Sums

January-05-11 9:36 AM

Assignments due on Fridays

Let f be any bounded function over a closed
interval. ie. f:|a, b] - R

f may be +ve, -ve, and possibly
discontinuous.

Let P be a partition of [a, b]

Since fis bounded(bded) over each [x;_, x;]
we get the numbers

sup{f (x):xj_1 < x < x;} = sup f[xj_q, %]
inf{f (x): Xj_g Sx < x]-} = inff[x]-_l,xj]

Partition

A partition of [a, b] is a strictly increasing list
of numbers starting at a and endingat b.
Denoted
Pa=xy<x<x; < <xp_1<x,=Db

Uniform Partition
P is called uniform when the x; are equally
spaced.

A Distance Problem

You go from A to B in a car, odometer broken, speedometer is working, and you have a watch. The

trip takes two hours. Estimate the distance traveled.

Take time samples between 0 and 2
0=ty <t; <t <t3 <<ty <t,=2
On each time interval [tj_l, tj], record the maximum speed V] attained on that interval.
Over the interval [tj_l, tj] you travel at most a distance max speed * time = V,(tj - tj_l)
Over the full time interval [0, 2] you travelled at most a distance

n

b= Z Vi(t = tj-1)
=1

If v; is the minimum speed recorded over time interval [t;_y, t;] then total distance travelled is at

least

n
d= Z vt = 1)
=1

If each interval [¢;_,, ¢;] is small we expect V; — v; to be small.
Then the difference

n
D=d = =) -t
=1
should be small.

Roughly
D—-d= Z small X small = Z really small = fairly small

So actual distance covered is pinched between two estimates that are close to each other.

An Area Problem

Suppose a continuous (cts.) function (fun) fis defined over an interval [a, b] and f > 0.
Estimate the are under f and over [a, b].

Well, chop up [a, b] into a pieces.

a=x) <X <Xy << Xp1<Xp,=b

On each |x;_y, x;| let M; = max({f(x): x € |x;_1,%;|}) andletm; = min({f(x): x € |x;_1,x;]})
If 4; is the actual area under fand over [xj_i,xj] then,

m; (3 = xj-1) < Az < M;(x; = x;-4)

Add up to get

n n n
Z m; (xj - xj_l) < z Aj = total exact area under f and over [a,b] < Z M; (xj - xj_l)
j=1 j=1 j=1

If we make each |x;_y, x;| small we expect M; — m; to be small and thus

n
Z(Mj -m) (% —xj_1) = Z small X small = Z very small = smallish
=

So we have a good estimate for the area, since the difference between the bounds is small.
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Upper and Lower Sums Let f: [a, b] » R be a bounded function and
Pia=xy<x1 <Xy <+ <xp_1 <Xy = bapartition of [a, b]
January-07-11 9:28 AM

For each [x;_4,x;] we have

Let fbe. any bou_nded function over a sup{f(x):x]-_l <x< xj} = sup f[xj_1,x;] and
closed interval. ie. f: [a, b] = R inf{f (x):xj_1 < x < x;} = inf f[x;_4, ;]
Let P be a partition of [a, b] Example
1

Lower Sum [ xon[0,2)
The lower sum for f using P is 1 /

- flx) = x—1on(3,1]
L(f,fp) = Z inff[xj_l,xj] (Xj - xj—l)

j=1 0 atz

12
Upper Sum USE.‘P:0<E<§<1
n 171 17

UGP) = ) sup flga] @ = x500) sup [0,3] =3 it o] <o

= [12]—1'f[12— 1

sup f 3,3 —2,1nf23,3 = 12
Note: P “ _ 2
L(f,P) < U(f,P) s [5.1] = 0.nfr[5.1] = -3
since inf fxj_4,x;] < sup f[x]-_l,x]-] and
add up inequalities Example
1whenx €Q
. (x) = {

Refinement f Owhen x ¢ Q
A partition Q of [a, b] refines P when Forevery P:0 = xo <xq <+ <xp =1
the points of P are also in Q we get

L(f,P) = Z inf f[x-1,%] (3, %7-1) = 0

Proposition 1

If Q refines P then n
L(f,P) S L(f,Q <U(f,Q) < U(f,P) U(f,P) = Z sup f12-1,%] (3 = 1) = Z 1(x —x-1) =1
j-1
Proposition 2 (Corollary) Example
If P, Q are any partitions of [a, b], then f(x) = x*on [0,1]
L(f,P) <U(,Q) Take the uniform partition
0 1 2 n-1 n
Ppl=—-<-<-<——<-=1
n n o n n n

o (4 G-0)s B2+ B @20 B2

1< 24 3 n" 1 (nnh+1)2n+1) 1 1 1
e L e e Dy 1 Gy, 1)
n n3 n3 6 n n

Similarly,

=3

n

Refinements
Example
0<-<3<32<5isrefinedby0<3<17<3<32<4<5

Proof of Proposition 1

Show U(f,Q) < U(f,P)

It suffices to check this when @ has just one point more than P since we can
induct over the number of points.

SayPia=xg <x1 < <Xp_q1 <X < <Xxp=b

Qia=x) <X << X1 <y<xp <-<xp,=b

Now

u(f,»)
k-1

= Z sup f[xj-1, %] (xj - xj—l) + sup flxp_q, x5 ] (e — x—1)
=1

+ Z sup flxj-1,%] (% = %j-1)
j=k+1
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u(f,?)
k-1

= Z sup fxj-1, %] (xj — xj—1) + sup f[xe—1,¥] (¥ — xpe—1)
=

n

+ sup fly, xx] (x —¥) + Z sup f[xj-1, %] (x; — x-1)
j=k+1

So we need to see that
sup flxp—1, %] (e — xp—1) = sup flxg—1,¥] (v — x1) + sup f [y, x] (e — ¥)
We know that sup f [xy—1, x| = sup f[x—1,y] and sup fxp—1,x,] = sup f[y, xi]
and thus
sup flxg-1,y1 (v — xg—1) + sup fy, xx] e — y)
< sup fxg—1, %] (v — Xp—1) + sup f[xx—1, %] (e — )
= sup f [xg—1, %] (g — x5—1)
QED

Proof of Proposition 2

Let R be the partition of [a, b] that includes all points of P and Q
R is called the common refinement of P and Q

By Proposition 1, we get

LAP)SLAR <USR) U, Q) m
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SN Since U(f, Q) is an upper bound for all L(f,P)'s we get
Integrable Definition sup{L(f,P): Pis any partition of [a,b]} < U(f,Q)
January-10-11 9:33 AM

Short notation:

Integrable Function and Integral sup L(f,P) < U(f,Q)
A function f is said to be integrable over [a, b] iff
Slpl,p L(f,P) = ing(f. Q) Since supp L(f, P) is a lower bound for all U(f, Q) we get

sup L(f,P) < irQlfU(f, Q)
P
The common number is the integral of f over [a, b]

We write: Examp]e
b , _(1forxeQ
fa f = supL(f.P) = fU (£, Q) 0= {ohor v g g onlabl
Wesawall L(f,P) = 0andall U(f,Q) =1
So

supL(f,P)=0<1= irQlfU(f,Q)
P

So fis not integrable

Example

f(x) =x%0n[0,1]
Using uniform partitions 7, we got

o 70=Li- (e

n

v P = g(1+2)(242)

Hence
1 1
ing(f, Q) < 3 since ing(f, Q) < all U(f, Pn)and%irgj U(f,B) = 3

Similarly% < infp L(f, Q)

% < sgpL(f,P) < ing(f, Q) S%

MATH 148 Page 4



Riemann's Integrability Criterion

January-12-11 9:37 AM

Proposition 3 - proof to know
Riemann's Integrability Criterion
f:la,b] — Ris integrable if and only if
for every € > 0, there is a partition R of
[a, b] such that U(f,R) — L(f,R) < ¢

Proposition 4
Every increasing/decreasing
f:la,b] — Ris integrable

Riemann Sum

Instead of using upper and lower sums,
pick some value f(a;) in each section of
the partition P

> @G - xi)
i=1

Approaches the integral as the partition
gets finer.

We have seen that all

L(f,P)<allU(f,Q)
Thus

sup L(f,P) < infU(f, Q)
b Q

If = happens we say fis integrable on [a, b] and its integral is

b
f f =supL(f,P) =infU(f,Q)
a P Q

Proof of proposition 3
Suppose f is integrable and take € > 0. Then

supL(f,P) = ing(f, Q)
P
Hence there exist partitions P;, Q4 such that
£
supL(f,P) =5 < L(f, )

U(F,Q0) < InfU(£,Q) +5

Let R be a common refinement of P; and Q4
Then

sup L(f, P) — 5 < LUf,P1) < LU, R) < UGFR) < UGF, Q). < infUCF, Q) +
But

b
f f =supL(f,P) =infU(f,Q)
a P Q

SO
b ¢ b ¢
[r-s<tom<vemn<[r+s
a 2 a 2
And therefore

Uf,R)—L(f,R)<e

Conversely, say for every € > 0 there is a partition R such that U(f,R) — L(f,R) < ¢
Then we have
P

So for every € > 0, we get
0< ir&fU(f, Q) —supL(f,P)<e¢
P
But infy U(f, Q) — supp L(f, P) is constant, so
ing(f, Q) —supL(f,P)=0
P

[
Example
a<c<b,Put
0, a<x<c
flx) = 1, x=c
0, c<x<b

Use Proposition 3. Take € > 0

Pick xq,x, suchthata < x; < c <xy; <bandx, —x; < ¢
Take R:a < x; < x, < b, a partition of [a, b]
LfLR)=0x(a—x1)+0x(x;—x1)+0x(b—2x3)=0
UFf,RA)=0x(a—x)+1x(—x)+0x(b—xy)<c¢
SoU(f,R)—L(f, R)<e—0=¢

So fis integrable and f;f =0

Proof of Proposition 4
Suppose f: [a, b] » Risincreasing (ie.a < x; S x, < b = f(x1) < f(x2))

