Number Systems
September-14-10 12:24 AM

N - Natural Numbers
{1,23, ..}

Z - Integers
{-,..,-1,0,1, .., 0}

Q - Rational Numbers
{5 p.qeR q#0}

Well Ordering Principle:
Every non-empty subset of N
contains a least element.

Proof by Contradiction:
Assume the opposite of what
you are trying to prove then
derive a contradiction

Coprime:

Two numbers are said to be
coprime when they have no
common factors.

N is well ordered.

Proof of Well-Ordering Principle :
Let S be a non-empty subset of N
Pickn €S

Go through all natural numbers starting at 1. If that number is in S then it is the least number and

terminate. This will terminate after at mostn steps.

Note: Z does not satisfy the WOP

Ex: Q ={xeQ x= 0} does nothave WOP because, for instance { x € Q, x > 0} does not have a least

element.

Qs closed under +, -, X, +

Numbers that are not rational: Irrational Numbers
Eg.v2!eQ

Suppose /2 € Q <- Proof by contradiction
Then \/7=§wherep,quandq;t 0

Assume p, q are coprime
V2g=p 2q% =p?-p?iseven - piseven
Say p = 2k for some k e Z

2q% = (2k)? = 4k

q? = 2k? - qiseven

This contradicts the assumption that p and q are coprime
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Mathematical Induction

September-15-10 10:30 AM

Theorem:
A certain and proved mathematical truth.

V - For all

Principle of Mathematical Induction
Theorem:
For eachn e N let P(n) be a statement about n.
Suppose: (hypothesis)

1. P(1)istrue.

2. P(k+1) is true whenever P(k) is true
Then P(n) is true for everyne N

Proof of Principle of Mathematical Induction
Suppose the conclusion is false (Proof by contradiction)
Then there is some n € N so that P(n) is not true.

Let S = {k e N: P(k) is not true}

Then S is a non-empty set of N

By W.0.P. S contains a least element, say n

Means P(n) is not true (because n € S)

And ifk e Nand k < n , then P(Kk) is true

Noten #1,son -1eN

Hence P(n - 1) is true.

By assumption (2), P(n -1+1) = P(n ) is true.
This contradicts the previous observation that P(n ) is not
true.

Hence our initial claim was wrong, thus P(n) is true for all n e

N

Principle of Strong Induction
Suppose P(n) is a statement for eachn e N
Assume:
1. P(1)istrue
2. P(k)is trueif P(j) is true for all j e N, with j <k
Then P(n) is true forallne N

Proof of Principle of Strong Induction

Suppose conclusion is false.

Let S = {k e N: P(k) is not true}

Then S is a non-empty set of N

By W.O.P. S contains a least element, say n

Means P(n ) is not true (because n €S)

And ifk e N and k < n , then P(k) is true (because n is the
least element of S)

Hence P(n - 1) is true. Inface, P(j) istruevVj<n,jeN

By assumption (2), P(n ) is true

This contradicts the previous observation that P(n ) is not
true.
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Induction to prove sum of geometric series formula

T—T‘n+1
Pm)=1+r+r2+r3+ ...+r"=1——
-r
2
r—r
P)=——=r
1-r

Must show P(k + 1) is true when P(k) is true
Assume P(K) is true and look at P(k+1)
r+r? 4 bkl

T—Tk+1 +Tk+1 X (1 —T) T—Tk+2

1-r T o1-7r
So P(k+1) is true

Make sure to check base case

Eg. P(n) = 100

If P(n) is true then n > 100 and thereforen+ 1 > 100
However, P(1) is false

Example:
Prove 2" > n?Ifn > 5

Two methods to approach:
P(n) = 2" > (n + 4)? and base case is P(1)
P(n) = 2" > n?and base case is P(5)

Note that if P(5) is true and P(k+1) is true whenever P(K) is true then
P(n) is true for alln > 5.

P(5) = 2% > 52 = 32 > 25 is true.
P(k) =2k > k2
P(k+1)=2%1> (k+1)2
=2x2k>k24+2k+1
P(k+1)—P(k)=2Fk>2k+1

Lemma: 2" >2n+1,n>5
P(k) =2k >2k+1

P(k+1)=2x2%>2k+3
P(k+1) —P(k) =2Fk>2

Lemma: 2¥ > 2,n > 5

P(5) =32 > 2istrue

2k+1 =2 2k

Therefore 2¥*1 > 2k for all integer k
Since 2° > 2,2k > 2

Since 2% > 2,if 2% > 2k + 1is true then 2%*1 > 2(k + 1) + 1 is true as
well.
Therefore, 2™ > 2n+ 1,n =5

Since 2" > 2n + 1,if 2¢> k? is true then 2**1> (k + 1) is true as well.
Therefore 2" > n%,n>5



Proof by Strong Induction Suppose f: N-> @ is defined by f(1) =1,f(2) =2,and f(n + 2) = %(f(n +D+f(m))n=1
September-17-10 10:39 AM
Prove RangefE€ Qand 1 <f(n) <2forallneN

Answer - use strong induction

Let P(n) be the statement that f(n) € Q
True forn=1andn =2

1
fl) =5 (fr=1D+f(n-2)

Assume f(j) € Q for all j<k in order to check f(k) € Q
And thus is true since f(k-1) and f(k-2) € Q and Q is a field.

By principle of induction, f(n) € Q foralln € N

Now let P(n) be the statement 1< f(n) <2

Trueforn=1, 2

Assume P(j) is true for j < k (and k > 3)

Then £ (k) = 3 (f(k — 1) + f(k — 2))

Since f(k) is the average of two number between 1 and 2, 1 < f(k) <2

Therefore P(k) is true
So by mathematical induction, P(n) is true for alln € N
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Inequalities
September-17-10 10:54 AM

Arithmetic / Geometric
mean inequality
Ifa, b >0 then Vab < (a +b)

Triangle Inequality
|a+b| <|a] + |b|

|a-b[=][a] - bl

Definition
Define R by stating its properties

1. Field: can +, -, X, = and "good" properties
a. Qisanother field, Z is not a field
2. Order property
a. There is arelation < on R X R so that for every x, y € R either x <y or y < x or x =y and other
'good’ properties

Arithmetic / Geometric mean inequality
Ifa, b >0 then Vab <> (a +b)

Proof:
0<(va-vb) =a -2Vab+b
Vab<a+b

va—bg%mm

Absolute Values
lal={aif a=0,—aif a <0}

Eg.
la|? = a2

Va2 = a|

|x| <rmeans-r<x<r

|a-b]| <rmeans-r<a-b<r
b-r<a<b-r
a-r<b<a-r

Triangle Inequality
la+b| <|al + |b]

Proof:

-la]<a<|a|

-|lb| <b < |b]

-(Ja] + b)) <a+b<|a] + |b|

Corollary: Reverse Triangle Inequality
la-b| =|lal - |b]|

Proof:

|a] = |(a-b) + b| < |a-b| + |b| by triangle inequality
lal - [b] < |a- b|

Similarly, |b] = |(b-a) + a| < |b-a| + |a] = |a-b] + |a]
So |b| - |a] < |a - b| Together this implies:
la-b|=]lal - bl|
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Bounds
September-20-10 10:31 AM

Bounded Above

A non-empty subset A of an ordered set (think of R) is
said to be bounded above if there is some x € ordered set
such thata < x for every a € A

Bounded Below

A non-empty subset A of an ordered set (think of R) is
said to be bounded above if there is some x € ordered set
such thata < x for everya € A

Bounded
We say a is bounded if it is both bounded above and
bounded below.

Upper/Lower Bound
Any x witha <x /a>xforalla € A s called an upper
bound / lower bound for A.

Least Upper Bound (LUB) - Supremum or
Sup
A number x is called the least upper bound (LUB) of A if:
1. xisan upper bound for A
2. Ifyis any other upper bound for A, theny > x

Greatest Lower Bound (GLB) - Infemum or
Inf
A number x is called the greatest lower bound (GLB) of A
if:

1. xisalower bound for A

2. Ifyis any other upper bound for A, theny < x

LUB and GLB are unique.

Completeness Axiom R

(Completeness Property or "No Holes Property")
Every non-empty set of real numbers that is bounded
above has a LUB.

Formal Definition of R

R is an ordered field containing N, and has the
completeness axiom.
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Example:
Find a number, C, such that |f(x) < C| for all 2< x < 3 when

x3—-2x+1
fO)=——7—

=|x%—2x +1| x ———
[fCIl = lx* —2x + 1] 2x 1|

|x3 —2x + 1] < |23 + 2x] + 1
<27+6+1=34

12x =1 =2x —1on2<x<3

>2x2-1=3

> < Hoc=2
3 3

Bounds

Z - not bounded above or below

{q € Q: g > 0} - bounded below but no x which is a lower bound belongs to the set

E.g.Q O0istheGLB

11 1 1
E.gA = {1, 373030 50
Upper bounds: 42, pi, 7
Lower bounds: -4, -100
LUB: 1 (Note 1 € A)
GUB:0 (Note 0 ¢ A)

The set has a greatest element but no least element

J

Theorem:
x is the LUB for A < R iff:
1. Xisan upper bound for A
2. Forevery z <x, there is some a € Asuch thatz <a

Proof
(=) Assume x is the LUB of A
1. Holds directly from the definition
2. Take z < x. Then zis not an upper bound of A (property 2 of definition)
So there must be some a € Awitha>z
(Can also be written: For every € > 0 there exists some a € A such that x- € < a)

(&) Assume the two properties (1) and (2) stated with the theorem hold.
Want to prove x is the LUB of A so we must verify the two parts of the definition of LUB

1. (1) clearly holds as it is property (1) of the theorem.

2. To show part 2 of definition holds, take y any other upper bound for A. Suppose y < x. By
(2) of the theorem, there exists an a € A such thaty < a. This contradicts the fact thaty is
an upper bound for A. Hence we must have that y > x, satisfying property (2) of the
definition.

Therefore, x is the LUB

Exercise: State and prove the corresponding characterization for GLB



Completeness Axiom and R
September-20-10 11:20 AM

Completeness Axiom R

(Completeness Property or "No Holes Property")

Every non-empty set of real numbers that is bounded above
has a LUB.

Formal Definition of R
Ris an ordered field containing N, and has the completeness

axiom.

Ordered Field

An ordered field is a field with a total ordering of its elements.

Total Order

A set s totally ordered when it has the following properties:
e Antisymmetry: Ifa <bandb < athena=b
e Transitivity:Ifa<bandb<cthena<c
e Totality:a<borb<a

Archimedean Property
Given any x € R there issome N € N such thatx <N

Corollary:
GLB{-:neN}=0

Density of Rational Numbers
If X,y € R and x <y, then there is some q € Q such that
x<q<y
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Proof of Archimedean Property

Suppose the Archimedean property is false.

Then there is some x € R with x > N for every N € N.

This means N is a set which is bounded above.

By the completeness property, N has a LUB, say z € R.

Then z-1 is not an upper bound (UB) for N hence there must be some
N € N which is bigger than z-1.

This means N +1 > z and since N + 1 € N this contradicts the
statement that z is an upper bound for N.

Proof of Corollary to Archimedean Property
S={-:ineN}

0 is a lower bound since the set consists of positive numbers.
Letz> 0. Then%e R

By the Archimedean property, there exists N € N such that N > %

>z> %then z is not a lower bound for S
Therefore 0 is GLB(S)

Sketch of why V2 € R

Why is there a real number r withr > 0 andr? = 2
LetS={yeR:y2 <2}

3/2 is an upper bound so S is non-empty and bounded above.
By the completeness axiom, S has a LUB, call itw € R

Certainly w > 0.
Exercise - Verify w? = 2

Proof of Density of Rational Numbers

Do casex >0

y — x > 0 so by corollary of the Archimedean principle there is some
N € N such thaty — x >%©Ny >1+ Nx

By Arch property, there isan M € N with M > Nx.

Let M' be the smallest integer with this property.

(By well ordering principle of N)

Then M'-1 < Nx because M'-1 < M; and is an integer.
Nx <M <Nx+1<Ny
U

<—<
x N y



Convergence of a Sequence

September-24-10 10:33 AM

Sequence

A sequence is an infinite list of real numbers x4, x5, X3, ...
A sequence has a first element, 2nd element, etc. for each
natural number.

Ex:
1. 1,1,1,1,1, ..
1
2. Xp= R €N
3. -1,1,-1, 1, ..
1
4. x1=1x =3 xp42 = g(xnu +x3)

Notation: (x,)n=q o1 (x5,)

Convergence

Say the sequence (x,)y=; converges to a real number L
provided for every € > 0 there is an index N € N such that
|x, —L| < eforalln>N

In this case we say L is the limit of the sequence and write
lim x, =1L

n-o

Orx, - Lasx, > o
Memorise this Definition

Divergence
If a sequence does not converge, it diverges.

MATH 147 Page 7

There can only be one L that a sequence converges to

Proof
Suppose x,, = Li and x, = L,

Take € =%|L2 — Ly

There is some index N; so |x, — L;| < ¢
Foralln > N; and there is some index N,
So |x, — Ly| < eforalln = N,

If N = max(Ny, N,) andn = N then

Both |x, — L;| < gand|x,, — L,| < ¢
(wlog Ly < L,) - without loss of generality

Ly—e<x,<Li+e¢
SolL, — e<Li+¢

=L, L1 <2e=1L,— 1,
Contradiction.

