Features and Constraints

May 20, 2014 2:32 PM

Search Strategies

A* Backtracking Local Search

Features

Domain e.g. $dom(x_1) = \{a, b, c\}$ $x_1 \leftarrow a$

Boolean Satisfiability (Example)

Variables A, B, ..., GDomains dom $(A) = \{$ true, false $\}$ Constraints $(\neg A \lor \neg B) \land (\neg B \lor \neg C \lor D)$

Constraint Terminology and Notation

Intentional Constraint Description Formula to be satisfied Extensional Constraint Description A list of valid tuples

Tuples

t = (1,4) with variables x_1, x_2 $t[x_1] = 1$ $t[x_2] = 4$

Vars

C is a constraint vars(C) is variables in constraint C

Example: n-Queens

4-Queens as a constraint satisfaction problem (CSP) Variables Each grid location, x_{ij} , i = 1, ..., 4, j = 1, ..., 4Domains $dom(x_{ij}) = \{0,1\}$ $x_{ij} \leftarrow 1$: There is a queen on (i,j)Constraints

$$\forall i \sum_{\substack{j=1\\j=1}}^{4} x_{ij} = 1$$
$$\forall j \sum_{\substack{i=1\\j=1}}^{4} x_{ij} = 1$$

And each diagonal $\sum x_{ij} \le 1$

Alternate Formulation

Variables $x_i, i = 1, ... 4$ (one for each column) Domains dom $(x_i) = \{1, 2, 3, 4\}$ (row positions) $x_i \leftarrow j$ There is a queen in column *i*, row *j* Constraints $\forall i \forall j \ x_i \neq x_i \land |x_i - x_i| \neq |i - j|$

Example: Crossword Puzzle

Variables $x_1, ..., x_{23}$ Domains $dom(x_i) = \{'a', 'b', 'c', ..., 'd'\}$ Constraints Consecutive grid locations form words in dictionary. All words used exactly once. Non Binary

Alternate Formulation

Variables 1Across, 1Down, 2Down, ... Domains dom(1Across) = {All 5 letter words} Constraints (Binary) 1Across and 1Down agree on assignment of the first letter. ... Same for all pairs of intersecting rows/columns.

Alldifferent constraint - 4 Queens Example

Variables x_1, x_2, x_3, x_4 (each column) Constraints alldifferent (x_1, x_2, x_3, x_4)

...

Constraint Propagation

May 22, 2014 2:33 PM

Example

Variables x, y, zDomains $\{1,2,3\}$ Constraints c_1 : x < y c_2 : y < z

Check Arc Consistency and Remove Inconsistent Values

 $x \text{ and } c_1$ $dom(x) = \{1,2,3\} \Rightarrow \{1,2\}$ $y \text{ and } c_1$ $dom(y) = \{1,2,3\} \Rightarrow \{2,3\}$ $y \text{ and } c_2$ $dom(y) = \{2,3\} \Rightarrow \{2\}$ $z \text{ and } c_2$ $dom(z) = \{1,2,3\} \Rightarrow \{3\}$ $x \text{ and } c_1$ $dom(x) = \{1,2\} \Rightarrow \{1\}$

n variables m values for each k constraints per variable $\frac{nk}{2}$ constraints total

> Constraints always satisfied. Number of constraint checks:

Naïve backtracking *nk* checks MAC

$$\frac{nk}{2}m + nkm$$

Comparison of naïve backtracking vs MAC

n variables. Each variable has domain size *m* There is a single binary constraint for each pair of variables. $\frac{n(n-1)}{2}$ constraints total.

Each constraint is satisfied with probability *p*

What is the branching factor of naïve backtracking?

Consider a node with *l* free variables. This node is satisfiable if there is any assignment of the *l* variables that satisfy all $C = \frac{l(l-1)}{2} + l(k-l)$ constraints. An assignment is satisfactory with probability p^{C} None of the m^{l} assignments are satisfactory with probability $(1 - p^{C})^{m^{l}}$ So a node at height *l* is satisfiable with probability $q(l) = 1 - (1 - p^{C})^{m^{l}}$

Given that a node is satisfiable with probability q(l), what is the expected branching factor?

Probability that a node at height *l* has branching fractor *b* is $P(B_l = b) = (1 - q(l))^{b-1} \times q(l)$

This is a geometric distribution with expected value

$$E(B_l) = \frac{1}{q(l)}$$

What is the expected number of nodes in the search tree

starting at height l? N_l is the expected number of nodes. B_l is the random variable giving the branching factor of nodes at neight l. Recurrence:

$$N_l = \sum_{b=0}^{m} P(B_l = b) N_{l-1}$$

Local Search

May 27, 2014 2:33 PM

Example: 4-Queens

Alternative 1

All constraints into cost function +1 for each constraint that isn't satisfied Set of all states: CSP with no constraints. Set of all solutions: set of all 4-tuples over the set {1, 2, 3, 4}

Neighbourhood function: Swap pairs of values? Solution isn't necessarily reachable. e.g. from (1, 1, 1, 1)

Alternative 2

Cost function: +1 for each of $|x_i - x_j| \neq |i - j|$ that is not satisfied Set of all states must satisfy $x_i \neq x_j \forall i, j$

More specifically, all different(x_1, x_2, x_3, x_4) Set of all states: : all permutations of 1, 2, 3, 4. Neighbourhood function: Swap pairs of values.

