
A Distance Problem
You go from A to B in a car, odometer broken, speedometer is working, and you have a watch. The 
trip takes two hours. Estimate the distance traveled. 

Take time samples between 0 and 2
                         
On each time interval          , record the maximum speed   attained on that interval. 

Over the interval          you travel at most a distance                          

Over the full time interval [0, 2] you travelled at most a distance

              

 

   

If   is the minimum speed recorded over time interval          then total distance travelled is at 

least

              

 

   

If each interval          is small we expect      to be small. 

Then the difference

                     

 

   

should be small. 

Roughly

                

 

 

              

 

 

             

So actual distance covered is pinched between two estimates that are close to each other. 

An Area Problem
Suppose   continuous  cts.  function  fun  f is defined over  n interv l     b   nd f ≥  .
Estimate the are under f and over [a, b].
Well, chop up [a, b] into a pieces.
                      
On each          let                            and let     in                    

If   is the actual area under f and over          then,

                          

Add up to get

            

 

   

    

 

   

                                                     

 

   

If we make each          small we expect      to be small and thus

                 

 

   

             

 

 

            

 

 

         

So we have a good estimate for the area, since the difference between the bounds is small.

Let f be any bounded function over a closed 
interval. i.e.          

f may be +ve, -ve, and possibly 
discontinuous. 

Let  be a partition of [a, b]
Since f is bounded(bded) over each          

we get the numbers
sup                 sup           

inf                 inf           

Partition
A partition of [a, b] is a strictly increasing list 
of numbers starting at a and ending at b. 
Denoted 
                        

Uniform Partition
 is called uniform when the   are equally 

spaced. 

Assignments due on Fridays
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Let          be a bounded function and 
                        a partition of      

For each          we have 

sup                 sup           and 

inf                 inf           

Example

      

 
  
 

  
 

        
 

 
   

        
 

 
     

    
 

 
  

Use     
 

 
  

 

 
   

sup     
 

 
    

 

 
    inf     

 

 
     

sup   
 

 
   

 

 
    

 

 
   inf   

 

 
   

 

 
     

 

 
  

sup   
 

 
        inf   

 

 
       

 

 
  

Example

       
          
          

For every                 
we get

        inf                    

 

 

  

        sup                                

 

   

  

 

 

Example
                
Take the uniform partition

     
 

 
   

 

 
   

 

 
   

   

 
      

 

 
    

Now 

 
  

  
    

  

  
    

  

  
      

  

  
    

 

  
    

            

 
                 

 

 
     

 

 
      

 

 
   

         
 

 
   

 

 
 

 
       

 

 
   

 

 
 

 
   

 

 
     

 

 
   

 

 
 

 
   

 

 
       

 

 
   

 

 
 

 
   

   

 
      

Similarly,

       
 

 
     

 

 
      

 

 
   

Refinements
Example

  
 

 
     .   is refined by   

 

 
   .     .     

Proof of Proposition 1
Show              
It suffices to check this when  has just one point more than  since we can 
induct over the number of points.
Say                           
                            
Now 
      

  sup                    

   

   

 sup                    

  sup                    

 

     

    

Let f be any bounded function over a 
closed interval. i.e.          

Let  be a partition of [a, b]

Lower Sum
The lower sum for f using  is

        inf                    

 

   

Upper Sum

        sup                    

 

   

Note:
             

since inf            sup           and 

add up inequalities

Refinement
A partition  of [a, b] refines  when 
the points of  are also in  

Proposition 1
If  refines  then 
                           

Proposition 2 (Corollary)
If    are any partitions of        then 
             

Upper and Lower Sums
January-07-11 9:28 AM
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  sup                    

   

   

 sup                  

 sup                sup                    

 

     

So we need to see that 
                      ≥                                       
We know that sup           ≥ sup          and sup           ≥ sup        
and thus
sup                    sup              
 sup                     sup                 
 sup                    
   

Proof of Proposition 2
Let  be the partition of [a, b] that includes all points of  and  
 is called the common refinement of  and  
By Proposition 1, we get 
                           ∎ 
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Since       is an upper bound for all       's we get
sup                                          

Short notation:
sup
 

             

Since sup       is a lower bound for all       we get
sup

 
       inf

 
      

Example

       
         
         

         

We saw all         and all         
So
sup

 
           inf

 
      

So f is not integrable

Example
       on      
Using uniform partitions   we got

        
 

 
     

 

 
      

 

 
   

        
 

 
     

 

 
      

 

 
   

Hence

inf
 

       
 

 
        inf

 
                     li 

   
        

 

 
  

Similarly, 
 

 
  inf       

 

 
   sup

 
       inf

 
       

 

 
  

so 

  
 

 

 
 

 
  

Integrable Function and Integral
A function f is said to be integrable over [a, b] iff
sup

 
       inf

 
      

The common number is the integral of f over [a, b]
We write:

  
 

 

 sup
 

       inf
 

      

Integrable Definition
January-10-11 9:33 AM
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We have seen that all 
                 
Thus
sup

 
       inf

 
      

If = happens we say f is integrable on [a, b] and its integral is

  
 

 

 sup
 

       inf
 

      

Proof of proposition 3
Suppose f is integrable and take    . Then
sup

 
       inf

 
      

Hence there exist partitions      such that 

sup
 

       
 

 
          

        inf
 

       
 

 
  

Let R be a common refinement of   and   

Then

sup
 

       
 

 
                                  inf

 
       

 

 
  

But 

  
 

 

 sup
 

       inf
 

      

so

  
 

 

 
 

 
                   

 

 

 
 

 
  

And therefore
               

Conversely, say for every    there is a partition R such that                
Then we have
       sup

 
       inf

 
             

So for every    , we get
  inf

 
       sup

 
        

But inf        sup       is constant, so

inf
 

       sup
 

         

∎ 

Example
     , Put

       
         

       
        

Use Proposition  . T ke ε    
Pick      such that            and        
Take            , a partition of      
                                    
                                    
So                    

So f is integrable and   
 

 
  

Proof of Proposition 4
Suppose          is increasing (i.e.                       )

If             then a simple calculation gives all                         
So

  
 

 

 sup
 

       inf
 

             

Now, suppose              , so          
T ke  ny ε     

Pick a partition P:               such that all         
 

     

Proposition 3 - proof to know
Riemann's Integrability Criterion
         is integrable if and only if 
for every ε      there is   p rtition R of 
[a, b] such that                

Proposition 4
Every increasing/decreasing 
         is integrable

Riemann Sum
Instead of using upper and lower sums, 
pick some value      in each section of 
the partition  

               

 

   

Approaches the integral as the partition 
gets finer. 

Riemann's Integrability Criterion
January-12-11 9:37 AM
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Pick a partition P:               such that all         
 

         
        

Then 

                sup           inf            

 

   

         

                          

 

   

                 
 

         
           

 

   

 
 

         
                                                     

 
 

         
                        

∎ 

Example
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Example
       sin       
T ke  ny p      nd show f is continuous  t p

T ke  ny ε    . Let's find δ     such th t    sin      sin     when         
   sin     sin          sin  sin                      

Take   
 

 
 

When        , we will get

   sin        sin                 
 

 
     

Example
            
Take    . Check f is continuous  t p. T ke ε    
Need δ     so th t                  
                  
If we keep                       , so          
Then when         
                                                     

Take    in    
 

      
      

Now when        we get

                               
 

      
          

Note: 
In the first c se  δ did not depend on p  while in the second c se δ did depend on p. There 
is not   single δ th t works for  ll possible points.
       sin  is unifor ly continuous on  . Right now don't know th t        is not 
uniformly continuous. 