If f(x) = ¢ = const then a simple calculation gives all U(f,P) = all L(f,P) = c(b — a)

So
b

[ 7 =swi.p =0 = o -
a P

Now, suppose f(x) # constant, so f(b) > f(a)
Take any € > 0
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Pick a partition P: a = xo < xq <+ < x, = bsuch thatall x; — x;_; <
Then

zKﬂP)—z(ﬂP)=§S@upfhfbal—hﬁthLwD(n-ﬂwﬂ)

&
F)-f(a)

n n

&
Z £ = Fx1-1)) G = 3104) < ;(f(x» ~ 1)) 7 —F@

Zﬂm;f@)xU&d—f&&+f&ﬂ—f&ﬂ+m+f&ﬁ—f@m0)
=m(f(b)—f(a)) =€
|
Example

0Oon [O,%)

1 12
fo=12" 5’5)

2 23

7 53)

latl

MATH 148 Page 6



Uniform Continuity

January-14-11 9:30 AM

Fact
|sinb —sinal| < |b—al

Triangle Inequality

On a triangle, the distance between any two points is
less than or equal to the sum of the distances between
the other points, and greater than or equal to the
difference in the distances of the other points.

la+b| < lal +|b|
la = bl = [lal - |bl|

Uniform Continuity

On midterm

A function f:I — R is uniformly continuous on the
interval | when for every € > 0 there is a § > 0 such that
|f(x) — f(p)| < ewhenx,p€land|x—p|<é

Comparison of Continuities
Normal:

fcts.onl

Ve>0Vp€el3I§>O0s.t.
Vxellx—pl<é=I|f()—-fp)l<e
Uniform:

f unif. cts. on |
Ve>035>0s.t.VpelIVxel
lx=pl<é=If()—-fPl<e
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Example
f(x) = x +sin(x) on R
Take any p € R and show fis continuous at p

Take any € > 0. Let's find § > 0 such that |x + sinx — (p + sinp)| < ewhen |x —p| < §
|x 4+ sinx —p —sinp| < |x — p| + |sinx —sinp| < |[x —p| + |x — p| = 2|x — p|

Take § = =
2

When |x — p| < 6, we will get

€
[x + sin(x) —(p +sinp)| < 2|x—p| <26 = 2(5) =¢

Example
fx)=x*onR
Take p € R. Check fis continuous at p. Take € > 0
Need § >0sothat|x —p| <& = |x2 —p?|<e
|x? —p?| = |x + pllx — pl
If we keep |x — p| < 1,then |x| — Ip|l < 1,s0|x| < |p|+1
Then when |x — p| < 1:
|x% —p?| < (x| + [pDIx = pl < (pl + 1 + [pDIx —pl = Qlpl + DIx - p|
Take § = min {1,2—6—}
Ip|+1

Now when |x — p| < § we get

&
2-p?l<(2 Dix—pl< (2 1 (——):
[x* —p?| < Qlpl+ D]x—pl < Q2lp| + 1) TIES! £

Note:

In the first case, § did not depend on p, while in the second case 6 did depend on p. There
is not a single & that works for all possible points.

f(x) = x + sinx is uniformly continuous on R. Right now don'tknow that f(x) = x? is not
uniformly continuous.

Proof that f(x) = x? is not uniformly continuous on R
Suppose f were unif. cts. on R and look for contradiction.
So fore =1wehavea 8> Osuchthatx,p € Rand |[x —p| <& = [x? —p?| <1

Let n be an integer so big that% <6
Thentakep =nandx =n +%. Clearly |x — p| =%< 6

2

1
(n+—) —n?
n

1 1
n?4+2+—=-n?=24+5>1
n n

|x2 —p?| =




Sequences and Unif. Ctn.
January-17-11 9:28 AM

f:1 = Ris uniformly continuous on the interval
I means that for every € > 0 there is a § > 0 such
that [f(x) — f(p)| < e when x,p € I and
lx—pl<é

Proposition 5

f:I - Ris not uniformly continuous on I &
there exist sequences x,,p, € I, such that x,, —
P = 0O while f(x,) — f(p,) » 0

equivalently

f:1 - Ris uniformly continuous on I &
V sequences X, pp € I, x, —pp = 0= f(x,) —

fp) =0

Proposition 6
If f:la, b] = Ris continuous on a closed
interval [a, b], then f is uniformly continuous.

MATH 148 Page 8

Proof of Proposition 5

Say fis unif. cts. on I.

Take x,,p, € land x, —p, = 0

Want f(x,) — f(p,) = 0

Take € > 0, we need to show |f(x,) — f (p,)| < € eventually

By uniform continuity of f, we have § > 0 such that |f(x) — f(p)| < ewhenx,p€land |[x —p| < §

Eventually |x, —p,| <8V n=Nandso |f(x,) — f(p )l <evn=N
So fxn) — f(py) - 0

Now suppose fis not unif. cts. on I
So there is a "bad" € >0 that no § > 0 can please

Noé = ican please this €. For each such i we pick up x,,, p, € I such that |x,, — p,,| <

~ while |f (x) = f(pp)| = €
By the squeeze theorem, x,, — p, = 0 and clearly |f (x,) — f (p,)| + 0
[

Example
Show f(x) = In x is not uniformly continuous on (0, 1)
Well, ein and—— € 0,1 andein -1 5o

entl enti

Butln (%) —In(55) = —n — (< + D) =150

Proof of Proposition 6
Suppose f is not uniformly continuous.
Then there is a "bad" € > 0 such that no § > 0 can please.

Forall § = %, pick x,,, p, € I such that |x,, — p,| < %but [fCe) —flp)l =€

Using Bolzano-Weierstrass we pick up a subsequence py,, of p, such thatp,, - p € [a,b] ask—> o

Notice Xn, = Pny + (xnk - pnk) ->p+0=p
So f(xn,) = f(p) ask > 0 and f(py,.) > ()
Therefore f(xnk) - f(pnk) — p—p =0 so3IK € Nsuch that |f(xnk) —f(pnk)| <evVk=K
But |f(x;,) — f(pn)| = € Vn, a contradiction.
So fis uniformly continuous. m



Integrability of Continuous
January-19-11 9:55 AM

Theorem 7

Every continuous function on a closed interval is
integrable on that interval.

If f: [a, b] - R is continuous and & > 0 is given, take
§>0suchthat|x —p| <8 =|f(x) - f(p)l < ;i_a
IfP:a =xy<xy <+ <x,=Dbisapartition
constructed such that all x; — x;_; < & then
U(f,?)_L(f,?)<S

So fis integrable on [a, b].
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Proof of Theorem 7
On each [xj_l, x]-] f gets a maximum and a minimum value by the extreme value theorem.
Pick u;, v; such that f(uj) = sup f[xj_q,x;] and f(v]-) = inff[x;_q, xj] .
Xjo1 SV S U S X SOU — V) S Xj — Xj_q = Sup f[xj_l,x}-J - inff[x]-_l,xjj <3
n

U(F,P) — L(f,P) = Z(sup Flxipxi) — inf flxip xiD G — xiy) < Zb—f—a (i = xi1)
i=1 i=1

n
&

=b__&2(xi —Xq) = zi—a(b —a)=¢

i=1

Estimating Integrals

To make an estimate of the integral of a continuous bounded function on [a, b], for an estimate
within € of the true integral, partition the interval into [x;_y, x;] withx; —x;_; < Zi_a and sum the
area of those rectangles.



Fundamental Theorem of Calculus I Proof of Fundamental Theorem
IfP:a =xy < x; <+ < Xx, = bisany partition of [a, b] we will show that

January-21-11 9:32 AM L(f,?) < F(b) - F(a) < U(f,iP)

Observation "

If fis integrable on [a, b] and S is a number such that F(b)—F(a) = Z(F(xi) — F(x;_)),rebuilt the telescope
. b 4

L(f,P) < S < U(f,P) for all partit PthenS = i=1

Ue (f,7) for all partitions en f“ f Apply the Mean Value Theorem to F over each [x,-,l,x,-], we pick up some tj € (x]-,l,x,-) such
that
F(x;) = F(xi-1) = F'(&) (x; = xj-1) = £(£) (x —x24)
inf flxj_1, ;] < £(t) < sup flag-y, %]

n n

Theorem 8
Fundamental Theorem of Calculus pt. 1

(Learn Proof) n

IfF, f are functions on [a, b] such that = Z inf flx;_q,2;] (x; — x;4) < Z F) (e —xi2) < Z sup fx;_q, %;] (e — x-1)
¢ fisintegrable = i=1 i=1
¢ Fiscontinuous on [a, b] = L(f,P) <F()—F(a) <U(f,P)
e F'=fover (ab) So

Then

o j'bf = F(b) - F(a)
[ r=ro)-r@ .

Example
F(x) is known as the antiderivative of f or the indefinite integral Let f(x) = sinx over [0,7]
We know F(x) = —cosx
Question: Is there a function F such that F' is not integrable? By FTC (part 1)
ks
Notation j;f=—cosrr+coso=—(—1)+1=2
*Non-mathematical reasoning*
When fis continuous, we see f:f ~ U(f,P) when P is very Example
fine. Tl 1 r T
f 1+x2dx=arctanx|0 =Z_0 =7
Uu(f,») = Z sup flaj_p, 2] (o = x21) = Zf(xj)(xj = Xj_1) 0
j Jj
Pretend your P is so fine that you make a cut at every x in [a, b] Ex:;nple
Now you get "nano-thin" rectangles of "thickness" dx, height f =dx =[Inx]2 =In2
f(x),and "area" f(x)dx. 1 X
'Add up these. values" f(x)dx using the "limiting sum fa Example
and we can write o 1 2 0 1 2 5
- srzetin= [bxa 2e —o- (22323
szjf(x)dx f_l(x+x)x ¥ T3] 23”12
a a

Another Useful Notation
b

F@) | or FGN;

means F(b) — F(a)
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Anti-Derivatives Terminology

January-24-11  9:32 AM In order to calculate f:f(x) dx using FTC(I) we need a function F such that F’ = f
Then we know
b
Integral f f(x)dx = F(b) — F(a)
a

Riemann Integral
Conventional integral over an interval using

Any function F such that F' = f is called an anti-derivative of f and is denoted by
upper and lower sums

f f(x)dx

Indefinite Integral with no endpoints. This is a function, while with endpoints is a number.