Examples
1. 1,1,1,1, ..
Converges to L= 1 since |x, — 1| = 0 for all n

1
2. Xp=-,L=0

Prove this: Rough work - Get some &€ > 0. Want to pick N so

|[x, —0] < eforalln>=N
1

|——O|<£

n

lcevn>N

n

1
n>-
£

Take N > 5 (there is such an integer by the Archimedean property)

Work to hand in:
Let € > 0. Take an integer N > %
Thenifn >N, l$l<£

no N

HenceVn=N,|x, — 0| <¢
Therefore, lim, _, o X, =0

_Dn
Tn24+1
Rough Work - Guess L =0

3. x,

Want

_1\n
E_o|<evn=N
x°+1
Want

1 . 1
>— < & Notice —
n +1 ne+1

1

1
<;sotakeN2

™

Answer
Lete>0.Take N > -

(GOl

Thenifn> N, |52 — o] =
ne+1

Solimy, , »x, =0

4, -1,1,-1,1, ...
Take € = %

Proof:
Say the sequence converges to L

Takes=%andsay|xn—L|<s\7’n2N
Then both |1 — L| <§and|—1 —-Ll<e

This would imply that |1 — (-1)| < 2e =1
False

5. xp =|r|"forlrl <1

Guess L=0
L>1s0--1=6>0
Irll Irl

m:(1+6)n=1+n6+ wt 6" =né

[r*—0]l =|r|"< evn>=N

I

r——_

—



Proof;:
Let € > 0 and take N > glg

Where5=|—i—|—1>0

Letn > N Thus |[r"™ — 0] = |r|* < |r|? §é< %E:g
Therefore, ™ — 0
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Bounds and Convergence Squeeze Theorem
Suppose Vn = N

We have x, <y, < z,
If (x,) » Land (z,) > L

September-27-10 10:43 AM

Bounded Then (y,) - L
Say the sequence (x,) is bounded if there is some
real number C such that |x,| < CVn €N Proof
Cis called a bound for the sequence. Lete>0.
Since (x,) — L there is some N; € N such that |xn1 -L|<e
Ex. Similarly, since (z,) — L there is some N, € N such that |zn2 —L|< evn=N,
Xn = n - not bounded (and doesn't converge) Put N = max(Ny, Nz, Np). Letn > N
Xy = ¢ i) - bounded by 1 (does converge) L-—e<xpy<yn<zy<L+te

= (—1)" - bounded by 1 (does not converge) This is valid because n > No

Ex.
nZ
Xn=§
GuessL=0
nZ _ 4"
n we prove — < —
Can we prove -7 < =

Prove n? < 4™ by induction
True forn=1
Assume n? < 4™ and verify (n+ 1)2 < 4ntl

>n+1)?%= ;LZ (nTH) < 4n (n;l) By induction hypothesis
Check if (”“) <4
2

n+1 1
z( ):(1+—) <22=4
n n

Therefore (n + 1)2 < 4N x 4 = 4nt1

n n
By induction, = o S ‘;—n = (g)
Proof
Letx, =0
4 n
vn, z, = (E)

=Ty =

Xn <Y<z, VneEN

Then0<——<(5) vn

2
Applying the squeeze theorem, we can conclude g; -0

Theorem

Every convergent sequence is bounded
Not bounded = does not converge

Proof

Suppose (x,) = L

Get N € N such that

lxn—L| <1 Vvn=>N
L—1<x,<L+1>|x,/<|L|+1VneN

Take C = max(|xq], |x2], %3], ..., |xny—1], |L] + 1) ER

Cis a bound for (x;,). Clearly C > |x]-|forj =1..,N-1
Furthermore, C = |[L| +1 = |x,|Vn =N

Therefore, (x,) is bounded.
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Limit Laws
September-29-10 10:29 AM

Increasing Sequence
Say (x,) is increasing if (xp41 = x,) Vn €N

Decreasing Sequence
Say (xy,) is decreasing if (xp41 < x,) VN €EN

1 .
eg xn =7 decreasing

X, = 1is both decreasing and increasing

xn = (—1)™ is neither increasing nor decreasing

Monotone

Say (x;) is monotone if it is either increasing or
decreasing. (Not necessarily strictly
increasing/decreasing)

Monotone Convergence Theorem
Every monotonic bounded sequence converges.
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Suppose (x,) = L and (y,) = K

Addition Law
Ifz, = x, £ yo, then (z,) > L + K

Product Law
If z, = xpyn, then (z,) > L X K

Division Law

Ify, # 0forallnand K+ 0

Then (z,) = (;—:) —>£

Proof of Product Law

Take € > 0 and look at |x,y,, — LK]|

= |(tnyn — 0 K) + (0K — LK)|

< |xpYn — xu K| + |x, K — LK| (by triangle inequality)
= lxpllyn — K| + 1K lx, — LI

Pick N; so |x, — L| < ﬁifu >N,

Recall, convergent sequences are bounded so there is a constant C such that|x,| < C vn
Pick N, so that |y, — K| < ;—Cv n=N,
Let N = max(Ny, Ny)
Thenifn = N, |x,y, — LK| < |x,|lyn — K| + |K|lx,, — L|
< Ci + K_Ie =¢
7 2C  2[K|

Monotone Convergence Theorem

Very important, equivalent to the completeness axiom

Every monotonic bounded sequence converges.

(However, a sequence can converge even if it is not monotonic)

Proof

Assume (x,,) is increasing (the decreasing case is similar - exercise)
Look at the set of real numbers S = {x{, x5, x3, ...}

Since the sequence was bounded, S is a bounded set.

By the completeness property, S has a least upper bound, say L
Claim: L = lim x,

Let € > 0, need to show that there is some N € Nsuch thatl, — e <xy <L+ ¢
Since L is an upper bound for S,x, < LVn €N
Since L is the LUB, then L-¢ is not an upper bound for S. So there exists some N € N such thatxy >
L—e
But (x,) is increasing, so x, = xy ifn =N
>L-¢
ThenVn>=N,L — e<x,<L+¢
Thus (x,) converges and L = lim x,,

Note:
The proof shows that every increasing sequence that is bounded above converges to the LUB of the
set {x;, X2, %3, ... }

Example

1 1
Xp = 1+?+ +ﬁ
Does (x,) converge?

Xn+1 = Xp + [CE
So (x,) is increasing
1 1 1 1 1 1
w1+ (prp)t(Eratata)
2
< <
<1+ 7 + 1a +..<2
So (x,,) is abounded sequence and by the MCT converges

Example

Recursively defined sequence

Leta; =1

Api1 =%(2an +5)forn>1

Does gan) converges and if so find the limit

a==>aq

11>
a3=-—>a
357 2

Check if (a,) is increasing and if a, < 2
Provea, <2Vn

Proceed by induction. True for a;
Assume a; < 2, need to proveagiq < 2
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[e)Y Nl

1 1
ak+1=g(2ak+5)56(2x2+5)= <2

So by induction,a,, < 2Vn

Prove ay41 = a, VnTrue forn=1
Assume a; = a_q and show a1 = ai

1 1
a1 =3 (2a +5) = 2 (2ax-1 +5) = a,
By MCT, (a,) converges, say to L

%(Zan+5)—>%(2L+5)asan+1—>L
SoL=-(L+5)=L=">



Subsequences (B-W Theorem)

October-01-10 10:35 AM

Peak Point
Call the term x;, a peak point of our sequence if
Xy = Xpy1) Xpazr - OT X 2 X, VN 2k

Theorem
If (x,,) is any sequence, then there is a
subsequence of (x;,) which is monotonic.

Bolzano-Weierstrass Theorem
If (x,,) is a bounded sequence then it has a
convergent subsequence.

Cauchy

A sequence (x,,) is called Cauchy if for every € > 0,
there is some N € N such that |x, — x,,,| < ¢
vn,m=N
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Sequence: X1, Xy, X3, X4, X5, «
Sub-sequence: x,, X5, X¢, Xg, ..

Theorem
If (x,,) is any sequence, then there is a subsequence of (x,,) which is monotonic.

Let (x,) be a sequence and suppose
ny < n, <ng < --isalist of indices

[oe]
Then the sequence x,, , xp,,, Xp,, - = (xnk)k:1
Is called a subsequence of (x,,)

Ex. A subsequence of x, = (=1)"is (1,1,1,1,1,...) where x,,, = x5

Proof
If (x,,) is any sequence, then there is a subsequence of (x,,) which is monotonic.

Case 1: There are infinitely many peak points

Take x,,, =first peak point

X, =ith peak point

(xnk) is a decreasing sequence and it is a subsequence of (x,,)

Case 2: There are finitely many peak points (possibly none)
Take x,,, to be the first term in the sequence after the last peak point. (x,, = x; if no peak points)

Since x,,, is not a peak point, there is some n, > n, such that x,,, > x,,
Xp, is nota peak point since it comes after the last peak point, so 3 n; > n, such that x,,, > x,, etc.

© . . .
(xnk)k:l 1S an Increasing sequence

Bolzano-Weierstrass Theorem

(most likely on exam)
If (x,,) is a bounded sequence then it has a convergent subsequence.

By the previous proposition, (x,,) has a monotonic subsequence. It is also bounded.
By the Monotone Convergence Theorem, bounded monotone sequences converge, so this sequence
converges.

Cauchy Sequences
Proposition
If (x,,) is a convergent sequence then it is a Cauchy sequence.

Proof

Lete >0, we know (x,) » L

|, — %l = |y — L+ L — x| < |x,, — L| + |x,, — L| by triangle inequality
Pick N so |x, — L| SEVnZN

£ €
|xn—L|+|xm—L|<i+E=s

So (x,,) is Cauchy

Proposition
Cauchy sequences are bounded

Proof

Pick Nso [x, — x,| <1vn,m=>=N

In particular, |x,, —xy| <1

= |xp,l <1+ |xy|Vn=N

Take C = max(|x,|, |x5], ... |xy_1], [y + 1)
This is a bound for the sequence



Convergence of Cauchy Theorem: Every Cauchy sequence converges
October-01-10 11:19 AM Important - equivalent to completeness property and MCT
Proof
Let (x,,) be a Cauchy sequence
Then (x;,) is a bounded sequence

(oo}
By Bolzano-Weierstrass, (x,) has a convergent subsequence (xnk)

q CONVerges say to L.

We will prove (x,) — L
Let £ >0. Need to fineNso |x, — L| < eifn =N
2. Since (x,) is Cauchy, we can choose N so |x, — x| < §Vn, m>=N
Pick Ny 50 |xy, — L] <Zifk=N
1. Pickk>N;andng =N
Letn>N
Look at |x,, — L| < |2y — x| + |2, — L]

€
|xnk - L| < Eby 1.

€
|xn —xnk| < > by 2.

S x,—Ll<e
Therefore, (x,) — L

Example:
Suppose (x,,) satisfies |x,41 — x| < 51; Vvn
Prove it converges
We will prove it is Cauchy
Lete>0
Look at |x,, — x| (Wlog m < n)
= Xy = Xpo1 + Xno1 — Xnog + o+ Xpgq — Xl
= Xy = Xnoal + Pty — ol + o+ gy — 2l
1 1 1 1 1 1 2

<F+Em+...+§%—= ' ESEHX__EZZ_W;

2 2.
Z—mSZ—len>m2N

Pick N so ziN <eg
Nice Proof:
Lete>0
Pick N so iN <e

2
If n > m > N, our work shows:

2 2

Ixn—meSZ—mSZ—N<£
Hence (x,) is Cauchy and therefore converges

Note:
It is not enough for x,, — x,,1 — 0 for the sequence to be Cauchy

1,1,1,1
Example.1+5+§+z+§+-~-
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Limits of Functions
October-04-10 11:02 AM

Limit L at point P

We say that f has a limit L at point p if Ve >0
there is some § > 0 such that whenever 0 <
|x —p|l < 8then|f(x) —L| <e

Limits of Functions

ffA->B

Domain:

{f(x): x € A} =range of fC B
Mainly A,BE R

L—e<f(x)<L+e¢
p—06<x<p+$6

Say

limf(x) =1L
x-p

If this happens:

P-d p

As € keeps getting smaller, there will always be some §
which has the function inside that rectangle.