Proof that        is not uniformly continuous on  
Suppose f were unif. cts. on    nd look for contr diction.
So for ε     we h ve   δ     such th t      and                  

Let n be an integer so big that 
 

 
   

Then take             
 

 
 . Clearly       

 

 
   

            
 

 
   

 

           
 

  
          

 

  
     

Fact
 sin  sin         

Triangle Inequality
On a triangle, the distance between any two points is 
less than or equal to the sum of the distances between 
the other points, and greater than or equal to the 
difference in the distances of the other points. 

             
     ≥          

Uniform Continuity
On midterm
A function      is uniformly continuous on the 
interv l I when for every ε     there is   δ     such th t 
             when      and        

Comparison of Continuities
Normal:
f cts. on I
                .  . 
                          
Uniform:
f unif. cts. on I
           .  .           
                     

Uniform Continuity
January-14-11 9:30 AM
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      is uniformly continuous on the interval 
I  e ns th t for every ε     there is   δ     such 
that               when      and 
       

Proposition 5
     is not unifor ly continuous on I ⇔ 
there exist sequences        , such that    
    while              

equivalently

     is unifor ly continuous on I ⇔ 
  sequences                       
       

Proposition 6
            is continuous on a closed 
interval [a, b], then f is uniformly continuous. 

Proof of Proposition 5
Say f is unif. cts. on I.
Take        and        
Want              
Take     we need to show                eventually
By uniform continuity of f, we have    such that              when    p   I  nd        
Eventually            n ≥ N  nd so                   ≥  
So              

Now suppose f is not unif. cts. on I
So there is   "b d" ε    th t no δ     c n ple se

No   
 

 
 c n ple se this ε. For e ch such 

 

 
 we pick up        such that         

 

 
                     ≥  

By the squeeze theorem,         and clearly                
∎ 

Example
Show      ln  is not uniformly continuous on (0, 1)

Well, 
 

        
 

              and 
 

     
 

          

But ln  
 

      ln  
 

                           

Proof of Proposition 6
Suppose f is not uniformly continuous.
Then there is   "b d" ε     such th t no δ     c n ple se. 

For all   
 

 
 , pick        such that         

 

 
 but              ≥  

Using Bolzano-Weierstrass we pick up a subsequence    
of   such that    

         s k   ∞ 

Notice    
    

     
    

       

So      
      as   ∞ and      

      

Therefore      
       

         so     such that       
       

      k ≥ K

But              ≥     , a contradiction. 
So f is unifor ly continuous. ∎ 

Sequences and Unif. Ctn.
January-17-11 9:28 AM
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Theorem 7
Every continuous function on a closed interval is 
integrable on that interval. 

If          is continuous and    is given, take 

   such that                     
 

   
   

If                 is a partition 
constructed such that all          then 

               
So f is integrable on [a, b].

Proof of Theorem 7
On each          f gets a maximum and a minimum value by the extreme value theorem.

Pick                       sup                     inf           

             so               sup            inf            
 

   
   

                sup            inf                     

 

   

  
 

   
              

 

   

 
 

   
               

 

   

 
 

   
            

Estimating Integrals
To make an estimate of the integral of a continuous bounded function on [a, b], for an estimate 

within ε of the true integr l  p rtition the interv l into          with         
 

   
   and sum the 

area of those rectangles. 

Integrability of Continuous
January-19-11 9:55 AM
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Observation
If f is integrable on [a, b] and S is a number such that

               for all partitions  then     
 

 

Theorem 8
Fundamental Theorem of Calculus pt. 1
(Learn Proof)

f is integrable•
F is continuous on [a, b]•
F' = f over (a, b)•

If F, f are functions on [a, b] such that 

Then 

  
 

 

          

F(x) is known as the antiderivative of f or the indefinite integral

Question: Is there a function F such that F' is not integrable?

Notation
*Non-mathematical reasoning* 

When f is continuous, we see   
 

 
       when  is very 

fine. 

        sup                    

 

 

                

 

 

Pretend your  is so fine that you make a cut at every x in      
Now you get "nano-thin" rectangles of "thickness" dx, height 
    , and "area"       .

"Add up" these "values"       using the "limiting sum"   
 

 

and we can write

  
 

 

        
 

 

Another Useful Notation

      
 

 
           

 

means          

Proof of Fundamental Theorem
If                 is any partition of [a, b] we will show that
                       

                          

 

   

                      

Apply the Mean Value Theorem to F over each          , we pick up some             such 

that
                                             

inf                  sup           

  inf                    

 

   

                

 

   

  sup                    

 

   
                        
So

  
 

 

          

∎
Example
Let      sin  over      
We know       cos  
By FTC (part 1)

  
 

 

  cos  cos           

Example

 
 

    
      

 

 

    rct n    
 

 
 

 

 
     

 

 
  

Example

 
 

 
  

 

 

    ln    
  ln  

Example

           
 

  

  
 

 
     

 

 
     

  

 

     
 

 
   

 

 
    

 

  
   

Fundamental Theorem of Calculus I
January-21-11 9:32 AM
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Terminology

In order to calculate        
 

 
using FTC(I) we need a function F such that     

Then we know 

       
 

 

          

Any function F such that     is called an anti-derivative of f and is denoted by

       
 

 

with no endpoints. This is a function, while with endpoints is a number. 

So FTC(I) said

       
 

 

        
 

 

  
 

 

If F, G are two anti-derivatives of f on some interval I then                 
            
      

So one we have one anti-derivative F of f, we write

       
 

 

       

Because of FTC(I), we also call

       
 

 

an indefinite integral of f.

Remember: 
The left hand side (integral) is defined on its own. It is not defined through the anti-derivative. 

So we need to find these indefinite integrals:

Anti-Derivative Rules
Know by heart

     
 

 

 
    

   
                 

 
 

 
  
 

 

 ln     

 sin    
 

 

  cos    

 cos    
 

 

 sin    

 
 

cos  
        
 

 

 t n    

 
 

          
 

 

    rct n    

 
 

                     
 

 

  rcsin    

     
 

 

     

The Substitution Method
Suppose F, f, g, are functions. Here is the chain rule:

Derivative Style
If           
Then

       
 
             

Integration Style
If 

       
 

 

     

then

               
 

 

        

So in order to find some 

                 
 

 

play the following substitution game.
Put       
  

  
         

          
Find

     
 

 

   

Integral
Riemann Integral
Conventional integral over an interval using 
upper and lower sums

Indefinite Integral
The anti-derivative of a function plus a constant.

Integrand
That which is to be integrated.

Anti-Derivatives
January-24-11 9:32 AM
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Example

   
  

            
 

 

Put        
  

  
        

   
 

 
    
 

 

 ln    ln        

Example

   
 

    
        
 

 

 
 

 
   

  

       
           
 

 

         
  

  
               

     
 

 
   

  

          
 

 

 
 

 
   rct n   

 

 
   rct n      

Example

   
 

 ln  
       
 

 

      ln      
 

 
    

   
 

 
    
 

 

 ln    ln ln    

Example

        
       

 

 

  

More obscure - trig substitution. Cleverly notice

          
 

      
               

 

 

     sin   rcsin     
 

                      
 

 

       rcsin      
 

                     

     sin       cos    
 

 

 
 

 
    cos      

 

 

 
 

 
   cos    

 

 

 
 

 
      

 

 

 
 

 
  sin   

 

 
   

 
 

 
  sin  cos  

 

 
    

 

 
  sin  rcsin   cos  rcsin    

 

 
   rcsin   

 

 
        

       
 

 

 
   rcsin    
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Integration by Substitution

To integrate stuff like                  
 

 

Put                  
Find             

 

 

Write            

But it's sometimes not easy to see what       to try. Try something and hope

Inverse Substitution Method
Example
We had

        
       

  
 

 

and discovered that    rcsin      
 

                 let to    cos    
 

 
then we got to

  
 

 
        

       
 

 

 
   rcsin    

But what if we did not know to try    rcsin  ? Here is a way to  cos    
 

 

Put   sin      cos   
   rcsin  

     
       

    sin  
          

 cos 

        
       

  
 

 

  cos    
 

 

Then continue as before. 