The anti-derivative of a function plus a constant.

So FTC(I) said
Integrand b b
That which is to be integrated. L f(x)dx = ff(x)dx |a

If F, G are two anti-derivatives of f on some interval [then F' = f =G' = (G —F)' =0
= G —F =c=const
=>G=F+c

So one we have one anti-derivative F of f, we write

Jf(x)dx =Fx)+C

Because of FTC(I), we also call
J. fodx

an indefinite integral of f.

Remember:
The left hand side (integral) is defined on its own. It is not defined through the anti-derivative.

So we need to find these indefinite integrals:

Anti-Derivative Rules
Know by heart

xa+1
J-xadx= +C,a€Ra=+-1
a+1

1
f—=1n|x|+C
x

Jsinxdx =—cosx+C
fcosxdx =sinx +C

1
f—z—dx =tanx +C
cos?x

1
f——dx =arctanx + C
1+ x2

1
————dx = arcsinx + C
f\/l—x2
J-exdx =e*+C

The Substitution Method
SupposeF, f, g, are functions. Here is the chain rule:

Derivative Style Integration Style
IfF'(w) = f(w) If
Then

[ radu =
then

[ Fgtg' @ax = F(g0)

F(g(0) = f(g())g' )

So in order to find some
1= [Fla)g Crax

play the following substitution game.
Putu = g(x)

du ,

=9

du = g'(x)dx

Find
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[ radu = rew
J=F(gx)+C

Example

/= J1+x2

Putu =1+ x? :>d—u=2xdx
dx

1
jzf;duzlnlul =In(1+=x?)+C

Example
f f 2x
J=]1 +x* dx = 1+ (xz)2
du
Putu=x?>=—=2x=du=2xdx

S —1f du ! t ! tan(x2) + C
0]—2 T+u — Zarcanu—zarcanx

Example
—dx
/= fxlnx
1
Putu=Inx = du =;dx

1
J= fadu =Inlul =Inlnx +C

Example
J= f\/ 1—x2dx

More obscure - trig substitution Cleverly notice

=[(1-x?) X—— J.(l—smz(arcsmx))( )dx
-] Vi- N
Put u = arcsinx = du =——2dx
—x
1 1 1 1 1
J=(1-sin?u)du = fcoszudu =Ef(c052x+ 1) =§‘fc052udu +§f1du zzsin2u+zu

1 1 1 1 1 - 1
= Esinu cosu + Eu = Esin(arcsin x) cos(arcsinx) + Earcsin x = Ex 1—x2+ Earcsinx +C
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Integration Methods

January-26-11 9:33 AM

Integration by Parts
]=J-udv=uv —fvdu

Memorise

Integrating Rationals

Key Theorem
Every rational function can be expressed as a linear
combination of the following functions:

1,x,x2, ...,x™" ...
1 1 1 1
x—a' (x—a)2’ (x—a)¥ " (x—a)r""
foranya € R
1 1 1

x2+bx+c’ (x2+bx+c)2 " (x2+bx+ )"
Where x? + bx + c is irreducible
x x x
x2+bx+c’ (X2 +bx+0)2 " (X2 +bx+ o)
Where x? + bx + c is irreducible

In other words, these functions form a basis for the set of all
rational functions.

Thus we need to be able to integration the functions on this
list, and write a rational function as a linear combination of
these.

Change of Variables for Definite Integrals
If F(u) = ff(u)du

b
[ #a@)g' ax = Fgt) [, = Flg®) - Fg(@)

g)
= fwdu

g(a)
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Integration by Substitution

To integrate stufflike J = [ f(g(x))g’ (x)dx
Putu = g(x) = du = g'(x)dx

Find F(u) = [ f(w)du

Write ] = F(g(x)) +C

But it's sometimes not easy to see what u = g(x) to try. Try something and hope

Inverse Substitution Method

Example
We had

J= f V1—x2dx
and discovered that u = arcsinx = du = 71_1_—;2 dxletto] = [ cos? u du then we got to

1 — 1
] =§xx/1—x2 +§arcsinx+C

But what if we did not know to try u = arcsin x? Here is a way to [ cos? u du
Putx = sinu = dx = cosudu
u = arcsinx

J1—x2=1—=sin?u=cosu

]:f\/l—xzdx:fcoszudu

Then continue as before.

Example

]:f\/1+ex_dx

Putu=vVi+erse*=u-1

d L rge =1y

u = e*dx = x
21 +eX 2u
2u

dx—u2 1du

So

]1 = fuz 1 du
Use Partial Fractions
1 1 A B

u2—1=(u—1)(u+1)=u—1+u+1
1=Au+1)+Bu—-1)=

1A=l

=12A4A==

u 2
15B=—2
=—1=>B=-—-=-
u 2

So
_1 du 1J‘ du
h= u+1

1 1
5l =132 —Elnlu—1|—5‘1n|u+1|

1 1
]=2(u+§ln|u—1| —Eln|u+1|) = 2u+1Infu—1] = Infu + 1|
=2V1+ef+In(vVi+ex—1)-In(vVi+eX+1)+C

Integration by Parts
Say f, g are differentiable on I
Here is the product rule

Differentiation Style

(f)g®)’
=f)g' (x)+ f'(x)gx)

Integration Style

f)g(x)
= [ (g + £ g 0)ax

So
[r@g e = 1960 - [9Gr o ax

To exchange [ f(x)g’'(x)dx
Putu = f(x) = du = f(x)dx, o g'(x) = dv =g x)dx

v= fdv = fg’(x)dx -

Here you need to integrate this "part”

Write

]:fudv:uv—fvdu



Example

]=fxexdx

Putu =x = du = dx
dv=e"dx:v=fe"dx=ex
This
]=xex—fe"dx=xex—e"+C

Example

]=Jx2cosxdx
Putu = x2,dv = cos x dx

du = 2x dx,v = fcosxdx =sinx
]=xzsinx—2fxsinxdx

Putu = x,dv = sinx dx

du =dx,v = fsinxdx = —cosx

J = x? sinx—2<—xcosx+fcosx dx> = x%sinx + 2xcosx — 2sinx + C

Example
J= flnx dx
Putu=Inx,dv =dx

1
du=—-dx,v=x

x 1
]=xlnx—j;xdx=xlnx—x+€
Example

J= f arctan x dx

Put u = arctanx,dv = dx

duzmz—dx,vzx
]:xarctanx—fﬁx—zdx

1 2x 1

== | ——dx==In(1+x?
Ji=g ) T dr =g+

1
J =xarctanx—§1n(1+x2)+C

Example

J= J-e" sinx dx

Putu = e*,dv = sinx dx
du=e*dx,v=—cosx

J= —excosx+Je" cosx dx

Ji= fex cosx dx

Putu = e*,dv = cosx dx
du = e*,v = sinx dx
J1 =e"sinx—fe"sinxdx
Ji =e*sinx —]
J=—e*cosx+J; = —e*cosx + e*sinx —]
2] = e*sinx —e* cosx
e*sinx — e* cosx

—37 ¢

Example
Constant over irreducible quadratic - complete the square and use arctan

_ f dx
/= x2+x+1
Complete square

24 +1—( +1)2 3.3 4( +1)2+1 =
rarmaErTy) TaT a3\ T -

Put 2( +1)d 2 troax =334
utu =—=I\x —],Au = —=dx = dx = ——du
V3 2 V3 2

S w
~—
ol
—

=

+
N =
SN———
~——
N

+

[uN

So
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= f ! <l/—§> du = A <ﬁ> f ! du = iarctan u= 2 arctan

Swrrn\? s\z/Jw+1™ 3

Example of Rational Theorem
Xtx+1
J= dx

x2—2x-3
Here, deg top > deg bottom
8x +7
]: fx+2+;t—2x_3dx
Easily, [x + 2 dx = ixz +2x
8x +7 8x+7
S = f Py Ll e Ty ke

We try to solve

8x+7 A + B
x2—-2x—-3 x—-3 x+1
Get, check myself

4
1 1 1 31 1
]1___Jx—3+4_} ———Tln(|x—3|)+‘—}ln(|x+1|)

4 x+1
1 31 1
] = Exz +2x + —4—ln(|x -3D+ Zln(lx + 1)

V3



Rational Expansion
January-31-11 9:32 AM

A basis for spaces of rational functions is all:

x",n €N

(7—(1)" a€RneN

(x2+bx+ )n,bcER,b2—4C>0,nEN
(x2+bx+ )n,bCERb —4c>0,n€eN

Example

_ 3x“+2 d
]_f(x+1)(x2+x+1) x

For the partial fraction expansion (write rational function in terms of basis)

3x2+2 A B Cx
(x+1)(x2+x+1)_x+1+x2+x+1+x2+x+1
And solve for A, B, C. We get:
3x2+2=A?*+x+1)+Blx+1)+Cx(x+1)
Putx =—1,getA=5
Putx =0,get2=5+B =B =-3
Putx=1,get5=15-6+Cx2=>C=-2

So

3x2+2 5 3 2x
+DG2+x+1) x+1 x2+x+1 x2+x+1
Need

1
]1 = J-x—;—ldx = ln(Ix + 1|)

-arctan ( ) see last lesson

1
= | 5———dx
J2 fxz +x+1 \/—
x
= | ————d
J3 fxz Fx+1™
Force (x? + x + 1)’ on top and fix the damage

