
Symbol
Primitive notion
Example:
0, 1, 2,
a, b, c

Alphabet
Finite nonempty set of symbols
Example:

String (Word)
A finite sequence of symbols.
Example:
abca
 - empty string (sometimes)

Length
 - length of string x

Star
 - set of all finite strings over

Concatenation

Concatenation no commutative in general, but it is associative.

String Subsets
A string is a prefix of if such that
A string is a suffix of if such that
A string is a substring of if such that

Exponentiation

Note:

Counting Occurrences
 # of occurrences of the letter in the work

Reversing
 reversal of the word

Palindrome

Language
A language over an alphabet is a subset of

Union

Intersection

Complement

Special Languages

Examples of Languages

Example of Language Concatenation

Formalism of Reversal

Recursive definition of reversal

Theorem

for strings

Proof
By induction on the length of

Base case:

Induction:
Assume true for . Prove for

Open Problem
Start with arbitrary string: 22323
Look for number of repetitions. In above example have 2323. Write down order of
repetition: 223232
2232322
22323222
223232223
2232322231

Conjecture: No matter what finite string you start with you eventually reach 1.

Languages
January-08-13 10:51 AM

 CS 365 Page 1

Special Languages
 - empty set
 - all strings

Normal properties of sets apply

De Morgan's laws

Concatenation

 (n times)

Kleene *

Also known as Kleene Closure since

Positive Closure

Theorem
If then

Proof of Theorem
Equivalent Statement:

And Equivalently
 (*)

Proof by induction on n.
Base case:

 by hypothesis

Induction: Assume (*) is true for and prove it for
Assume
By homework #1, know that

 CS 365 Page 2

A way to specify languages•
A regular expression is a string over the alphabet•

In this case and are symbols (not empty string/set, but they
represent empty string/set in the regular expression language)

Regular Expressions - Kleene (1956)

 the language represented by a regular expression

Extra parentheses can be removed. Ex:

*1.
Concatenation (implicit)2.
 3.

Precedence

Language Classes

= the collection of regular languages

Theorem

union•
concatenation•
Kleene *•

The class of regular languages is closed under

How about intersection or complement of languages?

Accepters or recognizers of languages•

Deterministic Finite Automaton (DFA)

McCulloch & Pits 1943

Specification
 a finite nonempty set of states often written as
 = an alphabet
 , the set of accepting states (final states)
 , the initial or start state
 , transition function

A DFA is a quintuple where the pieces are as above.

Extended Transition Function

 = the state I end up in if, starting in state , I read the input

Recursive Definition

Theorem

So the ^ is usually omitted from

Language Acceptance (Recognition)
The language accepted by (recognized by) is

Theorem
Let be languages over accepted by DFA's and , respectively.
Then there is a DFA accepting

Problem Set
Find a regular expression for

Examples of Regular Expressions
All strings over of length

All strings over having aa as a substring.

All strings over not having aa as a substring

Strings over in which all a's precede all b's which precede all c's

The same as above but remove

DFA

finite number of states

 reject
input accept

Example
A DFA to accept all strings over with an odd number of b's

 a b

Example
A DFA for

 ←

Proof of Theorem

The new machine simulates both and simultaneously.

read head

Regular Expressions and DFAs
January-10-13 10:23 AM

 CS 365 Page 3

Create

Now have to prove that the construction works. (
)

Use induction on to prove that

Then prove strings accepted are the same

For union, change to

 CS 365 Page 4

Nondeterminism

Generalized transition diagram.•
Each node has arrows out.

With nondeterminism allow different numbers of arrows out. Allow repeats and allow
missing arrows.
Acceptance corresponds to the existence of an accepting path on input•
Can think of the machine as having processes or threads that are spawned on duplicate
transitions

•

Rabin & Scott (1959)

Example: ○

Guess the start of 'cat' and head off on the chain:

As a tree for input
 c a c a t

 x

Can also think of the automaton as 'guessing and checking'. Makes guesses then checks in
parallel

•

Size Reduction
NFAs can provably save states compared to DFAs

 is accepted by the NFA

 can be accepted by an NFA with states. Every DFA for needs states

Proof of Theorem
Let

Claim

This suggests showing
 by induction on

Base case: ,

 by induction

Assume true for ; prove for

Simulating NFA- with NFA
Can break the NFA- into sections of a single letter followed by 0 or more -transitions.

NFA-
Simulate with NFA

But still have -transitions on start state.
generalized NFA (gNFA)
Allow starting set of states instead of a single start state.

gNFA can by simulated by a DFA the same way as an NFA.

NFA Model Definition
An NFA is
All same except :

 is the power set of (also written)

Language Accepted

with the extended transition function:

Theorem
Given an NFA
 a DFA

such that

Epsilon Transitions
Allow machine to go from state to state without eating
up any input.
Called NFA- or -NFA

Transition function of NFA-

Extensions to DFAs
January-15-13 10:04 AM

 CS 365 Page 5

Simulation Power
NFA-ε

gNFA NFA

 DFA

 - can be simulated by

Theorem (Kleene)

gNFA•
NFA-ε•
DFA•

The class of languages accepted by

is the same as the class of languages specified by regular expressions.

Proved by State Elimination algorithm and Theorem 1.

Theorem 1

1 initial state,•
1 final state, •
no transitions into the initial state, and •
no transitions leaving the final state.•

Given a regular expression we can construct an NFA-ε for it, with:

Furthermore, the NFA- has at most states and transitions if
the regular expression has operators.

Generalized NFA (GNFA)
Like a NFA, gNFA, NFA-ε except that transitions can be labeled by arbitrary
regular expressions.

Claim
GNFA can be simulated by NFA-ε.
Proof: Replace regular expression edges with the NFA-ε generated like in
the proof of Theorem 1.

Proof of Theorem 1

 •
 •
 •
 •
 •

 •

Given we can write it as one of

Proof by induction on # of operators in r
Base case: 0 operators

 ε

Concatenation:

Convert to

Union:

Convert to:
 / \
 -
 \ /

Kleene Star

 \ \ ← ←/ /
 \ /
 \ ————— ——/

1 initial state•
1 final state•
no transitions into initial state•
no transitions leaving final state•

Convert your gNFA to one with1.

by adding extra states and ε-transitions
Pick a state to eliminate that is neither the initial nor the final state.2.

incoming transitions •
outgoing transitions •
transition to self •

 has:

For input state A and output state B corresponding to and add

transition from A to B labelled by

Combine transitions from states using union.
Keep going until only initial and final state left3.

State Elimination

Rough strategy: try to pick states with few input/output transitions for
elimination.

Example

Kleene's Theorem
January-17-13 10:17 AM

 CS 365 Page 6

 CS 365 Page 7

Theorem

Union - Yes1.
Concatenation - Yes2.
Star - Yes3.
Intersection - Yes4.

Take a DFA for and flip the "finality" of each state.-
Complement - Yes5.

The class REG is closed under the operations:

Closure Properties

 •
 •

We say a class of languages is closed under a (unary, binary) operator
if

Prefix

Example

Theorem
If is a regular language then so is

If L is regular, is regular?

