
Symbol
Primitive notion
Example:
0, 1, 2, 
a, b, c

Alphabet
Finite nonempty set of symbols
Example:
       
             

String (Word)
A finite sequence of symbols.
Example:
abca
 - empty string (sometimes    ) 

Length
   - length of string x
     

Star
  - set of all finite strings over  

       
                              

Concatenation
      

      
      
           
           

Concatenation no commutative in general, but it is associative.
           

String Subsets
A string  is a prefix of  if   such that     
A string  is a suffix of  if   such that     
A string  is a substring of  if     such that      

Exponentiation
     

          
    
    
         

Note:
                     

Counting Occurrences
     # of occurrences of the letter  in the work  
            

Reversing
   reversal of the word  
                     

Palindrome
    

Language
A language  over an alphabet  is a subset of   

Union
     

Intersection
     

Complement
       

Special Languages

Examples of Languages
                                           

                                          

Example of Language Concatenation
               
                  
                                                      

Formalism of Reversal

    
        

                

Recursive definition of reversal

Theorem
          

for strings    

Proof
By induction on the length of    

Base case:          
        

       

Induction:
Assume true for      . Prove for        
     

        
      

                              

Open Problem
Start with arbitrary string: 22323
Look  for number of repetitions. In above example have 2323. Write down order of 
repetition: 223232
2232322
22323222
223232223
2232322231

Conjecture: No matter what finite string you start with you eventually reach 1. 

Languages
January-08-13 10:51 AM
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Special Languages
 - empty set
  - all strings

Normal properties of sets apply
                           
De Morgan's laws
                           

Concatenation
                         
           (n times)
      
          

    

    
         

            

Kleene *

      

 

   

           

Also known as Kleene Closure since         

Positive Closure

          

 

   

Theorem
If     then     

Proof of Theorem
Equivalent Statement:

               

 

   

  

And Equivalently
                             (*)

Proof by induction on n.
Base case:      
          
        by hypothesis

Induction: Assume (*) is true for  and prove it for    
Assume     
By homework #1, know that          
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A way to specify languages•
A regular expression is a string over the alphabet•
                   
In this case  and  are symbols (not empty string/set, but they 
represent empty string/set in the regular expression language)

Regular Expressions - Kleene (1956)

     the language represented by a regular expression

        
      
            
                    

      
        

 

                      

Extra parentheses can be removed. Ex:            

*1.
Concatenation (implicit)2.
 3.

Precedence

Language Classes
                                             
= the collection of regular languages

                                        

          

Theorem

union•
concatenation•
Kleene *•

The class of regular languages is closed under

                          
     

How about intersection or complement of languages? 

Accepters or recognizers of languages•

Deterministic Finite Automaton (DFA)

McCulloch & Pits 1943

Specification
  a finite nonempty set of states often written as               
 = an alphabet
   , the set of accepting states (final states)
    , the initial or start state
       , transition function

A DFA is a  quintuple               where the pieces are as above. 

Extended Transition Function
         

       = the state I end up in if, starting in state  , I read the input  

Recursive Definition

         

                              

Theorem

              

So the ^ is usually omitted from   

Language Acceptance (Recognition)
The language accepted by               (recognized by) is      
                

Theorem
Let      be languages over  accepted by DFA's   and   , respectively. 
Then there is a DFA accepting              

Problem Set
Find a regular expression for                                                
              
                                  

Examples of Regular Expressions
All strings over      of length   
                     

All strings over      having aa as a substring.
              

All strings over      not having aa as a substring
              
            

Strings over        in which all a's precede all b's which precede all c's
      

The same as above but remove  
                       

                 

               

               

DFA

finite number of states

     reject
input accept

Example
A DFA to accept all strings over      with an odd number of b's
              
       
        
        

 a b

              

             

Example
A DFA for                    

                                
                                                                ←     
                                

Proof of Theorem
                    

                    

The new machine simulates both   and   simultaneously.

read head

Regular Expressions and DFAs
January-10-13 10:23 AM
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Create               
                         

                            
       

              

       

Now have to prove that the construction works.  (           
     )

                                      
Use induction on    to prove that 

Then prove strings accepted are the same

For union, change  to                
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Nondeterminism

Generalized transition diagram.•
Each node has    arrows out. 

With nondeterminism allow different numbers of arrows out. Allow repeats and allow 
missing arrows. 
Acceptance corresponds to the existence of an accepting path on input•
Can think of the machine as having processes or threads that are spawned on duplicate 
transitions

•

Rabin & Scott (1959)

Example:                                                          ○

Guess the start of 'cat' and head off on the chain:
                                     

As a tree for input      
      c         a        c        a        t
                    

                                          

                x

Can also think of the automaton as 'guessing and checking'. Makes guesses then checks in 
parallel

•

Size Reduction
NFAs can provably save states compared to DFAs
                                                

  is accepted by the NFA
                                    

  can be accepted by an NFA with    states. Every DFA for   needs    states

Proof of Theorem
Let 
       

               

 

   

  
      

                

Claim
          

                        
                 

                    
         

This suggests showing              
    by induction on    

     
       

              
Base case:      ,     

        

        

 

         

        

     
          

              
                     by induction

Assume true for      ; prove for        

 

Simulating NFA- with NFA
Can break the NFA- into sections of a single letter followed by 0 or more  -transitions.

                                                                               

   
                                                                                             

NFA-               
Simulate with NFA
              

     

                 

But still have  -transitions on start state.
generalized NFA (gNFA)
Allow starting set of states instead of a single start state.

         
                 

gNFA can by simulated by a DFA the same way as an NFA. 

NFA Model Definition
An NFA is               
All same except  :
          

    is the power set of  (also written   ) 

Language Accepted
                       

with the extended transition function:
              

               

 

        

         

Theorem
Given an NFA               
 a DFA               

     

such that           

Epsilon Transitions
Allow machine to go from state  to state  without eating 
up any input.
Called NFA- or  -NFA

                
Transition function of NFA- 

Extensions to DFAs
January-15-13 10:04 AM

   CS 365 Page 5    



Simulation Power
NFA-ε
   
gNFA      NFA
               
        DFA

 - can be simulated by

Theorem (Kleene)

gNFA•
NFA-ε•
DFA•

The class of languages accepted by

is the same as the class of languages specified by regular expressions.

Proved by State Elimination algorithm and Theorem 1.

Theorem 1

1 initial state,•
1 final state, •
no transitions into the initial state, and •
no transitions leaving the final state.•

Given a regular expression we can construct an NFA-ε for it, with:

Furthermore, the NFA- has at most     states and     transitions if 
the regular expression has  operators. 

Generalized NFA (GNFA)
Like a NFA, gNFA, NFA-ε except that transitions can be labeled by arbitrary 
regular expressions. 

Claim
GNFA can be simulated by NFA-ε.
Proof: Replace regular expression edges with the NFA-ε generated like in 
the proof of Theorem 1.

Proof of Theorem 1

     •
 •
 •
        •
     •
  

 •

Given  we can write it as one of

Proof by induction on # of operators in r
Base case: 0 operators

                  

        ε       

                       

Concatenation:
        
                       
                       

Convert to
                                         

Union:
     
                       
                       

Convert to:
           /                     \  
     -                                                    
            \                     /  

Kleene Star
  

 

                                    
       \                   \ ←   ←/                    /
          \                                                    /
             \ —————      ——/

1 initial state•
1 final state•
no transitions into initial state•
no transitions leaving final state•

Convert your gNFA to one with1.

by adding extra states and ε-transitions 
Pick a state  to eliminate that is neither the initial nor the final state.2.

incoming transitions        •
outgoing transitions        •
transition to self  •

 has:

For input state A and output state B corresponding to   and   add 

transition from A to B labelled by        
     

Combine transitions from states using union.
Keep going until only initial and final state left3.

State Elimination

Rough strategy: try to pick states with few input/output transitions for 
elimination.

Example

Kleene's Theorem
January-17-13 10:17 AM
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Theorem

Union - Yes1.
Concatenation - Yes2.
Star - Yes3.
Intersection - Yes4.

Take a DFA for  and flip the "finality" of each state.-
Complement - Yes5.