_1." 2x +1 d 1f dx _11(2+ +1) 1
]3_2 Crx+1 T2 a1 2 TX 2]2

Put everything together again

B

4
J =5In|x + 1| — —=arctan (—x +—) In(x2+x+1)+C
V3 V3 V3

Example

x
]_f(x2—4x+5)2dx
First force derivative of x2 — 4x + 5 on top and fix
2x — 1
f(x2 4x+5)2 Zf(x2—4x+5)2dx
2x —
h = [ e
(x2 —4x + +5)2
Putu=x%—4x+5
du 1 1
jl_fuz T u x2—4x+5
dx
J2 = f (x2 ~4x + 5)2
Complete square of bottom
x> —4x+5=(x—-2)%+1
Putu = (x — 2)

u
jzzf(u2+ﬁ

Next do a trick.
wW?+1) u
= | e | e
du
I, = fﬁl Js = arctan(x — 2) — J3

Now do

u? u
h= = |

u
Putv = u, dw = (_uE-l-—l)Z du

u 2 1
v =duw = | et =3 | G = e
_ u +f 1 du = u +1 .
3= 2w+ D S iD= Tz T2 an(u)

1 1
2(u—2+T) > —arctan(u) = 3 arctan(x — 2) + —— %
1 x—2

2(x2—4x+5)+x2—4x+5

J, = arctan(x — 2) +

J=- + arctan(x — 2)

MATH 148 Page 16
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Example

dx
/= f [CZFEVE

Trick like before
3 x%+1 p f x? 4
U Rer ekl N ez i
Y ' bl
= GZT D2 one in previous problem
B x
jz—fxxoc—2+1)3dx
Use parts.
x
P = = — =
ut u = x,dv CFE dx,du = dx
1 (dx*+1) 1( 1 1 ) 1
= = —_— X = —
VE2) v s 2\ 27 Grr ) T ik v 1)2

And now keep going with easier problems.
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Properties of Integrals Proof of Proposition 1
February-02-11 9:35 AM Suppose such P, and S exist.

Clearly U(f,P,) — L(f,BP,) > S—S=0
So for e > 0,U(f, P,) — L(f, P,) < € eventually.

Proposition 1 Thus fis integrable.
Abounded f: [a, b] - Ris integrable iff there is a
sequence of partitions P, of [a, b] and a number S such Also, )
tf}})a;L(f.?n) - Sand U(f,P,) > Sasn > cothen S = L(f,P) < SL;pL(f,Pn) _ f £ = fUCF,P) < UCFBy)
a
@ b b
HenceS< [ f<SsoS=[ f
Proposition 2
If f, g are integrable or [a, b], then so is f + g and Conversely suppose f is integrable over [a, b]
b b b 1
For each = we get at P, such that
[res-[7re]'s oot
¢ ¢ UGf, P = L(f, P) <
Linearity (follows from Prop 3, next lesson) Also L(f,B,) < f:f <U(f,P)
Thus

b
f (c1fi +cofp + o+ cnf)

b1
0<U(f,P) - 1
=C1Lbf1+chbf2+...+Canfn <U(f, P faf<n

b 1
o= [r-tgm=;
SoU(f,P) = [* fand L(f,P) = [ f

Proof of Proposition 2
By proposition 1, we have partitions P, and Q,, such that

b
W~ [ feugim)

b
L(g,Qn) —>f g« U(g,Qn)

Let R,, be the common refinement of P, and @,
Then L(f,P,) < L(f,Ry) < Ugf, R,) < U(f,Py)
Squeeze and get L(f,Ry) = [ f « U(f, Ry)

Likewise, L(g, R,,) — f: g < U(f,Ry)

b b
So L(f,Ry) + L(g,R,) — fa f+ fa g < U(f,R) +U(g,Ry)
What we really wanted was

b b
W +g R~ [ 1+ [ geu(r+aR

We need to observe that for any
Pia=xg<x1<<xp,=b
L(f,P)+L(gP) < L(f+9P)<U(f+gP) <U(f,P)+U(gP)

For each x € [xj_;,x;] we have f(x) + g(x) < sup f[x]-_l,x]-] + sup g[xj_1,x;]

= sup(f + g) [xj_l,xj] < sup f[xj_l,xj] + sup g[x;_1, %]
Now add up to get

Z sup(f + @) [xj-1,%] (xj — xj-1)

< Z sup flx-1, %] (5 = x-1) + Z sup g[xj—1,%] (o = xj-1)

13 L
Hence U(f + g,P) < U(f,P) + U(g,P)
And similarly, L(f,P) + L(g,P) < L(f + g,P)

Back to R, we get
L(f,Rn) + L(g,Ry) < L(f + g,Ry) S U(f + g, Ry) < U(f,Ry) + U(g, Ry)

By squeeze

b b
W+g R~ [+ [ geutr+gR
a a
So by Proposition 1, f + g is integrable and

f:f+g=f:f+fg
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Mult. and Splicing

February-04-11 9:33 AM

Proposition 3
If fis integrable on [a, b] then so is -f and

P—f==1'f

Proposition 4
If fis integrable on [a, b] and ¢ > 0 then cf is

integrable and f: cf = cf;f

Proposition 5
If c € R and fis integrable on [a, b] then cfis

integrable and f: cf =c f:f

Proposition 6: Splicing Property
Leta<c<b

A function fis integrable on [a, b] &

fis integrable on [a, c] and on [c, b] then

f:f=f:f+ff

MATH 148 Page 19

We saw that fis integrable on [a, b] < there is a sequence of partitions P, and a number S
such that

L(f,P,) = S « U(f,R) and thatS = [*

Proof of Proposition 3

For any bounded set A, let —A = {—a: a € A}

We have

sup(—A) = —inf(—4)

inf(—A) = — sup(—A4)

So for any partition P:a = x5 < x; < - < x, = b we have

L(~f,P) =me( Plxjonx] (55— x5 1) Z—supf %1, %3] (%5 = %5-1) = =U(f, P)
L1kew1se,U( —f,P) =—L(f,P)

Sine f is integrable, have partitions P, such that

AR WRNTGYS

Hence
b
£ B) ==V R) = = [ f = ~L(.R) = U-£.B)

So by proposition 1 applied to —f we get -f is integrable and f: —f=- f;f

Proposition 4

Have P, such that L(f, P,) - f:f < U(f, Py

You can check U(cf, B,) = cU(f, B,),L(cf,P,) = cL(f,B,)
Hence L(cf, B,) = cL(f,B,) > cfff < cU(f,B) = U(cf, By)
So cfis integrable and f: cf=c f;f

Proof of Proposition 5
If ¢ <0, write ¢ = —(—c)where — ¢ > 0 and use Prop 3 & 4
Thus cf = —( cf)is mtegrable and

fcf f—( o) = f—cf——( c>ff—cff

Proof of Proposition 6
fPra=xg<x < <xp=¢0Q0:c=yg<y; < <Yn=>b

we can splice these to get

PVQia=xyg<x; < <xp=c=yy<y; <=Yyn=>b

Easy(you do it)

L(f'PVQ) = L(f'P) +L(f'Q)

U(f,PVQ =U(f,P) +U(f,Q)

Say fis integrable on [a, c] and on [c, b] thus have P, of [a, c] and @Q,, of [c, b] such that

L(fP)—>ff<—U(fP)

L(f, Qu) - f f e UG Q0
Thus ¢

LU, V@) = Lf, P) + L(F, Qp) — f [+ f f < UGB+ U, Q) = UCF, PaVQ,)
By proposition 1, fis integrable on [ andf f= f f +f f

Conversely, suppose f is integrable on [a, b]. Check fis integrable on [a, c] and on [c, b]

If Ris a partition of [a, b] R:a = xy < x; < --- < x,, = b we refine R by inserting c. Get R U {c}
WithPia=xp <x < <x_1<¢Qic<xjyy < <x,=b

Have R U {c} = PV(Q

For € > 0 have R such that U(f,R) — L(f,R) < ¢

Taking P as shown, we get

U(f,P)—L(f,P) < U(f,P)—L(f,P)+U(f.Q)—L(f,Q) = U(f'RU{C})_L(f:RU{C})
<U(f,RA)-L(f,R)<e

So fis integrable on [a, c] and on [c, b] and by above, f:f = facf + fcbf



Fundamental Theorem of Calculus II Proof of FTC(l)
Know for Midterm

Say a < x, we need to show

gi(x+h)—_g(@_)f(x) ash-0

February-07-11 9:31 AM

e
Fundamental Theorem of Calculus Pt. 2 Do h — 0™ first

Let f be continuous on an interval |
Then there is a function g defined on I such that g’ (x) =

f(x)forallxinl lglx +h) — glx) — f(X)h| =

Examine

x+h x
| rde- [ e reon

x+h
[ @@

More specifically, pick any a € I, x and define the
integral for

x+h
< f IF(0) — F@lde

x+h
[ rwae-reon

x x+h
gl = fa f(®)dt < fx (ter&%hﬂ @ - f(x)l)dt
Foreachx € I By monotonicity of integrals
Then g'(x) = f(x) x+h
= (nax, [F© = FGON) [ ade=  max, 17 - rGolR
Summaryd x Divide by h and get )
—_— = h -
fcts = dxfa f®dt = f(x) g(x_J’})l_g@ _f(x)’ < max, IF(©) = F@) = [f(s) - f&)]

For some s € [x,x + h] by EVT for |f(t) — f(x)| on [x, x + h]
Ash - 0%, get s > x and since f is continuous, |f(s) — f(x)| - 0

glx) = fxf(t)dt So squeeze and
a

Integral Function

gle+h) — g(x)
Is the integral function of f. T fx)] -0
|
A Useful Convention
Declare faf -0 Yariations in order of x, x+h, a can be handled with the conventions of sign on
. integrals.