Theorem
Yes

Proof of Theorem ()
Take DFA
Change F to
Call new machine

Claim

Proof of Theorem (Reversal)
Given a DFA

Create a gNFA

Closure Properties
January-17-13 11:01 AM

 CS 365 Page 8

Hierarchy of Languages

All Languages - Uncountable
REG, FINITE - Countable

Proofs of Non-Regular Languages Using Pumping Lemma
Example 1

Adversary:
You pick:

Adversary:

You pick:

Example 2

Adversary:

By Euclid prime Pick
Pick

Adversary:

Pick

 is a multiple of but not equal to since and

Pick such that

Proof of the Pumping Lemma
 is regular so a DFA accepting it.
Let # of states in

If has length t with no repeating states then the DFA visits states.
Therefore, if there is a repeated state.

 u w

 / \
 ←
 v
Since has states, some state is repeated. Call
the first repeated state .
Let be the first path from back to . Then still labels an accepting path and
so
 from our definition of the path (1st time hitting to)
 Consider the length-n prefix of z; it most involve states and so some
state is repeated.

More Non-Regular Languages
Example 3

Adversary:

Notation: Integer represented by in base 2
You pick ,

Adversary:

i.e. is not a prime number
Pick: Hope to show

Pumping Lemma for Regular Languages
(Iteration Lemma)
If is regular then
 a constant (which could depend on)

 such that

Contrapositive
If constants

 such that
 s.t.
then is not regular

Using this in proofs
Think of game vs. adversary
 - an adversary
 - your choice

Warning
See also "Nine errors students commonly make when using
the pumping lemma" on course website

Non - Regular Languages
January-22-13 10:00 AM

 CS 365 Page 9

Recall
Fermat's theorem says
 if is prime
So maybe pick

Compute

If then

otherwise

And hence is divisible by and

 CS 365 Page 10

Is ?1.
Is infinite?2.
Given is 3.

Questions about regular languages

Difficulty could depend upon representation.

DFA, NFA (clear box model)

Don't know mechanics of DFA, only a DFA that accepts or rejects strings.○

Know ○

Know , upper bound on the number of states○

All you can ask is: given does accept

DFA (black box model)

Represent with:

Is 1)

DFA: states
NFA: states, transitions

Use graph search algorithm (BFS, DFS, etc.) to look for a path from to a final state.

Is L infinite?2)
Look for a cycle, reachable from and from which you can reach a final state

DFA
NFA

Search for reachability from , search for reachability from final states, search for cycle
with DFS.

Given is ?3)
DFA - One way is to compute unique minimal DFA's in

 iff

DFA
NFA PSPACE-complete

make a DFA accepting . Has states so

Clear Box Model

Proof of Theorem 1
Let be the shortest string accepted.
If then there is a loop in the states of the DFA that can be cut out to get a shorter string.

Proof of Theorem 2
L infinite but accepts no string with
M must accept some string of length so let be the shortest such string. If ,
contradiction. So .
By pumping lemma, and

But
So is a shorter string in L with , contradiction.

Now suppose accepts ,
By proof of pumping lemma such that

Black Box Model
Ask questions like, is

Is 1)
Try all strings up to length
Is infinite?2)
Try all strings such that
Is ?3)

 iff

Last time we constructed a DFA for

by our construction (similar to the intersection one) there exists a DFA of states
accepting L.
Can simulate by checking if any string is accepted by or and not the other.
Algorithm: test each string of length to . If any is accepted then

otherwise

Know and n, the number of states of M

Theorem 1
If an -state DFA accepts any string it accepts an such
that

Theorem 2
L is infinite iff M accepts some ,

Decision Problems
January-22-13 11:00 AM

 CS 365 Page 11

Notation
V - A A B C
 - A finite set of "terminals"
 - start variable
 - finite set of "productions" or "rules" that tell how strings are derived

Context-free grammars have productions like
where

 write in the form

Derivations
If is a production, and

then (one step derivation)
 read as "goes to" or "derives"

We say if such that

 means derives in steps.

Note
Derivations are not necessarily unique

Leftmost and Rightmost Derivation
Leftmost derivation: replace leftmost variable at each step
Rightmost derivation: replace rightmost variable at each step

Language
 a grammar,
Then

Ambiguous Grammar

 such that has 2 different parse trees.1)
 such that has 2 different leftmost derivations.2)
 such that has 2 different rightmost derivations.3)

A grammar G is ambiguous if

Sentential Form
Any string of variables and terminals, particularly intermediate step of a
derivation.

History
Panini c. 400 BC
Sanskrit grammar, 3959 rules

Chomsky 1956 - 1959
Equivalence between grammar specifications and machines

Backus and Naur, late 1950's
Grammars for programming languages

Example Non-unique Derivations

Parse Tree
 at root
children of a node ware the symbols of rhs in left-to-right order.

 S
 A B
 a b

To remove ambiguity in derivation order use leftmost or rightmost derivation. Left
with only true ambiguity.

Example of Ambiguity

 evaluates to a evaluates to

Simple Grammar Example: Palindromes
 A

 A 1.
Let be derived in G, show it is a palindrome

Sometimes need hypotheses on all strings derived from , not just terminal
strings.

•
Typically: do an induction on the length of the derivation.

Goal: A

 A 2.
Given A , construct a derivation for it.
Typically: do an induction on

Example

 1.
If then

Proof by induction on

Assume true for , prove for .

So and
By induction, so

 2.
Take , write . Show by induction on that

Base case:

Context-Free Languages
January-24-13 10:25 AM

 CS 365 Page 12

Base case:

 a derivation by induction

Otherwise assume true for , prove for

Example

Want to prove

Strategy: include both and in induction hypothesis

Example

Strategy: make induction hypothesis that covers all sentential forms (any string
derived from S)
This is called an invariant.

 CS 365 Page 13

Claim:
If then a derivation

Proof: By induction on

Base case:
No can claim true for Prove it for

 suggests trying to write

Goal is to write with

If we can do this then by induction:

For ever additional letter read in the prefix of , changes by so and prefix of such
that
By induction, we have

Case 1:

 . Mirror image of Case 1
Case 2:

3a: , use times followed by

 here the is the in
Goal: find such that

If then we're done.

So assume
Let be the smallest index such that
 so
That means is a string in this list. So
Is ?

By induction

3b: has at least one b

Case 3: begins and ends with

CFG Example
January-29-13 10:06 AM

 CS 365 Page 14

Chomsky Normal Form (CNF)
Every production is of the form

If is in then

Theorem
If is in CFL, then a CNF for grammar.

Get rid of useless variables1.
A variable is useless if it does not appear in a sentential form in any derivation of the
form

The variable might not produce any terminal strings•
The variable might not appear in any derivation starting from •

Throw away all variables & production involving variables that are in

 new set, new grammar

Run DTS on Ga)

Run RV on throw away all variables & production involving variables that are in

b)

Ways of being useless:

Introduce new variable that goes directly to the variable.

Replace all terminals that appear in a RHS with length 22.

Add new variables to break up large production
Shorten RHS in large productions3.

Identify all variables such that then replace by in the RHS of every
production involving .

a)
Remove -productions: 4.