Example 1

fx)=x+2

Find}{imf(x)

Guess L =3

Lete>0

Find§ >0s0if0<|x —1]|<&then|f(x)—3|<e
lf(x)=3l=Ix+2 -3|=|x—-1|<e

Take 6 =¢

Proof:

Lete>0andtake 6 =¢

IfO<|x+ 1| <Sthen|x—1|<e¢,
Solf(x)=3l=lx+2-3|=|x—1|<e

Example 2

f(x) = x? + 2 Find limitatp = 3

Guess L =11

= |f(x) —11] = |x2 — 9] = |x — 3||]x + 3] and want < e when 0 < |x-3| < §
Take § <1then2 <x<4

Also want § <§

Proof:

Lete>0and take5<min(1,§)

Ifo<|x—3| <6, then|x —3|<1=>2<x<4

Solx+3|<7

Thus |[f() = 11] = [x2 +2 =11 = [x2 =9 = [(x +3)(x -3 S 7(x +3) < T xZ=¢

Example
2x% -8 2x2—-4) 2(x—=2)(x+2

lim( ):lim ( ): ( X ):2(x+2):8

x-2 X—2 x->2 x—2 x—2

Proof:

Let £>0 and take6=§

2x% -8

T:—Z——S = |(2(X+2)—8| = |2X —4| =2|x—2|

2

IF0 < |x—2| <& then |22 —8| =2lx—2| <25 =¢
. 2x2-8

Therefore, lim,,_,, > 8

Example

li =1

xl—lgx 3

1 1|_3—x|_|3—x|
x 371 3x |7 |3x]
Take 6 < 1 as a start
Then |x-3|<8§=>2<x<4=|3x|=6
[3—x] Ix-3|
<
[3x] 6

Proof:

Let £ > 0 and take § = min(6¢, 1)
fO<|x3]<8=2<x<4,|3x|>6
And
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‘1 1| [x=3] |x—3] & 6¢e
——=|=———<—<=-<—=c¢
x 3 |3x] 6 6~ 6
Example

Let

lim f(x)

x-p

F has no limit at any point p

Proof:

Suppose lim,._,,, f(x) = L

Pick e = %and& >0

Then then interval (p - §, p + §) contains

X1 #p,x EQand x, #p,x, € Q

[(flx) = flx)l =11 =0l =1

=|fle)—L+L —fOII<Ifx) - LI+ 1f(x) —Ll<e+e=1
(If delta worked in the definition of limit of f(x))

Thus contradiction showing 8§ cannot work which proves there is no limit a p
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Limit Laws

October-06-10 10:31 AM

lim f(x) or lim f(x)

x-pt X-p~
0<x—p<di=>p<x<p+6

or —§<x—p<0=>p-56<x<p

Limit Laws

If
limf=LIlimg=K
xX-p x-p

Then

1. limf+tg=L*tK
x=p

2. limfg=fg
xX-p

. L

3. L‘I’gg_ﬁ ifK+0

Since lim,_,, g =K # 0
Then for small §, g(x) # 0

fOo<|x—p|<é

Squeeze Theorem
If f(x) < g(x) < h(x) Vx# p and

limf=L= lim h
x-p (x-p)
Then,

limg=1L

x-p

MATH 147 Page 16

Exercise

limf(x) =L

X-p

If and only if

lim f(x) =Land lim f(x) =L
x-pt X-p~

Proof of Squeeze Theorem
Given € > 0, choose 8 > 0 such that |f(x) — L| < eand |h(x) — L| < €if0 < |[x —p| < §
L-—e<f(x)<glx)<hx)<L+e

=g = L
Exam.ple J&"S‘ .
}cigés’—nx(x—)ﬂ Slhxe K

First, take x > 0, say x < %

sin(x) <x<a+b < tanx
sinx
—=<1
X
x <tanx = sinx /cosx
sinx
cosx < ——
X

sinx
cosx<——=<1forx>0
x

Take, instead, x < 0
cosx = cos |x|

sinx = —sin |x|

x =—|x|

sinx sin|x|  sin]x|
x —lx| ||

Therefore,

sinx
cosx <—<1Vx#0
X

So by squeeze theorem,
sin(x)

m-—-——-—

x—0 X

0 <sinx <xforx>0
lim sinx =0

x—-0"

—x <sinx < 0ifx<0
lim sinx =0

x—-07t



Continuous Functions
October-08-10 10:32 AM

Function
f-ACR-R

(A is the domain of f)

Continuous at a

Say fis continuous at a € A if Ve > 0 there exists
8§ > 0 such thatif [x — a| < 6 and x € A then
f&)—fla)l<e

If A= (c,d) ={x: c<x < d}thentosayfis
continuous at a is the same as saying

lim £() = f (@)

Continuous
Say fis continuous if f is continuous at each a € A

Proposition:
fis continuous at x = a if and only if whenever
(xn) is a sequence in A and (x,,) — a, then

(fGn) - f(@)

Proposition
If f is continuous at a and f(a) > 0 then there is an
interval I containinga withf(x) >0V x €l

Theorem

If f, g are continuous at a then so are f+ g, f X g, cf
for a c constant,

f/gaslongasg(a) #0
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Examples of continuity or discontinuity

lim f(x) = L # f(a)

Jump discontinuity - no limit at x =a

Look at
/1
y= sin (—), x+0
0 x X = This function has no limitat x = 0 so it is
1 ’ discontinuous
— =2mk
x
1
* = 2k
Proposition:

fis continuous at x = a if and only if whenever (x,,) is a sequence in A and (x,,) — a,

then (f (x,)) = f(a)

Proof

noy

Assume fis continuous at a

Take (x,,) a sequence in A with (x,,) - a

RTP (f(x,)) = f(a)

RTP Ve > 0 there exists N such that |f(x,,) — f(a)| < €ifn =N

Since fis continuous ata, 36 > 0 s.t. |f(x) — f(a)| < eif [x —al < Sanda €A

Since (x,) - a, we know there is some indexNsoVn >N |x, —a| < §

Take this choice of N.Ifn = N then |x,, — a| < § and so by the continuity and the
of delta, we have

If Gen) = f(@] < &= (f(xn)) = f(a)
nen
Suppose f'is not continuous at a

There is some € > 0 so no § will "work"

This means for each choice § >0, there is a "bad" x, meaning
[x —al <ébut|f(x) — f(a)l = ¢

Do thisforeach § = 1/n,n €N

For each §, get "bad" x and call it x,,

(xn) is a sequence from A and |x, — a| < %

So(xp) —a

So we also know that |f (x,,) — f(a)| = ¢

Therefore, (f(x,)) ! = f(x)

This contradicts the second statement.

Examples of continuity/discontinuity

_[tifxeq
f(x)_{mfxe@

Not continuous at any point because it has no limit at any point

Ex
If g(x) =1 atevery x € Q and g is continuous, then g(x) = 1 for every x € R
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Proof:

If a is rational then take (x,) - a withall x,, € Q
Say g is continuous at a, by proposition
g - g(@)

But g(x,) =1Vn

Sog(a) =1vVva

Example Continuous on Irrationals and Discontinuous on Rationals

1
flx) = Elfxe@ andxzmwherenENgcd(m,n)zl
0ifx& Qx=0 n
F is discontinuous at any a € Q \ {0}
Why?

Take € < 1/n. Then |f(x)—%| = |0—%| >e

If a ¢ Q then there exists x € (a — §,a + &) forany § < 0
Take a € Q,f(a) =0
Want |f(x) — f(a)| < eVx € (a—6,a+ 6)

TakeNENso%<e
If x =%withn2 N,then 0 < f(x) =
Solf(x)—0|<e

1 1
-<=-<g¢
n N

Temporarily take § = 1 and consider (a — 1,a + 1)
There are only finitely many rations of the form %with n < N in the interval (a-1, a+1)

Now take § < 1so (a-8,a+ &) misses all of these finitely many points %with n<N
Soifx€ (a-6,a+ 0)eitherx& Qsof(x) =0=f(a) orx = %withnz N and then
flx) = 1—11 < % <e

Either way |f(x) — f(a)| < eVx € (a—6,a + 5)
Thus if is continuous at a € Q

Comment
Is there a function continuous on rationals and discontinuous on irrationals?
No, but very difficult to show.

Proposition
If fis continuous at a and f(a) > 0 then there is an interval I containing a with f(x) > 0V
x€l

Proof

Take € = f(a) > 0.

Get 8 > 0o |x-a| < §implies |f(x) - f(a)| <e & f(a) -e < f(x) < f(a) + ¢
=>fx)>0Vxe(a-§,a+d)

Theorem
If f, g are continuous at a then so are f+ g, f X g, cf for a c constant,
f/gaslongasg(a) #0

Proof
Just use limit laws for sequences in functions

Ex:

Polynomials are continuous functions.

To see this, note p(x) = x is continuous

Then p(x) = x™ is continuous V n € N

And p(x) = c,x™ is continuous V n € N

Sum of continuous functions are continuous so p(x) = a,x™ + -+ a;x + a, is cont.

Rational functions = voly 4()

Continuous on its domain, or at all a € R except where q(a) =0

Ex.

_ 3x2+1if x>0
ﬂ@‘{1—xvxso
fl@)=1

lim f= lim 3x2+1=1

x—-at x—-at

lim f=lim1—-x=1

x—-a~ x—-a~

Continuous everywhere.

The case at x = 0 is cont. because 3x%,1 — x are cont. everywhere
And lim,_, f(x) = f(a) as shown
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Composition of Continuous Functions
ffACR-> R rangef=BC R
gBER->R

gef:A-R
gof) =g(fx)

Theorem
If f is continuous at a and g is continuous at f(a), then g o f is continuous at a.

Proof

Equivalent to prove if (x,,) - a then (g o f(x,)) - g o f(a)

Since (x,) — a and fis continuous at a, (f(xn)) - f(a)

But g is continuous at a so whenever (y,,) - f(a)then (g (yn)) - g(f(a))
s Apply withy, = f(x,)
* S0 (gef(xn)) = (g(f(xn)) = g(f (@) = g = f(a)

Alternate Proof

Lete> 0 and find § > 0so |x-a| < §implies |g o f(x) —gof(a)| <e

= ]g(f)) - g(f@)| <e

Know g is continuous at f(a) so there exists §; > 0 such that |g(y) — g(f(@))| <
eifly —fl@l<é

Apply this with y = f(x)

Since f is continuous at a, there will be some &, > 0 such that |f(x) — f(a)| < §; when
|[x —al <6,

Take § = §, Then |x —a| < § = |f(x) — f(@)| < 8, = |g(f (@) — g(f()| < ¢
Therefore, g o fis continuous at a.



Intermediate Value Theorem
October-15-10 10:32 AM

Intermediate Value Theorem

Suppose f- [a, b] = Ris continuous

And f(a) < 0 and f(b) > 0 then there is some
c € [a, b] with f(c)=0

Corollary

If f-[a, b] = R is continuous and f(a) < f(b)
then for every z with f(a) < z < f(b) then
there is some c € [a, b] such that z = f(c)
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Continuity condition is essential: \_/—

Proof of Intermediate Value Theorem Gr

Let A= {x € [a, b]: f(x) < 0}
a € A so Aisnon-empty

A C [a,b] so A is bounded U
By completeness property, A has a LUB, call itc

c>aascisanUBforAanda €A

¢ < b because b is also an UB for A and ¢ = LUB(A)

Soc€[a,b]

c —% < csoitisnotan UB for A

So3x, € Awithc -3 <x, <c
Of course, f(x,) <0

|, —cl<=>0asn - w

Hence (x,,) - ¢

Since f is continuous at c, this implies that
(fGw) = £(©)

Since f(x,) <0Vn= f(c) <0

This shows ¢ # b since f(b) > 0

And soc+%< b forlarge enough N
Soc+%e[a,bJVn2N
c+%>csoc+%€A
Hencef(c+%)20Vn2N

oY)

1

(c + —) -c
N/ n=nN

By continuity of f,

1
0Sf(c+;)—>f(c)
Sof(c)=0

Since f(c) < 0and f(c) = 0then f(c) =0
(]

Corollary
If f- [a, b] = R is continuous and f(a) < f(b) then for every z with f(a) < z < f(b) then there is
some c € [a, b] such that z = f(c)

Proof

Letg(x)=f(x) -z

g is continuous

gl@)=f(a)-z<0

g(b)=1f(b)-z>0

By L.V.T there is some c € [a, b] withg(c) =0 =1f(c) -z,s0f(c) =z

Applications:
Any odd degree polynomial has at least one real root.

Proof

p(x) = apx™ + an_1x"" 1 + - + ayx + ag, where n is odd
WE want to prove there is some c such that p(c) = 0
Wlog assume a,, is 1

a
p(x) :x”(l +Lx+i+--~+

a; ao)
xn—1 ' yn

Pick N so large that —u}_—| < —1—\7’j =0,..,n-1
xn=J 2n 1
An+1 ay Ao An+1 ay Ao .
| " e +J_C;| < |T| + -+ |Xn_1| + |J_C;| Sn%n if x| =N
Ant1 a, ay 1 N
— N i 2 n(Z)=—
p(V) = N™(1+ "t +xn_1+xn)21v (2) >0

N — (A nyr . 4 Qo _1 n
P(-N) = (W) (14224 b 2l 4 D) S —oN" <0
p is continuous on [-N, N]

So by LV.T p hasarootin [-N, N]

Bisection Method of Finding Roots
Take a function on [a, b] wherea < 0 and b > 0
Keep splitting the domain and taking the half where the sign of the two bounds are opposite.



Bounded Functions + EVT

October-18-10 10:29 AM

Bounded

Say fis bounded above if there exists M such that
f(x) <Mvx

Say fis bounded if it is both bounded above and
below

Extreme Value Theorem

Suppose f[a, b] - R is continuous
Then there are c,d € [a, b] such that
f(©) < f&x) < f(d)Vx € [a,b]

In particular, fis bounded and f achieves
minimum and maximum values.
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Examples
ffR->R
fG)=x

- Not bounded either above or below

f:(0,1] > R
1
f(x)=;

- Bounded below but not above
- Has a minimum

f:(1,00)1—>IR{
f(x) Z;

-Bounded, however no minimum or maximum

Extreme Value Theorem

Suppose f[a, b] - R is continuous
Then there are ¢,d € [a, b] such that
f©) < f() < f(d)Vx € [a,b]

In particular, fis bounded and f achieves minimum and maximum values.