¢ Consistent with splicing

a a @ Examples
[r+[r=]r AP

a a a il : 2 — qj 2

e Consistentwith FTC 1 dxfo sin(¢%) dt = sin(x*)

[r=r@-r@ ‘7 N
0

— dt=—4—==——
If b < a declare dx Wx 2V
b a
f f= _f f Here we had h(x) = /x,g(u) = f;etzdt
“ b . L VE
. C(;nswter;twnh ipllcmg fo etdt = 9(h()
[r4[r=[7r=0 , e
a b a g(h())) = g'(hR@)R' (x) = @) p'(x) = —=
« Consistent with FTC 1 ( ( )) (hG) 2v/x
b b
f f= _f f=-(F@-F®)=Fb) -F@ d (~Ssint d **sint sin(x3) 3sin(x3)
a Ja e I e B e
dxJs t dx J_g t x3 x

So we get general splicing

b c d e e Example
Jorelre el =L d " 1 o
a b c da a _f dt = 3x2 =

dxJ, 1+t* 1+ (x3)4 1+ x12

Example
Sketch

@Lf\\ gx) = foxe‘tzdt

First check g is odd.

Verify g(x) + g(—x) =0

(@) +g(-0) =g'() —g'(-x) =™ — e~ =
So g(x) + g(—x) = ¢ = const.

Pluginx = 0 and get g(0) — g(-0) =0—-0=0

Thus g(x) + g(—x) = 0, so gis odd.

Now worry about x > 0.
Have g’ (x) = e >0 gincon [0,0)
g""(x) = —2xe~** < 0 g conc. down

One more issue: does g(x) - o as x - o or does g(x) tend to some finite Bas x —
o0?

Use a comparison trick:

Know e~ t* < 2tet" whent > 1

* 2 1 2 * 2 1 2 * 2
g(x)zf et dtzf et dt+f et dtsf et dt+f 2te~t"dt
0 0 1 0 1

Now get
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J= f2te‘t2dt,Putu = —t2 = —du = 2tdt

/= _f etdu=—e"
So

! 2 21X 1 2 1 2
g < | ePdt+[-e ] = | e dt+-—e " <

0 1) e A
Thus g(x) has a horizontal asymptote as x = +oo

P 1
e"tdt +— = fixed B



Volume
February-09-11 9:33 AM

The Disk Method

Say f = 0 on [a, b], f continuous and the region

below fis rotated about the x-axis to make a
solid. Find the volume of the solid.

b
V= f f?(x)dx

The Shells Method

Say0<a<b and f =0 and ctson [a, b]
Rotate region R about y-axis . Find resulting
volume.

b
V= f 2nxf (x)dx

Integral of Odd Functions
If f is continuous and odd, then

f_af(t)dt =0

Disk Method
Take partition P of [a, b] with sample points t; in each [x;_y, x;]
The stick over [xj_l,xj] of height f(t]-) rotates about an axis to make a disk of volume

2
nf ()" (% = xj-1)
The Riemann sum:

R(f%, Pty ..ty) = Z m f2(t) (% — x5-1)

j
This makes the volume when P is very fine, i.e. when all x; — x;_; - 0

in the limit we get

V= fbnfz(x)dx = nfbfz(x)dx

Example
Rotate the region under y = sin x, over [0, ] about the x axis, and find volume of the football.

T 2

1 T
>—577.'(T[—0—0+0)——2—

s

T[. 1
V=nf smzxdx=—7rf
0 2 Jy

Shells Method

Take sample partition P of [a, b]

The stick of height f(t,-) sitting on [x,-_l,x,-] spins about y-axis to generate a shell. ¢; € [x]-_l,x,-]
Shell has radius ¢; and height f(tj), and thickness (x]- - xj_l)

V= 2mt;f (4;)(x = xj-1)

The Riemann sum:

z 27rtjf(tj)(xj - xj_l) = RQ2nxf (x),P,ty ...t)
=1

1 1
1 —cos2xdx = —n( [x]F — [— sin(Zx)]
2 2 o

approximates our volume for small x; — x;_;
As (x]- - xj_l) - 0,we get

b
V=f 2mxf (x)dx

Example
Rotate region under y = sin x over [0, 7] about y-axis to make a cake.
Find volume:

s
V=27rf xsinx dx = 2m?
0

Example
The disk of centre (2, 0) and radius 1 rotates about y-axis to make a donut.
Find volume of torus (donut)

(x=22+y=1>y=+/1-(x—2)2

1 < x <3 and height = 2,/1 — (x — 2)?

The stick at x of height 2\/1—— (x — 2)2 and thickness dx revolves about y-axis to make shell of
volume

av = 2mx (21— (x = 2)7 ) dx
3 ———
V= f 4x/1 — (x — 2)2dx
1
u=x—2=>du=dx
1 o 1 1
V=4TL'J. (u+2)y1 —u? du=47rf u\/l—uzdu+81rf V1 —u2du
-1 -1 -1
By looking ata circle y = +V1 —uZwe get
1
— T
f 1—u2du=-
1 2
And since uV1 — u2 is odd,

1 I
f uyl—u2du=0

Proof of Integrals of Odd Function
Let's first check that the integral for

90 = [ roa
0

is even. Want g(—x) = g(x)

Calculate derivatives

g'() = f(x)

(9(=2) =g'(=0)(-1) = —f(—x) = f(x)
Sog(—x) =gx)+c

Putg(0) =g(0)+c=>c=0
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S0.9() = g(-x) _ .
| rwac=-[ r@ae+ [ f@ar=-g-a) + 9@ = 9@ - g(@ =0
-a 0 0
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Series
February-14-11 9:34 AM

Sequence
A sequence is a list of numbers x4, x5, ..., Xp, ..

Know x,, > pasn — comeans Ve > 0, |x, —p| < &
eventually.

Fact: If x,, is monotone and bounded, then x,, -
somep

lerx; <x; <x3< ..<someB

orx; =x, =2x3= ..=somebB

then x, - some p

Series
A series is made up of 2 sequences.
Sequence of terms:
X1,X2, X3, cue ) Xppy oon
Sequence of sums (called partial sums)
S1 =X
Sp = Sp-1+ Xn

When the s,, = some s we say that our series
converges to s.

Notation
X1+xZ+X3+“'+xn+"'
[o2]

S S
k=1

A series that converges is sometimes called summable.

Proposition 1
If Y 5—1 X}, converges to s, then x,, = 0

Caution:
If x, - 0, series Y, x;, could still diverge

Geometric Series

Pickanyx € R
and consider the geometric series:
[oe]

ZX" =14+x+x2+x3+-
k=0
This series converges & x| < 1

. . 1
in that case it converges to —=
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Proof of Proposition 1
Lets, =x; +x, +-+xp
Note Xp41 =Sp41—Sp =S —s =0

e.g.
oo}

Z(—l)"‘=—1+1—1+1—1+---
k=1
Here (—1)¥ + 0 and series diverges

e.g.

[e9)

1

1
k=1kFE L
Check (—) — 0?

(2
Have

1 Inn
In{—<)=Ihl-—-0
n

nn
1
(-
nn

Example

3 4/ 2
(1+1+1+1)>1
5 6 7 8/ 2
etc.

We see that with n big enough, se can make s,, > any multiple of 1/2. Thus s is not bounded.

Proof of Geometric Convergence
If |x| = 1, we see that |x™| > 1
50 x™ » 050 Yo x¥ diverges

If |[x] < 1 we know

xn+1

it 1—-x 1-—x
|x1—_;| — 0 when [x] <1

T+x++x"=

Sol+x+~~-+x"—>1—ixasn—>oo



Properties of Series Example
fx;+x,++x, ++>s

February-16-11  9:38 AM and if we replace x; by 7 and drop x, then
T+xz3+x,+-+x,+>2x+7—x—x;

Basic Facts
Addition Example
o o Look at
Zxk—m,Zykﬁu 1 1 1 1 1
et et l—c-!—1+1+z+§+a+"'+a+"'
= k=0 1,1 1
© Let'sverifys, =1+1+=-+—+ -+
21 " 31 n!
z (o +y) >x+y Make a comparison of terms
k=1 1 1
J— S —_
. 2172
Multiplication 1 1
) <
31— 22
z Xp =S, ceR 1 1
= 1523
= 1 1
© —<
n! = 2n-1
Z CXp = CS
k=1 1 1 1 1 1
Sp < 1+2—0+§+2—2+"'+F < 1+————1= 3
Modifications 1-— 5
Any changes or deletions of a finite number of terms in So s, converges to some e < 3
Y x;. has no effect on convergence (although it may Alsonotices,, >2forn>3s02<e <3

change the value converged to)
Proof of Integral Test

Monotonicity Both s, = x; + x5 + - + x,, and flnf are increasing sequences.

If x, = 0, the partial sums s, are increasing.

n
and s,, converges iff s,, is bounded. So check s, and f1 f are bounded, or not, together.

Since f decreases,

Xy < f(x) <x0n[1,2]

Xpsr < f(X) < xon [k, k + 1]
Xp < f(x) <xp_qonn—1,n]

Integral Test

Let f: [1,0) — R be such that:
¢ fiscontinuous
e fdecreases

* f=20 Integrate over [k, k + 1]
Put x;, = f(k) wherek = 1,2,3, ... k+1 k+1 k+1
Then Xp+1 = f xk+1dt < f(t)dt < J‘ xkdt = Xk
® k k k
z X, cges So
et ol k1
n x2+x3+~--+xnsz fdt <x;+x,+ - +x,_1
& the sequence of integrals f f(®)dt cges. =k
1

Splice

i n
= fl f(t)dt exists Sp— X < f fO)dt < s,
1

Say

Zxk cges

Then all s,, < some bound B.
Then flnf < Bforalln

Since flnf increases with n, we get flnf - some limit L

Say flnf converges. Then all flnf < someB

Then s,, — x; < this B so So s, < x; + B and since s,, increases, we get
S, converges.

Example. P-Series
Forp>0,eg.p= % 1,1.1,2,m, ..

The function
1
fx) = P
is continuous, decreasing, and > 0
We know

m1
fl de

converges iff p>1
Then
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Y ﬁ converges iffp > 1

Example

z 1
ninn

n=2
This is > 0, cts, and decreasing
Look at

fx) =

1

xInx

" odx
J ——— =[Inlnx]} =In(lnn) —In(In2) -
2

xInx
So

z 1
nlnn

n=2

Exercise
[o¢]

Y.y

Show this converges



Estimation of Sum
February-18-11 9:29 AM

Integral Estimation
If

I

k=1
Xy > 0, decreasing
[oe]

f<s—s, Sf f
n+1 n
Where f(k) = x;

Estimation of Sum
Likely to be on final
Say we know

P
k=1 ~
converges, but the sum s is a mystery.