Remove unit productions5.
A unit production is
We find all productions of the form and add the production provided

Must do this for every pair of variables. Could square the size of the grammar.

Algorithm for CNF

while () do

DTS(G) /* Variables that derive terminal strings */

return T

while do

return(T)

RV(G) /* Variables reachable from S */

Example of DGS

Example Production Shortening

Replace that with

With new variables

Example Removing -productions

Add the productions:

And remove

Chomsky Normal Form
January-29-13 10:40 AM

 CS 365 Page 15

Language generated by CFG's•
Context-free languages (CFL's)

Handout on it on home page•
CNF - Chomsky normal form

Union•
Concatenation•
Star•
Complement? No•
Intersection? No•

Closure Properties of CFL's

Theorem
 are CFL's then so are

Pushdown Automaton (PDA)
Consists of
 : Finite set of states
 : Input alphabet
 : Stack alphabet
 : Transition function
 : Initial state
 : Set of final states

 state
 input symbol
 popped stack element
 new state
 pushed stack element

Definition:

Instantaneous Description (ID)
Triple of (state, unexpended input, stack)

Convention: Top of the stack to left

 "goes to"

Language

Proof of Theorem
Union
Let
 for

 for

produce for

Assuming that and and

If not, just rename variables.

Need to see

Concatenation

add this production

Star

Pushdown Automaton (PDA)
Finite automaton: finite # of states
Turing machine: potentially unbounded states

1 stack•
Pushdown automata: potentially unbounded storage

In some sense between finite automata and Turing machines
No writing on tape, reading left to right

i n p u t

PDA is inherently nondeterministic unless otherwise specified.
The deterministic version describes a smaller class of languages.

PDAs can
input tape, either read a single symbol or not - move)

push○

leave stack the same○

stack oblivious move•

replace symbol on top○

pop○

depends on op of stack•

stack

Example PDA

finite
control

Pushdown Automaton & Closure Properties
January-31-13 10:04 AM

 CS 365 Page 16

State Input Stack Contents

 00111 ε

 00111 $

 0111 A$

 111 AA$

 11 A$

 1 $

 1 $

The string accepted is 0011, not 00111

Example
EVENPAL =

 CS 365 Page 17

Proof of Theorem
Idea: Store suffix of sentinel on stack. Match terminal in prefix against input.
Goal: iff

CFG → PDA

Notation is (state, unexpended input, stack contents)

Want to prove

iff

Proof
Assume
Prove by induction on that

Base case: (need to fill this in)
Induction step: Assume hypothesis is true for all Prove for to get

Case 1: There was a variable on top of the stack and to get I pushed to rhs of an A-
production.

 then
By induction,

Case 2: There was a letter input matched against stack

 for some

By induction,

Assume
Want to conclude that
Base case . Check .
Induction:

By induction,

so

PDA → CFG

Idea: define grammar symbol , such that iff

Assumptions:
- Only 1 final state (can just make a new one and point all old ones to it)

- The stack is empty when is reached (can add a new state before the final state that removes

everything on the stack)
- Every move pushes or pops a stack symbol (can simulate no change by a push followed by a pop)

Stack height vs. time

Theorem
Given a CFG there exists
a PDA such that

Theorem
If is a CFL and is a regular language
then is a context free language.

Do cross product of states in L and R
and have stack follow L

CFG, PDA Equivalence
February-05-13 10:07 AM

 CS 365 Page 18

 ———————————————>

This is case 1. In case 2 the stack might return to height between and
The first push pushes . In case 2 then the last pop is

Case 1:
 if

 and

Case 2:

Start state of the grammar

Proof
 iff

Prove by induction.

By induction on , where

Base case
 so and production so

Induction step: Assume of holds for step derivations and prove for .

Case 1: 1st step of the derivation is

 so and by induction,

Case 2: 1st step of the derivation is

Assume
Want to show by induction on .

Base case : Then . a derivation

Induction: Assume (+) is true for all ; prove for .

Case 1: stack height always > 0 until end.
Case 2: stack height hits 0 at some intermediate point of computation.

so in grammar a production

Also have and
 (by induction)

Case 1:

By induction, means is in the grammar
 so by induction

Case 2:

 CS 365 Page 19

Pumping Lemma for CFL's
If L is a CFL then

Contrapositive of Pumping Lemma for CFL's
If

 such that
then is not a CFL

Theorem (Intersection)
If are CFL's then need not be a CFL.

Theorem (Complement)
If is a CFL, then need not be.

Open Problem
Let
Let be the language of powers

 is not a CFL

Consider , the set of non-powers ("primitive words")

Is context free?

Quick "Proof" of Pumping Lemma

(from root to a leaf)
A long

A

 1.
 2.
 3.

So

Do 1. then 2. times then 3. to get

Application

Len be chosen.

Pick

Case 1: If either or contains two different kinds of letters, then by pumping with

pump with : because that letter will have copies in the resulting
string but the others still have .

2a) both contain the same letter (repeated some number of times), not both empty

pump with . The third letter stays at but some other has copies
2b) contains one kind of letter, contains another

Case 2: Now and each separately contain one type of letter.

Proof of Theorem (Intersection)
By counterexample

Take

So

 and are CFL's and is not

Proof of Theorem (Complement)

 &
Know closed under union and not under intersection, so not closed under complement.

Alternate counterexample proof:

Proved on assignment 3 that is a CFL
but is not a CFL by pumping lemma.

Application
 is not a CFL

Suppose
Then we're in trouble and no contradiction possible

Bad choice:

Better choice

2nd half of the new string ends in 1's
Use . The middle will shift so the 1st half of the new string ends in 0's

Case 1: lies in the first half of

Same thing as case 1
Case 2: lies entirely in 2nd half

Pump with
Either the 0s in the first half will be less than the 0s in the second half, or same for the 1's

Case 3: straddles the boundary between the first and second halves.

Proof of the Pumping Lemma
 context- a CNF grammar for
Construct a parse tree for in

Pumping Lemma for CFLs
February-07-13 10:01 AM

 CS 365 Page 20

Lemma
Let be a parse tree for a string in a grammar in CNF.
If all paths from the root to the leaf are of length then

Length of a path is the number of edges.

Proof of lemma by induction on

 , path of length 1.
Base case:

Induction assume true for and prove for

So
Let have variables.

Each edge comes from a variable so variables, so some variable is repeated.
take where of variables.

Some variable is repeated along some path. Consider the 2nd occurrence of the first repeated
variable, , going up from the bottom.

Path from bottom to 2nd is so by lemma
The first occurrence of lies in exactly one subtree of the second subtree of . The other subtree of
 must generate some terminals so

 CS 365 Page 21

Finite control•

Holds a finite input○

In basic model the tape has a left edge○

An unbounded tape•

Can both read and write on the tape•
Transitions:•

move to a new state, rewrite current cell contents, move left or right○

Based on the current state and contents of the cell being scanned

Turing Machine

Transition function

Paper on the subject (Turing 1936)
Had different definition of "computer". Meant a person doing computation.