Example

               
  

 

 

                  
        

   
 

             
             

    

  
        

   
  

    
        

So

     
  

    
        

 

 

   
  

    
        
 

 

    
    

    
        
 

 

  
 

    
        
 

 

 

Call  

    
 

    
         
 

 

Use Partial Fractions
 

    
       

 

          
              

 

   
      

 

   
     

                

      
 

 
  

        
 

 
  

So

   
 

 
   

  

   
     
 

 

 
 

 
   

  

   
     
 

 

 
 

 
  ln      

 

 
  ln     

      
 

 
  ln      

 

 
  ln u       u  ln u     ln u    

     e        
 ln    e        

    ln    e        
    C

Integration by Parts
Say f, g are differentiable on I
Here is the product rule

Differentiation Style

          
 

                    

Integration Style
        

                         
 

 

So

            
 

 

                    
 

 

  

To exchange             
 

 

Put                  
  

  
                   

     
 

 

         
 

 

Here you need to integrate this "part"

Write

       
 

 

          
 

 

Integration by Parts

       
 

 

          
 

 

Memorise

Integrating Rationals

Key Theorem
Every rational function can be expressed as a linear 
combination of the following functions:
            

for any    

 

   
      

 

      
         

 

      
           

 

      
          

Where        is irreducible

 

       
           

 

          
                

 

          
               

Where        is irreducible

 

       
           

 

          
                

 

          
               

In other words, these functions form a basis for the set of all 
rational functions. 

Thus we need to be able to integration the functions on this 
list, and write a rational function as a linear combination of 
these. 

Change of Variables for Definite Integrals

               
 

 

               
 

 

          
 

 
                

        
    

    

Integration Methods
January-26-11 9:33 AM
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Example

         
 

 

Put          

             
 

 

     

This

           
 

 

         

Example

     cos    
 

 

Put         cos    

            cos    
 

 

 sin 

    sin      sin    
 

 

           sin   

         sin    
 

 

  cos  

    sin       cos    cos     
 

 

    sin    cos   sin    

Example

   ln     
 

 

      ln        

   
 

 
         

   ln   
 

 
      
 

 

  ln      

Example

    rct n    
 

 

       rct n        

   
 

    
            

    rct n    
 

    
        
 

 

   
 

 
   

  

    
        
 

 

 
 

 
  ln      

    rct n   
 

 
  ln        

Example 

     sin    
 

 

Put         sin   
             cos  

     cos      
 

 

cos   

      cos    
 

 

            cos   
        sin   

     sin      sin   
 

 

     sin    
     cos         cos     sin    
     sin     cos 

  
  sin    cos  

 
                   

Example
Constant over irreducible quadratic - complete the square and use arctan

   
  

      
          
 

 

Complete square

          
 

 
   

 

 
 

 
   

 

 
   

 

 
     

 

 
   

 

    
 

 
    

 

  
         

 

 
    

 

   

      
 

  
         

 

 
       

 

  
            

  
   

 
      

So 

  
 

 
 

    

 
 

 
  

 

 

 
 

 

 
 

 

 

    
  

 

 

 
 

 
  rct n   

 

 
  rct n
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       rct n   

 

  
       rct n  

 

  
         

 

 
      

Example of Rational Theorem

   
      

       
             
 

 

Here, deg    ≥ deg       

       
    

       
             

 

 

Easily,        
 

 
 

 

 
      

    
    

       
             
 

 

  
    

          
               
 

 

We try to solve
    

       
            

 

   
      

 

   
     

Get, check myself

  
  

 
      

 

 
  

   
  

 
    

 

   
     
 

 

 
 

 
   

 

   
     
 

 

 
  

 
   ln        

 

 
  ln       

  
 

 
        

  

 
   ln        

 

 
  ln        
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A basis for spaces of rational functions is all:
      

 

      
                

 

          
                               

 

          
                               

Example

   
     

             
                   
 

 

For the partial fraction expansion (write rational function in terms of basis)
     

             
                  

 

   
      

 

      
           

  

      
          

And solve for A, B, C. We get:
                              
        , get    
       , get           
       , get                

So
     

             
                  

 

   
      

 

      
           

  

      
          

Need

    
 

   
       
 

 

 ln       

    
 

      
            
 

 

 
 

  
       rct n  

 

  
        

 

  
                       

    
 

      
            
 

 

Force          on top and fix the damage

   
 

 
   

    

      
            
 

 

 
 

 
   

  

      
          
 

 

 
 

 
  ln         

 

 
    

Put everything together again

   ln      
 

  
       rct n  

 

  
        

 

  
        ln          

Example

   
 

          
               
 

 

First, force derivative of        on top and fix

  
 

 
   

    

          
               
 

 

   
 

          
               
 

 

             

    
  

  
   
 

 

  
 

 
    

 

       
           

    
    

          
               
 

 

Complete square of bottom
                
Put        

    
  

       
         
 

 

Next do a trick.

    
      

       
           
 

 

  
  

       
           
 

 

    
  

    
      
 

 

     rct n        

Now do 

    
  

       
           
 

 

    
 

       
           

 

 

           
 

       
           

         
 

       
           
 

 

 
 

 
   

  

       
           
 

 

  
 

 
   

 

    
      

    
 

       
           

 

       
         
 

 

    
 

       
          

 

 
   rct n    

    
  

          
              
 

 

    rct n      
 

       
          

 

 
   rct n    

 

 
   rct n      

   

         
             

   
 

          
              

   

       
             rct n      

Example

Rational Expansion
January-31-11 9:32 AM
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Example

   
  

       
         
 

 

Trick like before

   
    

       
           
 

 

  
  

       
           
 

 

    
  

       
         
 

 

                         

      
 

       
           

 

 

Use parts. 

           
 

       
                 

  
 

 
   

       

       
         
 

 

 
 

 
    

 

 
   

 

       
            

 

        
          

And now keep going with easier problems.
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Proposition 1
A bounded          is integrable iff there is a 
sequence of partitions   of [a, b] and a number S such 
that          and          as   ∞ then   

  
 

 

Proposition 2
If f, g are integrable or [a, b], then so is    and

    
 

 

   
 

 

   
 

 

Linearity (follows from Prop 3, next lesson)

                   
 

 

      

 

 

      

 

 

        

 

 

Proof of Proposition 1
Suppose such   and S exist.
Clearly                      
So for                      eventually.
Thus f is integrable.