Know s, = x; + -+ x,, = s for large n
How close?

Givenane > 0
Find n such thats,, = s with error < &

[s—spl <e hi ;1';1

3’—.
g-
*

If

©
S = f Xk
k=1

was obtained by the integral test, here's how to answer our problem.

Form >n > 1 we have
fm+1 m

fon+1+xn+2+m+mef f 1 Y i

n LY ha- M

n+1

So

m+1 m
lim f f< lim x4+ +x, < lim f

was—snSfmf

n+1

Example
Lets = Z,‘lek—ls

Ifs—s, < L,then
100

* 1
fmad“m

We see that
J‘m dt [ 1 ]’" 1 . 1 1
- =|-= =—— - — 00
a5 L 22 T T zm2 T 2 02 2 2 BT
So
1

1 )
m:ﬁ<mﬁ(n+l)>\/%:n>\/ﬁ—lz607
Son=7
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Convergence Tests Proof of Proposition

Lets, =x; +x,+ - +xpandt, =y; + -+ y,

Clearly s, is increasing. Just check s,, bounded.

Know t,, < some bound B. s,, < t,, is obvious so s,; < B so s, converges.

March-02-11 12:12 AM

Proposition
If 0 < xp < yg and Example
[ee] [ee]
Z Vn+5 ,
——— converge?
Z yk le —3 verg
k=1 n=1 )
converges then n+5 24/n 24n 24n 4 1
0 & Vn < Vn = Vn < —£ = —, eventually, when =n? =3 >0
n?—3 " n?-3 1n2+1n2—3 1n2 % 2
Z K 2™V T2 2 n
k=1 Since
converges. 24
Z n3\4
Note: 5
When using comparison test, only care about converges, (p-series withp = 3 > 1), the original converges.
end behaviour, not initial values.
Example
Limit Comparison 21
If0<x, &0 <y &;—" — some L where L € 1ol converge?
k i=1n 'n
0,00) then X, x;, & converge or diverge 1
( ) L% & LY & & Notice nn — 1
together.

1 1 1
Zinn) » 0= en™™ =pn 51
Condensation Test n

1 3
~ 3 1+:n 3
<= <=

Let X, > X, > ..>0 Sonn < 2 eventually, thusn 2" < 21’1 eventually

Then x4 + x5 + -+ x,, + -+ converges iff _1_ > i eventually
X1 + 2x5 + 4x4 + -+ + 2Kx, converges. it
But = diverges so
3n
[ee]
o diverges
nmintta

Proof of Limit Comparison

Say ),y converges

Since 2% - I we get Z£ < I + 1 eventually
Vi Vi

Thus 0 < xj, < (L + 1)y, eventually

But

i(L + Dyy
k=1

converges. By comparison, X, converges too.

. 1
Conversely, say ), x; converges. In this case use fact that % -1 and L € (0, ) so y, converges.
k

Example
i Vni+n+1
n?—->5n+8
n=1 5
We see that Vi3 + n + 1is "like" nZ and n2 — 5n + 8 is "like" n?, thus
_ 3
Vi +n+1 e 2 = L
nZ_sn+8 0 0 n2 " yn
- . . 1
Try limit comparison with Zﬁ B
Vni+n+1 1411
n2—5n+8 _Vnt+nZ+n nz T3
1 " n2-5n4+48 ., 5,8
vn 1 nt

. 1 .
Since ), N diverges, so does

-1

Z\/ﬁ§+n+1

nz2—5n+8

Example
Take
[ee)
1

np
n=1

where p>0
It's condensation is
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kil i k

The geometric series

2. ()

k=0 L
converges@;<1(=)p—1>0(=)p>1

Proof of Condensation Test

Lets, =x;+ -+ x,

ty =X + 20, + -+ 2Kx

Since the x,, and t;, increase, it's enough to prove that s, is bounded < t, is bounded

Say all t,, < some bound B. For any n, take k so big that n < 2k

Then s, < xy + (xy + x3) + (x4 + x5 + X6 +x7) + -+ (Xp + -+ + Xpps1_,)
x4+ 2x +4x,+ o+ 2Fx =t <B

So ty bounded = s,, bounded

Next say all s,, < some B. For any k we get

1
te = Xq + 22, + 4xy + 8xg + - + 2Fx e = 2 (Exl + X, 4+ 2%, + dxg + - + Zk‘lxk>

< 200y + x5+ (rg +x4) + (x5 + X6 + X7+ xg) + -+ (X1, + o+ X6) = 256 < 2B
So s, bounded = t; bounded.
n

Example
[ee]

1 )
Zz AP’ where p > 0 and fixed
n=
Condensation is:

Z 2 x Wnlzz)—p => (ﬁ)p (z%)

Since

> () () cp>1
2 P converges p

1
Zm converges & p > 1
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Convergence of Primes Convergence of Primes
Let 2,3,5,7,11, p,, be sequences of primes in increasing order.

Does
1+1+1+ +1+ 7N
2 t3ts o converge? No

March-02-11 9:55 AM

1 . .
Say Y, 7 converges to s. So there is an index n such that

1 1 1 1
S—Sp=——+—t o t—+- <=
Pn+1  Pn+2 Pk
For any positive integer a, let
J(n,a) = # of integers from 1 to a that can be factored using only p, ..., pn
E.g.
L(3,23) = # integers from 1 to 23 that can be factored using 2,3,5
L(3,23) = #{1,2,3,4,5,6,8,9,10,12,15,16,18,20} = 14

N

If m is an integer from 1 to a that factors using only py, ..., pn, write
2

m= (p11 2. .pz")(pfl ., where ¢;€{0,1}&d; 20

12 p2 pn has at most 2™ options

Pyt n" has at most +/a options
So](n. a) <2™/a

Now get an upper bound for a —J(n, a). If py, > py, the number of integers from 1 to a that have py as
a factoris < i

Thus

a—J(n,a) <

+
Pn+1  Pn+1

Soa—J(n,a) S%
a
ES](n,a)SZn\/Eﬂ\/ES 2"l =3 g <4"lygeN

Clearly this is a contradiction.

+- +——+

”Ms
ley_\
NID
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Alternating Series Proof of Proposition

The decreasing assumption guarantees that the partial sums line up as shown:
March-04-11 9:32 AM

Proposition 18,
fx;=>x2%x32 ..2x,2 ..all=20and x, = 0, + 5
then the alternating series x; — x, + x3 — x4 + -+ B

(=)™ 1, + - 1
converges.

Estimation of Limit
May be on exam

The error that s,; makes in estimating s is less than or il . S "
equal to the next missing term. <+
R
Is = snl < 2n4q — 1 0

Absolute Summability (Absolute Convergence) s, = Syp—1 — Xan

A series San+1 = San t Xon41

kil Since S, are bounded by sq (all s3,41) and increasing then s,, = somesasn — o
Zxk But Szn41 = San + Xn41 > S+ 0 =35
k=1 Hences, = sm

converges absolutely, or is absolutely summable when
o

Also notice s is between all s, and s,,+1 because s,, increase to s and Sy, 41 decrease to s
[ | Hence

k=1 [s = snl < Isn+1 = sul = X1
Proposition
o o Examplog
If Z|xk| converges, then z Xy converges too Does Z(_l)nln_n converge?
k=1 k=1 n
= = n=1

Clearly alternating.
Inn
Does - 0? Yes

In(n+1 Inn
Does Innt1) <—7
n+1 n

Check:

I
Look at (mTX) forallrealx>1

However, the converse fails.

(ln_x)' x(%)—lnx_l_lnx

= = <O0forx>e
. f

x2 x2
Inx Inn
So eventually, - decreases. Hence - decreases eventually

So AST applies to

Z(—l)"lnTn —s

Also

| <1022
s=swl <=7 ~0.

Caution

For AST be sure x,, decreases.
1 1+1 1+1 1+1 1+1 1+
212 223 23 4 2¢ 5 25

11111111 1

Clearly 1’5'5’2’5’5’1'%’3'5' ... = 0, but is not decreasing.
Now

—(1+1+1+1+ +1) <1+ LI 1)
S =173y n) 272 2n
Then
(1+1+1+ +1)— +(1+1+1+ +1)

273 n) TS T\ 2T 2n

If 5, = s asn = oo, then right side would converge to s + 1, but left side diverges, so s,;, does not
converge.

Absolute Summability Example
11 1 1 1 (—1)"—1+

=gtz 3%s gt t

converges by AST to s.
Rearrange the order of summation to get

_(1 1) 1+(1 1) 1+(1 1) 1+<1 1) 1+(1 1) 1+
$=UT2)717376) 7875710/ 127 \7 T 1e) 16T 918 207
1 1 1 1 1 1 1 1 1 1 1

1
= — == (1= 4. ) =55 =
2 2% 8 0 127 2( 2t3 gt ) 257°
By error estimate in AST we know

1 1
—sl=ls—1<? >1
Is—sil=1Is—1]=5Sos =3

Contradiction.
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Rearranging infinite terms in a series may lead to a different sum, or changing the existence of a limit.

Proof of Proposition

Let sy = X1 + = 4 Xy, ty = |xq |+ -+ |xn]

Check that s, is Cauchy.

Well,form>n>1

[sm = snl = 1Xm + Xma1 + -+ Xnga | < Nl + [Xppal + -+ x4l = It — tal > 0asn,m >
So s, converges
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Ratio Test

March-07-11 9:32 AM

Ratio Test for Absolute Convergence
Xn+1

Let x,, # 0 and —»>Lasn -

x‘l’l
If L < 1,then ), |x,| converges
L > 1, then x, » 0 and Y x, diverge.