The class REG is closed under the operations:

Closure Properties

                •
                •

We say a class of languages  is closed under a (unary, binary) operator  
if 

Prefix
                                                

Example
           
                             

Theorem
If  is a regular language then so is        

If L is regular, is   regular?

Theorem
Yes

Proof of Theorem (       ) 
Take DFA               
Change F to                          
Call new machine   

Claim

                

                             
                  
              
           

             

                  

Proof of Theorem (Reversal)
Given a DFA               

   
       
                      

Create a gNFA                 

Closure Properties
January-17-13 11:01 AM
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Hierarchy of Languages

All Languages - Uncountable
REG, FINITE - Countable

Proofs of Non-Regular Languages Using Pumping Lemma
Example 1
                                 

Adversary:  
You pick:       

                      

             

Adversary:                   

You pick:                     

Example 2

                                                    
                 

Adversary:  

By Euclid  prime    Pick     
Pick                

                    

         

Adversary:                   

                             

Pick      

                    

      is a multiple of  but not equal to  since    and      

Pick  such that             

Proof of the Pumping Lemma
 is regular so  a DFA  accepting it.
Let   # of states in  

If    has length t with no repeating states then the DFA visits    states.
Therefore, if      there is a repeated state.

                  u                    w

                         

                           /   \
                            ←
                              v
Since                             has     states, some state is repeated. Call 
the first repeated state  . 
Let  be the first path from  back to  . Then     still labels an accepting path and 
so       
     from our definition of the path (1st time hitting  to    )
      Consider the length-n prefix of z; it most involve    states and so some 
state is repeated. 

More Non-Regular Languages
Example 3
                                                       
Adversary:  

Notation:     Integer represented by  in base 2
You pick          ,        

Adversary:                   

i.e.       is not a prime number
Pick: Hope to show             

                            

                    

 

   

  

Pumping Lemma for Regular Languages
(Iteration Lemma)
If  is regular then 
 a constant    (which could depend on  )
          
       such that                   
            

Contrapositive
If   constants    
           
      such that                   
    s.t.       
then  is not regular 

Using this in proofs
Think of game vs. adversary
 - an adversary
 - your choice

Warning
See also "Nine errors students commonly make when using 
the pumping lemma" on course website

Non - Regular Languages
January-22-13 10:00 AM
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Recall
Fermat's theorem says
            if  is prime
So maybe pick     

Compute
                    

                                    

If               then                               

otherwise

         
       

      
                  

      

      
                

                       
And hence       is divisible by  and          
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Is    ?1.
Is  infinite?2.
Given      is      3.

Questions about regular languages

Difficulty could depend upon representation.

DFA, NFA (clear box model)

Don't know mechanics of DFA, only a DFA that accepts or rejects strings.○

Know  ○

Know  , upper bound on the number of states○

All you can ask is: given  does  accept  

DFA (black box model)

Represent  with:

Is      1)

DFA:  states     
NFA:  states,  transitions       

Use graph search algorithm (BFS, DFS, etc.)  to look for a path from   to a final state.

Is L infinite?2)
Look for a cycle, reachable from   and from which you can reach a final state

DFA     
NFA       

Search for reachability from   , search for reachability from final states, search for cycle 
with DFS. 

Given      is      ?3)
DFA - One way is to compute unique minimal DFA's in         

     iff                  

DFA      
NFA PSPACE-complete 

make a DFA accepting                . Has      states so

Clear Box Model

Proof of Theorem 1
Let  be the shortest string accepted.
If      then there is a loop in the states of the DFA that can be cut out to get a shorter string.

Proof of Theorem 2
L infinite but  accepts no string  with         
M must accept some string of length   so let  be the shortest such string. If       , 
contradiction. So       .
By pumping lemma,                    and       
        
But                    
So   is a shorter string in L with       , contradiction.

Now suppose  accepts  ,          
By proof of pumping lemma       such that           
            

Black Box Model
Ask questions like, is         

Is    1)
Try all strings up to length  
Is  infinite?2)
Try all strings  such that         
Is      ?3)

   iff      

Last time we constructed a DFA for                  

by our construction (similar to the intersection one) there exists a DFA of   states 
accepting L.
Can simulate  by checking if any string is accepted by   or   and not the other. 
Algorithm: test each string of length  to     . If any is accepted then      

otherwise      

Know  and n, the number of states of M

Theorem 1
If an  -state DFA accepts any string  it accepts an  such 
that      

Theorem 2
L is infinite iff M accepts some  ,         

Decision Problems
January-22-13 11:00 AM
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Notation
V - A                                    A  B  C    
 - A finite set of "terminals"
 - start variable    
 - finite set of  "productions" or "rules" that tell how strings are derived
           

Context-free grammars have productions like              
where    
                 

          write in the form      

Derivations
If    is a production,          and           

then        (one step derivation)
  read as "goes to" or "derives"

We say     if                such that
                     

    means  derives  in  steps.

Note
Derivations are not necessarily unique

Leftmost and Rightmost Derivation
Leftmost derivation: replace leftmost variable at each step
Rightmost derivation: replace rightmost variable at each step

Language
 a grammar,             
Then                 

Ambiguous Grammar

       such that  has 2 different parse trees.1)
       such that  has 2 different leftmost derivations.2)
        such that  has 2 different rightmost derivations.3)

A grammar G is ambiguous if

Sentential Form
Any string of variables and terminals, particularly intermediate step of a 
derivation.

History
Panini  c. 400 BC
Sanskrit grammar, 3959 rules

Chomsky 1956 - 1959
Equivalence between grammar specifications and machines

Backus and Naur, late 1950's 
Grammars for programming languages

Example Non-unique Derivations
    
   
   

          
          

Parse Tree
 at root
children of a node      ware the symbols of rhs in left-to-right order.

      S
   A   B
   a    b

To remove ambiguity in derivation order use leftmost or rightmost derivation. Left 
with only true ambiguity.

Example of Ambiguity
     
         

         evaluates to a      evaluates to   

Simple Grammar Example: Palindromes
 A                 
               

                           

      A 1.
Let  be derived in G, show it is a palindrome

Sometimes need hypotheses on all strings derived from  , not just terminal 
strings.

•
Typically: do an induction on the length of the derivation.

Goal:       A 

 A      2.
Given    A , construct a derivation for it.
Typically: do an induction on    

Example
          
            

      1.
If            then       

Proof by induction on  

           

Assume true for    , prove for  .
    
           
So      and       
By induction,           so                    

      2.
Take    , write       . Show by induction on  that       

Base case:    

Context-Free Languages
January-24-13 10:25 AM
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Base case:        

 a derivation            by induction
                      

Otherwise assume true for    , prove for  

Example
      
      
                

Want to prove       

Strategy: include both  and  in induction hypothesis

Example
          
   
     

Strategy: make induction hypothesis that covers all sentential forms (any string 
derived from S)
This is called an invariant.
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Claim:
If          then  a derivation     

Proof: By induction on    

Base case:                         
No can claim true for      Prove it for         

          
                          
            suggests trying to write       

              

Goal is to write       with                

     

     

If we can do this then by induction:

                    

             
For ever additional letter read in the prefix of  ,  changes by   so  and prefix   of  such 
that                
By induction, we have            

Case 1: 

    . Mirror image of Case 1
Case 2: 

3a:     ,  use      times followed by            

              
         here the  is the     in  
Goal: find  such that                       

       

                 
If        then we're done. 

So assume        
Let  be the smallest index such that        
       so    
That means     is a string in this list. So          
Is          ?

             

       

               
       
                 
                     
           
By induction 
       

       

       
              

3b:  has at least one b

Case 3:  begins and ends with  

CFG Example
January-29-13 10:06 AM
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Chomsky Normal Form (CNF)
Every production is of the form
          
       
If  is in    then       

Theorem
If  is in CFL,    then  a CNF for  grammar.

Get rid of useless variables1.
A variable    is useless if it does not appear in a sentential form in any derivation of the 
form     

The variable might not produce any terminal strings•
The variable might not appear in any derivation starting from  •

Throw away all variables & production involving variables that are in   
      
   new set,   new grammar

Run DTS on Ga)

Run RV on   throw away all variables & production involving variables that are in 
         

b)

Ways of being useless:

Introduce new variable that goes directly to the variable.
    