Also,

        sup
 

          
 

 

 inf
 

              

Hence     
 

 
  so     

 

 

Conversely suppose f is integrable over      

                
 

 
  

For each 
 

 
 we get at   such that

Also           
 

 
        

Thus

            
 

 

 
 

 
  

    
 

 

         
 

 
  

So           
 

 
and           

 

 

Proof of Proposition 2
By proposition 1, we have partitions          such that

          
 

 

        

          
 

 

        

Let   be the common refinement of   and   

Then                                

Squeeze and get           
 

 
        

Likewise,           
 

 
        

So                   
 

 
   

 

 
                

             
 

 

   
 

 

          

What we really wanted was

                
We need to observe that for any

                                             

For each            we have           sup            sup           

 sup               sup            sup           

Now add up to get

 sup                       

 

 

  sup                    

 

 

  sup                    

 

 

Hence                       
And similarly,                       

Back to   we get
                                                   
By squeeze

            
 

 

   
 

 

          

So by Proposition 1,    is integrable and 

    
 

 

   
 

 

   
 

 

∎ 

Properties of Integrals
February-02-11 9:35 AM
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We saw that f is integrable on      ⇔ there is   sequence of p rtitions   and a number S 
such that 

                 and that     
 

 

Proof of Proposition 3
For any bounded set A, let            
We have
sup      inf    
inf      sup    
So for any partition                 we have 

         inf                      

 

 

   sup                   

 

 

        

Likewise,                

          
 

 

        

Sine f is integrable, have partitions   such that

                     
 

 

                  

Hence

So by proposition 1 applied to   we get -f is integrable and        
 

 

 

 

Proposition 4

Have   such that           
 

 
        

You can check                                    

Hence                      
 

 
                  

So cf is integrable and    
 

 
    

 

 

Proof of Proposition 5
If c <0, write                  and use Prop 3 & 4
Thus          is integrable and 

   
 

 

        
 

 

      
 

 

        
 

 

    
 

 

Proof of Proposition 6
If                 ,                 
we can splice these to get
                              
Easy(you do it)
                      
                      
Say f is integrable on      and on      thus have   of      and   of      such that

          
 

 

        

          
 

 

        

Thus

                             
 

 

   
 

 

                           

By proposition 1, f is integrable on      and   
 

 
   

 

 
   

 

 

Conversely, suppose f is integrable on [a, b]. Check f is integrable on [a, c] and on [c, b]
If R is a partition of [a, b]                 we refine R by inserting c. Get      
With                   ,                

Have          
For    have R such that                
Taking P as shown, we get 
                                                               
                

So f is integrable on      and on      and by above,   
 

 
   

 

 
   

 

 

Proposition 3
If f is integrable on      then so is -f and 

   
 

 
    

 

 

Proposition 4
If f is integr ble on     b   nd c ≥   then cf is 

integrable and    
 

 
    

 

 

Proposition 5
If    and f is integrable on [a, b] then cf is 

integrable and    
 

 
    

 

 

Proposition 6: Splicing Property
Let      
A function f is integrable on      ⇔ 
f is integrable on [a, c] and on [c, b] then

  
 

 

   
 

 

   
 

 

Mult. and Splicing
February-04-11 9:33 AM
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Fundamental Theorem of Calculus Pt. 2
Let f be continuous on an interval I
Then there is a function g defined on I such that       
    for all x in I

More specifically, pick any    , x and define the 
integral for 

            
 

 

For each    
Then           

Summary

      
 

  
          

 

 

     

Integral Function

            
 

 

Is the integral function of f.

A Useful Convention

Consistent with splicing•

  
 

 

   
 

 

   
 

 

Consistent with FTC 1•

  
 

 

          

          
 

 

  

If    declare

Consistent with splicing•

  
 

 

   
 

 

   
 

 

  

Consistent with FTC 1•

  
 

 

    
 

 

                       

  
 

 

    
 

 

So we get general splicing

  
 

 

   
 

 

   
 

 

   
 

 

   
 

 

Proof of FTC(II)
Know for Midterm
Say    , we need to show
           

 
                          

Do     first

Examine

By monotonicity of integrals

                            
   

 

        
 

 

       

         
   

 

                       
   

 

                 
   

 

      
         

               
   

 

     
         

                
   

 

    
         

            

Divide by h and get

For some          by EVT for             on        

 
           

 
                        

         
                       

As                                                     
So squeeze and 

 
           

 
                      

∎ 

Variations in order of x, x+h, a can be handled with the conventions of sign on 
integrals. 

Examples
 

  
    sin      

 

 

 sin    

 

  
       

  
     

 

 
       

           
  

          

Here we had                     
  

 

 

    
  

     

 

        

         
 
                      

 

      
  

          

 

  
    

sin  

 
      

  

  
 

 

  
     

sin  

 
      

  

  

  
sin    

  
            

 sin    

 
        

Example

 

  
    

 

    
        

  

 

 
 

       
             

   

     
       

Example
Sketch

          
  

 

 

First check g is odd.
Verify             

            
 
                  

          

So                   .
Plug in    and get                 
Thus             , so g is odd.

Now worry about  ≥  .

Have           
               ∞  

              
  g conc. down

One more issue: does      ∞ as   ∞ or does g(x) tend to some finite B as    
∞?
Use a comparison trick:

Know     
       

       ≥  

          
  

 

 

      
  

 

 

      
  

 

 

      
  

 

 

        
  

 

 

Now get

        
  

 

 

                   

Fundamental Theorem of Calculus II
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So 

          
  

 

 

       
 
 

 
      

  
 

 

 
 

 
       

      
  

 

 

 
 

 
          

Thus     has a horizontal asymptote as     ∞
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The Disk Method
Say  ≥  on      , f continuous and the region 
below f is rotated about the x-axis to make a 
solid. Find the volume of the solid.

           
 

 

The Shells Method
Say        and  ≥   and cts on      
Rotate region R about y-axis . Find resulting 
volume.

            
 

 

Integral of Odd Functions
If f is continuous and odd, then

       
 

  

  

Disk Method
Take partition  of      with sample points   in each          

The stick over          of height       rotates about an axis to make a disk of volume

      
 
         

The Riemann sum:

                                 

 

 

This makes the volume when P is very fine, i.e. when all          

in the limit we get

           
 

 

          
 

 

Example
Rotate the region under   sin  , over      about the x axis, and find volume of the football. 

    sin    
 

 

 
 

 
       cos    

 

 

 
 

 
         

   
 

 
  sin     

 

 

  
 

 
             

  

 
   

Shells Method
Take sample partition P of [a, b]
The stick of height      sitting on          spins about y-axis to generate a shell.             

Shell has radius   and height      , and thickness          

                    

The Riemann sum:

                                      

 

   

approximates our volume for small        

As                   

            
 

 

Example
Rotate region under   sin  over      about y-axis to make a cake.
Find volume:

      sin     
 

 

    

Example
The disk of centre (2, 0) and radius 1 rotates about y-axis to make a donut. 
Find volume of torus (donut)

                        
            

      and                              

The stick at x of height                       
and thickness dx revolves about y-axis to make shell of 

volume

                 
            

    

               
            

  
 

 

           

               
       

   
 

  

          
       

  
 

  

         
       

  
 

  

By looking at a circle                 
we get 

      
       

  
 

  

 
 

 
  

And since              
is odd, 

       
       

   
 

  

  

So

   
  

 
       

Proof of Integrals of Odd Function
Let's first check that the integral for

            
 

 

is even. Want           
Calculate derivatives
          

                              

So             
Put                
So       

Volume
February-09-11 9:33 AM
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So           
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Sequence
A sequence is a list of numbers             

Know            ∞ means     ,         
eventually. 

Fact: If   is monotone and bounded, then    
      
i.e.:                   
or   ≥   ≥   ≥   ≥       
then          

Series
A series is made up of 2 sequences. 

               
Sequence of terms:

     

          

Sequence of sums (called partial sums)

When the          we say that our series 
converges to s.

Notation
               

   

 

   

       

 

 

A series that converges is sometimes called summable. 

Proposition 1
If    

 
   converges to s, then     

Caution:
If     , series    

 
 could still diverge

Geometric Series
Pick any    
and consider the geometric series:

   

 

   

            

This series converges       

in that case it converges to 
 

   
   

Proof of Proposition 1
Let              

Note                    

 .  .

       

 

   

             

Here         and series diverges

 .  .