MATH 148 Page 33

Proof of Ratio Test
SayL <1
PickanrsuchthatL<r <1

X
We know |;—+1 < rwhenn = someN
n

Thus we get
[xn] < 1|xyl
[xns1] < 7lxpl
lxn42] < 722yl

Xyl < 7% |xy]
The geometric series
[ee]

ZIxNIrk converges since |r| < 1
k=0

By comparison,

(o]

ZIxN+k| converges

k=1

throw back in |xq ], [x21, ..., |xy—1| and get
[oe]

Z |x,| converges
n=0

SayL>1
Thus eventually
x
ntll o1

Xn
So eventually we get

[xn] < lxygrl < lxygal < -
So x, » Ol

Example
[ee]

n2

(n+ 1)2

n+1)? _
T =

n
So L=1is useless

—>lasn - o

1

Example
- n!
z o (=1)™ converge absolutely?
n=1
See if ratio test helps

(n+ D! (—1)"*?

T+ D™ )| (n+Dn" _( n )n

nl (=D T+ D™ \n+1 _(1+1)
n" 7

Yes

n—~—-—<lasn— o



Limsup & Root Test Example

2 3 4 5 6 7
March-07-11  9:59 AM 3'0'5'0'5’0'7}’0'_'0'3'"'
334455
P . Pn =24 5,555 0050
Limit Superior n ) 2'2'3'3'4’4
p:

Let x,, be a bounded sequence.

Say ¢ < x,, < b forall x. iti
ay n orallx Proof of Proposition

Say p = limsup x,, and take € > 0

Put t = sup{xn, Xp41, X4z, - .
Know t, = sup{X,, X,41, ...} = p decreasing

Clearly
b2t 2ty > 2t 2ty == Soty <p + € forsome N.

Clearlyforalln = N wealsogetx, <p+¢
Thus t,, = some limitpand t, = p

Write p = limsup x, = limit superior of our sequence X, Alsoall t, 2 p

sosup{xy,xy,...} = p = somex,, >p—¢

Convention SUP{Xn, 1, Xn, 42, - } = P = Some xp, > p — &,wheren, >ny
If x,, is not bounded above, put limsup x,, = c sup{xn2+1,xn2+2, } 2p=>somexy, >p—¢€
In this way, we come up with infinitely many x,, >p —¢

Proposition
If x is bounded and p = limsup x,, then for any € > 0 we get Next, suppose g also has the above traits. Wantq = p

o x, <p+e€eventually Say p < q and get a contradiction.

e p — & < x, infinitely often. Pick 7 such thatp <r <gq
and p = limsup x,, is the only number that does this trick. Then we get x, < 7 eventually and 7 < x,, infinitely often.

Impossible,soq = p
Ordinary limits satisfy these properties, so if a sequence has
a limit, then the limit is the limit superior. Proposition

Know p — 1 < x,, < p + Linfinitely often, so pick one such x,
Proposition
If p = limsup x,, then there is a subsequence xy, that
converges to p. Also, if xp,, is any subsequence with a limitq,
thenqg <p

Next, p —i <xp,<p+ % so pick one such xp, > xp,
Etc. Thus we pick up a subsequence xp, such that p — % <Xp <P +%
Let k > o and squeeze to get x,, = P

Root Test Next say x,, — some q. Wantq < p
What if p < q? Pickrsuch thatp <r <gq

Have a series X . . .
0 Thus 1 < xp, eventually with k, since xp, = q. But x,, < 1 eventually by first property of p. Thisis a

Z Xk contradiction so ¢ < p.
k=1
and let p = limsup “/]x,| = 0 Proof of Root Test
Ifp<1
Ifp <1, then X|x;| converges Pick p <7 < 1,thus “/Txnl < 7 eventually. So |x,| < r™ eventually.
p > 1, then x, +# 0 and X x; diverges But X, 7" converges, so by comparison, ¥.|x,| converges

If1 < p,then '{/TJZI > 1 eventually.
Then |x,| > 1infinitely often, so x, + 0

Example
1
E; nodd
=17
ET neven

Does ), x,, converge?

Try ratio test:

n

() 6 s

Tnt1l _ ) 20

Xn 1 n
2+t (ﬁ) (1) n even
1 ~\2) \2
317.

lim,,_, X;’” not there

How about root test?

L odd
—no
WIPHES 2
n 1
371617671

1
limsup x, = 2 <1

Z |x,| converges
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: Example Permutations
Permutations 1234567891011..

March-09-11 10:05 AM 214365871009 ...
Proposition 1 243665 T0127 14165 .
Permutation on Absolutely Summable
If
o o Proof of Proposition
Zkal ands:Zxk Takeany € > 0.
k=1 k=1 Want M such that
and o is any permutation of {1,2,3,4, ...} m
then Z Xok) — S| < & whenm = M
(oo}
k=1
Z Xok) =S First pick N such that
(oo}
k=1
Z [x] < €
Power Series k=N+1

Next take M such that X5(1), ..., Xga) includes all x4, ..., xy
Now whenm = M we get

m N
Z Xa(k) — Z Xk

Pick any ag, ay, @y, ... ay, ... coefficients and x € R

o
The series ag + a;x + a,x? + -+ apx™ + - = Z agxk
= = | a sum of finitely many x; that excludes x4, ... xN|

Is a power series in x. k=1 k=1
< |sum of finitely many |x,-| that excludes |x4], ... IxN|| (by Triangle Inequality)
(oo}
< x|l <&
k=N+1
m m N N =) <)
ng(k)—s < ng(k)—Zxk + Zxk—s <&+ x| < e+ Z x|l <e+e=2¢
k=1 k=1 k=1 k=1 k=N+1 k=N+1
) Power Series
Then | do the upside down For which x does Y, a,x* converge?

flippy thingy... the algebra." Always for x = 0.
[ee]

x* converges & |x] <1

1550

1
E_'Xk converges for all x
k=0
Proof: Ratio test gives
K1
m+ D! 1
—[=——Ix|>0<1
xn n+1 Il
n!
o
Z k! x* converges only if x =0
k=0
Ratio:
(n+ 1)!xn+t

=m+1Dx|>0>1

nlxn
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Power Series
March-14-11 9:32 AM

Power Series
[ee]
ap,x™

n=0

Proposition
Every power series does one of three things:
e Converge forjustx =0
e Converge absolutely for all x € R
e Forsome 0 < R < oo, converges absolutely
when |x| < R and when |x| > R, a,x™ » 0

and
[o0)

Z agx® diverges

k=0

Radius of Convergence

R is known as the radius of convergence for the
power series. If converges fornox, R = 0 If
converges for all x, R = o

Casel:R=0
Case2: R =

1
Case 3:R = ———

limsup /la,|

Interval of Convergence
(=R,R),[-R,R],(—R,R],[-R,R)
0

R

Power Series Functions

Since Y, akx" depends on x, we can make a function
on the interval of convergence defined by f(x) =
Y a,x*

Proof of Proposition

Look at the sequence &/|a,|
If %/Ta,| is not bounded then for |x| # 0, Y]a,x™| = %]a,[|x| is not bounded either. By the root test,
a,x™ » 0 and Y, a, x* diverges. Case 1.

If limsup /la,| = 0, then so is limsup 7\l/l—c;nxnl = 0 < 1o the root test says Y. a, x™ converges
absolutely forall x € R

1

. n k ______
If limsup 4/la,| > 0, the root test tells us that Y. a, x converges absolutely when |x| < Tomsan e and
. 1
diverges when |x| > Tomewn Tl Case 3
1
R=————r
limsup /|ay|
Example
X2
n .
Z —x™ radius?
277.
n=0
1 2
R=

= — =2
) n[pn2 limsup (/n)?
limsup i

So the Radius is 2.

Illustrations of what can happen at +R
E.g.
[ee]
1
Sir
n
n=1

n
Use ratio test, | nx

+1
= |xX|jasn —> o R=1
(n+1)x"| l l so

Know
[ee]

1
;l-x" converges absolutely when |x| < 1 & not when |x| > 1

n=1

[ee]
1
Now for x = 1, get Z - (D™ diverges

n=1

o
1
x =—1get z - (—1™ converges but not absolutely

n=1
E.g.
N 1 n —_
z;ﬁx ,R =1
n-1

For x = +1, get Z% (=1)™ converges absolutely.

n=1
By ratio test

(_1)n+1x2(n+1)
o n+1
1 nx2n
(GEY) [= [x]? = |x|?asn - o
n n+1
But ratio test says when |x|? < 1& not when |x|? > 1

R=1
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Derived Series

March-16-11 9:34 AM

Power Series Recap
Every power series
[oo]

S

n=0

comes with a radius.

This is a quantity R where 0 < R < 0.

If x| < R, Y|a,x"| converges and if |x| > R, a,x™ +

0 and Y, a,x™ diverges.

Thus, when R > 0, power series create functions f on (—R, R) by

f6) = apx

n=0

Derived Series

<3}

Let f(x) = Z a,x™ on (—R,R)
n=0
The derived series is defined to be

Z napx™ ! = ay + 2a,x + 3azx? + - + na x4

n=1
In other words, differentiate each term.

We will show that the radius of the derived series does not
change (i.e. =R) and f’(x) exists on (—R,R) and

)= naen

n=1

MATH 148 Page 37

Here is why this is not obvious.

Here is
ven e SO =) Miloant™ — Xaoanx" et —x"
f'(x) =lim = lim =lim ) a,—
tox t—x t-x t—x t-x 4 t—x
n=

lim 1i zk: rox
= lim lim a

tox koo Lu not—x

n=

Next,

i k k tn n

—x

Z na,x™! = lim ) na,x™ ! = lim Z(anxn)’ = lim Z an lim ———
(n=1) k_wonl n=1 n=1 s X
= = = =

lim 1i Zk: v
= lim lim a

k—oo tox 4 n t—x

n=

Does
lim lim:: =
k—oo t-x

Note. Can't always switch limits

E.g.