Replace all terminals that appear in a RHS with length   22.

Add new variables to break up large production
Shorten RHS in large productions3.

Identify all variables  such that     then replace  by  in the RHS of every 
production involving  . 

a)
Remove  -productions:    4.

Remove unit productions5.
A unit production is            
We find all productions of the form         and add the production    provided 
     
Must do this for every pair of variables. Could square the size of the grammar. 

Algorithm for CNF

                             
    

     
                                   

while (    ) do

DTS(G) /* Variables that derive terminal strings */

return T

     
    

    
                         

while       do

return(T)

RV(G)  /* Variables reachable from S */

Example of DGS
       
   
    
   
   
     

              
                      
                          
                            

Example Production Shortening
       
Replace that with 
                         
With new variables         

Example Removing  -productions
    
   
   
   
    

         
Add the productions: 
       
And remove 
   

Chomsky Normal Form
January-29-13 10:40 AM
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Language generated by CFG's•
Context-free languages (CFL's)

Handout on it on home page•
CNF - Chomsky normal form

Union•
Concatenation•
Star•
Complement? No•
Intersection? No•

Closure Properties of CFL's

Theorem
     are CFL's then so are  
     

    

  
 

Pushdown Automaton (PDA)
Consists of 
 : Finite set of states
 : Input alphabet
 : Stack alphabet
 : Transition function
    : Initial state
   : Set of final states

                              

 state
 input symbol
 popped stack element
 new state
 pushed stack element

              

Definition:                 

Instantaneous Description (ID)
Triple of (state, unexpended input, stack)
         
Convention: Top of the stack to left

         "goes to"

Language
                                          

Proof of Theorem
Union
Let 
               for   

               for   

produce            for      

                   
           

Assuming that        and     and     

If not, just rename variables.

Need to see                 

Concatenation
      

add this production

Star
       

Pushdown Automaton (PDA)
Finite automaton: finite # of states
Turing machine: potentially unbounded states

1 stack•
Pushdown automata: potentially unbounded storage

In some sense between finite automata and Turing machines
No writing on tape, reading left to right

i n p u t

PDA is inherently nondeterministic unless otherwise specified.
The deterministic version describes a smaller class of languages.

PDAs can
input tape, either read a single symbol or not   - move)

push○

leave stack the same○

stack oblivious move•

replace symbol on top○

pop○

depends on op of stack•

stack

Example PDA
            

finite
control

Pushdown Automaton & Closure Properties
January-31-13 10:04 AM
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State Input Stack Contents

  00111 ε

  00111 $

  0111 A$

  111 AA$

  11 A$

  1 $

      1 $

The string accepted is 0011, not 00111

Example
EVENPAL =                
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Proof of Theorem
Idea: Store suffix of sentinel on stack. Match terminal in prefix against input. 
Goal:                    iff                 

CFG → PDA

   
     
   

Notation         is (state, unexpended input, stack contents)

Want to prove
                   

iff
                  

Proof
Assume                   
Prove by induction on  that      

Base case:    (need to fill this in)
Induction step: Assume hypothesis is true for all    Prove for    to get      
                       

Case 1: There was a variable  on top of the stack and to get  I pushed to rhs of an A-
production.

   then     
By induction,              

                             

Case 2: There was a letter input matched against stack

    for some  

                    
By induction,          

                    

                             

Assume      
Want to conclude that                   
Base case    . Check .
Induction:

                 
   

By induction, 
                   

so
                                       

PDA → CFG
                   
Idea: define grammar symbol    ,         such that       iff                 

Assumptions:
- Only 1 final state   (can just make a new one and point all old ones to it)

- The stack is empty when   is reached (can add a new state before the final state that removes 

everything on the stack)
- Every move pushes or pops a stack symbol (can simulate no change by a push followed by a pop)

         

Stack height vs. time

Theorem
Given a CFG            there exists 
a PDA                 such that 
         

Theorem
If  is a CFL and  is a regular language 
then    is a context free language. 

Do cross product of states in L and R 
and have stack follow L

CFG, PDA Equivalence
February-05-13 10:07 AM
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      ———————————————>     
                                                                                      

This is case 1. In case 2 the stack might return to height  between     and     
The first push pushes  . In case 2 then the last pop is  

Case 1: 
         if 

              and               
               
         

Case 2:
              

Start state of the grammar      

Proof
      iff                     

Prove    by induction.

By induction on  , where       

Base case    
     so    and production        so                

Induction step: Assume   of    holds for   step derivations and prove for  . 
      

Case 1: 1st step of the derivation is          

                  
             so      and        by induction,                 

                                           

                  

                                                      

                                    

                                  

Case 2: 1st step of the derivation is           

Assume                       
Want to show       by induction on  .

Base case    : Then    .  a derivation       

Induction: Assume (+) is true for all    ; prove for  .
                      
Case 1: stack height always > 0 until end.
Case 2: stack height hits 0 at some intermediate point of computation. 

                                           
                                 
                              
so in grammar  a production          

Also have                 and                 
                (by induction)

Case 1: 

                         
    
By induction,                 means       is in the grammar
                                  so by induction       

                     

Case 2:
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Pumping Lemma for CFL's
If L is a CFL then
    
          
                       
               

Contrapositive of Pumping Lemma for CFL's
If     
          
                       
    such that          
then  is not a CFL

Theorem (Intersection)
If      are CFL's  then      need not be a CFL. 

Theorem (Complement)
If  is a CFL, then   need not be.

Open Problem
Let        
Let  be the language of powers                
                                     
 is not a CFL

Consider   , the set of non-powers ("primitive words") 

                        

Is   context free? 

Quick "Proof" of Pumping Lemma

(from root to a leaf)
A long                                     

A                                                 

                                                         

      1.
      2.
    3.

So 

Do 1. then 2.  times then 3. to get 
         

Application
              
Len  be chosen.

        
Pick          

                         

                 
Case 1: If either  or  contains two different kinds of letters, then by pumping with    

pump with    :       because that letter will have   copies in the resulting 
string but the others still have  . 

2a)    both contain the same letter (repeated some number of times), not both empty

pump with    . The third letter stays at  but some other has   copies
2b)  contains one kind of letter,  contains another

Case 2: Now  and  each separately contain one type of letter. 

Proof of Theorem (Intersection)
By counterexample

                              

                              

Take 

                  
So

  and   are CFL's and      is not

Proof of Theorem (Complement)

        
      

                                        &                                    
Know closed under union and not under intersection, so not closed under complement.

Alternate counterexample proof:

Proved on assignment 3 that                              is a CFL
but             is not a CFL by pumping lemma.

Application
             is not a CFL

     

Suppose          
Then we're in trouble and no contradiction possible

                      

Bad choice:

Better choice
            

2nd half of the new string ends in 1's
Use    . The middle will shift so the 1st half of the new string ends in 0's

Case 1:    lies in the first half of  

Same thing as case 1
Case 2:    lies entirely in 2nd half

Pump with    
Either the 0s in the first half will be less than the 0s in the second half, or same for the 1's 

Case 3:    straddles the boundary between the first and second halves.

Proof of the Pumping Lemma
 context-        a CNF grammar  for      
Construct  a parse tree for  in  

Pumping Lemma for CFLs
February-07-13 10:01 AM
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Lemma
Let  be a parse tree for a string  in a grammar in CNF.
If all paths from the root to the leaf are of length   then         

Length of a path is the number of edges. 

Proof of lemma by induction on  

   ,  path of length 1.           
Base case:    

Induction assume true for  and prove for    
                   

So                               
Let  have  variables. 

Each edge comes from a variable so    variables, so some variable is repeated. 
take       where     of variables.

                             

Some variable is repeated along some path. Consider the 2nd occurrence of the first repeated 
variable,  , going up from the bottom. 
      
      
    
Path from bottom to 2nd  is     so           by lemma
The first occurrence of  lies in exactly one subtree of the second subtree of  . The other subtree of 
 must generate some terminals so        
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Finite control•

Holds a finite input○

In basic model the tape has a left edge○

An unbounded tape•

Can both read and write on the tape•
Transitions:•

move to a new state, rewrite current cell contents, move left or right○

Based on the current state and contents of the cell being scanned

Turing Machine

Transition function
               

Paper on the subject (Turing 1936)
Had different definition of "computer". Meant a person doing computation. 