Proof of Extreme Value Theorem

Uses Bolzano-Weierstrass Theorem (any bounded sequence has a convergent subsequence)
Fact - If (x,,) = L then every subsequence of (x,) — L)

1. First show thatf is bounded
Suppose fis not bounded above.
Then V n € N, there is some x,, € [a, b] with f(x;,) > n. Consider the sequence (x,). Itis bounded.
By B-W Theorem, there is a convergent subsequence (xnk) — L€ [a,b]
By continuity of f, f(xp, ) = f(L)
By construction sequence, f(xnk) > ny SO f(xnk) is unbounded and therefore cannot be
converging because every convergent sequence is bounded.
This is a contradiction, so f is bounded above.
Similarly, we can prove fis bounded below = fis bounded

2. LookatS ={f(x):x € [a, b]}
This is a non-empty set, and a bounded set by 1.
So ShasaLUBand a GLB. Call LUB(S) =z
Then f(x) < zVx [a, b]
AndVvn € N, x € [a, b] with f(x,) > z —%
1
|f(xn) — 2| Sz—>0asn - o
So (f(xn)) - z
Sequence (x,,) is a bounded sequence, so by B-W Theorem it has a convergent subsequence. Say
(xnk) - d € [a, b]
By continuity of fat d, f(xnk) - f(d)
Since (f(xnk)) is a subsequence of (f (x,,)) which converges to z = (f(xnk)) -z
But limits are unique, therefore z = f(d)

In other words, f(d) = f(x) Vx € [a, b]

Showing minimum value is left as an exercise.



Inverse Functions

October-18-10 11:01 AM

One-to-one Functions (Injections)
Say fis 1-1 if whenever x, # x; then f(x1) # f(x3)

In other words, pass the horizontal line test.

Increasing (or Strictly Increasing)
Say fis (strictly) increasing if whenever x, > x;

then f(x3) (>) = f(xq)

Theorem
If f: [a, b] - R is continuous and invertible, then f is
either strictly increasing or strictly decrasing.
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Examples
y=x%,not1-1
y=sinx,notl—1
y=x3+1yes1—-1

One-to-One Functions have inverses
y € Range f
Define f~(y) = x when f(x) = y (unique choice of x)

Usually we write f~1(x) = y when f(y) = x
fof ') =f») =x

flof(x) =x

= fof ™! = f~lof = Identity Function
Exx=y3+1=2y=3¥x—-1

Range f = Domain f~!
Range f~' = Domain f

Theorem

If f: [a, b] » R is continuous and invertible, then f is either strictly increasing or strictly decrasing.

Proof

Notice f(a) # f(b) since fis 1-1

Assume f(a) < f(b) (Leave f(a) > f(b) as exercise)
And we will show f is strictly increasing.

Assume f is not strictly increasing.
Then there is some y > x, but f(y) < f(x)
Casel:x #a

Clearly f(x) # f(a) because otherwise the function would not be 1-1 and therefore not be invertible

1. f(x) > f(a)
By L. V. T on [a, x| f takes on every value in [f(a), f(x)]
Similarly on [x, y] f takes on every value in [f(y), f(x)]
These intervals [f(a), f(x)] and [f(y), f(x)] overlap.
So values in overlap are taken on at least twice. Contradicts that fis 1-1

2. f(x) < f(a) same thing

Case2;x=a

There is some y > x such that f(y) < f(x) = f(a)

y € (a, b] since x € [a,b], and clearly y # b since f(y) < f(a) <f(b)
soy € (a, b)

By LV.T on [a, y] f takes on every value in [f(y), f(a)]

Similarly, on [y, b] f takes on every value in [f(y), f(b)]

These intervals overlap on [f(a), f(b)], contradicts that fis 1-1

Consequence:

If f: [a, b] » R is 1-1 and continuous then Range f = [c, d]

Proof:

Either f s strictly increasing or strictly decreasing. Say fis increasing.

Then Range f € [f(a), f(b)] and we get the entire interval on the range by the Intermediate Value

Theorem



Continuity of f~1

October-20-10 10:34 AM

Theorem

If f: [a, b] - R is continuous and 1-1
Then Range f= [c,d] for some c, d and
f~c,d] - [a, b] is continuous

Theorem
If f: [a, b] - R is continuous and 1-1
Then Range f= [c,d] for some ¢, d and f ~*[c,d] - [a, b] is continuous

Proof

Suppose (x,,) = xo where x,, € [c, d]

Want to prove f~1(x,) — f~1(x0)

Let yn = f~1(xn),y0 = f " (%)

We know f(y,) = x, and f (o) = x¢

Also, y,,, v € [a, b]

We proceed by contradiction and suppose y,, + yo

This means there exists some € > 0 such that for every N there is somen = N with |y, — yol = ¢
Pickn; so |yn1 —y0| =&

Thinkof N =n; + 1. Pickn, 2 N =n; + 1 so |yn2 —y0| =&

Having picked yy, ... ¥n,, put N = n, + 1 And pickny4q = N so |ynk+1 - y0| =&
Gives a subsequence (ynk) with the property that | Yny — y0| >eVk

All y,, € [a,b] so (ynk) is a bounded sequence.

By the Bolzano-Weierstrass Theorem this has a convergent subsequence call it (ynk ) with limit t.
]

t # yo because of the construction of (yy, )

PTC

By continuity of f, f (Ynkj) - f(t)

By uniqueness of limits, f(t) = x,

But xo = f(yo) = f(t) = f(yy) and since fis 1-1 t = y,

This is a contradiction, proving y,, = yo = f 1 (x,) = f~1(x0)
So f~1is continuous.

"Inverse" Trig Functions
Sin(x) is not invertible but sin(x) restricted to [— %,g] is invertible.
The inverse of this restriction is arc sin(x)
arcsin(x) =0 € [_7_21,7_21] ,x € [—1,1] withsin(9) = x
arccos(x)is the inverse of cos restricted to [0, 7]
sin(x)

tan(x) = costn) S° tan(x) is periodic every T

arctan(x) is the inverse of tan restricted to (— g , g)

Domain of arctan(x) is R and Range of arctan(x) = (—% E)
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Natural Logarithm Logarithm Function

. 1
November-17-10  10:45 AM Considery = s fort=0

Forx> 0, let A, = area bounded by the curvey = %, t axis and the vertical linest = 1,t = x

Properties of Logarithm Function Define In % { Ayifxz1
1. Inab=Ina+Inb —Aifx <1
2 1n1=—lna In1=0
" a Inx >0 ifx>1
3. In(x") =rlnx Inx <0ifx<1

In x is strictly increasing and so it is invertible.

Properties
1. n(x")=rlnx ifreqQ

1
a. ln(—) =—Ina
a

2. Inx > cwasx — oo
V M € N there is some N so thatif x> Nthenlnx > M

Proof of 2.
ConsiderIn 2™ = nln2
If x > 2™, thenlnx > In2", s0ifIn2™ > M thenVx > 2" Inx >In2" > M

exp(x) is the inverse function of y = Inx
Range of In = (—00, ) = Domain of exp
Inx > —wasx - 07

Domain In = (0, ©) = Range of exp

exp0 =1sincelnl =0
In(expx) = x = exp(Inx)

Fact

exp(xr) = (expx)" forr € Q
Proof:

Let y = LHS = exp(xr)

Iny = In(expxr) = xr

RHS= (expx)"

InRHS = ln((expx)r) =rln(expx) =rx
So In LHS = In RHS

Butlnis 1-1 so LHS = RHS

Take x = 1. Givesexpr = (exp1)" =e" VreQ
Calle=exp1l

Forany x € R,

Define e* = exp(x)

This is consistent when x € Q

This gives us a definition for an irrational power

Define a* for anya > 0, x € R
Set a* = eX"@ = exp(xIna)
Consistent with what we know a* is when x € Q

Proof of Properties
Uses the future
Proof of 1
Let f(x) =Inxb —Inx —1Inb
Notice f(1) =0
, 1 1
frx) = Eb v 0
So by the corollary to the Mean Value Theorem, fis constant
Hence f(x) = f(1) = 0Vx

Proof of 3
Letg(x) =Inx" —rlnx
Notice g(1) =0

g'(x)=—rx""1 ~Too
x" X
Sog(x) =0vx

2 follows from 3
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Inequalities
Inx<x—-1Vx>0
Let f(x) =Inx — (x — 1)

fO=
f’(x)———lzl_x
0,1 [1,)
f>0 f<0

Analysis of f' shows x=1 is the maximum value of f.
Sof(x) < f'(x) =0vx

1 1
(1+x)P<1+z—J-xVx>0,p>1

Let f(x) = (1+x)%—1—%x

F(0O)=1-1-0=0
1 1,01 1 1

f'(x) ==—(1+x)P ——=—<—————1—1>>0forx>0,p>1
p p (1+x)1_5

1
since (1+ %) 7> 1
By the Increasing Function Theorem, f is strictly decreasing on [0, ©)
Therefore f(0) =0 > f(x) Vx>0
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Differentiation
October-25-10 10:29 AM

Differentiable at a
Say fis differentiable at a (or x=a at (a, f(a)) ) if

. fla+h) - f(a)
lim ———m——
h—0 h
exists.

Alternate definition of differentiability
Sometimes we putx = a + h Then h — 0 is the
same as X = @ SO we can write

x)—f(a
lim f&) - /@ =f"(a)
x—a X—a
Derivative
When
limy_o w exists we denote this by
f'(a)

f'(a) is called the derivative of f at a.

This defines a function f, called the derivative
of f, which is defined on all the points at which f
is differentiable.

Differentiable
Say fis differentiable if it is differentiable at
every point in its domain.

Tangent Line

This is the line through the point (a, f (a)) with
slope f'(a)

Equation:

y —f@=f(ax-a)
Theorem

If f is differentiable at a, then fis continuous at
a.
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Find slope with secant line on f through f(a), f(a+h)

fla+h)—f(a)
h

The slope of the secant line is average rate over [a, a+h]

Examples
fx)=mx+»b
i f(a+h)—f(a)_l_ m(a+h)+b—ma—b_l_ —m=f(a)
S =i h =gy mm=/
flx) =x3

+h) - +h)® —a? ® +3a’h +3ah? + h3 — a3
jim @t =f@ . a+h-a o +3afhtSa L~ lim3a? + 3ah + h?
h—0 h h—0 h—0 h h—0
=3a® =f'(a)
fo0 =1 | [ —lal
, a+h|—la
F@ = fm
1. a>0

I a+h—a_l_ h_1

RS R hS0h
2. a<0

I —a—h+a h 1

) h [
3. a=0

O e Bt LV Y 1

h=0 h T h>0 h

llml—h—l—l li M=—1

-0t h "h—0~ h

The limit does not exist, so f is not differentiable at 0.
f(x) = |x| is an example of a function that is continuous but not differentiable.

Theorem
If f is differentiable at a, then f is continuous at a.

Proof
RTP
lim f() = f(@)
Equivalently, prove
lim (f(0) = f(@)) =0
£ - r@ = LD g
x—a
Since both lim,,_,, . and lim,_,, (x — a) exist, by the product rule for limits
lim f(x) = f(a) = f'(@) x 0 =0

So fis continuous at a

f®)-f(@)

Only one way, examples even exist of functions that are continuous at every point but differentiable
at no point.

Examples
Consider

(1N
F) = xsm(;),fo *0
0ifx=0

Does f'(0) exist?
. fO+h)—-f(0)
lim =

h-0 h
Which has no limit

. (1
i 070

(1
xzsm(;),zfx *0
0ifx=0

g(x) =

. 1
= ’1113?) hsin 7
Cannot apply product law of limits
1
|-l < [nsin(5)| < 12
lim +|h| =0
h-0

So by the squeeze theorem for functions, lim_,q h sin (%) 0

Sog'(0)=0

Squeeze of Absolute Values

Say |F(x)| < |G(x)| and

limG(x) = 0= lim|G(x)| =0
x—=a

x—=a
Means given any € > 0



38 > 0 such that for |[x —a| < § then |G(x) — 0| < ¢
IF)| <|6x)| <eif|lx—al<é
So lim,_,|F(x)| =0

Exercise

1
FOO) = x% sin (x_ﬁ)'x *0
0,x=0
When is f(x) differentiable?
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Common Derivatives Derive Derivative of Sine Function
October-27-10  10:34 AM

'@ d . I sin(a + h) — sin(a) I sina cosh + sinhcosa —sina
a) = —sinx = lim = lim
f dx x=a  h—0 h h—0 h
sin x ~ sina(cosh—1) sinhcosa
= lim
. h-0 h h
—sinx = cosx sinh
dx lim ——cosa = cosa
h-0 h
sin x is continuous _ cosh—1 cosh+1 _ cos?h—1 sin?h
lim X = lim =lim———
h—0 h cosh+1 h-0 hcosh h-0 h(cosh+1)
In x
| sin  sinh X
——— X sin _
Inx = 1 h ~cosh+1
dx ¥ T x Pick 8 > 050 [ < 2if |h| <

, , = |sinh| < 2|h|if |h] < &
In x is continuous

exp X is continuous T
cosh=>0if he [_EE]

Socosh+1>1ifhe [—%,%]

=>| 1 |<1' he[ ﬂn]
cosh+ 11— i 2°2
0< Sinhx in h X 1 |<2x2|h|
I h st cosh+ 11~
If |h|<dand 2% 2lh| = 0ash—-0

By squeeze theorem,

sin?h y 1 0ash -0
—_ X — -
h cosh+1 as
Therefore,
) _ sina(cosh—1) sinhcosa
—sinx = lim + = cosa
dx x=a h-0 h h

Since both terms have limits, so the addition rule of limits applies

. . d .
So sin x is differentiable and -, Sinx = cosx

Corollary
sin x is a continuous function.