Sipser's Model
two distinguished states:

No transitions out of these states

Turing machines must move right (R) or left (L) on each move.
A move left at cell 0 stays in cell 0.
There is always a move (based on current state & current symbol scanned) except from and

After input there are arbitrarily many blank "␣"

Example

Example

0 1 0 # 0 1 0 ␣ ␣ ␣

Subroutine
Move input down 1 cell and insert a delimiter at the front.
Assume input is over

Same path as above but starting with
reading 1

Formal Turing Machine
A TM is

 : finite set of states
 : finite nonempty input alphabet

 : finite tape alphabet,

 : accept state
 : reject state

Configuration
A configuration of a TM is a string from of the
form

current state is
current tape contents (up to last non-black) is
current symbol being scanned is first symbol of

It means

Goes To
 "goes to"
 "goes to after 0 or more one moves"
Relates configurations as one would expect.

Accepting / Recognizing
 = language accepted / recognized by a TM

Behaviours

it eventually reaches - accept1)
it eventually reaches - reject2)

"loops"3)

A TM has 3 behaviours

Decision
 is decided by if and further, halts on
every input (either reach or)

Recursively Enumerable (RE)
A language is called recursively enumerable if it is
accepted by a Turing machine.

A language is called recursive if it is decided by a
Turing machine.

Turing Machines
February-07-13 11:12 AM

 CS 365 Page 22

Example of Configurations

Using :

Using

Language Hierarchy

A C

 CS 365 Page 23

Example Multitape Turing Machine

Use a multitape TM to accept

Idea: Use a 3-tape Turing machine
tape 1: input
tape 2: hold X's ()
tape 3: hold X's

Write X on tape 2 & 3 and return head to the left1.
If tapes (1) and (3) contain the same number of symbols, halt (accept)2.
If tape (3) contains more X's then tape (1) contains a's then reject3.

Copy the context of tape (2) to the end of tape (3) twice, then add one more X to tapes (2) and
(3)

4.

Go to step 25.

Steps:

Example
Tapes
Δaaaaaaaaa

ΔX

ΔX

Δaaaaaaaaa

ΔXX

ΔXXXX

Δaaaaaaaaa

ΔXXX

ΔXXXXXXXXX

Accept

Simulating a Multitape TM
Suppose is a k-tape TM
Let be a TM with a tape with tracks

Track 1: Hold # in cell 1
 6
 5 7

move right on track 3 to find (head marker)○

store corresponding symbol in in finite control○

then return to # in track 1○

Repeat for the next odd track.○

For every odd track

When all symbols have been accumulated, perform symbol rewriting on each track then move
 accordingly on each track.

to simulate M:

Example Nondeterministic Turing Machine
Using a nondeterministic TM accept (composite meaning non-

Idea: Use a 4-tape nondeterministic TM
Tape 1: input
Tape 2: :

Tape 3:

Tape 4: to compute

Write on tape 2, then choose nondeterministically between: writing more 1's and

advancing to step 2.
1.

Write on tape 3, then choose nondeterministically between: writing more 1's and

advancing to step 3.
2.

Copy tape 2 to tape 4 and advance tape head on tape 3.3.
Repeat 3 until tape head on tape 3 scans blank.4.
When done, compare tape 4 to tape 1. If equal, accept. 5.

Steps:

Theorem
Every nondeterministic TM M can be simulated by a deterministic TM

Idea
The computation of can be represented as a tree where each node splits when a nondeterministic
choice is made.

Claim: Branching factor is finite.

 so can branch at most times at each node.

Can use numbers in base to denote branches of computation of . (By indexing all the edges from
each node from 0 to)

 deterministic TM with 3 tapes
Tape 1: Holds input
Tape 2: We use it exactly as machine M uses its tape

Tape 3: Successively holds numbers in base b

Allow S moves (stationary)1.

Simulated by

Tape has "tracks" (but 1 tape head)2.

a b a ⎵

a a b ⎵

Variations

2 - track example:

In general can allow arbitrarily many tracks by
manipulating tape alphabet to allow tuples.

Does not require changing the TM at all.

Multiple tapes with independent heads3.
New transitions function:

 is direction for head.

Two way infinite tape4.

Use two tracks. Top track stores right hand side,
bottom track stores flipped left hand side, with
special marker symbol on cell 1 on first cell.

⎵⎵⎵⎵input⎵⎵⎵⎵

Simulated by

put⎵⎵⎵⎵⎵
Δni⎵⎵⎵⎵⎵

Nondeterminism5.
Instead of transition function

the nondeterministic Turing machine has

Variations on Turing Machines
February-14-13 10:07 AM

 CS 365 Page 24

Copy tape 1 into tape 21.

When must make a non-deterministic choice (including when just one option), use
number at appropriate position in tape 3 to make the decision. Stop when made all
decisions represented by Tape 3 or when an invalid decision is represented.

Simulate on tape 22.

If accept state of M is reach, halt and accept. 3.
Otherwise update tape 3, erase tape 2, and repeat from 1.

 does the following:

This traverses the tree in BFS order so it will terminate eventually if any of the possible paths are
accepting.

 CS 365 Page 25

Enumerator
A Turing machine with a write-only output tape.
Starts only with tape blank.

Prints out strings of L, in any order, maybe with duplicate.

Theorem
A languages is Turing recognizable iff there exists an
enumerator for it.

Random Access Machine Model (RAM)

Read-only input tape•
Write-only output tape•
random access memory•
finite program•
each tape square and memory cell can hold arbitrarily
large integer

•

accumulator - register 0 - where arithmetic can be
performed

•

Features

Theorem
If L is enumerated by , on input , run and search output tape for X. If it appears, accept.

If accepts within steps, write on output tape. 3.
For j to do2.

For do1.
Suppose L is Turing recognizable. Let be an ordering of , then do the following

Turing Machine Simulation of RAM
See hopefully posted TM tapes for RAM

set program counter on tape 6 to 11.

fetch instruction from tape 1a.
execute instructionb.
update program counterc.

repeat until HALT detected2.

Simulation:

Enumerators & RAM
February-14-13 11:03 AM

 CS 365 Page 26

can simulate every Turing machine TM•

and encoding of an input to T○

accept

reject

loop for ever

 runs on and does exactly what would do on input :○

input to TU is a Turing machine (encoded as a string)•

The universal Turing machine

Theorem
There exists a universal TM with input alphabet that on input
 will simulate on and do what does on input .

Corollary

The language

is Turing-recognizable (recursively enumerable)

(Can check for input that does not represent a TM as we simulate)

Label them a.
List all alphabet symbols (assume the set of all possible symbols is countable)1.

Encode letter as 2.
Encode string as is the code for letter 3.

Encode moves of TM4.

(Encode accept and reject state at the beginning)

Encode TM by encoding each element of its transition function5.

Encoding a Turing Machine

Uniquely decodable1.
Tell when it ends (prefix-free encoding) 2.

Details unimportant

Proof of Theorem
 has a tape holding an encoding of 's input tape.

A tape to hold 's input tape in encoded form1.
A tape to hold 2.
A work tape, current state3.

 needs:

Fetch state from tape 3
Look on tape 2 for matching instruction
Carry it out
Update new state

Repeat until reaches or

Universal Turing Machine
February-28-13 10:05 AM

 CS 365 Page 27

Decision Problem
A question with a parameter and a yes/no answer.