Sipser's Model
two distinguished states:              

                                                            

No transitions out of these states

Turing machines must move right (R) or left (L) on each move. 
A move left at cell 0 stays in cell 0. 
There is always a move (based on current state & current symbol scanned) except from   and   

After input there are arbitrarily many blank "␣"

Example
                           

Example

0 1 0 # 0 1 0 ␣ ␣ ␣

Subroutine
Move input down 1 cell and insert a delimiter at the front.
Assume input is over      

     

     
     

     

      

      

     

     

     
     

     

Same path as above but starting with 
reading 1

     

     

     

     

     

     

     

          

     

     

     
     

     

Formal Turing Machine
A TM is
                 
 : finite set of states
 : finite nonempty input alphabet        

 : finite tape alphabet,        

  : accept state   
  : reject state   
                         

Configuration
A configuration of a TM is a string from      of the 
form                  

current state is  
current tape contents (up to last non-black) is   
current symbol being scanned is first symbol of  

It means

Goes To
 "goes to"
  "goes to after 0 or more one moves" 
Relates configurations as one would expect.

Accepting / Recognizing
    = language accepted / recognized by a TM

                                 

Behaviours

it eventually reaches   - accept1)
it eventually reaches   - reject2)

"loops"3)

A TM has 3 behaviours 

Decision
 is decided by  if       and further,  halts on 
every input (either reach   or   ) 

Recursively Enumerable (RE)
A language is called recursively enumerable if it is 
accepted by a Turing machine.

A language is called recursive if it is decided by a 
Turing machine. 

Turing Machines
February-07-13 11:12 AM
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Example of Configurations
                  

           
Using               :

         
Using               

Language Hierarchy

A                            C             
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Example Multitape Turing Machine

Use a multitape TM to accept       
     

Idea: Use a 3-tape Turing machine
tape 1: input
tape 2: hold  X's (         )
tape 3: hold   X's 

Write X on tape 2 & 3 and return head to the left1.
If tapes (1) and (3) contain the same number of symbols, halt (accept)2.
If tape (3) contains more X's then tape (1) contains a's then reject3.

     
                 

Copy the context of tape (2) to the end of tape (3) twice, then add one more X to tapes (2) and 
(3) 

4.

Go to step 25.

Steps: 

Example
Tapes
Δaaaaaaaaa

ΔX

ΔX

 
Δaaaaaaaaa

ΔXX

ΔXXXX

 
Δaaaaaaaaa

ΔXXX

ΔXXXXXXXXX

Accept

Simulating a Multitape TM
Suppose  is a k-tape TM
Let   be a TM with a tape with       tracks

Track 1: Hold # in cell 1
            6                                     
         5  7                                                 

move right on track 3 to find  (head marker)○

store corresponding symbol in    in finite control○

then return to # in track 1○

Repeat for the next odd track.○

For every odd track  

When all symbols have been accumulated, perform symbol rewriting on each track then move 
 accordingly on each track. 

to simulate M:

Example Nondeterministic Turing Machine
Using a nondeterministic TM accept                      (composite meaning non-          

Idea: Use a 4-tape nondeterministic TM
Tape 1: input
Tape 2:    :    

Tape 3:        

Tape 4: to compute     

Write    on tape 2, then choose nondeterministically between: writing more 1's and 

advancing to step 2.
1.

Write    on tape 3, then choose nondeterministically between: writing more 1's and 

advancing to step 3.
2.

Copy tape 2 to tape 4 and advance tape head on tape 3.3.
Repeat 3 until tape head on tape 3 scans blank.4.
When done, compare tape 4 to tape 1. If equal, accept. 5.

Steps:

Theorem
Every nondeterministic TM M can be simulated by a deterministic TM   

Idea
The computation of  can be represented as a tree where each node splits when a nondeterministic 
choice is made. 

Claim: Branching factor is finite.

            so can branch at most              times at each node. 

Can use numbers in base  to denote branches of computation of  . (By indexing all the edges from 
each node from 0 to     ) 

  deterministic TM with 3 tapes 
Tape 1: Holds input
Tape 2: We use it exactly as machine M uses its tape

                          
Tape 3: Successively holds numbers in base b

Allow S moves (stationary)1.
            

Simulated by 

              
    
     

   

Tape has "tracks" (but 1 tape head)2.

a b a ⎵

a a b ⎵

Variations

                        
2 - track example:
                       

In general can allow arbitrarily many tracks by 
manipulating tape alphabet to allow tuples. 

Does not require changing the TM at all.

Multiple tapes with independent heads3.
New transitions function:
                     

    
      

             

  is direction for    head.

Two way infinite tape4.

Use two tracks. Top track stores right hand side, 
bottom track stores flipped left hand side, with 
special marker symbol on cell 1 on first cell.

⎵⎵⎵⎵input⎵⎵⎵⎵

Simulated by

put⎵⎵⎵⎵⎵
Δni⎵⎵⎵⎵⎵

Nondeterminism5.
Instead of transition function
               
the nondeterministic Turing machine has

                

Variations on Turing Machines
February-14-13 10:07 AM
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Copy tape 1 into tape 21.

When must make a non-deterministic choice (including when just one option), use 
number at appropriate position in tape 3 to make the decision. Stop when made all 
decisions represented by Tape 3 or when an invalid decision is represented.

Simulate  on tape 22.

If accept state of M is reach, halt and accept. 3.
Otherwise update tape 3, erase tape 2, and repeat from 1.

  does the following: 

This traverses the tree in BFS order so it will terminate eventually if any of the possible paths are 
accepting. 
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Enumerator
A Turing machine with a write-only output tape.
Starts only with tape blank.

                                         
Prints out strings of L, in any order, maybe with duplicate.

Theorem
A languages is Turing recognizable iff there exists an 
enumerator  for it.

Random Access Machine Model (RAM)

Read-only input tape•
Write-only output tape•
random access memory•
finite program•
each tape square and memory cell can hold arbitrarily 
large integer

•

accumulator - register 0 - where arithmetic can be 
performed

•

Features

Theorem
If L is enumerated by  , on input  , run  and search output tape for X. If it appears, accept. 

If  accepts   within  steps, write   on output tape. 3.
For j  to   do2.

For           do1.
Suppose L is Turing recognizable. Let           be an ordering of   , then do the following

Turing Machine Simulation of RAM
See hopefully posted TM tapes for RAM

set program counter on tape 6 to 11.

fetch instruction from tape 1a.
execute instructionb.
update program counterc.

repeat until HALT detected2.

Simulation:

Enumerators & RAM
February-14-13 11:03 AM
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can simulate every Turing machine TM•

and encoding of an input  to T○

accept

reject

loop for ever

  runs  on  and does exactly what  would do on input  :○

input to TU is a Turing machine  (encoded as a string)•

The universal Turing machine   

Theorem
There exists a universal TM   with input alphabet      that on input 
     will simulate  on  and do what  does on input  . 

Corollary

                   
The language

is Turing-recognizable (recursively enumerable) 

(Can check for input that does not represent a TM as we simulate)

Label them   a.
List all alphabet symbols (assume the set of all possible symbols is countable)1.

Encode letter   as       2.
Encode string          as                  is the code for letter   3.

                      
                         
                           
        

Encode moves of TM4.

                                  
(Encode accept and reject state at the beginning)

Encode TM by encoding each element of its transition function5.

Encoding a Turing Machine

Uniquely decodable1.
Tell when it ends (prefix-free encoding) 2.

Details unimportant

Proof of Theorem
  has a tape holding an encoding of   's input tape.

A tape to hold  's input tape in encoded form1.
A tape to hold    2.
A work tape, current state3.

  needs:

Fetch state from tape 3
Look on tape 2 for matching instruction
Carry it out
Update new state

Repeat until  reaches   or   

Universal Turing Machine
February-28-13 10:05 AM
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Decision Problem
A question with a parameter and a yes/no answer.