 
 

 
 
   

   

 

   

Check  
 

 
 
 
  

      

Have

ln  
 

 
 
   

     ln   
ln  

 
     

 
 

 
 
   

         

Example

  
 

 
   

 

 
   

 

 
   

 

 
   

 

 
   

 

 
   

 

 
    

 
 

 
   

 

 
   ≥

 

 
  

 
 

 
   

 

 
   

 

 
   

 

 
   ≥

 

 
  

etc.
We see that with n big enough, se can make   ≥  ny  ultiple of  / . Thus s is not bounded. 

Proof of Geometric Convergence
If    ≥  , we see that     ≥  
so     so     

   diverges

If      we know

         
 

   
      

    

   
     

 
    

   
       when      

So          
 

   
   as   ∞

Series
February-14-11 9:34 AM

   MATH 148 Page 24    



Basic Facts
Addition

   

 

   

      

 

   

  

  

        

 

   

    

Multiplication

   

 

   

       

  

    

 

   

   

Modifications
Any changes or deletions of a finite number of terms in 
   

 
 has no effect on convergence (although it may 

change the value converged to)

Monotonicity 
If   ≥  , the partial sums   are increasing.
and   converges iff   is bounded. 

Integral Test

f is continuous•
f decreases•
 ≥  •

Let      ∞   be such that:

Put        where          
Then

   

 

   

     

                                  
 

 

     .

        
 

 

       

Example
If                 
and if we replace   by 7 and drop   then
                        

Example
Look at

 
 

  
  

 

   

     
 

  
   

 

  
   

 

  
     

 

  
    

Let's verify        
 

  
   

 

  
     

 

  
  

Make a comparison of terms
 

  
   

 

 
  

 

  
   

 

  
   

 

  
   

 

  
   

 

  
   

 

    
    

     
 

  
    

 

  
   

 

  
      

 

    
       

 

  
 
 
  

       

So   converges to so e e    
Also notice     for  ≥  so      

Proof of Integral Test
Both              and   

 

 
are increasing sequences. 

So check   and   
 

 
are bounded, or not, together. 

Since f decreases,
                   
            on        
            on        

Integrate over        

            
   

 

        
   

 

      
   

 

   

So

                   
   

 

   

   

             

Splice

             
 

 

     

Say 

   

 

 

     

Then all                .

Then   
 

 
  for all n

Since   
 

 
increases with n, we get   

 

 
             

Say   
 

 
converges. Then all   

 

 
       

Then              so           and since   increases, we get 
  converges.

Example. P-Series

For    , e.g.   
 

 
     .       

The function

     
 

  
   

is continuous  decre sing   nd ≥  
We know 

 
 

  
     

 

 

converges iff p>1
Then

 

  
 
   converges iff p > 1

Properties of Series
February-16-11 9:38 AM
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   converges iff p > 1

Example

 
 

 ln 
     

 

   

This is ≥    cts   nd decre sing
Look at 

     
 

 ln  
     

 
  

 ln  
     

 

 

  ln ln    
  ln ln    ln ln    ∞

So 

 
 

 ln 
     

 

   

Exercise

 
 

   ln    
        

 

   

Show this converges
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Estimation of Sum
Likely to be on final
Say we know

   

 

   

converges, but the sum s is a mystery.

Know             for large n
How close?

Given an    
Find n such that     with error   ε 
        

If 

     

 

   

was obtained by the integral test, here's how to answer our problem.

For    ≥  we have

  
   

   

                  
 

 

So

li 
   

  
   

   

 li 
   

          li 
   

  
 

 

   
 

   

        
 

 

Example

Let    
 

     
   

If      
 

   
        

 
 

  
    

 

   

 
 

   
   

We see that

 
  

  
  

 

   

   
 

   
    

   

 

  
 

   
     

 

       
         

 

       
             ∞

So
 

       
         

 

   
             

    
      

    
    .  

So  ≥  

Integral Estimation
If

   

 

   

  

  > 0, decreasing

  
 

   

        
 

 

Where        

Estimation of Sum
February-18-11 9:29 AM
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Proposition
If        and 

   

 

   

converges then 

   

 

   

converges. 

Note:
When using comparison test, only care about 
end behaviour, not initial values.

Limit Comparison
If              

  

  
                  

   ∞ then    
 
       

 
 converge or diverge 

together. 

Condensation Test
Let   ≥   ≥  ≥  
Then             converges iff 
                

  converges.

Proof of Proposition
                  and           

Clearly   is increasing. Just check   bounded.
Know   ≤ some bound B.      is obvious so     so   converges.

Example

 
       

    
      

 

   

 converge 

       

    
       

      

    
       

      

 
    

  
 
    

   
              

      

 
    

 
     

 

 
 
   

    eventu lly  when 
 

 
        

Since 

 
 

    
    

 

 

converges, (p-series with   
 

 
    , the original converges.

Example

 
 

   
 
   

    

 

   

 converge 

Notice  
 

 
    

 

 
           

 
     

     
 
      

So  
 

    
 

 
 eventually, thus    

 

    
 

 
  eventually

 

   
 
   

    ≥
 

  
    eventu lly

But 
 

  
  diverges so

 
 

   
 
   

    

 

   

 diverges

Proof of Limit Comparison
Say    

 
 converges

Since 
  

  
    we get 

  

  
      eventually

Thus             eventually
But 

        

 

   

converges. By comparison,   converges too.

Conversely, say    
 
 converges. In this case use fact that 

  

  
   

 

 
 and      ∞ so   converges.

Example

 
       
           

       
           

 

   

We see that        
           

is "like"  
 

 
 and        is "like"   , thus

       
           

       
            is "like"

 
 
   

  
    

 

     
   

Try limit comparison with  
 

       
 
 

       
           

       
           

 

        
            

        
            

       
             

   
 
      

 
     

           
 

  
 
 
   

 
     

              

Since  
 

       
 
 diverges, so does

 
       
           

       
           

 

 

Example
Take

 
 

  
   

 

   

where p > 0
It's condensation is

  

   

 

   

 
 

    

  

   

Convergence Tests
March-02-11 12:12 AM
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The geometric series 

  
 

    
     

  

   

converges ⟺
 

   
               

Proof of Condensation Test
Let           

               
  

Since the   and   increase, it's enough to prove that   is bounded ⟺   is bounded

Say all   ≤ some bound B. For any n, take k so big that     

Then                                 
      

      
 

                 
       

So   bounded ⇒   bounded

Next say all          . For any k we get

                            
 

 
                         

                                                        

So   bounded ⇒   bounded. 
■

Example

 
 

  ln   
       

 

   

 where p      nd fi ed

Condensation is:

    
 

   ln     
         

 

   

   
 

ln 
    

 

 
 

  
    

 

   

Since

  
 

ln 
    

 

 
 

  
    

 

   

              

 
 

  ln   
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Convergence of Primes
Let              be sequences of primes in increasing order.
Does
 

 
   

 

 
   

 

 
     

 

  
     converge  No

Say  
 

 
   converges to s. So there is an index n such that

     
 

    
     

 

    
       

 

  
      

 

 
   

For any positive integer a, let 

E.g.
                                                                
                                               

                                                                        

If m is an integer from 1 to a that factors using only        , write 

     
    

     
      

     
   

 
                   ≥  

  
    

     
                         

  
     

                    options

So               

Now get an upper bound for          . If      , the number of integers from 1 to a that have   as 

a factor is  
 

  
  

Thus 

         
 

    
     

 

    
       

 

  
         

 

  
  

 

     

 
 

 
  

So          
 

 
 

 

 
                                        

Clearly this is a contradiction.

Convergence of Primes
March-02-11 9:55 AM
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Proposition
If   ≥   ≥   ≥  ≥   ≥     ≥            
then the alternating series               
           
converges.

Estimation of Limit
May be on exam
The error that   makes in estimating s is less than or 
equal to the next missing term.