Local Search for TSP

Nodes: Permutations of Cities Cost function: cost of tour Neighbourhood function: 2-opt: delete two edges from tour to break tour into two pieces and then reconnect

Starting Tour

- Greedy Algorithm
 - Pick lowest cost one next
- Alternative: randomly pick a starting node, run greedy algorithm
- Alternative: pick randomly from lowest few in greedy.

Satisfiability

Set of states: all possible assignments of true or false to Boolean variables. Cost function: +1 for each unsatisfied constraint Neighbourhood function: Change/flip k variables

Example: Partition

Set of all states: $x_i: i = 1, ..., \#$ of objects $dom(x_i) = \{0, 1\}$ All possible assignments where $x_i = 0$ means x_i is in U $x_i = 1$ means x_i is in VCost function : difference in weights of U and Ve.g. $u = \{a, b, c, d\}, v = \{e, f, g, h\}, |32 - 58| = 26$ Neighbourhood function Poor: Swap two: pick an object from U and one from V and swap them Better: Dick on object from U and one from V and swap them

Pick an object and move it to the other set.

Set Covering

Cost function: size/cost of cover setting penalize for uncovered rows

Genetic Algorithms

May 29, 2014 2:45 PM

Example Representations: 4-queens

What are the x_i ?

- 1. Permutation representation e.g. (2, 1, 4, 3)
- 2. Extended pair representation

For each pair of queens, which one comes before the other $\frac{x_{12}}{0}, \frac{x_{13}}{0}, \frac{x_{14}}{1}, \frac{x_{23}}{1}, \frac{x_{24}}{0}, \frac{x_{34}}{1}$ $x_{ij} = 1 \text{ if } x_i < x_j \text{ and } 0 \text{ otherwise}$

Solution: 101001

- 3. Possible row positions encoded in binary
 - $x_1 \ x_2 \ x_3 \ x_4$
 - $\overline{00}$, $\overline{00}$, $\overline{00}$, $\overline{00}$
 - 01 01 01 01
 - 10 10 10 10 11 11 11 11

Fitness Function

of constraints satisfied

Genetic Operations

Mutation (Unary) Flip a bit(s) with some small probability

Crossover (Binary)

Given $a = (a_1, ..., a_m)$ and $b = (b_1, ..., b_m)$

child = (c_1, \dots, c_m)

 c_i = choose between a_i or b_i (not a good description)

Logic & Inference

May 29, 2014 3:16 PM

Holmes Scenario

Variables

- *w* watson calls
- g gibbon calls
- a alarm
- b buglaring

Knowledge Base

 $w \Rightarrow a$, $g \Rightarrow a$, $a \Rightarrow b$ But these are not categorically true. Logic insufficeint Query b? Is there are burglary in progress)

Probability

June 3, 2014 2:41 PM

Axioms of Probability

- 1. All probabilities are between 0 and 1 $0 \le P(a) \le 1$
- 2. Necessarily true propositions have probability 1 Necessarily false propositions have probability 0 P(true) = 1, P(false) = 0
- 3. The probability of a conjunction is given by, $P(A \land B) = P(A) + P(B) - P(A \lor B)$

Example - Slides: Holmes Example

$$\begin{split} P(B) &= p_1 + p_3 + p_5 + p_7 \\ P(W \land B) &= p_5 + p_7 \\ P(W \lor B) &= p_1 + p_3 + p_4 + p_5 + p_6 + p_7) \\ P(W \lor \neg W) &= 1 \\ P(B|W) &= \frac{P(B \land W)}{P(W)} = \frac{p_5 + p_7}{p_4 + p_5 + p_6 + p_7} \\ P(\neg B|W \land A) &= \frac{P(\neg B \land W \land A)}{P(W \land A)} = \frac{p_6}{p_6 + p_7} \end{split}$$

Examples of Probabilistic Reasoning

Example: (B)urglary and (A)larm Suppose the alarm in 95% of cases is accurate. i.e. if there is a burglary, the alarm goes. In 97% of cases when not burglary, the alarm does not go We get