Derive Derivative of Log Function
Definition of In: The area A, from t=1 to t=x under y=1/t

) Aifx=1
Inx = {—Axifx <1

Casex>1

In(x +a) —Inx
im———
h—0 h

wlog,x+h>1
Casea:h>0
Ao —A areaunder y = 1 between x and x + h
lim x+h X _ t
h-0 h h
1

Xh <area<—Xh
x

x+h
1 area 1
<

x+h~ h ~x
By squeeze theorem, £2% — i ash -0
(In(x+h) —lnx) 1

lim —mMM™Mm = =—
h—0* h X

Case b: h <0
Left as exercise but the same thing

Casex<1
Left as exercise

Corollary
In x is a continuous function

MATH 147 Page 29



Corollary
exp is a continuous function

This is also the proof of the fundamental theorem of calculus
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Rules for Differentiation

October-27-10

11:02 AM

Suppose f and g are differentiable at a

1. f + g are differentiable ataand (f + g)'(a) = f'(a) + g’ (@)
Proof left as exercise

2. Product Rule
f - g is differentiable at a and (fg)'(a) = f'(a)g(a) + g'(a)f(a)
Proof
(9 (@) = iy L9 @H D=1 9(0)
fla+ h)g(a +h) — f(a)g(a +h) + f(a)gla+h) — f(a)g(a)

= lim
h—0

h
= lim g(a +h) x f—(a—i@ f(@) + fa) x glath) —g(a)

h
=g9@f'(a) + f(a)g’' (a)
g is continuous so (g(a+h)) — g(a) as (a+h) » a

Corollary

Let f(x) = x™. Then f'(x) = nx™!
Proof

glx) =x g'(x)=1vx

This fis differentiable since it is the product of differentiable g
Proceed by induction on n. Have result forn=1

d _
Assume —x" I=(n-1x"2

d d

— Xt =—xXxx" =1 x x4+ (D" 2x =x""1 (1 +x—-1) =nx"1
dx dx
Corollary

If p(x) is a polynomial then p is differentiable. (Since polynomials are just linear combinations

of x™ for various n

3. Ifgisdifferentiable at a and g(a) # 0 then 1/g is differentiable at a and
1\ g'(@)
B w--22,

9 (9(@))
Corollary
ix‘" =-—nx""!forneN
dx

N 1
Proof: Write x™" = —
X

4. Quotient Rule:
5 is differentiable at a if f, g are differentiable at a and g(a) = 0
(£ )' (@) = [@9(@) ~ g’z(a)f (a)
4 (9(@)

Proof

i

(r-3) =r@x =5+ /@(3) @=r@

_ f'@g(a) - g'(@)f(a)
(9(@)*

-g'(a)
g(a) *fla )(g a))

5. Chain Rule
Letf-A—-Randg-B - R

Suppose f is differentiable at a and g is differentiable at f(g(a)), then gof is differentiable at a

and (g of)' = g'(f(@)f' (@)

Proof

To prove this we need to look at

i 9 @ —gof@ _ . 9(F®) - g(f@) fG)-f(@)
x-a xX—a x-a f(x) f(a) xX—a
however, it is possible for f(x) — f(a) to be zero where x # a

Use Coratheodory Theorem

Coratheorory Theorem

If F is differentiable at a, then there is a function ¢ which is continuous at a, satisfies

F(x) —F(a) = ¢(x)(x — a) forall xand ¢(a) = F'(a)

Proof
Define
F(x) — F(a)
(b(x) = xX—a ifx#a
F'(a),if x=a
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xX—a

So ¢

Example:
(1

y = cos|—

differentia
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lim ¢(x) = lim B—

)

(B2

F(x) —F(a)

=F'(a) = ¢(a)

x—a

is continuous

Proof of Chain Rule Cont.
Since f is differentiable at a, there is a function ¢, continuous at a, satisfying

f(x) = f(a) = ¢p(x)(x — a) and ¢(a) = f'(a)

Similarly, since g is differentiable at f(a), there is a function 1, which is continuous at

f(a), satisfying g(2) — g(f (@) = ¥(2)(z — f(@)) and Y(f(@)) = g'(f (@)

Take z = f(x). This gives g(f(x)) — g(f(@) = ¥(f())(f (x) — f(a))
g(f) = g9(f(@) = (f(0))p(x) (x — a)

Calculate if possible

9 @) -9(f(@) _ i Y(F))p(x) (x — @)
o

= lim p(F ()P (x)

gof'(a) = lim
x-a a x-a X—a
lim,_q ¢ (x) = ¢(a) so the limit of ¢ at a exists.

Since fis continuous at a, f(x) - f(a)
So since 1 is continuous at f(a) Yof is continuous at a and therefore

lim pof (x) = Yof(a) = Y(f(a))

Thus gof is differentiable at a and (gof)'(a) = lp(f(a))d)(a) = g’(f(a))f’(a)

ble everywhere on its domain




Derivatives Of Inverse Functions If starting from f~1of = x we need to know apriori that £ ! is differentiable at f(a) and f is
differentiable at a.
October-29-10 11:02 AM

1
Ex.y = x3 = f(a) f~'(a) = x3, which is not differentiable at 0, despite f being differentiable

Theorem everywhere. Problem: f'(0) = 0
Let fbe a continuous one-to-one function defined on an
open interval (¢, d). Suppose that f is differentiable at the Whenever f’(a) = 0, f ! is not differentiable at f(a).
pointa € (c, d) and f'(a) # 0. Then f' is differentiable at f(a)
and If f'(a) # 0 then
“lof(x) =x
(@ e
@) =7 (@) @ =1
1
Notation ' (f@) = f' (a)
f™ means the nth derivative of f
Theorem
Inverse Trig Let f be a continuous one-to-one function defined on an open interval (c, d). Suppose that f is
. 1 differentiable at the pointa € (¢, d) and f'(a) # 0. Then f' is differentiable at f(a) and
aarcsmx = ﬁ ( 1) ( ( ))
- a
iarccosx = ———_1: v '@
dx V1= x2
d 1 Proof
gy arctanx =-"om Write b = f(a)
FUb+h) — f71(b)
mi——""-"J 7
h-0 h
fl)=a
fY(b+h)=zwheref(z)=b+h
Writez=a+(z—a) =a+k
) 1(b+h) f) ; a+k—a . k .
. 1 . - llm = lim = lim
Since ™+ is continuous, (by continuity h—0 =l f(2) - h~0f(a+k) — f(a) ~ h~o fla+k) - f(a)
of f~1 theorem), limp,_o f~1(b + k
B =f"1b)=a

k=fb+h) —a=f"(b+h)—f1(b)
Ash - 0,f (b + h) > f~1(b) since f 1 is continuous (by continuity of f ~*theorem)
soash—0,k—0

h=fla+k -f(a)
As k — 0, the continuity of f gives that f(a + k) — f(a) therefore h = 0

Hence,
I fHb+h) =1 b) lim 1 1
it h =M b) f@ ~ (@

by using the differentiability of fat a and the quotient rule for limits, which can be applied since
f'@=#0

Thus f~1 is differentiable at b=f(a) and (f ~1)"(b) =
ie.

(@)=

f’(a)

f' (a)
or
YW = 5

(1)
Examples

1
f(x)=xn,neN
f=g twhereg(x) =x",neN

g (@)=nx"landg'(x) =0iffx=0
By the theorem, fis differentiable at g(x) except for those x where g'(x) =0i.e.x=0

gLt ot 1 1 _x%‘l
g'(f) n(f(x))n_l n(x%)n_l nxl_% n

fx) =exp(x),f =g twhereg(x) =Inx
g (x)=- s Ofor anyx

f'e) = =f0)

g (f @)

)
That is E; exp(x) = exp(x)

Definition of x"

y=x",r€R

y =exp(rinx) = exp(Inx)" = x"
r—1

r r
! — AT —
=exp(rlnx)—=x"xX—=rx
y p( )X X

y =x* = exp(xInx)

1
y' =exp(xInx) (1lnx +;x) =exp(xInx) (Inx + 1) = x*(Inx + 1)
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y =x* = exp(xInx)

1
y' = exp(xInx) (1lnx +;x) =exp(xInx) (Inx+ 1) =x*(nx + 1)

Inverse Trig Functions
y = arcsinx = f(x)
. . . . m T
f(x) is the inverse of sin restricted to [— Y ;]
1
"(x) = =
f1e) sin’(f(x)) cos(arcsinx)
Except if there is a zero in the denominator

Suppose arcsin(x) = 6, means sin(6) =xand 6 € [—g,%]
So except where x + 1

i arcsinx = jl—i—?
Similarly,

d—x-arccosx = —\/1__’(;

d 1

o arctanx = mme)

Find sec?  where tan = x
(sin® 6 +cos?6) 1
cos2 8 " cos?2 6

tan?0 +1 =

—arctanx =
dx x2+1



Optimization Problems

November-03-10 10:30 AM

Local Maximum

A pointx is a local maximum for the function fif there
exists a § > 0 so that for every pointy € (x — §,x + 6),
y € Domain f, we have f(y) < f(x).

Local Minimum

A pointx is a local maximum for the function fif there
exists a § > 0 so that for every pointy € (x — §,x + 6),
y € Domain f, we have f(y) = f(x).

Global Maximum (Maximum)
A pointx is a global maximum of fif f(y) < f(x) for all
y € Domain f

Global Maximum = Local Maximum, but the converse is
not true.

Critical Points Theorem

If f has a local maximum or minimum at some pointx €
(a, b) € Domain f, and if fis differentiable at x, then
f'(x)=0

Critical Point
Call x a critical point of fif f'(x) =0
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Critical Points Theorem
If f has a local maximum or minimum at some pointx € (a, b) € Domain f, and if f is differentiable
at x, then f'(x)=0

Proof
Look at %H(x) for h < 6 where § is as in the definition for local maximum

Hence f(x + h) < f(x)

Ifh > 0, then ﬂﬁi}z‘_f(ﬁ <0

Ifh < 0 then LEHLE) > o
Since the limy_,q wa

I fx+h)—f(x)
im =1

exists (since fis differentiable at x), the right and left hand limits exist.

flx+h) —f(x)

h—-0~ h h—0% h
But
+h) -
DS O
h) —
e m @
h—0%

And since the two sides are equal,
x+h)—f(x
i LEW=FC

h—=0 h

Note
A point can be a critical point but not a local maximum/minimum. Example: x=0 at f(x) = x3

Finding Maximums/Minimums
Suppose f: |a, b] = R which is continuous.
By the Extreme Value Theorem f has a global maximum and minimum.
The global max & min must also be a local max or min (respectively), and hence the theorem tells
us the can only occur at:
1. a, b (Endpoints of [a,b])
2. atapointx where fis not differentiable (singular point)
3. atacritical point
Generally there are only finitely many pointsin 1, 2, and 3, allowing you to evaluate f at each of
them and take the largest as the global maximum and the smallest as the local minimum.

Example

fx)=x- x§ on[-1,8]

ffx) =1 —;x_%,diff except at 0
fis continuous

E.V.T implies there is a global maximum and minimum

Candidates for max+min

1. -1,8
2. SPat0
3. CPat>

27

8
FED =250 =05 (5) =~ 55, /@ =4

So the global max at x = 8 and the global minatx = —1

Problem

A right angle is moved along the diameter of a circle of radius r as shown.
Maximize the sum of length a+b.

Clearly,b>r

T
a+b=rsinf+rcosf+r,0€ [O'E]

(a+b) is differentiable everywhere and is continuous
Possible candidates:

1 0=02
L 0=03

3. 9=—
- 9=7

(@+b)(0) = (a+b) (%) =2r
(a+b)(g)=rx:/%x2+r=r(\/§+l)

So our maximum isat 8 = %and the largest possible value for a+b is (V2 + 1)



Mean Value Theorem
November-05-10 10:28 AM

Mean Value Theorem

If fis continuous on [a, b] and differentiable

on (a, b) then there is a c € (a, b) such that
. ()~ f(@

fl= R —

Corollary
If f'(x) = 0 at every x € I interval then fis
constant over that interval.

Rolle's Theorem

Suppose f is continuous on [a, b] and
differentiable on (a, b). In addition, assume
f(a) = f(b). Then there is some ¢ € (a, b)
such that f'(¢) = 0.

Corollary to MVT (Increasing Function
Theorem)

If f is continuous on [a, b] and f'(x) > 0 for

all x € (a, b) then fis strictly increasing on
b]

L
\l Ve

~F{ &\
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There exists a tangent somewhere on
the function between a and b which is
equal to the secant between f(a) and

— = £(b)
1 — 1

Proof of Corollary to Mean Value Theorem
Leta <b, a, b € I. Then fis continuous and differentiable on [a, b]. By MVT, there is some ¢ €
(a,b) € 1with
f(b) — f(a)
—-a

' == =4 = fb) = f(a)

So fis constant.

Note the importance of f'(x) = 0 at every x on an interval.
The function
_[+1ifx>0
@) = {—1ifx< 0
Is continuous and differentiable on it's domain, and f”(x) = 0 for all x on its domain, but f is not
constant.

To prove MVT, we

Proof of Rolle's Theorem

By E.V.T, f has a maximum and minimum on [a, b].

If either the maximum or minimum occurs at ¢ € (a, b) then by the critical points theorem, f'(c) =
0

Otherwise, both the maximum and minimum occur at the endpoints a, b. But f(a) = f(b) so the
maximum and minimum must be the same. So fis constant on [a, b]. Hence f'(x) = 0 at every x €
(a, b). So c could be any pointin (a, b) in this case.

Proof of the Mean Value Theorem

Let L(x) = secant line joining (a, f(a)) to (b, f(b)) and g(x) = f(x)-L(x)
f) —f(a)

9 =fx) - <_ﬁ(x —a)+f(a)

g is continuous on [a, b] because fis a y=L(x) is continuous everywhere and g is the difference of

continuous functions. Similarly, g is differentiable on (a, b) since both fand y are and g is the

difference of differentiable functions.