           

Absolute Summability (Absolute Convergence)
A series

   

 

   

converges absolutely, or is absolutely summable  when 

     

 

   

Proposition

If      

 

   

 converges  then    

 

   

 converges too

However, the converse fails.

Proof of Proposition
The decreasing assumption guarantees that the partial sums line up as shown:

             

               

Since    are bounded by   (all      ) and increasing then                  ∞
But                      
Hence     ■

Also notice s is between all   and     because    increase to s and      decrease to s
Hence
                     

Example

 oes       
ln  

 
   

 

   

 converge 

Clearly alternating.

Does 
   

 
     ? Yes

Check:

Look at  
   

 
    

 

for all real x ≥ 1

 
ln  

 
    

 

 
  

 
     ln  

             
  ln  

                   

So eventually, 
   

 
   decreases. Hence 

   

 
   decreases eventually

Does 
       

   
       

   

 
    

So AST applies to 

      
ln  

 
   

 

 

  

Also

        
ln   

  
      .  

Caution
For AST be sure   decreases.

  
 

     
 

 
   

 

      
 

 
   

 

      
 

 
   

 

      
 

 
   

 

       

Clearly   
 

 
  

 

 
  

 

 
  

 

 
  

 

 
  

 

 
  

 

  
   

 

 
  

 

  
      , but is not decreasing. 

Now 

       
 

 
   

 

 
   

 

 
     

 

 
     

 

 
   

 

        
 

      

Then 

   
 

 
   

 

 
     

 

 
         

 

 
   

 

      
 

        
 

      

If      as   ∞, then right side would converge to    , but left side diverges, so    does not 
converge. 

Absolute Summability Example

  
 

 
   

 

 
   

 

 
   

 

 
   

 

 
     

       

 
          

converges by AST to s.
Rearrange the order of summation to get

     
 

 
    

 

 
    

 

 
   

 

 
    

 

 
    

 

 
   

 

  
     

 

  
     

 

 
   

 

  
     

 

  
     

 

 
   

 

  
     

 

  
     

 
 

 
   

 

 
   

 

 
   

 

 
   

 

  
    

 

  
      

 

 
     

 

 
   

 

 
   

 

 
      

 

 
       

By error estimate in AST we know

             
 

 
 So  ≥

 

 
 

Contradiction.

Rearranging infinite terms in a series may lead to a different sum, or changing the existence of a limit.

Alternating Series
March-04-11 9:32 AM
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Rearranging infinite terms in a series may lead to a different sum, or changing the existence of a limit.

Proof of Proposition
Let                          

Check that    is Cauchy. 
Well, for    ≥  
                                                                ∞
So   converges
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Ratio Test for Absolute Convergence

              
    

  
              ∞

If      then       
 converges

   , then             
 
 diverge.

Proof of Ratio Test
Say    
Pick an r such that      

We know  
    

  
        when  ≥       

Thus we get
          
            
             
…
             
The geometric series

       

 

   

 converges since  r   

By comparison,

       

 

   

 converges

throw back in                   and get

     

 

   

 converges

Say    
Thus eventually 

 
    

  
       

So eventually we get
                    
So      

Example

 
 

 
  

 

   

 diverges  
 

     

 

   

 converges

 

 
        

 
   

        
 

   
              ∞

 

 
              

 
     

           
  

                        ∞ 

So L = 1 is useless

Example

 
  

  
        

 

   

 converge  bsolutely  

See if ratio test helps

 
 
             

                        

       

          
                   

       

                    
 

   
      

 

 
 

   
 
 
   

          
 

 
          ∞

Yes

Ratio Test
March-07-11 9:32 AM
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Limit Superior
Let    be a bounded sequence.
Say       for all x.

Put    sup                

Clearly 
 ≥   ≥   ≥  ≥   ≥     ≥  ≥  

Thus                and   ≥  

Write             limit superior of our sequence   

Convention
If   is not bounded above, put li sup    ∞

Proposition

      eventually•
      infinitely often.•

If x is bounded and            then for any    we get

and            is the only number that does this trick.

Ordinary limits satisfy these properties, so if a sequence has 
a limit, then the limit is the limit superior. 

Proposition
If   li sup   then there is a subsequence    

that 

converges to p. Also, if    
is any subsequence with a limit q, 

then    

Root Test
Have a series 

   

 

   

and let   li sup      
     ≥  

If    , then       
 converges

   , then     and    
 
 diverges

Example
 

 
     

 

 
     

 

 
     

 

 
     

 

 
     

 

 
    

     
 

 
   

 

 
   

 

 
   

 

 
   

 

 
   

 

 
    

   

Proof of Proposition
Say   li sup                

Know    sup            p decre sing

So       for some N.
Clearly for all  ≥  we also get       

Also all   ≥  

so sup         ≥           
    

sup               ≥           
                

sup                 ≥           
    

In this way, we come up with infinitely many    
    

Next, suppose q also has the above traits. Want    

Say    and get a contradiction. 
Pick  such that      

Then we get      eventually and     infinitely often.
Impossible, so    

Proposition
Know           infinitely often, so pick one such    

Next,   
 

 
       

 

 
 so pick one such    

    

Etc. Thus we pick up a subsequence    
such that   

 

 
     

   
 

 
 

Let   ∞ and squeeze to get    
  

Next say    
       . Want    

What if    ? Pick r such that      
Thus      

eventually with k, since    
  . But     eventually by first property of p. This is a 

contradiction so    . 

Proof of Root Test
      

Pick        thus      
        eventually. So        eventually.

But     
 converges, so by comparison,      converges

If               
       eventually. 

Then        infinitely often, so     

Example

   

 
 
 

 
  

  
         

 

  
          

Does    
 
 converge?

Try ratio test:

 
    

  
      

 
 
 
 

 
 
  

 
         

 
     

        
 

 
   

 

 
 

 
         

 
        

 
     

       
 

 
   

 

 
 

 
          

li     
    

  
     not there

How about root test?

     
     

 

 
 
 

 
  

 
        

 

 
         

          
 

 
    

     

 

 

 converges

Limsup & Root Test
March-07-11 9:59 AM
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Proposition 
Permutation on Absolutely Summable
If 

     

 

   

  nd      

 

   

and  is any permutation of            

then 

      

 

   

  

Power Series
Pick any               coefficients and    

                     
                

 

   

Is a power series in x.

Example Permutations
                        
                     

1  2  3  4  5  6  7  8  9  10 11 12 13 …

1  2  4  3  6  8  5  10 12 7  14 16 9  …

Proof of Proposition
Take any    .
Want M such that

       

 

   

      when  ≥  

First pick N such that 

     

 

     

   

Next take M such that              includes all        

Now when  ≥  we get

       

 

   

    

 

   

      su  of finitely   ny    th t e cludes        

                                                       by Tri ngle Inequ lity 

      

 

     

   

       

 

   

           

 

   

    

 

   

      

 

   

          

 

     

         

 

     

       

Power Series

For which x does       
 converge?

Always for    .

   

 

   

                

Proof: Ratio test gives 

 

    

      
       

  

  
   

          
 

   
            

 
 

  
    

 

   

                    

      

 
          

    
                       ∞   

     

 

   

                      

"Then I do the upside down 
flippy thingy… the algebra."

Permutations
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Power Series

     

 

   

Proposition

Converge for just    •
Converge absolutely for all    •
For some     ∞, converges absolutely 
when      and when      ,       
and

•

     

 

   

 diverges 

Every power series does one of three things:

Radius of Convergence
R is known as the radius of convergence for the 
power series. If converges for no x,    If 
converges for all x,   ∞

Case 1:    
Case 2:   ∞

C se     
 

            
     

             

Interval of Convergence
                           
0
 

Power Series Functions

Since       
 depends on x, we can make a function 

on the interval of convergence defined by      
      

 

Proof of Proposition

Look at the sequence      
     

If      
     

is not bounded then for      ,        
       

      
     

   is not bounded either. By the root test, 

        nd      
 diverges. Case 1.