False positive $P(A|B) = 0.95, \quad P(A|\neg B) = 0.03$ $P(\neg A|B) = 0.05, \quad P(\neg A|\neg B) = 0.97$ Probability of burglary $P(B) = 0.0001, P(\neg B) = 0.9999$

```
Suppose alarm goes. What is the probability of a burglary.

P(B|A) = \frac{P(B \land A)}{P(A)} = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|\neg B)P(\neg B)} = \frac{0.95 \times 0.0001}{0.95 \times 0.0001 + 0.03 \times 0.9999}
= \frac{0.000095}{0.030092} = 0.00316
```

Belief Network

June 5, 2014 3:05 PM

Edges represent dependencies between variables. What do the numbers mean? Frequentist approach / statistics - objective Bayesian / subjectivist approach - degrees of belief

Exact algorithms for finding a particular joint probability given a belief network: Variable elimination Cache intermediate results Factor as much as possible Exact query answering: #P-Complete (worse than NP-Complete)

Approximate Algorithms

Example

$$P(B = \text{false}, G = \text{true}, W = \text{true})$$

$$= \sum_{e \in \text{dom}(E)} \sum_{a \in \text{dom}(A)} \sum_{r \in \text{dom}(R)} P(B = \text{false}) P(G = \text{true}|A = a) P(W = \text{true}|A = a) P(A = a|B = \text{false}, E = e) P(E = e) P(E = e) P(R = r|E = e)$$

$$= P(B = \text{false}) \left[\sum_{a} \sum_{e} \sum_{r} P(G = \text{true}|A = a) P(W = \text{true}|A = a) P(A = a|B = \text{false}, E = e) P(E = e) P(E = e) P(E = e) \right]$$

$$= P(B = \text{false}) \left[\sum_{a} \sum_{e} P(G = \text{true}|A = a) P(W = \text{true}|A = a) P(A = a|B = \text{false}, E = e) P(E = e) \left(\underbrace{\sum_{r} P(R = r|E = e)}_{1} \right) \right]$$

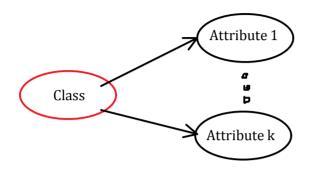
$$= P(B = \text{false}) \left[\sum_{a} P(G = \text{true}|A = a) P(W = \text{true}|A = a) \left[\sum_{e} P(A = a|B = \text{false}, E = e) P(E = e) \right] \right]$$

Supervised Learning

June 12, 2014 2:32 PM

Naïve Bayes

Querying a Naïve Bayes Network



Let domain of class variable be $\{c_1, ..., c_k\}$ Given values for the attributes Attribute $1 = a_1$

iAttribute k = a_k

To predict class

 $\operatorname{argmax}_{c_{i}} P(\operatorname{class} = c_{1} | \operatorname{evidence}) = \operatorname{argmax}_{c_{i}} P(\operatorname{class} = c_{i} | \operatorname{Attribute} 1 = a_{1}, \dots, \operatorname{Attribute} k = a_{k})$ $= \operatorname{argmax}_{c_{i}} P(\operatorname{class} = c_{i} | a_{1}, \dots, a_{k}) = \operatorname{argmax}_{c_{i}} \frac{P(\operatorname{class} = c_{i} \land a_{1}, \dots, a_{k})}{P(a_{1}, \dots, a_{k})}$ $= \operatorname{argmax}_{c_{i}} \frac{P(\operatorname{class} = c_{i}) \prod_{j=1}^{k} P(a_{j} | \operatorname{class} = a_{j})}{P(a_{1}, \dots, a_{k})}$ $= \operatorname{argmax}_{c_{i}} P(\operatorname{class} = c_{i}) \prod_{j=1}^{k} P(a_{j} | \operatorname{class} = a_{j})$

Learning arcs and probabilities

Each attribute/features becomes a node in the network. Steps

1. For each attribute and each possible set of parents, calculate a score

 $a_i, \quad a_1 \to a_i, \dots, a_k \to a_i, \dots, \quad (a_1, a_2) \to a_i, \dots, (a_{k-1}, a_k) \to a_i, \dots$ Many possible scores. Scores capture goodness of fit and penalty term for complexity. Two popular scores: BIC & BDeu

BIC = Bayesian Information Criterion

Bdeu = Bayesian Dirichlet (likelihood equivalence) (uniform joint distribution) 2. For each attribute/class variable pair pick a parent set such that

- a. there are no cycles, and
- b. the sum of scores is minimized

Pruning rule: Two parent sets p, p' for some attribute

 $p \subset p'$ and $cost(p) \le cost(p')$ then prune (remove) p'