Furthermore, g(a) = 0 = g(b), so Rolle's Theorem applies

So g'(c) = 0 for some c € (a,b)

b) —
o=y@=f@—y@=ﬂ@%(ﬁ%£¥§
Therefore
f)-f@ _ .,

—3—a J©

Increasing and Decreasing Functions
Proof of Corollary to MVT (f is increasing on the interval where f' > 0)
Takea<x<y<b

MVT applies to f, so there is some ¢ € (x,y) with f'(c) = Ly;%

> 0, by the assumption
y—x>0so0 f(y) — f(x) > 0so fis strictly increasing.

NOTE: The Converse is not true
Can have f strictly increasing and differentiable everywhere but f'(x) > 0 is not true for all x
y = x% = f(x), in which case f(0) = 0

Non-Decreasing

If f'(x) = 0 on (a, b) and continuous on [a, b] then fis increasing on [a, b]

Converse of Non-Decreasing case is true

If f is differentiable on (a, b) and increasing on (a, b), then f'(x) = 0 for all x € (a, b)
Proof:

, o flx+h)—fx)

R e

If h > 0,then f(x + h) = f(x)

If h < 0,then f(x +h) < f(x)

flx+h)—fx)

h

Hence lim >0
h-0



Derivative Tests

November-08-10 10:40 AM

First Derivative Test
Assume f is continuous on [x1,x;] and ¢ € (x4, x7) is either
aCPoraSP
1. Iff' > 0o0n (x1,c)and f' < 0on (¢, x3)
Then c is a local maximum
2. Iff' < 0on (x,¢)and f > 0on (¢, x3)
Then cis a local minimum
3. If f' has the same sign on both sides of ¢, then c is
neither a local minimum or maximum.

Vertical Asymptote
A point on a function is an asymptote if either the left or
right hand limits at that point go to infinity.

Oblique Asymptote

The function approaches a line of non-zero slope as x = +
[o¢]

Horizontal Asymptote
y = b where x_})lrlnr]r)_wf(x) =b

Asymptotes on Polynomial Functions
degQ > degP wegetHA.y=0
degQ=degPwegetHA.y=b,b#0
degQ+ 1=degPweget0O.Ay =mx+b

Concave Up
Say f is concave up on interval I if f'(x) increases on I

Concave Down
Say f is concave down on interval I if f'(x) decreases on I

Inflection Point
Call c an inflection point if f'(c) exists and the concavity of
f changes atc

Second Derivative Theorem
1. Iff" > 0 on1then fis concave up on I
2. If f" < 0 onIthen fis concave down on I
3. Iffhas an IP(Inflection Point) at c and f"'(¢) exists,
then f'"(c) =0

Second Derivative Test
Suppose f'(c) = 0.1If f"(c) > 0 then f has a local min
atc. If f'(c) <0, then fhas alocal max at c. If f"'(¢) =
0 then we do not know.
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Example
f)=x3-12x+1
f'(x) =3x2-12=3(x - 2)(x + 2)

CP=%2

Sign of f'(x)

(-0,-2) (-2,2) (2, )
+ - +

fis strictly increasing on (-c0, -2] U [2, o) and strictly decreasing on [-2, 2]
-2 isalocal max, 2 is a local min

Example

Maximize, if possible, y = xe ™ on [0, o)
y=eX*—xe*=e*(1-x)
e™®>0forallx

CPatx=1
[0.1] [1, )
- +

1 is alocal maximum, but it is also a global maximum since it is greater than every other
value on the range of f

. L1
So the maximum value of y is 3

Example
Analyse the function
x% —2x+2
[ ==~
Domain f =R \ {1}
Continuous and differentiable on its domain

, x(x —2)
N
CPon0,2
Can only change signson 0, 1, 2 } ;
Sign of f' G ' 7
(-0, 0] [0,1) (1,2] [2,)
+ - - +

Vertical asymptote atx = 1
x2—2x+2

. Ly i
limx—1+——=—00
x-1" x—1

Local minimum at 2, local maximum at 0, asymptote at 1

1

Jim (f() = (x = 1) = lim ——=0

This is called an oblique asymptote.

Example of Inflection Point
3

y=x

Has an inflection pointat x = 0
yl — 3X2

yH = 6x

y"" is negative when x < 0 and positive when x > 0 so the concavity changes atx =0

Proof of Second Derivative Theorem
1 and 2 are exercise, come from increasing function theorem.
3. Assume f' increases on (x4, c) and f’ decreases on (c, x,) so c is a local maximum
of f'. Since f" is differentiable, f'' (¢) = 0 by the critical points theorem.

Second Derivative Test
Iff'(c)=f"(c)=0

Ex f(x) = x3 inflection point at 0

f(x) = x* local min at 0

f(x) = —x* local max at 0

Impossible to tell from just f''(c)and ' (c)

Proof of other statements:
Case f'"(c) >0
e~ 1 fle+rh)=f'(c)
f (C) = Illli%_f >0
f'(c+h
h >

f'(c)=0s0 ;lli—% 0
So f'(c + h) > 0 ifh >0 and small

and f'(c + h)< 0ifh < 0 and small
By increasing function theorem, f is decreasing to left of c and decreasing to the right of



c. By the first derivative test c is a local minimum.
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L'Hopital's Rule and CMVT

November-10-10 10:40 AM

Limit of Infinity
Write lim,._,, f (x) = oo if for every N € N there exists
8 > 0 such thatif |[x —a| < § then f(x) > N

L'Hopital's Rule

Assume f, g are differentiableon I = [a — §,a + 6]
except possibly at a. Suppose

lim f(x) = lim g(x) =0or + «

x—a x—a

Suppose g(x) # 0 for any x in I (except possibly a)
If

7(x)
lim f,( = L then lim Lx) =L
x-ag x) x-a g(x)

Cauchy Mean Value Theorem
If f, g are continuous on [a, b] and differentiable on (a, b).
Then there is some c € (a, b) such that

(f®) - f(@)g' () = g'(c)(g(b) — g(a))
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Intuitive Idea of L'Hopital's Rule

Case:

f(a) = 0=g(a)

im L o [ S O f@  xa
x-a g(x) x*ag(x)f,—( gg(a) xsa  x—a g(x) —g(a)

t that t 1 ==
expect that to equal 775

f_f'(@)
m — ==
x~ag'  g'(a)
True if f', g' are continuous ataand g'(a) # 0

By the Mean Value Theorem, f(x) — f(a) = f'(c,)(x — a)
If f is continuous on [a, x] and fis differentiable on (a, x)
g(x) —g(@ =g'(d)(x—a)

If g is continuous on [a, x] and g is differentiable on (a, x)
Cx, dy € (a,x)

fOG)—f@ fledx—a) fc)
90 —g@  g'd)x—a) g'(dy)

Asx > a, Cy,dy = a

Suppose we get really lucky and ¢, = d,,
limM = limf—’(c )

xsag'(dy)  x-ag' " "

Recall
lim,_4 F(x) = L if and only if whenever (c,) — a, then lim,,_,, F(c,) = L

Then
f'le) o f o f
i @y~ amg () = lim

Cauchy Mean Value Theorem

If f, g are continuous on [a, b] and differentiable on (a, b). Then there is some c €
(a, b) such that

(F®) = f@)g' (@) = f(c)(gb) — g(@))

So if there arises no division by zero trouble, that means
fb) - f@ £
gb)—gla) g

Proof of CMVT

Define

h(x) = f()(g(b) — g(a)) — gC)(f (b) — f(a))

h is continuous on [a, b] and differentiable on (a, b)

h(a) = f(@)(gb) — g(@) — g(@(f(b) — f (@)

= fla)g(b) - f(a)g(a) — g(a)f(b) + g(a)f(a) = f(a)g(b) — g(a)f(b)
h(b) = g(b)f(a) — f(b)g(a)

h(a) = h(b)

By the Mean Value Theorem (Rolle's Theorem) there is some ¢ € (a, b) such that
h'(c)=0

0=£'@(g(b) - g@) — g'(O(fb) ~ f(@)

So

£ (g®) — g(@) = g' () (f(b) - f(a))

Examples
. logx
hat] sin(mx)
Being continuous, lim,_,; logx = 0,lim,_; sin(mx) = 0
By L'Hopital's rule, study
1
(logx)" X 1 logx

im— - = lim = im—
x~1(sinmx)’ x-17 cosmx m  x-lsinmx

1 1 ~ (sinx —x)
lim-———=lim———
x-»0x sinx x-0 xsinx
limsinx—x=0

x-0

limxsinx =0
x-0

By L'Hopital's Rule
cosx —1
=lim ——
x-0sinx + x cos x
Again
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limcosx—1=0
x—-0

limsinx + xcosx =0
x—-0

By L'Hopital's Rule again
sinx

So

1 1
lim——— =0
x-0x sinx

m— — =
x>0 COSX + cosx — xsinx

0
2

0



L'Hopital's Proof

November-12-10 10:31 AM

Cauchy Mean Value Theorem
If f, g are continuous on [a, b] and differentiable on (a,
b) then there is some ¢ € (a, b) such that

(F) = f(@)g'(©) = f' () (gb) — g(a))

Remarks on L'Hopital's Rule

1.

3.
4.

Iflim,_ o+ f—f = L then limx_m+§ =1L
(with all other assumptions)
In cases where lim,_,, g(x) = o (or — ), the
behaviour of f does not matter, f does not need
to go to infinity.
a. Of course, if |f| < C then automatically
limxﬁag =0iflimy_, g(x) =

L'Hopital's rule is valid if a = too
L'Hopital's rule is valid if L = to0

!
The non-existence oflimx_m& does not imply the

non-existence of lim,_,, 5
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Assumptions

1. fand gare differentiable on I = [a — &, a + §] but not necessarily a
2. g(x),g' (x) # 0onlexceptata
3. Suppose thatlim,_, f(x) = lim,_, g(x) = 00r +
4 il
" ox-ag(x)
Want (to)prove:
. fx
’lcl_rg g~ L

Cauchy Mean Value Theorem
If f, g are continuous on [a, b] and differentiable on (a, b) then there is some ¢ € (a, b) such that

(FB) = f(@)g'(©) = £'©)(gb) — g(a))

Remember:
lim,_,, F(x) = L if and only if whenever (x,) - a then (F(x,)) - L

Proof Of L'Hopital's Rule

Case 1
limf=1limg=0
x—a x—a

Define (or redefine) f and g at a by setting f(a) = 0 = g(a)
This makes the functions continuous on [a — §, a + ] since lim,_,4 f = 0 = f(a) and same for g
fand g are still differentiable on [a — §,a) U (a,a + §]

Enough to prove limx_mafi =L= limx_,a—g

To prove limxﬁa+§ = L, it is enough to prove that whenever (x,,) - a,x, > a, then (5 (xn)> - L

Take (x,) = a, x, > a.Wlogx, <a+8
f, g are continuous on [a, a + §] and differentiable on (a,a + &)
Therefore continuous on [a, x,] and differentiable on (a, x,,)

By the CMVT, there is some ¢, € (a, x,) with (f(xn) - f(a))g'(cn) = f’(cn)(g(xn) - g(a))
By assumption, g'(c,) # 0

Also, g(x,) — g(a) # 0, because by assumption g(x,) # 0 but g(a) = 0 (or because by MVT
g(xn) - g(a) = g’(tn)(xn - a)for somet, € (a, xn)-But g’(tn) #+0)

Divide to get

FO) =@ _flen) _f
g(xn) _g(a) g’(cn) g’ "
But f(a),g,(a) =0,so
g'(xn) = 5 (cn)

Asn - o, (c,) - a since (x,) - a. So since limx_,a}gr—’, = L by recalled fact concerning limits and

sequences,

r
111_)1'{.10 ? (Cn) =L
Therefore,
lim z (xp) =1L
n—oo g

So by the recalled fact again,

lim==1L

xﬁag

Case 2
limf=limg =o0
x—=a x—a

Recall Definition:
lim,_, F = co means that V N € N there is some § > 0 such thatif 0 < |x — a| < § then F(x) > N

Suffices to prove whenever (x,) — a, then i (xp) > L

Take such a sequence with x,, € (a,a + 6]

Consider each pair xj,x,,j <n

fand g are continuous and differentiable on [x,, x;] (or [x}, x,])
Apply CMVT to get cj,, between x; and x,

(Fe) = £ (7)) 9" (cn) = £ () (9Gen) — 9(x))
g #0so

£ () (9 — 9(x))

Fle) = f(x) =

9 ’(Cjn)
Look at
fOm) _ fOg) _ fOm) = £(%)
9xn)  g(xy) 9(xn)



3 f'(cjn) (g(xn) - 9("1‘)) _ f'(gm) <1 _ g(xj)>
B 9'(¢jn)g(xn) 9'(em) 9(xn)
So

fOm) ) | f'(Gm) _ f'(gn)gCen)

9Gn)  9n) g (cn) 9" (cm)gCen)

Know lim,_,, g(x) = © = lim,_, g(x,) =

=0

= lim <
n-e g(x,)

Want to prove

f

E(xn) - L

So

For every € > 0,3 N € N so |§(xn) —L| <evn=N
Fixe>0,(e<1)

there exists a § > 0 so that if |x — a| < & then |§, () — L| < g
Pick N; so that |x,, —a| < §ifm = N;

Ifn,j = Ny then |x, —a| < §,and |xj —a| <6

Since x,, < ¢jp < xj 01 X < Cjp < Xy, then |cjn - a| <éVjn=N;
Takej =N, so|cN1n—a| <dvn>N;

Hence

IO

In particular,

I Cen)