Can encode a decision problem as a language.

Acceptance
Two types of TM acceptance

allow non-halting if •
language is Turing-recognizable•
recursively enumerable•

Equivalent:

must always halt•
language is Turing decidable•
recursive•

Equivalent:

We say a decision problem is solvable or decidable if an
always-halting TM deciding the language associated with
the problem.

Accepts(w) Decision Problem
Given a TM and an input does accept ?
Does there exist a TM to solve this problem?
No.

We have proved that

is recursively enumerable but not recursive.

Halting Problem
Given a TM and an input does halt on ?
Unsolvable.

General Technique
For proving unsolvability.
Assume it is solvable. Us a TM that solves it as a subroutine
to solve a known unsolvable problem.

Accepts(ε) Problem
(The blank tape problem)
Given a TM , does accept ?
This is unsolvable.

Is Empty Problem
Given , is ?
Unsolvable.

Accepts(REG)
Given a TM , is a regular language?
This is unsolvable.

Example Decision Problems
Is n a prime?
Does have a Hamiltonian cycle?

Example Language
Primes

Hilbert's 10th Problem

Do there exist integer values of variables making it true?
Diophantine equation: polynomial equation with integer coefficients.

Russell's Paradox

Both and lead to a contradiction
Therefore cannot exist.

Is ?

Solving

There exists a TM that always halts, either accepting or rejecting to solve the problem•
L is recursive (Turing -decidable)•

What does it mean to solve a decision problem?

Is complete: always answers "yes" or "no"1)
Is correct: always gives the correct answer2)
Is objective of mechanistic: no judgment involved, every step is clear3)
Is finitely describable4)
Is deterministic5)
Always eventually answers6)

We want a method that

Barber Problem
Barber cuts the hair of everyone (and only those) in Kitchener who does not cut their own hair.

Accepts(w) Problem
Assume exists.
Modify as follows:
 B: __ accept if accepts

 ___reject if T rejects

Now flip output of A
 C: — accept if rejects

 __ reject if accepts

takes as input•
halts and rejects if accepts •
halts and accepts if doesn't accept •

C:

Now run on input
Contradiction: does not exist.

Halting Problem
Assume such an exists
 accept if halts on
 reject otherwise

Want to make
 accept if accepts w
 reject if does not accept

_____Accept
Use

> — Reject

 solves A
Contradiction, so does not exist.

Accepts(ε) Problem
Assume a TM exists which does
 accept if accepts , reject if rejects
Construct

Want accepts iff accepts

it erases its tape
writes to its tape
simulates

How behaves:

Is Empty Problem
Assume TM exists which solves this problem

Decision Problems
February-28-13 10:55 AM

 CS 365 Page 28

Use to construct

If input is not it rejects.
 Looks at its input. If input is simulates .

Accepts(REG) Problem
Assume it is solvable

Construct

Want such that is regular iff accepts

Idea:

Make as follows:
 examines its input. If it is for some , it accepts & halts.
Otherwise, simulate on .

 CS 365 Page 29

Theorem
If and are both Turing-recognizable (r.e.) then and
 are both Turing-decidable (recursive)

Corollary
If is Turing-recognizable but not Turing-decidable then
 is not Turing-recognizable.

Property of a Language
Collection of languages having that property

Nontrivial Property
At least on r.e. language has the property and at least
one does not.
Nontrivial means and A

Rice's Theorem

Given , does have the property ?
If is a nontrivial property then the decision problem

is unsolvable.

Proof of Theorem
There exists a TM accepting and accepting

simulates on input on tape 1•
simulates on input on tape 2•

We create a TM that on input

alternating steps (1st , then , etc.)

if it's halt and accept•
if it's halt and reject•

wait until either or halts and accepts

Proof of Corollary
Suppose were Turing-recognizable. By the Theorem, is Turing-decidable a contradiction.

Example

 is Turing-recognizable (a universal TM accepts it)
 is not Turing-decidable
so

 is not Turing-recognizable

But , the set of invalid encodings, is Turing-decidable.
So is not Turing-recognizable.

Proof
Assume it is solvable.

Assume (If that is not the case, think of)
Then let be any such that does have the property

We create to do the following

if halts & rejects, rejects•

do whatever does○

if and accepts, runs on •

On input , T simulates on

Rice's Theorem
March-07-13 10:05 AM

 CS 365 Page 30

Post Correspondence Problem
Emil Post

Have a string on top and on bottom. Cannot be flipped•
Finite number of distinct types•
as many as you want of each type•

You have dominoes

A match in PCP is a list of dominoes where there
concatenation of the upper entries exactly equals the
concatenation of the lower entries.

given a list, is there a match?
PCP problem:

PCP Decision problem
Given tile list, is there a match?

Typical encoding
0#1?1#011?001#0??

Modified PCP
Just like PCP but get to specify which tile goes first.

Example PCP

Match attempt:

No match possible. The first domino must be the one show, leaving one more 1 in the top than the
bottom, and no other domino can increase the number of 1's in the bottom relative to the top.

Example PCP

Yes, there is a match

Example PCP

Yes, there is a match, but shortest has 75 tiles.

PCP Undecidability Proof Sketch
Use the upper and lower entries to record possible TM configurations throughout the course of an
accepting computation.

tape is

state is
scanning first symbol of

Recall: TM configuration

An accepting computation can be expressed

Lower entries will be one computational step ahead of the upper ones. •
If halting state is reach, upper entries are allowed to catch up. •

Given & we build dominoes so a match iff accepts

MPCP Undecidability Setup
For input first state is

where

If add domino

If add domino

Also add

Example

MPCP to PCP
Notation

Post Correspondence Problem
March-07-13 10:41 AM

 CS 365 Page 31

For dominoes

where must start with

replace with dominoes

 CS 365 Page 32

Problem Reduction
We say a problem reduces to a problem if, given a TM that solves

we can use it as a subroutine to solve .

Write

Language Reduction
 reduces to means "given a TM solving membership in , we can
use it to solve membership in "

Write

Theorem
If and is Turing-decidable (recursive) then so is

Theorem (Contrapositive)
If and is not recursive (not Turing-decidable) then is not.

Function Computation
We say a TM computes a function if

Many-One Reduction (Mapping Reduction)
We say (mapping reduces to) iff a computable function
 such that

Problems with CFG's
Decision Problem (INT2CFG)

(i.e. does)
Given two CFG's and does there exist ?

Claim
PCP INT2CFG

Ambiguity Problem (AMBIG)
Given a CFG , is it ambiguous?
(That is, is there a string with 2 different parse trees?)

PCP AMBIG

Other Unsolvable Problems
Tiling problem: Can you tile a quarter-plane with tiles that are coloured
on the 4 sides. Adjacent tiles must match colours.
Method, each row can simulate the state of a TM on some input. Can tile
only if TM does not halt.

Example Reduction
Element distinctness reduces to sorting.

Proof of Theorem
 recursive implies

 implies

So is decidable.