Can encode a decision problem as a language. 
                                                    

Acceptance
Two types of TM acceptance

allow non-halting if       •
language is Turing-recognizable•
recursively enumerable•

Equivalent:

must always halt•
language is Turing decidable•
recursive•

Equivalent:

We say a decision problem is solvable or decidable if  an 
always-halting TM deciding the language associated with 
the problem. 

Accepts(w) Decision Problem
Given a TM  and an input  does  accept  ? 
Does there exist a TM  to solve this problem?
No.

We have proved that 
                            
is recursively enumerable but not recursive. 

Halting Problem
Given a TM  and an input  does  halt on  ?
Unsolvable.

General Technique
For proving unsolvability.
Assume it is solvable. Us a TM that solves it as a subroutine 
to solve a known unsolvable problem.

Accepts(ε) Problem
(The blank tape problem)
Given a TM  , does  accept  ?
This is unsolvable. 

Is Empty Problem
Given  , is       ? 
Unsolvable. 

Accepts(REG)
Given a TM  , is     a regular language? 
This is unsolvable. 

Example Decision Problems
Is n a prime?
Does    have a Hamiltonian cycle?

Example Language
Primes                

Hilbert's 10th Problem

Do there exist integer values of variables making it true?
Diophantine equation: polynomial equation with integer coefficients. 

Russell's  Paradox
         

Both    and    lead to a contradiction
Therefore  cannot exist. 

Is    ?

Solving

There exists a TM that always halts, either accepting or rejecting to solve the problem•
L is recursive (Turing -decidable)•

What does it mean to solve a decision problem?

Is complete: always answers "yes" or "no"1)
Is correct: always gives the correct answer2)
Is objective of mechanistic: no judgment involved, every step is clear3)
Is finitely describable4)
Is deterministic5)
Always eventually answers6)

We want a method that

Barber Problem
Barber  cuts the hair of everyone (and only those) in Kitchener who does not cut their own hair.

Accepts(w) Problem
Assume  exists.
Modify  as follows:
                B:                                   __ accept if  accepts    

                  ___reject if T rejects    

Now flip output of A
                C:                                      — accept if  rejects    

                 __ reject if  accepts    

takes    as input•
halts and rejects if  accepts    •
halts and accepts if  doesn't accept    •

C: 

Now run  on input    
Contradiction:  does not exist.

Halting Problem
Assume such an  exists
                             accept if  halts on  
        reject otherwise

Want to make
                            accept if  accepts w
        reject if  does not accept  

_____Accept
Use    

            
     

> — Reject

 solves A        
Contradiction, so  does not exist. 

Accepts(ε) Problem
Assume a TM   exists which does
        accept if  accepts  , reject if  rejects  
Construct

               
                     

                             
Want  accepts  iff   accepts  

it erases its tape
writes  to its tape
simulates  

How   behaves: 

Is Empty Problem
Assume TM  exists which solves this problem

    
              

              

Decision Problems
February-28-13 10:55 AM
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Use  to construct 

           
        

        

                               
                                     

If input is not  it rejects. 
    Looks at its input. If input is    simulates  .

Accepts(REG) Problem
Assume it is solvable

       
                               

                             

Construct

              
                     
                     

Want   such that      is regular iff  accepts  

Idea: 

       
                            

                    

Make   as follows:
  examines its input. If it is     for some    , it accepts & halts.
Otherwise, simulate  on  .
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Theorem
If  and   are both Turing-recognizable (r.e.) then  and 
  are both Turing-decidable (recursive)

Corollary
If  is Turing-recognizable but not Turing-decidable then 
  is not Turing-recognizable. 

Property of a Language
Collection of languages having that property
                          

Nontrivial Property
At least on r.e. language has the property and at least 
one does not. 
Nontrivial means    and   A               

Rice's Theorem

Given  , does     have the property  ? 
If  is a nontrivial property then the decision problem

is unsolvable. 

Proof of Theorem
There exists a TM   accepting   and   accepting   

simulates   on input  on tape 1•
simulates   on input  on tape 2•

We create a TM that on input  

alternating steps (1st   , then   , etc.) 

if it's   halt and accept•
if it's    halt and reject•

wait until either   or   halts and accepts

Proof of Corollary
Suppose   were Turing-recognizable. By the Theorem,  is Turing-decidable a contradiction.

Example
                       
   is Turing-recognizable (a universal TM accepts it)
   is not Turing-decidable
so   

  is not Turing-recognizable

                             

  
                     

But                , the set of invalid encodings, is Turing-decidable. 
So  is not Turing-recognizable. 

Proof
Assume it is solvable.

             
                             

                             
Assume    (If that is not the case, think of   ) 
Then let  be any   such that     does have the property  

                   
      

      

                 

                 

We create  to do the following

if  halts & rejects,  rejects•

do whatever  does○

if  and accepts,  runs  on  •

On input  , T simulates  on  

      
                  

                       

Rice's Theorem
March-07-13 10:05 AM
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Post Correspondence Problem
Emil Post

Have a string on top and on bottom. Cannot be flipped•
Finite number of distinct types•
as many as you want of each type•

You have dominoes 
   
 
  

A match in PCP is a list of dominoes where there 
concatenation of the upper entries exactly equals the 
concatenation of the lower entries. 

given a list, is there a match?
PCP problem:

PCP Decision problem
Given tile list, is there a match?
                        
Typical encoding
0#1?1#011?001#0??

Modified PCP
Just like PCP but get to specify which tile goes first. 

Example PCP
   
 
  

 
  
 

   
 

  
 

   
 
   
 
  

Match attempt:

   
 
  

   
 
  

   
 
  

 

No match possible. The first domino must be the one show, leaving  one more 1 in the top than the 
bottom, and no other domino can increase the number of 1's in the bottom relative to the top.

Example PCP
  
 
 

 
 
 
  

Yes, there is a match

Example PCP
 
 
 

 
 
 

   
 
   
 
 

Yes, there is a match, but shortest has 75 tiles.

PCP Undecidability Proof Sketch
Use the upper and lower entries to record possible TM configurations throughout the course of an 
accepting computation. 

tape is      

state is  
scanning first symbol of  

Recall: TM configuration    

                
An accepting computation can be expressed

Lower entries will be one computational step ahead of the upper ones. •
If halting state is reach, upper entries are allowed to catch up. •

Given  & we build dominoes so  a match iff  accepts  

MPCP Undecidability Setup
For input    first state is

 
 

           

where          

If               add domino
  
 
  

If               add domino
   
 

   
     

Also add

 
 
 

      
 
 
 

 

 
 
  

   

 
  

                        

   
 
  

     

    
 
 

Example
                          

    

 
 

      

   
 

   

 
 
 

 
 
 

    
 

    

 
 
 

   
 
  

 
 
 

 
 
 

   
 
  

 
 
 

MPCP to PCP
Notation
                

                
                   

Post Correspondence Problem
March-07-13 10:41 AM
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For dominoes
  
 
  

 

  
 
  

   

  
 
  

where must start with 

  
 
  

replace with dominoes
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Problem Reduction
We say a problem   reduces to a problem   if, given a TM that solves   

we can use it as a subroutine to solve   .

Write       

Language Reduction
  reduces to   means "given a TM solving membership in   , we can 
use it to solve membership in   "

Write       

Theorem
If       and   is Turing-decidable (recursive) then so is   

Theorem (Contrapositive)
If       and   is not recursive (not Turing-decidable) then   is not. 

Function Computation
We say a TM  computes a function     if 
                   

Many-One Reduction (Mapping Reduction)
We say       (  mapping reduces to   ) iff  a computable function 
 such that             

  

                       

 
  

    
                    

        

        

  

      

      

Problems with CFG's
Decision Problem (INT2CFG)

(i.e. does              ) 
Given two CFG's   and   does there exist              ? 

Claim
PCP   INT2CFG

Ambiguity Problem (AMBIG)
Given a CFG  , is it ambiguous?
(That is, is there a string       with 2 different parse trees?) 

PCP   AMBIG

Other Unsolvable Problems
Tiling problem: Can you tile a quarter-plane with tiles that are coloured 
on the 4 sides. Adjacent tiles must match colours. 
Method, each row can simulate the state of a TM on some input. Can tile 
only if TM does not halt. 

Example Reduction
Element distinctness reduces to sorting.