By assumption

&
<§VTl>N1

€
S|L|+§S|L|+1

1
(.g(xn)) - 00 Som -

Pick N = Ny such that foralln > N
1 €

9G] = 3011+ DIg G|
and

(f( Nl)) lf f(le) #0

f fGw)|, J9Gm) | F f

[ 1] <[ [ < o]+ )

Letn>N

flew)| _ 1fGew)le e

90 3|f Cow)l

9Gw) o' |g( LICHIP s

9 )| S gy 041+ D = gy laCen Il + 1 =5
%(CM)—L <%

Therefore

L Z=
| (n) - |_3+ +3
So

g—(xn)ﬂLasn—mo

Therefore
lim —=1
x-at g

And the same for the left hand limit, so

lim==1
X—ng

[ ]
Remarks

i ff_ - f_

1. Iflim, .+ pri L then lim,,_,,+ i L
(with all other assumptions)
2. In cases where lim,_,, g(x) = o (or — ), the behaviour of f does not matter, f does not need
to go to infinity.

a. Of course, if |f| < C then automatically limx_,ag = 0iflimy_, g(x) =
3. L'Hopital'srule isvalid ifa = +oo
4. L'Hopital's rule is valid if L = oo
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Examples

Failure:

- 1
lim—— = 0,notlim-=1
x-1 X x->11

r
The non-existence of lim,._,, 5 does not imply the non-existence of limx_,ag
. x+sinx
lim — =1
X—00

x
. 1+cosx
but limy_,

1 does not exist

Successful Examples
X

lim xe™™ = lim —
xX—00 x—00 eX

1 X

lim — =0,s0 lim — =10
x—00 g% x—00 g%
Exercise: Prove

lim x"e™* =0vVn €N

X—00
- logx
lim x%*logx, fora >0 = lim —
x-0% x-0t x~4@
1
= a
lim L1= lim _x_=0
x-0t —ax~" x-0t  a

So
XIL%L x%logx =0

lim x* = lim_exp(Inx*)
x—0% x—-0t

= exp (xll,%l+ xIn x)
Justification: Define
_fxlogxif x>0
F(")_{ 0ifx=0
,CIL%LF(X) =0=F(0)
so F is continuous at 0
Asking for
li%’l+ exp(F(x)) = exp(F(0)) = exp0 =1
X

n

1
lim (1 + —)
n-o n

Look at

. ne 1
lim (1 + —) = limexp (x log (1 + —))
X—00 1 X X—00 X.
Lety = o

Asx - cotheny - 0%

. 1 _log(1+y)

}}Lr(r)l+ exp (;log(l + y)) = exp (;JL%L -
1

lim 1+y =1

y-0t 1
1 X
so lim (1 +—> =exp(l) =e
x>0 x
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. - . - 1 1
Limits and CODUHUIW lim exp (x log (1 + ;)) = exp ( lim x log (1 + J_C))
X—00 X—00
November-17-10 10:26 AM

Justification

Theorem Seen before that
1

Iflimy_q f(x) = L and g is continuous at L, then lim (1 + —-) =1
X—00 X

limy e gof (x) = g(L) = g(limy_o f(x))

exp is continuous at 1, so this should hold true

Proof of Theorem
RTP that Ve > 0 there is a number N so that if x > N then |g(f(x)) — g(L)| < ¢

Know, given any €' > 0 there is N' so that ifx > N' then |f(x) — L] < &’
Know, given any & > 0 there is some § > 0 so thatif [z — L| < § then |g(z) —g(L)| < ¢

Fix € > 0. Take N so |f(x) — L| < § when x > N where § comes from the definition of continuity of g
at L. Letx >n, then |f(x) — L| < § and |g(f(x)) - g(L)| <e
Solimyo g(f(x)) =g(L) m
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Taylor Polynomials
November-17-10 11:00 AM

Taylor Polynomial
The Taylor Polynomials of degree n at a for the function f
is the polynomial:
y=aotax—a)++aglx—a)" = Pya(x)
where
£ (a)
AT
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Types of Taylor Polynomials
PO,a(a) =0ap = f(a)

Pio(x) = f(a) + f'(a)(x — a) = tangent line to f at a

Pra() =f@+ f'(@x—a)+ f—z(a—) (x —a)?

If fis a polynomial of degree n then f(x) = P, 4(x)
Exercise: Write f = by + b1(x —a) + -+ bp(x — a)™
Take derivatives to see by, = a;

The Taylor Polynomials are often good approximations of the function but not always

Example

f(x)=sinx atx=0
f'(x) = cosx

f"(x) = —sinx
f""(x) = —cosx
f""(x) = sinx

f(0) =0
=1
fll(o) = 0
f(0) = -1

a():O
a, =1
a2=0
1
3!
a4:0
1
]

as =

as

Taylor polynomial
%3 5
Pho=x——+———-+-endsatn



Taylor Polynomials Accuracy Proof of Theorem

Look
November-19-10 10:28 AM ookat

(k) (€]
L fw -3 oL (o -3 LE@ gy L@ g
b (x—a)n R (x— a)" - (x—a)"
Taylor Polynomial So R}F(i) 0.(x) f(")(a)
f-n tlmes differentiable at a lim n =
f(k)(a) x-a (x - a)" n!
Z ok )
Qn( ) = _( - = Pn—l,a(x)
k=0 " L
e
a
Theorem = f(@)+ f'(@)(x — ) +f— (rm @)? 4ot Il )'(x— a1
If f is n times differentiable at then (n—-1!
f(x) = Py q(x) Qn(@) =f(a) _ ‘ .
im TG =0 Q,, is a polynomial, so continuous function, solim,_,, Q(x) = Q(a)
e Hence
I s li - =0=1i —a)
Application of Theorem to Second Derivative Test xl—rgf(X) Qn(x) xl—rﬁ(x )
Suppose Apply L'Hopital's Rule
_ Look at
(@=0=f"(a)="=f"Ya)
oo ! ! 0 00
1. Ifnisevenand f*(a) > 0, then f has a local xoa n(x —a)rt
minimum at a chl_)n; Qn(x) = Qn(a)
2. Ifnisevenand f*(a) < 0, then f has a local
maximum at a 2f"(a) (n— 1)f”‘1(a) (x—a)"2
3. Ifnis odd, then f has neither a local minimum nor a Qn(@) = f'(a) + T2 -a)t s (n—1)
local maximum at a QL(a) = f'(a)
So
gOm}Te“"f(n)( ) ot houtfh lim f7(x) = Qn(®) = f"(a) = Qn(a) = 0
an have a) = 0 for every n without f being constant - . .
in which the above theorem does not give any information. Apply L,l’-lopltal s Rule again
lim [0 —Qn(x)
Example: x-a n(n -1 - a)" 2
Flo) = e—x—lz x#0 Keep applying L'Hopital's Rule
0,x=0 Q¥(a) = f®(a)vk=1,..,n—1
S _ o ™) —
Local minimum at x=0 deispite the fact that £ (0) = 0 @ -0,00 . U -0B ) (0 — Q)
forall n lim =1 = lim
x-a (x—a)n x-a n!'(x—a) x-a n!
Q,, is a polynomial of degree n-1 so Q,(I") =0
NV ARIEY)
= lim———

x-»a n!
But don't know that f™(x) is continuous

Notice Q7*~1 is constant since @y, is a degree n-1 polynomial

S0 Qr7' () = (@) = f""Ha)

Hence
B i O R Ll CO N A GO By M O N
Jlg_r}r{ll n!'(x—a) - ;lcl—r»r:lz n!'(x—a) - Ef @

By the definition of the derivative of f*~1

Therefore

lim f) = Qu(x)  f(a)
im =

x-a (x—a)n n!

Application of Theorem to Second Derivative Test
Suppose
(@ =0=f"(@==fr@
ff@)#0
1. Ifnisevenand f™(a) > 0, then f has alocal minimum at a
2. Ifnisevenand f™(a) < 0, then f has a local maximum at a
3. Ifnis odd, then f has neither a local minimum nor a local maximum at a

Proof

If f(a) # 0, replace fby f(x) — f(a)
Subtracting a constant does not change any derivative or local extremum location.
So wlog we can assume f(a) =0

ok
Pra =Y D e LD o

k!
k=0

Theorem said

a
R @GR jw @
x-a (x—a)" x—a (x — a)" x-a(x —a)n n!
Therefore
o S0 '@
x->a (x —a)n n!

Case n is even
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1. f*(a)>0
(@) . i
TR is positive
(x — a)™is positive
sof(x)>0=f(a)asx —>a
So aisalocal min

2. f(a) <0

M@

n!
(x — @)™ is positive
sof(x)<0=f(a)asx - a
So ais a local max

is negative

Case n is odd
(x — @)™ is positive when x > a and negative when x < a
n
fn—('a) is either positive or negative, but is constant
So f(x) > 0 = f(a) as x approaches a from one side, and f(x) < 0 = f(a) as x approaches a from
the other side.

So f(a) is neither a local maximum or minimum.
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Taylor's Theorem
November-22-10 10:31 AM

Taylor's Theorem

Suppose f, ', ..., f@*1D are defined on [a, x]
Then

f(x) Pna(x)

For some ¢ € (a,x)
Similar statement for a < x

f(n+1)(c)(x _ a)n+1
(n+1)!
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Example: Tangent Line

" _ 2
FG) - Pra) = OB =)

" _ 2
[fG) = Pra| < sup f—@(; 28
_ MG -

- 2
If fis a continuous function on [a, X]

Example: Sin x

f(x) =sinx

a=0

f™ = +sinx,+ cosx
If(n)(c)| <1VcVn

So
1(x _ a)n+1

[FG) = Pra GOl < =5

T T

No loss of generality in assuming — - SSXx<3
(-a)ntt n+1

n+1)! = (n+1)!

Proof of Taylor's Theorem
Think of x as fixed.
Foreacht € [a,x] write

Y
f(x)=f(t)+zf 060"

Defines a function R(t) on [x, al

L (k) Nk
R(t)=f(x)—f(c)_sz (t)k(li £)
k=1

+ R(t)

t=a

R(@ = £() ~ f(a) - Zf @bl

t=x

k) — )k
RGO = £00 - 0 - 3 L=
k=1

Define
(x _ t)n+1
F@& = _(n + 1)!_
(x _ a)n+1
Fla) == or
F(x)=0

Want to show
_ _ fn+1(C)(X _ a)n+1 _
R(a)—f(x)—Pn.a— (n+ﬁ =f

orR(a) —R(x) = f™D()(F(a) - F(x))

- 0asn—- o

which is accurate to 12 dlglts when n =20

f(x) - Pn,a(x)

"1(c)F(a)

Want to apply Cauchy Mean Value Theorem to R and F
R, F are differentiable on [a, x] (because f™*1 exists on [a, x]

FE) = m+DE-O"(-1) &-"
© = (n+ 1! T
dfOx-0* oG- ka-0 e FEYOE-0F G-
T TR Kl - i = Kl T
f("“)(t)(x S A ARIOLCED
R0 = —f'() - Z - D
. fED@OE - " FOO)(x — )"
=—f (t)—( - G )) —
By CMVT

(R(@) = R(MX))F'(c) = R'(c)(F(a) — F(x))

for some ¢ € (a, x)

(F(a) —F(x)

(RG@) - R(x))< C)>: f(”“>(c)(x

R(a) — R(x) = f™*V(c)(F(a) - F(x))

Which is what we wanted to prove. m



So
f(x) - Pn,a(x) =

(x — a)n+1

T+ D!
S0 £ (x) — Ppa(x) = 0if f**D(c) does not grow too quickly as n — oo

f(n+1)(c)(x _ a)n+1
(n+1)!

- 0asn - o
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. . flx) =e*
Irrationality of e FM () = e

f™@O)=1vn

5 FUO(0) (x — )
>
k=1

November-24-10 10:31 AM

x?  x3 x™

=l4+x+=—+=++—
n!

Pn,O = f(o) + ol 30

C.on+l
fQx) = Ppo = D for some c € (0,x)

Takex =1

(1+1+1+1+ +1)— ¢ . 3
¢ 2731 )" M+ D - (et D!
ce(0,1)

Suppose e = s forp,qg €N
Then

Take n > max(q, 3)
P, _ |4 '+n!+n!+ +n!+ nle
P Y nl (n+ 1!

nz=q san is an integer
q

n! n!
Every termnl, R are integers

¢ e

0< <1

< <
n+l1 n+1 n+1
This is impossible, so e is irrational

e is in fact transcendental
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Newton's Method

November-24-10 10:45 AM

Theorem

Suppose f:[a,b] - R, f, f', f" continuous,
fl@) <0< f(b)and f'and f" > 0 on[a,b]
Suppose f(c) =0 forc € (a,b)

Define

Xn+1 zxn_fT(E forn=0,1,2,..
n

where x( € [c, b] then (x,) is well defined and x,,
converges to .

Accuracy
Let M; = max{f"'(x): x € [a,b]}
(M, exists because {" is continuous and use E.V.T)
Let M, = f'(a) (= min{f’ (x): x € [a, b]})
LetM >
M,

Then
1 2n
lotn — ¢l < 22 (M(xo = ©))

(Can use bisection method to bring x, close enough to
cthat M(xg—c)is<1
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Finding Roots

Say fis continuous on [a, b] and f(a) < 0 and f (b) > 0, by the intermediate
value theorem there is a root c € [a, b] with f(c) =0

Bisection Method
Need only a continuous function, keep cutting interval in half and checking
whether the midpointis above or below zero.

Newton's Method
Suppose f' > 0 on [a, b]
Then f is strictly increasing so the root c is unique.