Example

We showed

Example Mapping Reduction

Hilbert's 10th Problem
H10A
Given a k-variate polynomial with coefficients in decide if a k-tuple for
which

H10B
Given a k-variate polynomial with coefficients in decide if a k-tuple for
which .

H10A H10B
Given

Call TM of H10B on each of

And accept if TM for H10B accepts on any, otherwise answer no.

H10A H10B
 has an integer solution

 has a nonnegative integer solution

INT2CFG Reduction

So PCP INT2CFG

AMBIG Reduction

 , I has a match iff is ambiguous

 where as above

Reductions
March-12-13 10:02 AM

 CS 365 Page 33

Typical sentence (assume variables are over)

Example: Chicken McNuggets Theorem in Prefix Normal Form

 6

 6

A Decision Procedure for

represent possible variables as strings in base 2•
model a formula by a series of automata where the automata accept strings
representing possible values of variables that make the formula true.

•

Main ideas

So our formula looks like

 atomic formula in

Input symbols are -tuples corresponding to a character in the strings of
 .

Want to build automaton to accept input for which is true.
Given build

Build an NFA () that on input representing guesses

nondeterministically and checks using if the formula is true.

Case 1:

Must convert NFA to DFA with subset construction then negate it.
Case 2:

For first quantifier symbol can use usual method of checking if a DFA accepts
any/all strings (graph search).

Each time there is an alternation in quantifiers between and must do a subset

constructions. With alternating quantifiers,

 subset constructions.

Stack of 2's is

 high. is length of

Church
The theory of natural numbers with and , is not
recursively solvable.
There is no algorithm, that, given a sentence in this logical theory,
will either produce a proof or say no such proof exists.

Theory

Allowed:

Chicken McNuggets Theorem
Every integer can be obtained at McDonald's as the
number of McNuggets if one buys pack of 6, 8, and 20 only.
Furthermore, 43 is the smallest such.

In

Let

 6

Prefix normal form
[quantifiers] ["atomic" formula involving variables & + & logical
 &

Problems in Logic
March-12-13 11:09 AM

 CS 365 Page 34

time•
space•
randomness•

What can we compute with bounds on resources?

Time
Put time bounds on our TM's

Example

The model used is important
input is of length N
how many steps? (transitions of a TM)
 worst-case # of steps over all inputs of length

1-Tape TM
Go back and fourth crossing off symbols

Check that the input is of the form for some : 1.
Check parity of tape. Reject if parity 1.2.
Cross off every other 03.
Cross off every other 14.

Goto 2a.
Check if tape has no 0s and no 1s left. If so accept5.

Can we do better?

Best possible for this problem for 1-Tape TM

2-Tape TM
Copy 1's onto 2nd tape and compare.
 , best possible

Moral
The choice of computing model affects the running time achievable for a
model.
But not too much if the model is reasonable.

Proof
Recall how to simulate a multitape TM with a 1-tape TM
Have many tracks, where pairs simulate a tape by having a tape and
pointer.

Each step of the TM costs (may have to walk distance down

each track)
 steps for a total of

But have to initialize tape first which takes time. So

Our computing model for time bounds will be the multitape TM.

Theorem
If is accepted by a multitape TM in time, and then it is

accepted by a 1-tape TM in time.

Polynomial Time Decidable Languages

 &

Time Complexity
March-14-13 10:36 AM

 CS 365 Page 35

P = class of languages where we can decide membership in polynomial time in
where is input.

the class of problems with polynomial-time solutions.•
More informally,

 time is not realistic 1.

But for all practical purposes this is
 is not in P2.

Constant in front ignored3.

Objections:

Not all important problems seem to be in P

ERE = extended regular expression = regexp + exponentiation to an integer
Universality problem:

Some are provably not - ERE universality problem

Given a graph (undirected, although there exist directed version)•
 a cycle in which every vertex is visited at most once. •
This is in NP•

Hamiltonian Cycle Problem (HAM-CYC)

Equivalence of NP Definitions
If have nondeterministic TM, let the certificate be the choice of decisions during the
computation. Can verify on deterministic TM in polynomial time by taking those
decision choices.

If have verifier, is bounded by a polynomial in so nondeterministically generate
all possible up to that bound and test in polynomial time.

Example of Polynomial-Time Reductions
PRIMALITY PRIME-FACTORIZATION
ELEMENT DISTINCTNESS SORTING

Not a polynomial-time reduction:
H10A H10B
mapping

generates an exponential-sized output.

SAT
Boolean Satisfiability

literals - variables or negations•
Boolean operators ()•

Given a Boolean expression consisting of

is there some assignment of truth values to variables that make the expression true?
e.g.

CNFSAT
Boolean formula in conjunctive normal form (CNF)

"AND of OR's"

3SAT
CNFSAT with precisely 3 literals per clause (usually distinct)

Proof of Theorem
Let
Then , but

Take then

If is and is then so

Independent Set Problem
INDEP SET =
An independent set of is a subset of the vertices, no 2 of which are connected by an
edge.
3SAT INDEP SET

Make each clause into a triangle in the graph. Connect vertices that represent negated
variables.

P
P = class of languages where we can decide membership in
polynomial time in where is input.

NP
NP = a class of decision problems decided by nondeterministic
TM' s running in polynomial time.

The longest computational path is of length
The runtime of a nondeterministic TM:

Equivalently,
NP = a class of decision problems where membership is
efficiently checkable given some extra information, called a
certificate.

Verifier
Polynomial-Time Verifier for :
An algorithm , running in polynomial time, that takes inputs of
the form where you are checking if . is a string
("certificate")

think of as a way to convince someone that
 must be polynomial in

P = NP?
$1,000,000 question (Clay Mathematical Institute)

Co-NP
Co-NP =

Polynomial-Time Reductions
 means a polynomial-time computable function such
that

NP-Complete (NPC)
The class of languages in NP such that

C A C
Karp proved: Many other problems (e.g. HAM-CYCLE) are in NPC

Theorem
If and is NP-Complete and is in NP then is NP-

Complete

NP-Hard
We say a language is NP-hard if

 NP-

P and NP
March-19-13 10:04 AM

 CS 365 Page 36

Claim: The graph has an independent set of size iff the Boolean expression is
satisfiable.

If expression is satisfiable, select one node corresponding to on true variable/negated
variable in each clause.
Conversely, an independent set of size k (where is the number of clauses) provides a
valid assignment for the expression.

Note also that INDEP SET is in NP. It is easy to verify.

 CS 365 Page 37

Theorem (Cook, Levin)
The problem SAT is NP-Complete.

Theorem
CNFSAT is NP-Complete

Theorem
3SAT is NP-Complete

Clique Problem
Instance
Undirected graph and an integer k

Question
Does have a subset of cardinality
such that every two distinct vertices in are
connected by an edge.

SUBSET SUM
Instance
Given a set of non-negative integers
 and a target

Question
Does there exist a subset of whose sum is

Proof of Theorem (SAT is NP-Complete)
SAT NP
Guess an assignment of truth values for variables and check that the given formula evaluates to
true.

Have TM M for
On input want to know if

ensure M starts in right configuration•
ensure that M follows its own rules•
ensure that M reaches iff •

Can be any size in terms of ○

must not be too big (in) •

 must mimic the computations of M on input

Write as a square array storing the state of the TM in each row

Step Col. 1 Col. 2 Col. 3 ...