If      
     

is bounded then for any x we get               
       

                
     

If             
     

  , then so is               
       

    so the root test says       
 converges 

absolutely for all    

If             
     

  , the root test tells us that        
 converges absolutely when     

 

            
              and 

diverges when     
 

            
              .  Case 3

  
 

            
     

            

Example

 
  

  
     

 

   

 r dius  

  
 

           

     

   
 

 

               
 

               
              

So the Radius is 2.

Illustrations of what can happen at   
E.g.

 
 

 
    

 

   

Use ratio test,  
     

                        ∞ so R = 1

Know 

 
 

 
  

 

   

   converges  bsolutely when           not when        

Now for          
 

 
      

 

   

         

          
 

 
       

 

   

 converges but not  bsolutely

E.g.

 
 

  
     

 

   

    

For     , get  
 

          
 converges absolutely.

E.g.

 
     

 
         

 

   

     
 

 
     

 

 
      

By ratio test

 

              

                 

                      

 
              

 
 

 

   
                    ∞

But ratio test says when                        
R=1

Power Series
March-14-11 9:32 AM
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Power Series Recap
Every power series 

     

 

   

comes with a radius.
This is a quantity R where     ∞.
If               

 converges and if            
            

 diverges.
Thus, when    , power series create functions f on       by 

          

 

   

Derived Series

Let           

 

   

          

The derived series is defined to be

                     
             

 

   

In other words, differentiate each term.

We will show that the radius of the derived series does not 
change (i.e. = R) and      exists on       and

              

 

   

Here is why this is not obvious.
Here is 

      li 
   

         

   
            li 

   

      
          

   

   
                       li 

   
   

     

   
       

 

   

 li 
   

li 
   

   

     

   
       

 

   

Next,

        

 

     

 li 
   

        

 

   

 li 
   

        

 

   

 li 
   

   li 
   

     

   
       

 

   

 li 
   

li 
   

   

     

   
       

 

   

Does 
   
   

li 
   

  li 
   

li 
   

  

Note. Can't always switch limits
E.g.

     
      ≥  
        

 
 
 
 
      
      
      
      
      

 
 
 
 

li 
   

li 
   

    li 
   

   

li 
   

li 
   

    li 
   

   

Derived Series
March-16-11 9:34 AM
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Sup-Norm Examples
 sin      

 sin   
   

 
    

 
 

  
      

  rct n    
 

 
  

Find               

Use derivatives
                           

Max at 
 

 
 

            
 

 
     

 

 
   

 

   
 

 
    

  

   
   

Proofs
      sup

   
        sup

   
             sup

   
              

For every    we know
                                        
So          is an upper bound for            so
                

Sequences of Functions Examples
                 

T ke  ny power series      

 

   

 with r dius    

Let            

 

   

          

Let f be such that        all exist where    

          
                     

                      
      

  
           

…

                        
       

  
             

Get Taylor Polynomials:

Counterexample to                     

                 

See that:

        
            

          

So                              

       
            

          

Example:

However, 
               

       
             

Proof of Continuity of Uniform Convergence
May be on Exam
Take    and    
Need     so that              when        

Since           we have an  such that         
 

 
 

Now,   is continuous at p so take    such that               
 

 
 

when        . 
Now for               
                                                   

                        
  

 
    

 

 
    

■

Example
                      

Clearly for all        ,        i.e.     pointwise on      

Does     uniformly on      ? 
We need            

Norm (Sup-Norm, Uniform Norm)
Let f be a bounded function on an interval I.
The sup-norm of f on I is
     sup            

Properties of sup-norm
                          
             
                

Uniform Distance
For two functions f, g, on I their uniform distance is
        sup

   
           

Uniform Convergence of Sequences of Functions
Given   on  we say that     (tends to f) uniformly on I 
when                ∞

Notice
       uniformly on I then
                      
So               .

Pointwise Convergence
When               we say that     pointwise 
on I.

Observation
Thus                             
However,                             

Continuity of Uniform Convergence
If     uniformly on I and the   are continuous on I, 
then f is continuous on I.

Integration of Uniform Convergence
If     uniformly on I and say     are integrable on I. 

Then for every        we get    
 

 
   

 

 

li 
   

   

 

 

  li 
   

  

 

 

Note

    pointwise on          
 

 
   

 

 

Proof of Integration of Power Series 
Know for Exam

       
 

 

     
 

 

         
 

 

         
 

 

           

Uniform Convergence
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So squeeze. ■

Example of failure for pointwise

Here,    
 

 
  

but     pointwise on      
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Series of Functions
Given a sequence of functions, 
                      on I form the partial sum 
functions:
           
                 
 
                   
 

 e s y       

 

   

 converges unifor ly on I when   

                 unifor ly on I

The Weierstrass M-Test
Let   functions defined on I and       
             

If    

 

   

 converges  then    

 

   

 converges 

unifor ly on  

Example

Power series      

 

   

 co es fro  

        

            
 
               

 

Problem
If

          

 

   

          

Does

           

 

   

      unifor ly on   R  R   

No.

Example

     
 

    
       

 

       
                                          

Here,                                                   
Check:

       
            

       
               

 

    
            

     

    
      

Thus

                
     

    
        

      

 
 

 
       

Proof of Weierstrass M-Test

Let       

 

   

For each    we have                 

By comparison,

        

 

   

 converges since    

 

 

 converges

So       

 

   

 converges to so e     .

So    

 

   

 converges pointwise  check if it converges unifor ly

So for all    we have

                    

 

     

          

 

     

    

 

     

     

So            

 

     

Since    

 

     

        ∞

Squee e to see th t                 ∞

Example: Riemann Zeta Function
Take the 'p series' (   ) 

 
 

  
   

 

   

which converges when    

C ll       
 

  
   

 

   

              ∞ 

Well,
 

  
    

 

     
        re continuous on    ∞ 

So        
 

  
   

 

   

  re continuous on    ∞  for  ll n

We wish     uniformly on   ∞

Series of Functions
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We wish     uniformly on    ∞ 

Sorry. It does not happen.

Check this:
By error estimate from integral test, for a fixed    

 
  

  
  

 

   

           

 
  

  
  

 

   

 
 

   
     

 

        
           ∞         

Do this integral yourself.
So             ∞   

How to rescue the situation?
Pick any    
We will check that     uniformly on    ∞ 

Use the M-test with    
 

  
  

Clearly 
 

  
   

 

  
     ≥    

 

  
   

     
 

 

  
  

Now  
 

  
   

 

   

 converges since    

Thus     uniformly on    ∞ 

Since   are continuous on    ∞ , so is  continuous on    ∞ 

Hence,  is continuous on    ∞ . For every    , there is a b such that      so  is 
continuous at x.
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Uniform Convergence of Power Series

Let      

 

   

                          is  ny closed interv l 
inside        then the series converges unifor ly on      .

