (1959)
// compute δ[v] = shortest path weight from s to v

S = {s}, δ[σ] = 0

minimizing δ[u] + w(u, v)

pick edge (u,v) with u ∈ S and v ∈ V - S

insert v into S

δ[v] = δ[u] + w(u, v)

while S != V do {

}

Implementation
Change Lines 7-8 from Prim's to 

key[y] = key[v] + w(v,y), pi[y] = v

Q = V1.

key[v] = ∞         , key[s] = 02.

while Q != ∅3.

pick v ∈ Q with smallest key4.

print π[v]v and remove v from Q5.

for each y ∈ Adj[v] do {6.

if y ∈ Q and key[v] + w(v,y) < key[y]7.

key[y] = key[v] + w(v,y)8.

}9.

}10.

if y ∈ Q and key[v] + w(v,y) < key[y] {

Runtime
     log   

Correctness
Claim:
If      is the edge from  to    minimizing            
then                 

There is a path from  to  of weight             i)

                               
For any path  from  to  :  →   →   →  ii)

Proof:

Thus            ∎ 

Each inserted vertex  has correct     (by Claim).
At the end, we have all the       

All-Pairs Shortest Path
Method 0
Run Dijkstra starting from each vertex
     log      time

but requires all edges have positive weight.

Method 1: Dynamic Programming Solution
Define subproblems                      
         min weight over all paths from   to   with at most   edges 
Answer:                

Base case:

          
        
          

Recurrence:

         min
         

                   

Analysis
     entries,     time each        time

Method 2: Same subproblems but only for k=1, 2, 4, 8, …

         min
         

       
 

 
          

 

 
    

    log   time

Method 3: Floyd-Warshall (1962)
Define subproblems
          min weight over all paths from  to  with intermediate vertices in        
Base case:

          
      if    

 if    

Recurrence:
         min                                  

Analysis    entries,   time per entry

Shortest Path
March-19-13 3:18 PM

   CS 341 Page 25    



Analysis      entries,     time per entry
Total:      (smaller costs than Dijkstra) 

DAG Shortest Path
Subproblems:
     weight of shortest path from  to  
Answer:     
Base case:       
      

   CS 341 Page 26    



Hard Problems
3-colouring
0-1 knapsack
Largest simple path
Travelling Salesman Problem

For all of these problems, we don't know an algorithm that would run in      for any constant  .

Example Decision Problems
CYCLE

Directed graph        
Input

"yes" iff there exists a cycle in G
Output

TSP-DECIS

Directed graph        with weights    →   , and number  
Input

"yes" iff there exists a cycle that visits each vertex & has total weight   
Output

0-1 KNAPSACK-DECIS

                         
Input

"yes" iff           s.t.    
 
         

 
     

Output

If 0-1 KNAPSACK-DECIS is hard then 0-1 KNAPSACK is also hard.

PRIME

n-bit number N
Input

"yes" iff N is prime
Output

Consider brute force algorithm:

if N is divisible by i return NO

for i = 2 … N

return YES

⇒ RUNTIME is       
N takes   log    bits to write down
        so not polynomial is the size of the input.

Not obvious but PRIME shown to be in P in 2002

Example NP Problems
TSP-DECIS
Certificate: Cycle C
Property to verify: C visits all vertices exactly once with total weight   
Checkable in polytime   TSP-DECIS is in NP

O-1 Knapsack

Not obvious if it is in NP (Pratt 1975 showed it is)•
In contrast, composite is easily shown to be in NP•

PRIME

The Class P
P = all decision problems solvable in worst-case 
polynomial time (polytime)

Decision problems: output should be "yes" or "no"•

Polynomial      for some  •

Characteristics

The Class NP
NP = all decision problems that can be expressed in the 
form:

Object  
Input: 

"yes" iff there exists object y such that property 
      holds where
object y has polynomial size1)
property       can be checked in polynomial time2)

Output: 

y is called a certificate
R is called verifier

Theory of NP-Completeness
March-26-13 2:46 PM

   CS 341 Page 27    



Proposition
P  NP  EXPTIME

EXPTIME

Decision problems solvable in            

The Class NPC
Define "hardest" problems in NP
What does "  easier than   " mean?
On way: "  reduces to   "

Reduction
A polytime reduction from   to   is a polytime algorithm  such that 
the output of   is "yes" on  ⟺ the output of   is "yes" on     

We write       iff there is a polytime reduction from   to   . 

To solve   

 →  
    
   

solve for 
  

→ →  yes  or  no 

Proposition A
If       and       , then       

Proposition B
If       and     then     

NP-Complete (NPC)

    1)
    NP      2)

L is NP-Complete iff

Proposition C
Let  be an NP-complete problem
Then    ⟺     

SATISFIABILITY (SAT)
The first NPC problem
Input: Boolean formula on  variables 
Output: "yes" iff there exists an assignment of Boolean values to 
          such that
             evaluates to true

Cook-Levin Theorem (1971) 
SAT   NP

Sketch Proof of Proposition

Have verification ignore certificate.            
P  NP:

Try all possible certificates. 

There are          certificates. Takes         time to evaluate each.

Total time:                      

NP  EXPTIME:

Example Reduction
Finding a median reduces to sorting. 

Proof of Proposition C
Suppose    . Then       by (1), so     

     by Prop. B So NP = P.