1 # ⎵ ⎵ #

2 #

m #

M runs in time,

So the array needs to be at most

Variables:
 and column has symbol in it where the cells contain

First row is correct:

Final row contains an accepting state (if final state is reached prematurely, allow same row to carry
forward):

Ensure cell validity (each contains exactly one symbol)

Ensure valid moves
Need to look at groups of 3 cells in row and compare with row

 = windows whose upper left is at is legal.
window looks like

 is the set of all legal 6-tuples. This is a finite set that depends on

Check Sizes

So this formula is polynomial in

Theorem (CNFSAT is NP-Complete)
Modify construction from above proof.
 is an of clauses
 is a single clause
 can be rewritten

SAT is NP-Complete
March-21-13 10:05 AM

 CS 365 Page 38

so is now an of clauses

 is of of
Use distributive property:
So can be written as of s. This may make it very big but size is in terms of so not a
problem.

Therefore, by the same argument, CNFSAT is NP-C

Theorem (3SAT is NP-Complete)
CNF Formula:

each looks like
Two bad cases:

Introduce new global variables and

Introduce new variables to chain:
e.g.

 :

Each of these increases the size at most linearly so good.
Therefore C A A

Clique Problem is NP-Complete
 D C QU

 C

If has nodes,

Note to self:
What if only specified graph using edges with nodes implicitly numbered 1-n?
Answer: In most graph algorithms, could just ignore vertices with no edges. In this case, don't
include those in and then just add to the maximum clique size, where is the number of
vertices with no edges.

SUBSET SUM Problem is NP-Complete
Will show 3SAT SUBSET SUM

variables
clauses

Each value in is a decimal number containing only 0 and 1
digit in contains

digit in contains
 and are slack variables. Digit in

1 2 3

 1 0 0 0 ...

 1 0 0 0

 0 1 0 0

 0 1 0 0

 0 0 1 0

 0 0 1 0

 1

 1

T 1 1 1 ... 1 3 3 3

There is a subset of these summing up to iff there is a valid assignment of the variables in .
See Siper for a description of this reduction.

 CS 365 Page 39

The space complexity of a deterministic TM that halts on all inputs is

For a nondeterministic TM that halts on all computational paths on all inputs:

SPACE
also called DSPACE - deterministic
 AC D AC

NSPACE - nondeterministic
 AC

PSPACE

 AC AC

EXPTIME

 D

We know P EXPTIME

 AC

Don't know whether EXPTIME PSPACE, PSPACE NP, and/or NP P

Theorem
If and then

 D

Savitch's Theorem
If AC and then D AC

Implication
NPSPACE = PSPACE

LENGTH-UNIVERSALITY PROBLEM FOR NFA's

An NFA of states.
Instance:

Does there exist some length such that accepts all strings of length .
Question:

Is LENGTH-UNIVERSALITY FOR NFA's in PSPACE?
Unsolved.

Example
 A AC
Proof
Try each possible assignment of variables.
Use binary counter, space
Can evaluate each expression in space

Example
NUP: NON-UNIVERSAILITY PROBLEM FOR NFA's
Instance
An NFA over an alphabet

Question
Is

 U AC
Algorithm: Nondeterministic "guess" and check it.

If has states then iff rejects a string of length ?
Take NFA of states, convert to DFA of states.
If doesn't accept is doesn't accept of length at most

Need for counter
 to maintain list of states for the NFA

Proof of Theorem
Construct computational tree for input of length and traverse it in breadth-
first search.
 nondeterministic choices, is max branching factor.

The tree is of size at most . Takes time to traverse.

Proof of Savitch's Theorem
Suppose is accepted by NTM running in space.

 running time

tape has , state , scanning 1st symbol of

Configuration:

Idea: a big graph of possible moves of on input
Each vertex is a configuration. Edge from one to another if possible to go from that
configuration to the next.

Want to find path between two vertices.
CA D

Idea:

check if c1 = c2 (0 moves)

accept if true

or c1

 c2 (1 move of N)

if t ≤ 1:

CANYIELD(c1, cm,

)

CANYEILD(cm, c2,

)

if both return true, return true.

for each possible cm ()

otherwise:

otherwise reject

CANYEILD(c1, c2, t)

Each CANYIELD call has a stack frame size of bits.

Recursion depth is

Total space is

Call CA D

Assume that if accepts, it erases its tape, moves head to the left, and enters
 . So there is only one accepting configuration to check.

But don't necessarily know .

when at step , go through all configurations of size

If all fail, halt.
check CA D .

Call CANYEILD(for

This is a minor point because usually know

Space Complexity
March-26-13 10:03 AM

 CS 365 Page 40

Boolean formulas, like in SAT logical connectives and literals•
add and •

 ○

quantifiers come first (prenex normal form)•

True Quantifiable Boolean Formula (TQBF)

TQBF is a generalization of SAT. SAT is

PSPACE-Complete

 AC 1)

Reduce in polynomial time, not space.
 AC 2)

 is PSPACE-Complete if

If just 2) is true, L is PSPACE-hard

Theorem
TQBF is PSPACE-complete

FORMULA GAME
Assume and alternate (can stick in dummy variables to make it so)
Think of it as a game:
 - Edward - trying to make formula true
 - Alice - trying to make formula false

Given a formula , does Edward have a winning strategy? Makes the
formula true.

FORMULA GAME:

GENERALIZED GEOGRAPHY
Given a directed graph G and an initial vertex , players Edward and Alice take
turns choosing a previously unvisited vertex connected to the current one.

Question:
Does Edward have a forced win?

Proof of Theorem
Draw tableau of tape configurations for PSPACE computation
Width: polynomial

Height:
,

So this strategy fails. Can't prove by same method as SAT is NP-Complete

Idea:

Create a Boolean formula ,
for some

Show how to build

abqcde
What are the variables? Each cell of configuration has a variable

Write formula to verify each cell has exactly one variable.

 true iff symbol of the configuration =

 : True if both rows of the same
 : Allow a single transition. Like SAT proof.

Base case:

Try divide and conquer:

Gives
 is exponentially large, so this does not work.

Recurrence is

Want to avoid multiplying formula. Write something like

More formally,

Note, this requires to be a power of two. Just allow an accepting
configuration to repeat so there will be a path in a power of 2 number of
steps.
Also assume only one accepting configuration.

 , is polynomial.

Therefore, TQBF is PSPACE-hard

All variables are boolean, so recursive assign 0 or 1 to each variable and
check if or is true. Stack is in size. Therefore TQBF is in PSPACE
 QB AC -Complete

GENERALIZED GEOGRAPHY in PSPACE-Complete
In PSPACE. Can solve it in PSPACE the same way as TQBF

See Sipser for reduction from TQBF

PSPACE-Complete
March-28-13 10:02 AM

 CS 365 Page 41

Sublinear Space Model
Need a new model to deal with sublinear space. With TM we get linear space for free.

i n p u t $

Input tape is finite and contains just the input with delimiters.

The input tape is read only.
There is a read/write work tape, and a finite control.