Continuity of Power Series

If           

 

   

 on       

then f is continuous on       

Derived & Integrated Series

 iven           

 

   

           
          

on       

Derived Series:

        

 

   

             
             

Integrated Series:

 
  

   
         

 

   

     
  

 
       

  

   
           

Radii of Derived Series

If       

 

   

 h s r dius R  then so does         

 

   

Proof of Uniform Convergence of Power Series
Let                     

For all        we have
      so                              

Now         

 

   

 converges since           

Also                   

 y the   test      

 

   

 converges unifor ly on      

Proof of Continuity of Power Series
Pick         . Want  continuous at p. 
Enclose p by some             

Now             

 

   

 converges unifor ly on     b  to           

 

   

Since   are continuous on [a, b], f is continuous at p. ■

Proof of Radii of Derived Series

The series       

 

   

 h s the s  e r dius of converges  s derived series         

 

   

Power Series
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If           

 

   

             the su  s           

 

   

converge uniformly on every              but not necessarily on       .
Thus     is continuous on       

Derived series

        

 

   

Integrated Series

 
  

   
         

 

   

Proposition

     

 

   

           

 

   

 h ve the s  e r dius

Corollary

     

 

 

    
  

   
         

 

 

 h ve the s  e r dius too

(Since the derived series of the integrated series is the beginning again. 

Integrated Series Formula

If           

 

   

                               

        
 

 

         
 

 

 

   

Special Case
Pick any         . Use            

 et        
 

 

    

 

   

     
 

 

  
  

   
         

 

   

Derived Series Formula

If           

 

   

          

then f is differentiable and 

              

 

   

          

Proof of Proposition

Let   r dius for      

 

   

For         pick  such that        

Know        

 

   

 converges

To get th t           

 

   

 converges  we will show

        

 

   

 converges. 

Do limit comparison of 

        

 

   

 with        

 

   

Look at

 
     

    
          

 

 
   

 

.  
 

 
           

 

 
   

 

        ∞

Thus
       

      
                                         

              

Since      

 

 

 converges so does         

 

 

 by co p rison.

Furthermore, if      then         hence                  

So        
 diverges. 

Proof of Integrated Series Formula

           

 

   

      unifor ly on      

 ence         
 

 

      
 

 

   

 .  .       

 

   

    
 

 

         
 

 

 

   

        
 

 

Proof of Derived Series Formula

                 

 

   

Note g is continuous on       , since it is a power series.
Just saw

       
 

 

  
   

 
     

 

   

      

 

   

          

So                
 

 

By FTCII get
          

Application
Prove

       
  

  
    

  

  
      

  

  
       

  

  
   

 

   

  ∞, check with ratio test

          
  

  
   

 

   

Want        

              
 

  
       

 

   

  
 

      
            

 

   

  
  

  
   

 

   

     

Now find

 
    

  
     

 

 
                 

   
                     

  
    

  
               

           so 
       

Differentiation an Integration Theorem
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Fun Stuff with Power Series

 e did     
 

  
    

 

   

            

Getting power series for known function. Good to memorise these expansions

Know 
 

   
    

 

      
                             

ln       
  

   
     

 

 

   
  

 
    

  

 
    

  

 
              

Integrate

 

    
                      

 rct n    
  

    
      

 

 

   
  

 
    

  

 
    

  

 
           

     

    
                 

Integrate

Estimate this integral using power series, with error <     

     
  

 
   

 

Know         
  

  
    

  

  
      

  

  
     

So     
      

  

  
    

  

  
           

   

  
     

Integrate

     
  

 

 

   
  

 
    

  

    
       

  

    
       

  

    
              

     

         
              

Plug in   
 

 
 and get

     
  

 
   

 

 
 

 
   

 

    
       

 

       
           

 

       
           

 

       
                 

By error formula in AST we know

     
  

 
   

 

 
 

 
   

 

    
       

 

       
           

 

       
           

     

     
      

 ith error  
 

       
           

 

      
            

Power series for sin and cos
Start with cos           ∞ 

 cos     
 

 

    
 

 

       ∞  sin    

Lift 1:

 sin    
 

 

     
 

 

 cos     
  

 
    

Lift 2:

    
  

 
     

 

 

  cos    
 

 

  
  

  
    sin  

Lift 3:

    
  

  
     

 

 

  sin    
 

 

  

  
    

  

  
     cos    

cos     
  

  
    

  

  
          ∞ 

Lift 4

sin     
  

  
    

  

  
   

Lift 5

By extending the pattern we learn sin x is always between

  
  

  
    

  

  
           

     

       
            

  
  

  
    

  

  
           

     

       
                

     

       
        

Thus for  ≥  

sin    
  

  
 

  

  
      

     

     
 

     

     

Lifting Principle for Integration
If          on    ∞ 

then
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 sin     
  

  
    

  

  
           

     

       
            

     

       
         

But this is good for x≤ 0 too since all the functions are odd. 
But regardless of x

 
     

       
                 ∞

Thus sin     
  

  
    

  

  
    

  

  
           

     

       
        

Differentiating gives

cos     
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                   because slope from         to         is   1.

If x, y have no integer strictly between them, then                  2.

Note:

Now take the series

        
 

 
   

  

   

            
 

 
        

 

  
          

  

  
           

Observe that

  
 

 
   

 

       
 

  
 

 
   

 

     
 

 
   

  

   

 converges  by   test so does w

So series converges uniformly on  by M-test and since each  
 

 
  

 
is continuous so     is continuous 

on  as well. 

This f, which is all teeth is nowhere differentiable on  
Let    
We will find a sequence where     while

 
            

  
                 ∞      ∞

Note

              

  
                   

 
 
 
   

 

                    

  
                            

 

   

For each          there is no integer strictly between    and     
 

 
 

Put    

 
 
 

 
  

    
                                 

 

 
   

 
 

    
                             

 

 
       

Clearly     as   ∞
These   were chosen so that 

                            
 

 
  

have no integer between them

Now look  t 
            

  
               

For    we get
                                  
So                   

Thus 
               

  
                     

 

 
   

 

 
                    

  
                         

 

   

When    we get

 
 

 
   

                   

  
                          

 

 
   

             

  
                     

Since no integer between the two

So  
            

  
                       

 

 
   

                    

  
                        

   

   

 

≥      
 

 
   

 

  
                  

  
                       

   

   

≥      
 

 
   

 

 
            

  
                 

   

   

       

   

   

     
    

 
         

  

 
    ∞

            on       and extend to  by the rule            A cool function
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Saw for         
 

 
             

 

 
  

 

 
  

 

 
    

However, this is too slow. 

Here's an identity about arctan that helps

                       
   

    
                          

Proof of arctan identity

Pick any    and x such that     
 

 
 

Let             

            
   

    
       

For      
 

 
  we have

      
 

    
      

      
 

   
   
    
       

               
                

       
                       

    

              
                   

 
    

                    
                               

    

            
                   

    

            
                 

 

    
      

So            
Put x = 0, get       rct n           

Hence  rct n  
   

    
       rct n    rct n  

Example

  rct n
 

 
      rct n

 

 
    rct n

 

 
      rct n  

 
 
  

  
 
     

          rct n  
 

  
    

  rct n  
 

  
      rct n  

 

  
      rct n  

  
  
   

  
  
   
   

           rct n  
   

   
    

Example

 rct n    rct n  
 

   
      rct n  

  
 

   
   

  
 

   
   

           rct n  
   

   
      rct n  

   

   
    

Thus
 

 
    rct n  

 

   
       rct n  

 

 
         rct n  

 

 
      rct n  

 

   
    

Now,

 rct n
 

   
    

 

   
    

 

      
          

  
 

   
     rct n

 

   
               

 

      
         

   
 

   
      rct n

 

   
               

 

      
        

and

 rct n
 

 
   

 

 
   

 

    
       

 

    
       

 

    
       

 

    
       

 

      
          

So b 
 

 
   

 

    
       

 

    
       

 

    
       

 

    
        rct n  

 

 
               

 

      
        

        rct n  
 

 
              

  

      
        

Errors
                      

                       

                                 

So

                    
 

      
         

  

      
          .      

Well, 

       
           

           
  .              

Estimating  
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               .              

   .         

            .      
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