Suppose    . Then             

Example SAT Problem
                                          

YES. Set               or  

Certificate: The assignment (polysize)
To verify: F evaluates to be true (polytime) 

SAT   NP1)

Need to give a reduction from every     2)
Input: z
Output: "yes" iff  y such that       is true where R can be checked by 
Algorithm d, which runs in polytime     

Idea: Simulate d by Boolean formula.
Construct formula F as follows:

for                  
       the    bit in memory during the    step of the execution of  

Variables: 

Add clauses to relate       with                     
Add clauses for       , connect to values of    
Take  of all clauses.

Sketch of Proof of Cook-Levin Theorem

NP-Complete
March-28-13 2:36 PM

   CS 341 Page 28    



Recipe for proving NPC

Proposition D

L   NP and1)
      for a known NP-complete problem   2)

If

then L is NP-complete.

3SAT
Input
Boolean formula F of the form

              

 

   

where    is wither a variable or its complement.

Output
"yes" iff there exists an assignment such that F evaluates to true. 

This is NP-complete

Vertex Cover
Input
Undirected graph        , integer k
Output
 yes  iff   subset    of size k such that      ,    or    

Independent Set (IS)
Input
Undirected graph        , integer k
Output
 yes  iff   subset    such that            

Clique Problem (CLIQ)
Input
Undirected graph  , integer  
Output
 yes  iff   subset    such that           

SUBSET-SUM Problem
Input
Set        of integers,  W
Output
 yes  iff   subset              such that 

    

 

   

  

Observation
Subset-sum   0/1 Knapsack-Decis

Proof

       values        bound W
         → weights        bound W

Proof of Proposition D
    NP       (since   is NP-complete)
     
      by proposition A

Example 3SAT Formula
                                                            
"yes" set                

3SAT is NP-Complete
3SAT is in NP since can verify using a certificate that is the variable assignment.

Now show SAT   3SAT
Given an arbitrary Boolean formula, write out tree where root nodes are variables (not 
negated) and internal nodes represent operations. Associate with each operation a new 
variable. 
For example:    where    are Boolean formulae and        and   represent      and  , 

respectively. Get expression             

 these expressions together for each node, and also and with   , the variable representing the 
root node. 

Now have conjunction of terms that may contain either 
         or       

Need to convert these into disjunction of  literals where         →   

                                          
Have to also add some dummy variables to the     term to give it three literals:

This construction takes a polynomial amount of time. (Poly time to generate tree, constant time 
for each node in the tree). 

Correctness
There exists an assignment making   true ⟺   an assignment making F true

Vertex Cover   Independent Set
Independent Set ≤P Vertex Cover
Reduction      →        

Correctness: S independent set of  of size   ⟺   vertex cover of size     

IS ≤P CLIQ
CLIQ ≤P IS
Reduction      →       

Correctness:  independent set in  ⟺  is a clique in   

Independent Set is NP-Complete
Given a 3CNF formula with n variables, m clauses.
Construct G and k as follows:
for each clause              create 3 vertices            and 3 edges                     

Whenever          add "cross" edge         

If the formula is satisfiable:
For each clause            pick any  such that    is true and put    in S

check triangle edges•
check cross edges.•

Then        and S is an independent set.

whenever      , set    to true
Given an independent set S of size     chose an assignment as follows:

This assignment is consistent if                can't have both    ,        

For each triangle, at most one    in S but since      , exactly one    is in S so            

is true for each  ∎ 

Consequence: 
IS, VS, CLIQ are NP-complete. 

Reduction from VC to Subset-Sum
Build an incidence matrix with an extra column of all 1's

Example:

e e e e e =

v 1 0 0 0 1 1   

  1 1 0 1 1 0   

  1 0 1 1 0 1   

  1 0 1 0 0 0   

  1 1 0 0 0 0   

1   

1 0   

More NPC Problems
April-02-13 2:39 PM

   CS 341 Page 29    



1 0   

 

1 0 0 0 0   

Row is a value in the set.
Want to get sum         

More formally
Given         integer  

Let      
 if    incident to   

  otherwise
Construct numbers                    

               

   

   

      

              

   

   

Correctness
  verte  cover  of  of size  ⟺   subset T of                    summing to  

Proof
  given S
choose                    is incident to e actly on verte  of   

Then sum of  is W by construction of S

 Given T
Choose            
Then      because of the m-th digit and 
  is incident to one or two vertices  because of the j-th digit  ∎ 

Consequence
Subset-sum, Knapsack are NP-complete

   CS 341 Page 30    



PSPACE-Complete Example
Warehouseman's problem

  

 

     
 

 

 →

  

 

 

 

     

Unsolvable Example
Halting Problem
Input
string P representing a problem, string  
Output
"yes" iff P halts on  

Theorem (Turing 1936)
Halting is undecidable

Proof
Suppose you claim to have an algorithm       for Halting
I claim your algorithm is wrong on input      

Let P = 

while (1) do nothinga.

if f(Q, Q) = yes then1.

else return 2.

"main (string Q) {

}"

Then P would halt on input P by line 2. Contradiction
Case 1:        yes

Then P hals on input P by line 3. Contradiction
Case 2:        no

Beyond NP
April-04-13 3:00 PM

   CS 341 Page 31    