The space used on an input of size n = maximum number of cells scanned on the work tape.

Proof of Theorem (L P)

each cell holds an element of Γ, the tape alphabet: ○

state currently in: possibilities○

C •

head position on input tape: n+2 possibilities•
head position on work tape: c log n•

A configuration of a machine running in log space:

Total # of configurations:

simulate M, keeping track of # configurations.
If it exceeds , then in an infinite loop so halt and reject, otherwise do what does.

The same argument applies for

Example

Yes, because we can use the work tape as a binary counter. bits to count # of 0's
Use decrementer for each 1. Hit 0, accept if at right end marker

Example: PATH
 A
 A D B /D
 A ! U A U CO 8

Theorem (PATH NL)
G is a graph with vertices

u := s
counter := 0

if v = t then accept
guess nondeterministically an edge
if it exists, replace by
counter++

while counter < M

else reject

Start at s,

Total space needed is , = input size

Done1)
Take a language 2)
Then there exists a nondeterministic -space bounded TM M accepting B

Given the description of M and input , we need to output G, the configuration graph and
vertices s, t such that a directed path in G iff M accepts w.
A configuration of M - head positions, work tape contents, state
We can check if in log space.
s = initial configuration, t = accepting configuration.

Proof of Theorem (PATH is NL-Complete)

Recall:
 and then

If is computable in time and if B-decider runs in time then

runs in time to compute ,

Total time:

Proof of Theorem
Machine for A simulates the machine computing f but discards all output bits except the one that is
needed by B. That one is given by a counter into the input tape which "holds"

Each time simulator for B needs an input cell, run on A to get it.

Proof of Theorem (
 A A . So A
W A B D

LOGSPACE
L = DLOGSPACE = DSPACE(log n)
NL = NLOGSPACE = NSPACE(log n)

A pointer into the input requires log n space so can
think of this as the problems that can be solved with a
constant number of pointers.

Theorem

Theorem
 A

Corollary, by an appropriately modified Savitch's
theorem for this model,

 A D AC

Open Problem
Does L = NL?

NL-Complete

A 1)
 B 2)

A is NL complete if

 is a logspace reduction (uses a logspace
transducer)

Hierarchy:

Non-intersection of L and NLC is hypothesized but
unknown.

Logspace Transducer

a read-only input tape•
a write-only output tape where the head can
only move right

•

a work tape using only cells•

A logspace-transducer is a TM T with 3 tapes:

On input x, the machine T write on its output
tape.

Theorem
PATH is NL-Complete

Theorem
If and then
If and then

Theorem

Hierarchy of Complexity

LOGSPACE
April-02-13 10:02 AM

 CS 365 Page 42

W A B D
 A

 CS 365 Page 43

Theorem
NL = co-NL
co-NL =

Observation

Proof:
Use the same logspace transducer

Lemma
 and B -NL
 A -NL

Proof of Theorem
Strategy: A
PATH =

Goal: given a graph G and vertices s,t determine that there is no path from s to t in G in
nondeterministic log space.

Note that A consists of malformed inputs, and inputs representing where is not
reachable from . Former case can be done in not much space.

Proof of Lemma
B -
if then so
 A -

Why is proving sufficient?
Now PATH is NL-complete
Let A be a language in NL
A A A

if A then so

How to verify in NL that no path exists, given that is the total number of nodes reachable
from S.

If path exists and then rejecti.
If path exists and then ii.
If path does not exist rejectiii.

Guess a path and verify it.a.

if then acceptb.

Loop over all vertices 1.

how many vertices are reachable from in G in steps.

S := 1

T := 0 (enumerates vertices in)

if successful, increment counter T

If so, increment counter S and break
check if or is an edge.

For each vertex , guess an -step path from to

If , reject (guessed wrong and missed a path in)

For each vertex (want to find step path from to)

How to compute from ?

Compute for each ,

Co-NL
April-04-13 10:05 AM

 CS 365 Page 44

Theorem
If , are functions from and

then D AC D AC

Space-Constructible
 is space-
 its output tape and uses space

Proof of Theorem
Idea

Create a TM A accepting D AC but no machine running in space will be able

to decide . must be space-constructible.

By allowing arbitrarily large input, eventually for large enough ○

rejects if the input is not •

If accepts we reject○

if rejects we accept○

otherwise, it simulates on input and do the opposite. •

need the ability to mark tape cells. Fine so long as is space constructible•
mark tape at position and if simulation of exceeds, reject. •

if it exceeds , reject.○

Use another track to count the number of steps in the simulation of M on •

A:

So behaves differently than every TM for D AC

Therefore D AC D AC

Hierarchies
April-04-13 10:46 AM

 CS 365 Page 45

Kleene Theorem
DFA = gNFA = NFA- = REG
State Elimination

1: Convert to 1 initial, 1 final, no trans to
initial, no trans out of final.
2: Add transitions

Definitions
Regular Expression:
DFA:
NFA:
CFG:
CNF: Every production:

PDA:

TM:
Accepted/recognized:
TM computes a function if

Pumping Lemma for DFA
If is regular then
 a constant (which could depend on)

 such that

Contrapositive for PL for DFA
If constants

 such that

 s.t.
then is not regular

Closures

n- D A
&

Algorithm for CNF

Get rid of useless variables1.

Introduce
Replace all terminals that appear in a RHS with length 22.

Shorten RHS in large productions3.

For , replace by
Remove -productions: 4.

For add
Remove unit productions5.

CFG=>PDA

Store suffix & sentinel on stack. Match prefix w/ input.
PDA=>CFG

 if and

Pumping Lemma for CFL's

If L is a CFL then

Contrapositive of Pumping Lemma for CFL's
If

 such that
then is not a CFL

Theorems
 with {0, 1} that on input on w and do what T does on input w
If and are both Turing-recognizable (r.e.) then and are both Turing-decidable (recursive)

 accepted by multitape TM in

If and then D

Savitch: If AC and then D AC
 and B - A -NL

If , are functions from and then D AC D AC

Rice's Theorem
If is a nontrivial property then the decision
problem "Given , does have the
property ?" is unsolvable.

Undecidable
Halts, PCP (dominoes), INT2CFG(?), AMBIG (CFG)
NP

HAM-CYC
NP-complete

SAT, CNFSAT, 3SAT, INDEP-SET, CLIQ, SUBSET-SUM
PSPACE
SAT, NUP (NFA A,)
PSPACE-complete

TQBF, Generalized Geography
NL-Complete
 A

Reductions
 Use TM solving to solve

 "Mapping",

 Polytime mapping reduction
 is a logspace reduction, in/work/out

Complexity Classes

 = languages accepted by multitape TM's in time

P =

NP = given certificate, can verify membership in polytime
Co-NP =

NP-hard:

NP-complete = NP NP-hard
SPACE(f(n)) = DSPACE(f(n))
NSPACE(f(n))
PSPACE = AC

EXPTIME = D

L = DLOGSPACE = DSPACE(log n)
NL = NLOGSPACE = NSPACE(log n)
co-NL = = NL

Space Constructible
 is space-
on input 1 writes its output tape and

uses O space

A C

 CS 365 Page 46