Proof of Theorem
  recursive implies

                      
         

          

      implies

       
 
 

      

      

So   is decidable.

Example
                              
                            
We showed                       

                   

Example Mapping Reduction
                      

     
 
     

                      

Hilbert's 10th Problem
H10A
Given a k-variate polynomial  with coefficients in  decide if  a k-tuple    for 
which       

H10B
Given a k-variate polynomial  with coefficients in  decide if  a k-tuple    for 
which       .            

H10A   H10B
Given         

                                       
                                           

Call TM of H10B on each of 

And accept if TM for H10B accepts on any, otherwise answer no.

H10A   H10B
 has an integer solution
 

                               
 has a nonnegative integer solution

INT2CFG Reduction
                             
                            
So PCP   INT2CFG

AMBIG Reduction

 
 
   , I has a match iff  is ambiguous

         where      as above

Reductions
March-12-13 10:02 AM
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Typical sentence (assume variables are over  )

Example: Chicken McNuggets Theorem in Prefix Normal Form

                                  6          

      6            

A Decision Procedure for          

represent possible variables as strings in base 2•
model a formula by a series of automata where the automata accept strings 
representing possible values of variables that make the formula true. 

•

Main ideas

So our formula looks like
                    
   atomic formula in        

                 
         

Input symbols are  -tuples corresponding to a character in the strings of 
            .

Want to build automaton   to accept input for which   is true.
Given   build     

Build an NFA (    ) that on input representing               guesses   

nondeterministically and checks using   if the formula is true. 

Case 1:           

Must convert NFA to DFA with subset construction then negate it. 
Case 2:                  

For first quantifier symbol can use usual method of checking if a DFA accepts 
any/all strings (graph search). 

Each time there is an alternation in quantifiers between  and  must do a subset 

constructions. With  alternating quantifiers,  
 

 
  subset constructions.

        
 

Stack of 2's is  
 

 
  high.  is length of  

Church
The theory of natural numbers  with  and  ,          is not 
recursively solvable. 
There is no algorithm, that, given a sentence in this logical theory, 
will either produce a proof or say no such proof exists. 

Theory          

      
    
    

            

Allowed:

Chicken McNuggets Theorem
Every integer     can be obtained at McDonald's as the 
number of McNuggets if one buys pack of 6, 8, and 20 only. 
Furthermore, 43 is the smallest such.

In          

Let                                  

                   
                                
                                6             

Prefix normal form
[quantifiers] ["atomic" formula involving variables & + & logical 
          &      

Problems in Logic
March-12-13 11:09 AM
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time•
space•
randomness•

What can we compute with bounds on resources?

Time
Put time bounds on our TM's 

Example
          
The model used is important
input is of length N
how many steps? (transitions of a TM)
      worst-case # of steps over all inputs of length  

1-Tape TM
Go back and fourth crossing off symbols           

Check that the input is of the form     for some    :     1.
Check parity of tape. Reject if parity 1.2.
Cross off every other 03.
Cross off every other 14.

Goto 2a.
Check if tape has no 0s and no 1s left. If so accept5.

Can we do better?

             
Best possible for this problem for 1-Tape TM

2-Tape TM
Copy 1's onto 2nd tape and compare. 
         ,  best possible

Moral
The choice of computing model affects the running time achievable for a 
model. 
But not too much if the model is reasonable. 

Proof 
Recall how to simulate a multitape TM with a 1-tape TM
Have many tracks, where pairs simulate a tape by having a tape and 
pointer.

Each step of the TM costs        (may have to walk distance     down 

each track)
       steps for a total of         

But have to initialize tape first which takes     time. So      
          

Our computing model for time bounds will be the multitape TM. 

                                         

                              

                  

Theorem 
If  is accepted by a multitape TM in        time, and              then it is 

accepted by a 1-tape TM in         time. 

Polynomial Time Decidable Languages

           

 

   

                     &                                       

Time Complexity
March-14-13 10:36 AM
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P = class of languages where we can decide membership in polynomial time in    
where  is input. 

the class of problems with polynomial-time solutions.•
More informally,

        time is not realistic 1.

But for all practical purposes this is      
              is not in P2.

Constant in front ignored3.

Objections: 

Not all important problems seem to be in P

ERE = extended regular expression = regexp + exponentiation to an integer
Universality problem:        

Some are provably not - ERE universality problem

Given a graph (undirected, although there exist directed version)•
 a cycle in which every vertex is visited at most once. •
This is in NP•

Hamiltonian Cycle Problem (HAM-CYC)

Equivalence of NP Definitions
If have nondeterministic TM, let the certificate be the choice of decisions during the 
computation. Can verify on deterministic TM in polynomial time by taking those 
decision choices.

If have verifier,    is bounded by a polynomial in    so nondeterministically generate 
all possible  up to that bound and test in polynomial time. 

Example of Polynomial-Time Reductions
PRIMALITY   PRIME-FACTORIZATION
ELEMENT DISTINCTNESS   SORTING

Not a polynomial-time reduction:
H10A    H10B
mapping 
                                               
generates an exponential-sized output. 

SAT
Boolean Satisfiability 

literals - variables or negations•
Boolean operators (         )•

Given a Boolean expression consisting of

is there some assignment of truth values to variables that make the expression true?
e.g.                       

CNFSAT
Boolean formula in conjunctive normal form (CNF)
          

               
 

"AND of OR's"

3SAT
CNFSAT with precisely 3 literals per clause (usually distinct) 

Proof of Theorem
Let     
Then      , but       

           

            

Take       then 
              

If  is      and  is      then           so 

      

Independent Set Problem
INDEP SET =                                           
An independent set of  is a subset of the vertices, no 2 of which are connected by an 
edge. 
3SAT   INDEP SET

Make each clause into a triangle in the graph. Connect vertices that represent negated 
variables. 
                            

P
P = class of languages where we can decide membership in 
polynomial time in    where  is input. 

NP
NP = a class of decision problems decided by nondeterministic 
TM' s running in polynomial time. 

The longest computational path is of length     
The runtime of a nondeterministic TM:

Equivalently, 
NP = a class of decision problems where membership is 
efficiently checkable given some extra information, called a 
certificate. 

Verifier
Polynomial-Time Verifier for  :
An algorithm  , running in polynomial time, that takes inputs of 
the form      where you are checking if    .  is a string 
("certificate") 
                             
think of  as a way to convince someone that    
   must be polynomial in    

P = NP? 
$1,000,000 question (Clay Mathematical Institute)

Co-NP
Co-NP =          

Polynomial-Time Reductions
      means  a polynomial-time computable function  such 
that
            

    
      
             

   
  

 
 

NP-Complete (NPC)
The class of languages  in NP such that 
            

C            A      C
Karp proved: Many other problems (e.g. HAM-CYCLE) are in NPC

Theorem
If       and   is NP-Complete and   is in NP then   is NP-

Complete

NP-Hard
We say a language is NP-hard if             

 NP-           
            

       

P and NP
March-19-13 10:04 AM
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Claim: The graph has an independent set of size  iff the Boolean expression is 
satisfiable. 

If expression is satisfiable, select one node corresponding to on true variable/negated 
variable in each clause. 
Conversely, an independent set of size k (where  is the number of clauses) provides a 
valid assignment for the expression. 

Note also that INDEP SET is in NP. It is easy to verify. 
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Theorem (Cook, Levin)
The problem SAT is NP-Complete.

Theorem
CNFSAT is NP-Complete

Theorem
3SAT is NP-Complete

Clique Problem
Instance 
Undirected graph        and an integer k

Question
Does  have a subset     of cardinality  
such that every two distinct vertices in   are 
connected by an edge. 

SUBSET SUM
Instance
Given a set of non-negative integers   
            and a target  

Question
Does there exist a subset of  whose sum is  

Proof of Theorem (SAT is NP-Complete) 
SAT  NP
Guess an assignment of truth values for variables and check that the given formula evaluates to 
true.

            
Have TM M for  
On input  want to know if    

 
      
      

                     

ensure M starts in right configuration•
ensure that M follows its own rules•
ensure that M reaches        iff    •

Can be any size in terms of  ○

must not be too big (in    ) •

 must mimic the computations of  M on input  

Write as a square array storing the state of the TM in each row

Step Col. 1 Col. 2 Col. 3 ...