Algorithm
Pick x¢ € [c, b] (for example, pick xo = b)
Inductively define

fxn)

G

This sequence is called the Newton Iterates

Xn+1 = Xn

Tangent line to f at x,,
y=fle)+ f ) (x — xp)
Crosses x axis at
0= f(xn) - f,(xn)(x - xn)
f(xn) f(xn)

SIS EG

— ==X

FGn)

Proof of Theorem
Checkthatc <x; <xo<bh
ieh)

f'(x0)
flxo) = flc)=0
Of course f'(xg) > 0
Therefore x; < xg

flo)—flc)
e o f'(to)
for some t, € (c,xg) by MVT

fxo) = f'(to)(xo — )

f (o) &)
f'(to) f'(to)
to < xo and f' is strictly increasing so

f'(to) < f'(x0)
L1
f'(te) = f'(x0)

X1 = Xg

=(xy—c)=>c=xg

1w f)
f'(to) f'(x0)
So
_ f(xo) f(xo) _
C =Xy -

_?Tto) < Xo — f_’(xo) = X1

Proceed inductive and assume
b=2xg=2x12x22x,2c¢C
Checkxg=>x1 = 2x, 2 xp41 =¢C

Xn+1 = Xn es) <Xn

By MVT
M—f_(cz = f'(t,) for t, € (¢, xp)
Xp—C
Get

_ o SO

"f(t)

th <xp= f,(tn) < f,(xn)
oy SO
T (xa)

Hence x,, is a decreasing sequence which is bounded by low (by ¢) By MCT,



Xp—=>p withc<p<bh

f(xn)

= G
n

Since fand f" are continuous at p, f (x,,) = f(p)and f'(x,) = f'(p) # 0
By passing to the limit we see

f()

) e
So p is a root, but ¢ was the only root of fin [a, b]
So (x,) — ¢
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Newton's Method Accuracy Proof of Accuracy
Already have seen that

November-26-10 10:35 AM F(x,)
n
c=x,—
, ")
Newton's Method for some t,, € (¢, x,,)

f:la,bl > R,  f,f', f"are continuous
f',f" >0o0nlab]

fGq) (x f(xn)>| NG FG)| D f () — f ) f ()

f(@) <0< f(b) and f(c) = 0 for c € [a, b] e Fro) UM o)l e )] | £ f (t)
Newton lterat _ |G| 1f7 ) = el e — el If" () (&, = 2]
ewton Iterates o Fraedl 1 Gl " [f7 (el
Define xp 1 = xp — 57—, % € lc, b] For some u,, € (t,, x,,) by MVT
Th f1m) B% —cllf”(un)(t"_xn—)l< lx —CIZ%—Mlx —cl?
enn = ¢ " Gl T
2 n
Accuracy Write as Mlx,.1 — ¢l < (Mlx, — c)? < ((Mlx,_; — c)?)” < (Mlxo — cD?"™
Let M; = max{f"(x) : x € [a,b]} u
M, = f'(a) = min{f'(x):x € |a,b]} ] ) ] o
Put M = M, /M, But things can go wrong if not all the hypothesises are satisfied.

1 n
Then |x, —c| < M(Mlx0 —c|)?

e A

)
N
<
N
-

These examples need property that (x,,) does not converge
If (x) - p, must f(p) = 0?

_ ()
Xn+1 = x"_f’(x )
n
Xne1 P
Xp 2P
S0 f,(xn) N
f'(xn)

Assuming f is continuous at p
fn) = f(p) asx, = p
Assuming ' is continuous at p
f'(x,) = f'(p), areal number
so
fxn)
[

- 0=fx,) 0= f(p)=0

Example of Failure
x,, = 0, f continuous and differentiable everywhere
but £(0) # 0

Step 1:

Claim for each n € N, there is a polynomial P, with
1. B,(2™) = —2mn

P, (2=+D) = —2x(n + 1)

P,{(Z_n) = 23n+1

P,{(Z_OH'D) = 23(n+1)+1

B W

Define g: (0, ©) - R by

. 1 1
g(x) = Ipn(x) ifx € (—2n+1,2—n],n >0
2x—=2ifx>1
lim Py =Py(1)=0=g(1) = lim g
x-1" x-1F
P, (2=*D) = —2m(n + 1)
P (27D) = —27(n + 1)
lim g =g(2-*D)

x—2-(n+1)

as RH and LH limits both equal g(2~™*+D) = p,,, (2~ ™+D)
This shows g is continuous on (0, )

g is even differentiable on (0, ©)

Similar argument looking at RH and LH Newton quotients at 271

Step 2:
Define
x2sin(g(x)) +1 ,x>0
f=+ 1, x=0
—x2+1, x<0
Clearly fis continuous everywhere and differentiable everywhere except zero. "Where the clearly
statement does not apply, because it's not clear.”

(W) = £(0)

f10) = lim=—
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h?sin(g(h)) +1-1
m _sﬂ(%__ = 'llin(l)h sing(h) =0

So f7(0) = 0

f@™) =2 M™)?%sing(h)+1=1vn
f!(z—n) = (2—n)223n+1 = n+l

Take xq =1

X1 = X, —f(xo—)=1__1_=1

T fr(xg) 22
flxg) 1 1 1

X, =X - — ==

) 2 24
Could prove by induction

Xp = o vn

Therefore x,, = 0 but f(0) # 0



* Implicit Differentiation

November-29-10  10:49 AM Start with

y =—(x>+x)

y is strictly decreasing so it is invertible
x=—-°+y)

To take the derivative:

1=-Gy*y" +y)

What about

x"y+yi+xiy+x=1

Don’t know if it's differentiable or a function

Can use the implicit differentiation theorem, but don't know it.
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Cardinality

November-29-10 10:56 AM

Bijection
A function that is 1-1 and onto.

Finite Set

A set E is finite if there is a bijection
fiE - {1,2,..,n}

for some unique n.

The cardinality of E = n.

Countable
Say a set E is countable if there is a bijection
f:E->N(or f":N->E)

Any two countable sets have the same cardinality
If E, F are countable, there is a bijection
g:E->F

Uncountable
Say E is uncountable if E is not countable or finite.
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Say E is a finite set of n elements. Then E & {1, 2, ...

i.e. there is a bijection (1-1, onto function)
f:E—={1,2,..n}

Example of countable sets
N

2N

Z

N X N,so0is Q

Countable sets are those which can be put in an ordered list because if E is countable, then there is a

bijection f:N - E so E = {f(n)}n=1
Conversely, if E = {e, };—; then there is a bijection
f:E—->N

ep PN

,n}



Irrationals

December-01-10 10:40 AM

Fact
A union of two countable sets is countable.

Theorem
E is either countable or finite iff there is a
map g: N — E thatis onto

Corollary
Ifh: E - Nis1-1 thenE is either countable
or finite

Corollary

If A € B and B is countable then A is either
countable or finite

If A € B and A is uncountable then B is
uncountable

Countable set E: There is a bijection
f:N->E

E = {ej};il were e; = o
EgE=Q

Suppose Q = {rj};,il

Let I =(rj—%,r+5)

X = UIJ ={x:x € I; for some j}
j=1

Noticer; € X for each j
SoQcX
o

Zlengthlj = ZE = 2¢
=1 =1

R\ X has no intervals since every interval has to contain a rational number

Show (0, 1) is uncountable
Cantor Diagonal Argument

Suppose (0, 1) is countable, say (0,1) = {aj};il

Write out decimal expansion for each number, pick the expansion terminating with all 9's if there is

a choice

a; =0.a;4,a12,a13 ...
a; =0.a31,a72,023 ...
az =0.a31,a32,0a33 ...

Now define r € (0, 1) as follows:
r=0.m7713
i = 4 lf ajj = 5

ré {aj}jzl
Therefore (0,1) # {a,-}],=1
So (0, 1) is not countable

Unaccountability of R

If R is countable there is a bijection
fR->N

There is a bijection: R - (0, 1)
g(x) = arctan(x)

‘R-> (—E E) bijection

g: 2’2 J
1 1

h(x) = —arctanx + =

T 2
h:R - (0,1) is a bijection
ho f~1:N - (0,1)is a bijection
This contradicts the fact that (0, 1) is uncountable
So R is uncountable.

Proof of Fact (Union of two countable sets is countable)
IfA,B argo countable, then
A={a}_,
Lookat AUB = AU (B\A)
If B\A is finite, then AUB is an exercise
(just start counting a after counting all the elements of (B\A)
If B\A is not a finite set then say B\A = {Cf};‘i1
Define bijection:
f:AU(B\A) » N
a2j—1
¢~ 2j

Corollary
The irrationals are uncountable. Since rationals are countable and R is uncountable.

Proof of Theorem (Countable/Finite iff onto from N)
=

Follows directly from the definition of countable/finite

&=

Proof in textbook (take a function which is the onto function with every term that is a duplicate
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removed)

Corollary

If h : E - Nis 1-1 then E is either countable or finite

Proof:

Define g: N — E as follows:

If n € Range h, there is a unique e € E with h(e) = n because h is 1-1
Then define g(n) =e

If n € Range h, then pick e* € E and define g(n) = e*
So g is an onto map, and therefor E is either countable or finite.

Corollary
1. If A € B and B is countable then A is either countable or finite
2. If A € B and A is uncountable then B is uncountable
Proof
1. B countable there is a bijection f : N - B
Define g : N - Aby g(n) = f(n) if f(n) € 4, and if f(n) & A then define g(n) = A* € A
g:N — A is onto therefore, A is countable or finite

2. IfBis countable, then A is countable or finite but A is not countable or finite, so B is
uncountable.
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Cardinality and Unions

December-03-10 10:30 AM

Theorem

E is either countable or finite iff there is a map
f:N - E, which is onto.

Corollary
A countable union of countable or finite sets is
either countable or finite.

In other words: IfA]-,j =1,2,3,... are either
countable or finite, then

[ee]
A= UA]- = {x € Ajforsomej =1,2,3, }
j=1
Then A is either countable or finite
or more generally,
if Ay, a € I are either countable or finite and I
is countable then

UA“ ={x €A, for some a € I}

a€l

Proof of Corollary
Each Aj is either countable or finite, so there is an onto map f] N - A]-
Define

[ee]
h:N XN - UAj
j=1
h(j, k) = fj(k) EACA
h is onto, because ifa € 4, thena € Aj for some j and since f, N - A]- is onto there is some k € N
with f;(k) = a = h(j,k) = a
Let g: N = N x N is a bijection
Take h 0 g:N — A, which is onto
So the union is either countable or finite.

Example

Algebraic numbers are countable, and therefore Transcendental numbers are uncountable

Proof

Algebraic numbers are numbers which satisfy polynomials with integer coefficients and by the
minimal polynomial of an algebraic number, we mean the polynomial of minimal degree, with GCD
of the coefficients equal to 1, and a positive leading coefficient.

p(x) = apx" + -+ a1 x + ay, a; € Z,a, >0, ged(ay, ..., a,) =1

A,, =algebraic numbers whose minimal polynomials has degree n

Alg Numbers = U A,

n=1
It's enough to prove each A, is countable
A, S {all roots of integer polynomials of degree n} = U R,

PEPy

Where P, = all integer polynomials of degree n and R,, = roots of polynomial p
Notice each Ry, is a finite set of at most n elements.
So it's enough to prove each P, is countable, because then each 4,, will be contained in a countable
union of finite sets.

Define amap F,: B, » Z" by p = a,x™ + -+ ayx + ay » (ay, ..., a4, a9) € Z™1

Finally, have to prove Z™*! is countable. By induction on n.
7Z X 7 is countable, so Z"*1 is countable forn =1

Assume Z¥ is countable and prove Z"*1

Il =" X7

Let f: Z¥ - N be a bijection

and g: Z — N be a bijection

Define h : Z¥+1 > N x Nby h(w,z) = (f(w),g(2)), w € Z¥,x € Z.
h is a bijection,

Let H:N x N - N be a bijection then H o h : Z*** - N is a bijection
This proves Z"*1

So P, is countable

So A, is countable

So the algebraic numbers are countable.

Z™,N™ are countable

What about "Z*"?

Now look at NN = {(a,, a,, a, .)ia; € N}={f:N->N}
The set of all functions from N to N

{0, 13N c NN
0,1 ={(ay a5 .) : a; €{0,1}}

(a,az a3 ...) €{0, 1N Z ajz_j
=

S0{0,1}N & [0,1]
S0 {0, 1}V is uncountable.

Furthermore, {0, 1}N & all subsets of N

(ay,ay, a5, ...) © Awhere j € Aiff a; =1

When there are finite elements in a set: {1, 2, ..., n} has 2™ elements
So 2N = {0, 1}V

So 2N is the next cardinality up, in fact the cardinality of R

MATH 147 Page 59



Exam Assignments 20
Midterm 30
December-06-10 10:44 AM Final 50

Office Hours

Monday Dec 20 2:30-4:30

Friday Dec 17 1-3

or send an email to make an appointment

Previous Exam
2 proofs out of notes
4 definitions

Do some derivatives

Define BWT and EVT

Define Differentiability

Deal with a function defined differently on min/max
Find global and local extrema

Can you make a function diffat 0

State MVT

Increasing/Decreasing Concavity + Sketch graph
Invertability of Function and derivatives (application)

Suppose

limg(x) =0

xXx—a

and |h(x)| < M Vx
prove

lim g(x)h(x) = 0

Find f'(0)if

k(x)
f’(X) — _x——lfx *0
0ifx=0

and k(0) = k'(0) = 0,k''(0) = 17
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