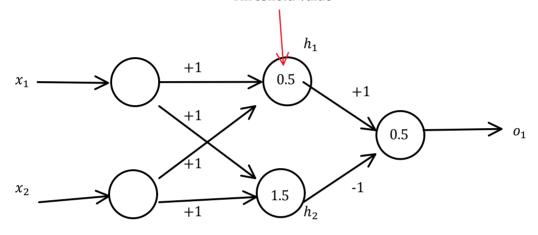
Neural Networks

June 26, 2014 3:28 PM

Example: XOR Function

Input	Output
$x_1 x_2$	<i>y</i> ₁
0 0	0
01	1
10	1
11	0

Threshold value



Step function
$$f(x) = \begin{cases} 0 & \text{if } x \le 0 \\ 1 & \text{if } x > 0 \end{cases}$$

 $h_1 = f(x_1 + x_2 - 0.5)$
 $h_2 = f(x_1 + x_2 - 1.5)$
 $o_1 = f(h_1 - h_2 - 0.5)$
 $x_1 & x_2 & h_1 & h_2 & o_1$
 $0 & 0 & 0 & 0$
 $0 & 1 & 1 & 0 & 1$
 $1 & 0 & 1 & 0 & 1$
 $1 & 0 & 1 & 0 & 1$
 $1 & 1 & 1 & 0$

Backpropagation Learning Algorithm

 $\begin{array}{cccc} x_1 - h_1 & - o_1 \\ \mathrm{X} & \mathrm{X} \\ x_2 - h_2 & - o_2 \\ \vdots \\ \mathrm{X} & \mathrm{X} \\ x_A - h_B - o_C \end{array}$

Each hidden and output unit uses signal function $f(x) = \frac{1}{1+e^{-kx}}$ Output is a value between 0 and 1

Handling Thresholds

$$h_j = f\left(\left(\sum_{i=1}^A w \mathbf{1}_{ij} \cdot x_i\right) - \beta_j\right), \qquad j = 1, \dots, B$$

Rewrite as,

 $h_j = f\left(\sum_{i=0}^{A} w \mathbf{1}_{ij} \cdot x_i\right), \qquad j = 1, \dots, B$ where $x_i = -1$ and $w \mathbf{1}_{ij}$ is the threshold

where $x_0 = -1$ and $w 1_{0j}$ is the threshold for h_j

Same for output layer:

$$o_k = f\left(\sum_{j=0}^{B} w 2_{jk} \cdot h_j\right), \qquad k = 1, \dots, C$$

where $h_0 = -1$

Error Term

error
$$=\frac{1}{2}\sum_{k=1}^{C}(y_k - o_k)^2$$

Algorithm

1. Initialize weights & thresholds to small random values

$$w1_{ij} = random(-0.5, 0.5), \quad i = 1, ..., A, \quad j = 1, ..., B$$

 $w2_{jk} = random(-0.5, 0.5), \quad j = 1, ..., B, \quad k = 1, ..., C$
 $r_{ij} = -1$ These power change

- $x_0 = -1, h_0 = -1$ These never change 2. Choose an input-output pair ffrom the training set. Call it \bar{x}, \bar{y} where $\bar{x} = (x_1, ..., x_A), \ \bar{y} = (y_1, ..., y_C)$
- Assign activation levels of $x_1, ..., x_A$ (input units)
- 3. Determine activation levels of hidden units.

$$h_j = f\left(\sum_{i=0}^A w \mathbf{1}_{ij} \cdot x_i\right), \qquad j = 1, \dots, B$$

4. Determine activation levels of output units

$$o_k = f\left(\sum_{j=0}^B w 2_{jk} \cdot h_j\right), \qquad k = 1, \dots, C$$

- 5. Determine how to adjust weights between hidden and output layer for this example. $E2_{j} = \underbrace{k}_{\text{from sigmoid}} \cdot o_{j}(1 - o_{j})(y_{j} - o_{j}), \quad j = 1, ..., C$ Sigmoid: $f(x) = \frac{1}{1 + e^{-kX}}$
- 6. Determine how to adjust weights between input and hidden layer for this example.

$$E1_j = k \cdot h_j \cdot (1 - h_j) \sum_{i=1}^{\circ} E2_i \cdot w2_{ji}, \quad j = 1, ..., B$$

- 7. Adjust weights between hidden and output layer. $w2_{ij} = w2_{ij} + \text{LearningRate} \cdot \text{E}2_j \cdot h_i, \quad i = 0, ..., B, j = 1, ..., C$
- 8. Adjust weights between input and hidden layer $w1_{ij} = w1_{ij} = \text{LearningRate} \cdot \text{E1}_j \cdot x_i, \quad i = 0, ..., A, j = 1, ..., B$
- 9. Repeat steps 2-8 until done.

Parameters

Learning rate: range: 0.05 to 0.35 Sigmoid constant *k*

$$f(x) = \frac{1}{1 + e^{-kx}}, \qquad k \ge 0$$

Number of hidden units

Stopping Criteria

Maximum number of epochs. epoch = once through training set. Error is acceptably small

- discrete/classification error
- total number of bit-errors
- continuous error $\sum (y_j o_j)^2$