1 #            ⎵ ⎵ #

2 #

  

m        #

M runs in      time,       

So the array needs to be at most        

                           

Variables:
                          and column   has symbol   in it where the cells contain 
                    

First row is correct:
                    

        
            

                               

Final row contains an accepting state (if final state is  reached prematurely, allow same row to carry 
forward):
                  

            
                

Ensure cell validity (each contains exactly one symbol)

                 

 

     

           
        

 

 

   
       

 

 

         
 

Ensure valid moves
Need to look at groups of 3 cells in row  and compare with row    

                 

 

         
         

          = windows whose upper left is at      is legal.
window looks like

      

      

                    
          

          
          

            
            

 

 

                      

  is the set of all legal 6-tuples. This is a finite set that depends on  

Check Sizes
             

              

              

              

So this formula is polynomial in    
 

Theorem (CNFSAT is NP-Complete)
Modify construction from above proof.
     is an  of clauses
      is a single clause
     can be rewritten 

              

 

     

        
        

 

   
       

 

         
 

SAT is NP-Complete
March-21-13 10:05 AM
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so      is now an  of clauses

     is  of  of  
Use distributive property:                                                
So           can be written as  of  s. This may make it very big but size is in terms of  so not a 
problem.

Therefore, by the same argument, CNFSAT is NP-C           

Theorem (3SAT is NP-Complete)
CNF Formula:           

each   looks like           
Two bad cases:

Introduce new global variables  and  
    

                                      
                      

Introduce new variables to chain:
e.g.
                                                            

   :

Each of these increases the size at most linearly so good.
Therefore C   A     A 
  

Clique Problem is NP-Complete
  D         C  QU 
             

          C                   
    

If  has  nodes,        

Note to self:
What if only specified graph using edges with nodes implicitly numbered 1-n?
Answer: In most graph algorithms, could just ignore vertices with no edges. In this case, don't 
include those in   and then just add  to the maximum clique size, where  is the number of 
vertices with no edges.
  

SUBSET SUM Problem is NP-Complete
Will show 3SAT   SUBSET SUM

     
variables                                   
clauses                            

Each value in  is a decimal number containing only 0 and 1
digit   in           contains   

digit   in           contains    
  and   are slack variables. Digit     in           

1 2 3        

  1 0 0  0 ...

  1 0 0  0  

  0 1 0  0  

  0 1 0  0  

  0 0 1  0

  0 0 1  0

 

  1

  1

  

  

 

T 1 1 1 ... 1 3 3 3

There is a subset of these summing up to  iff there is a valid assignment of the variables in  .
See Siper for a description of this reduction.
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The space complexity of a deterministic TM that halts on all inputs is 
        

     
                              

For a nondeterministic TM that halts on all computational paths on all inputs:
        

     
                                                  

SPACE
also called DSPACE - deterministic
  AC        D  AC       

                                                              

NSPACE - nondeterministic
   AC       

                                                                 

PSPACE

   AC     AC     

 

   

EXPTIME

         D            

 

   

We know P  EXPTIME

           AC      

Don't know whether EXPTIME  PSPACE, PSPACE  NP, and/or NP  P

Theorem
If              and       then 

  D            

Savitch's Theorem
If      AC       and       then   D  AC        

Implication
NPSPACE = PSPACE

LENGTH-UNIVERSALITY PROBLEM FOR NFA's

An NFA of  states.
Instance:

Does there exist some length  such that  accepts all strings of length  . 
Question:

Is LENGTH-UNIVERSALITY FOR NFA's in PSPACE?
Unsolved.

Example
 A    AC    
Proof
Try each possible assignment of variables. 
Use binary counter,     space
Can evaluate each expression in     space

Example
NUP: NON-UNIVERSAILITY PROBLEM FOR NFA's
Instance
An NFA  over an alphabet  

Question 
Is        

 U      AC    
Algorithm: Nondeterministic "guess"       and check it.

If  has  states then        iff  rejects a string of length   ?
Take NFA  of  states, convert to DFA   of    states.
If    doesn't accept  is doesn't accept   of length at most     

                      

Need     for counter
    to maintain list of states for the NFA

Proof of Theorem
Construct computational tree for input  of length  and traverse it in breadth-
first search. 
    nondeterministic choices,      is max branching factor.

The tree is of size at most         . Takes                   time to traverse. 

Proof of Savitch's Theorem
Suppose  is accepted by NTM  running in     space.

    running time        

tape has   , state  , scanning 1st symbol of  
                

Configuration:    

Idea: a big graph  of possible moves of  on input  
Each vertex is a configuration. Edge from one to another if possible to go from that 
configuration to the next. 

Want to find path between two vertices.
CA     D                                        
                                                                  

Idea: 

  

  
      

 
 

 
  

    

  
 

 
  

    

check if c1 = c2 (0 moves)

accept if true

or c1
 
 c2 (1 move of N)

if t ≤ 1:

CANYIELD(c1, cm,  
 

 
  )

CANYEILD(cm, c2,  
 

 
  ) 

if both return true, return true. 

for each possible cm (                    )

otherwise:

otherwise reject

CANYEILD(c1, c2, t)

Each CANYIELD call has a stack frame size of        bits. 

Recursion depth is                             

Total space is         
 
 

Call CA     D                
      

Assume that if  accepts, it erases its tape, moves head to the left, and enters 
       . So there is only one accepting configuration to check. 

But don't necessarily know     .

when at step  , go through all configurations  of size    

If all fail, halt. 
check CA     D             .

Call CANYEILD(                 for          

This is a minor point because usually know     

Space Complexity
March-26-13 10:03 AM
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Boolean formulas, like in SAT  logical connectives and literals•
add  and  •

              ○

quantifiers come first (prenex normal form)•

True Quantifiable Boolean Formula (TQBF)

           
TQBF is a generalization of SAT. SAT is

PSPACE-Complete

     AC 1)

Reduce in polynomial time, not space. 
       AC       2)

 is PSPACE-Complete if 

If just 2) is true, L is PSPACE-hard

Theorem
TQBF is PSPACE-complete

FORMULA GAME
Assume  and  alternate (can stick in dummy variables to make it so)
Think of it as a game:
 - Edward - trying to make formula true
 - Alice - trying to make formula false

Given a formula  , does Edward have a winning strategy? Makes the 
formula true. 

FORMULA GAME: 

GENERALIZED GEOGRAPHY
Given a directed graph G and an initial vertex  , players Edward and Alice take 
turns choosing a previously unvisited vertex connected to the current one.

Question:
Does Edward have a forced win?

Proof of Theorem
Draw tableau of tape configurations for PSPACE computation
Width: polynomial

Height:    
,           

So this strategy fails. Can't prove by same method as SAT is NP-Complete

Idea:

Create a Boolean formula                 ,         
for some     

Show how to build         

abqcde
What are the variables? Each cell of configuration has a variable

Write formula to verify each cell has exactly one variable. 

     
 true iff symbol  of the configuration =   

   : True if both rows of the same
   : Allow a single transition. Like SAT proof. 

Base case:

Try divide and conquer:
              

      
 
   

  
      

 
   

Gives           
 is exponentially large, so this does not work.

Recurrence is          

 
  

Want to avoid multiplying formula. Write something like
                                            

 
   

More formally,
                                             

    
 
   

Note, this requires  to be a power of two. Just allow an accepting 
configuration to repeat so there will be a path in a power of 2 number of 
steps. 
Also assume only one accepting configuration.

                    , is polynomial.

Therefore, TQBF is PSPACE-hard

All variables are boolean, so recursive assign 0 or 1 to each variable and 
check if  or  is true. Stack is     in size. Therefore TQBF is in PSPACE
   QB        AC -Complete

GENERALIZED GEOGRAPHY in PSPACE-Complete
In PSPACE. Can solve it in PSPACE the same way as TQBF

See Sipser for reduction from TQBF

PSPACE-Complete
March-28-13 10:02 AM

   CS 365 Page 41    



Sublinear Space Model
Need a new model to deal with sublinear space. With TM we get linear space for free. 

# i n p u t $

Input tape is finite and contains just the input with delimiters.

The input tape is read only.
There is a read/write work tape, and a finite control.

The space used on an input of size n = maximum number of cells scanned on the work tape. 

Proof of Theorem (L P)

each cell holds an element of  Γ, the tape alphabet:         ○

state currently in:    possibilities○

C                                    •

head position on input tape: n+2 possibilities•
head position on work tape: c log n•

A configuration of a machine running in log space:

Total # of configurations: 
                                            

simulate M, keeping track of # configurations.
If it exceeds    , then in an infinite loop so halt and reject, otherwise do what  does.

The same argument applies for      

Example
            
    
Yes, because we can use the work tape as a binary counter.        bits to count # of 0's 
Use decrementer for each 1. Hit 0, accept if at right end marker

Example: PATH
 A                                                                   
 A        D            B  /D   
 A                    ! U           A    U  CO                     8 

Theorem (PATH    NL)
G is a graph with      vertices

u := s
counter := 0

if v = t then accept
guess nondeterministically an edge      
if it exists, replace  by  
counter++

while counter < M

else reject

Start at s,

Total space needed is        ,   = input size

Done1)
Take a language     2)
Then there exists a nondeterministic        -space bounded TM M accepting B

Given the description of M and input  , we need to output G, the configuration graph and 
vertices s, t such that  a directed path    in G iff M accepts w. 
A configuration of M - head positions, work tape contents, state
We can check if      in log space. 
s = initial configuration,  t = accepting configuration. 

Proof of Theorem (PATH is NL-Complete)

Recall: 
    and     then    

If     is computable in       time and if B-decider runs in         time then

   
      
               

   
  

runs in      time to compute     ,                                      
 

Total time:                         

Proof of Theorem
Machine for A simulates the machine computing f but discards all output bits except the one that is 
needed by B. That one is given by a counter into the input tape which "holds"       

Each time simulator for B needs an input cell, run  on A to get it. 

Proof of Theorem (       
    A                 A  . So     A  
W        A             B      D  

LOGSPACE
L = DLOGSPACE = DSPACE(log n)
NL = NLOGSPACE = NSPACE(log n)

A pointer into the input requires log n space so can 
think of this as the problems that can be solved with a 
constant number of pointers. 

Theorem
   
    

Theorem
 A       

Corollary, by an appropriately modified Savitch's 
theorem for this model, 

 A   D  AC          

Open Problem
Does L = NL? 

NL-Complete

A     1)
        B            2)

A is NL complete if

  is a logspace reduction (uses a logspace 
transducer) 

Hierarchy: 

          

Non-intersection of L and NLC is hypothesized but 
unknown. 

Logspace Transducer

a read-only input tape•
a write-only output tape where the head can 
only move right

•

a work tape using only        cells•

A logspace-transducer is a TM T with 3 tapes:

On input x, the machine T write     on its output 
tape. 
 
  

    
   

Theorem
PATH is NL-Complete

Theorem
If     and    then    
If     and     then     

Theorem
    

Hierarchy of Complexity
      

  
 

  
 

LOGSPACE
April-02-13 10:02 AM
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W        A             B      D  
           A    
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Theorem 
NL = co-NL
co-NL =          

Observation
           

Proof: 
Use the same logspace transducer

Lemma
    and B     -NL
     A     -NL

Proof of Theorem
Strategy:  A             
PATH =                                                                

Goal: given a graph G and vertices s,t determine that there is no path from s to t in G in 
nondeterministic log space. 

Note that  A          consists of malformed inputs, and inputs representing        where  is not 
reachable from  . Former case can be done in not much space. 

Proof of Lemma
B     -            
if     then       so      
     A     -     

Why is proving                sufficient?
Now PATH is NL-complete
Let A be a language in NL
A    A           A          

if  A             then      so        

How to verify in NL that no    path exists, given  that is the total number of nodes reachable 
from S.

If path exists and    then rejecti.
If path exists and    then          ii.
If path does not exist rejectiii.

Guess a path    and verify it.a.

if      then acceptb.

Loop over all vertices  1.

how many vertices are reachable from  in G in  steps. 
                                      

                   

S := 1

T := 0 (enumerates vertices in   ) 

if successful, increment counter T

If so, increment counter S and break
check if    or      is an edge. 

For each vertex  , guess an  -step path from  to  

If     , reject (guessed wrong and missed a path in   ) 

For each vertex  (want to find    step path from  to  )

      

How to compute     from   ?

Compute for each  ,        

Co-NL
April-04-13 10:05 AM
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Theorem
If     ,     are functions from    and             

then D  AC        D  AC       

Space-Constructible
    is space-                                               
    its output tape and uses        space

Proof of Theorem
Idea

Create a TM A accepting      D  AC       but no machine running in     space will be able 

to decide     .     must be space-constructible. 

By allowing arbitrarily large input, eventually           for large enough  ○

rejects if the input is not               •

If  accepts we reject○

if  rejects we accept○

otherwise, it simulates  on input       and do the opposite. •

need the ability to mark     tape cells. Fine so long as     is space constructible•
mark tape at position     and if simulation of  exceeds, reject. •

if it exceeds      , reject.○

Use another track to count the number of steps in the simulation of M on       •

A: 

So  behaves differently than every TM for D  AC       

Therefore D  AC        D  AC       

Hierarchies 
April-04-13 10:46 AM
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Kleene Theorem
DFA = gNFA = NFA- = REG
State Elimination

1: Convert to 1 initial, 1 final, no trans to 
initial, no trans out of final.
2: Add transitions        

     

Definitions
Regular Expression:                    
DFA:                                     
NFA:                                                   
CFG:                              
CNF: Every production:         

                                          
PDA:                                                 

TM:                                            
Accepted/recognized:                                      
TM  computes a function     if                     

Pumping Lemma for DFA
If  is regular then 
 a constant    (which could depend on  )
          
       such that                   

            
Contrapositive for PL for DFA
If   constants    
           
      such that                   

    s.t.       
then  is not regular 

Closures

         
            
                 
n-      D A                
&                       
                       

     

Algorithm for CNF

Get rid of useless variables1.

Introduce     
Replace all terminals that appear in a RHS with length   22.

Shorten RHS in large productions3.

For     , replace  by  
Remove  -productions:    4.

For                add    
Remove unit productions5.

CFG=>PDA

Store suffix & sentinel on stack. Match prefix w/ input.
PDA=>CFG

                        

         if               and               

Pumping Lemma for CFL's

If L is a CFL then
    
          
                       

               
Contrapositive of Pumping Lemma for CFL's
If     
          
                       

    such that          
then  is not a CFL

Theorems
                 with   {0, 1} that on input                       on w and do what T does on input w  
If  and   are both Turing-recognizable (r.e.) then  and   are both Turing-decidable (recursive)

 accepted by multitape TM in                                              

If              and       then   D            

Savitch: If      AC       and       then   D  AC        
    and B     -        A     -NL

If     ,     are functions from    and              then D  AC        D  AC       

Rice's Theorem
If  is a nontrivial property then the decision 
problem "Given  , does     have the 
property  ?" is unsolvable. 

Undecidable
Halts, PCP (dominoes), INT2CFG(             ?), AMBIG (CFG)
NP

HAM-CYC
NP-complete

SAT, CNFSAT, 3SAT, INDEP-SET, CLIQ, SUBSET-SUM
PSPACE
SAT, NUP (NFA A,        ) 
PSPACE-complete

TQBF, Generalized Geography
NL-Complete
 A                                                                   

Reductions
  Use TM solving   to solve   

  "Mapping",             

  Polytime mapping reduction
  is a logspace reduction, in/work/out

Complexity Classes

          = languages accepted by multitape TM's in        time

P =           
   

NP = given certificate, can verify membership in polytime
Co-NP =          

NP-hard:                  

NP-complete = NP  NP-hard
SPACE(f(n)) = DSPACE(f(n))
NSPACE(f(n)) 
PSPACE =    AC      

   

EXPTIME =  D             
   

L = DLOGSPACE = DSPACE(log n)
NL = NLOGSPACE = NSPACE(log n)
co-NL =          = NL

      
  
 

  
 

Space Constructible
    is space-                             
on input 1 writes     its output tape and 

uses O      space

A                            C             
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