_Jlifmz=n
Ymn =10if m<n
1 0 0 0 O
110 00
11100
111 10

lim lim x;,, = lim1=1
n—00 m—00 n—oo
lim lim x,,,, = lim 0 =10
m—00 N—00 m-—oo



Uniform Convergence

March-16-11 9:59 AM

Norm (Sup-Norm, Uniform Norm)
Let f be a bounded function on an interval I.
The sup-norm of fon | is

I 1l; = supllfC):x € I}

Properties of sup-norm

[Ifll; =0 f =0=0 functiononl
llef 1l = lelllfll

I +gll; < IFI; + gl

Uniform Distance
For two functions f, g, on | their uniform distance is
f =gl = SUII)If(x) — g

XE.

Uniform Convergence of Sequences of Functions
Given f,, on I we say that f,, = f (tends to f) uniformly on |
when [|f, = fll; > 0asn —> o

Notice
If fn = f uniformly on I then

fnG) = fOOI < fu=fll; =0
So f(x) = fF(X)Vx € I.

Pointwise Convergence
When f,(x) = f(x)Vx € I we say that f,, = f pointwise
onl.

Observation
Thus f, = funifonl = f, - f ptwon |
However,f, = fptwonl # f, - funif onl

Continuity of Uniform Convergence
If f, = f uniformly on | and the f,, are continuous on |,
then fis continuous on I.

Integration of Uniform Convergence
If f, = f uniformly on | and say f,, f are integrable on I.

Then for every |a, b] S I we get f: fn— f:f
b

b
lim | f, = f lim f,
n—-oo a a n—oo

Note
fu = f pointwise on [a, b] # f:fn - f:f
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Sup-Norm Examples

Isinx|lg =1
lsinxll_m = —
Sinx = =
[0zl ~ V2
v
|larctanx||g = )

Find |13 (1 — 2)ll[o,1

Use derivatives

fG) =21 =0 = f'(x) = x*(3 — 4x)
Max at%

is—on=16)-6) (-3 -

Proofs
llcfll; = suplef ()| = suplcllfCI = el suplf ()l = [cllIf Il
x€l x€l x€l

For every x € [ we know

[FC)+ g < IfI+ g < NIfll; + gl vx €1
So lIfll; + llgll; is an upper bound for |f(x) + g(x)]| so

f +gll: < fll; + llglls

Sequences of Functions Examples
on [0,1], f(x) = x™

[ee}
Take any power series Z a,x™ with radiusR > 0

n=0
n

Let s, (x) = Z agx® on (—R,R)
k=0

Let f be such that f(") (p) all exist where p € I
Get Taylor Polynomials:

To(x) = f(p)
T1(x) = f(p) + f'(p)(x — p)
")

T,(x) = f() + f' () (x — p) +—2!—(x -p)

F®(p)

n!

T =f@+f@&-p)+-+ (x—p)*
Counterexample to f,, — f ptw = f,, = f unif?
Example:
fu(x) =x"on|0,1]
See that:
Owhen0<x<1
fn(®) = { 1whenx =1
So f, = f pointwise on |0, 1] where
_ JOwhen0<x<1
[ = { 1whenx =1

However,
Ifo = flloyy = sup [x" = f(x)| =1»0
x€[0,1]

Proof of Continuity of Uniform Convergence

May be on Exam

Takep €l ande >0

Need § > 0 sothat |f(x) — f(p)| < e when |x —p| <&

Since |, — fll; = 0, we have an N such that ||fy — fll; <§

Now, fy is continuous at p so take § > 0 such that |fy (x) — fy(P)| < §
when [x —p| < 8.

Now for |x — p| < § we get

FG) = f@I < 1f ) — fwCII + 1fn () — i@ + 1) — fF@)I

<2lfy = fll; + I fa ) = fu@I <§+§ =¢

Example
fu(x) =x"(1—x) on[0,1]
Clearlyfor all x € [0,1], f,,(x) = Oi.e. f, = 0 pointwise on [0, 1]
Does f, = 0 uniformlyon [0, 1]?
We need ||f, — Ollo,]
Proof of Integration of Power Series
Know for Exam



0=

b b b b
| - | f(t)dt‘s | 1@ = r@1de < [ W= Fllide = fy = £l - ) 0

So squeeze. m
Example of failure for pointwise

nt Al

Here, fol fa=1
but f, = 0 pointwise on [0, 1]

1
fOzO
0
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Series of Functions Example B
March-21-11 9:39 AM Power series Z anx" comes from

n=0

s1(x) = a,

Series of Functions
s,(x) = ag + agx

Given a sequence of functions,

fi(x), f5,(), ..., fn(x), ... on | form the partial sum sn(x) =g+ + apx”

functions:
s1(x) = f1(x)
52(x) = f1(x) + fo,(x) Problem
; If
Sn(x)zfi(x)+"'+fn(x) )
: s(x) = Z axx* on (—R,R)
k=0

Does

We say Z fn(x) converges uniformly on I when s, n
n=1 s, (x) = Z agx¥* - s(x) uniformly on (-R, R)?

— some function s uniformly on I pr

No.
The Weierstrass M-Test
Let f;, functions defined on | and || f,.|l; < Example
some const My, 1 1 24 s )

s(x) = i = (02 =1-x?+x*=x++(=D"x*"+:-0on(-1,1)
If Z M, converges, then Z fn converges Here, 5, (x) = 1 — x2 4+ x% — -+ + (=1)"x2" » s(x) uniformly on (—1,1)

n=1 n=1 Check:

uniformly on / (1 — (—x2)n+1) 1 x2n+2

Son(x) = ~— = s+ (DN ——

1—(—x2) 1+x 1+x
Thus
x2n+2 1
IIs — 52n||(_1,1) = —1 n x_z = E vn-»0

=11

Proof of Weierstrass M-Test

Lets, = Z fr

For eachx E I we have |f, (O] < lIfill; < M,
By comparison,
[ee)

Zlfk(x)l converges since ZMR converges
k=1

So Z fi(x) converges to some s(x).
k=1

So Z fi converges pointwise, check if it converges uniformly

k=1
So forallx € I we have
I5() = sp (@) = Z L@ D 1@< Z My vxel
k n+1 k=n=1 k=n+1
Solls — s, I, < Z M,
o k=n+1

Since Z M, - 0asn— o

k=n+1
Squeeze to see that [[s — s,|l; > 0asn - o

Example: Riemann Zeta Function
Take the 'p series' (p = x)
[oo)
1

n*
n=1
which converges when x > 1

o)

1
Call {(x) = Z — forx>1x€ (1, )
=t
Well,
1 1

— = —;7.5, are continuous on (1, 0)
n* e

So {,(x) = Z — are continuous on (1, ) forall n
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We wish {,, = ¢ uniformly on (1, o)
Sorry. It does not happen.

Check this:
By error estimate from integral test, for a fixed x > 1

® dt
[ Sst0-60

tX
+1
J‘m dt 1 1 1+
—_—=—————— 5 0asx -
i1t x—1(n+1)*1

Do this integral yourself.
S0 I = nllg,0) =0+ 0

How to rescue the situation?

Pickanyb > 1

We will check that ¢, = ¢ uniformly on [b, )

Use the M-test with M;, = —1;
n

1

1 1
CIearIy; < oy Vx=>b= =

[ee]
Now Z —13 converges since b > 1
n=1n
Thus {,, = { uniformly on |b, )
Since ,, are continuous on [b, ), so is { continuous on [b, ©)
Hence, { is continuous on (1, ). For every x > 1, thereisabsuchthat 1 <b < xso (s
continuous at x.
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Power Series Proof of Uniform Convergence of Power Series
Let ¢ = max{|al,|b|} € [0,R)

For all x € [a, b] we have

[x] < csolapx™ < layllx|™ < laylc™ = la,c™l

March-25-11 9:34 AM

Uniform Convergence of Power Series
© Now, Z|akc"| converges since ¢ < radius R

Let Z agx® k=0

k=0 Also llayx™ljqp < lanc™|
= f(x) on (—R, R) and [a, b] is any closed interval ke
inside (—R, R), then the series converges uniformly on [a, b]. By the M-test Z agx* converges uniformly on [a, b]
k=0

Continuity of Power Series o .
o Proof of Continuity of Power Series

If f(x) = Z agx® on (=R, R) Pick p € (—R, R). Want f continuous at p.
k=0 Enclose p by some [a, b] € (—R,R)

then fis continuous on (—R, R) n

[e9)

Now, s, (x) = Z agx® converges uniformly on [a, b] to f(x) = z agx

Derived & Integrated Series ) k=0 ) . k=0
o Since s,, are continuous on [a, b], f is continuous at p. m

Given f(x) = Z apx® = ag + a;x + ayx? + -+ apx™ + o

=0 Proof of Radii of Derived Series
on (—R,R) © )
The series Z ka,x* has the same radius of converges as derived series Z kagx*=1
Derived Series: k=1 k=1

kapx*=1 = a; + 2a,x + 3azx? + - + nax™l 4

k=1
Integrated Series:
(o)

a a a
Z K yk+1 =a0x+?1x2+---+n—_:1x"+1+~--
k=0

k+1

Radii of Derived Series

[ee] [ee]
If Z ay x* has radius R, then so does Z kagxk=1
k=0 k=1
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Differentiation an Integration Theorem Proof of Proposition

March-28-11  9:33 AM Let R = radius for Z apxk
k=0
i n For x € (—R, R) pick t such that x| <t <R
Ifs(x) = Z ayx™ for x € (—R,R), the summss, (x) = Z apx® ©
= = Know Z|akt"| converges
converge uniformly on every |a, b] € (—R, R), but not necessarily on (—R, R). k=0

Thus s(x) is continuous on (—R, R -
R E) To get that Z |kakxk‘1| converges, we will show

Derived series k=1

o
> k
Z kaxk1 Z|kakx | converges.

k=0

Integrated Series
%) & Do limit comparlson of

a
Z ket . .
k—Ok +1 Z|kakx | with Z|akt |
- k=0 k=0

Proposition Look at
o0P o kagx*

xik ox xk
=k|?| .|?|<1sok|?| —-0ask - o

. k
Z agx® & Z ka,x*~1 have the same radius at B
k=1 k=1 [eayx¥| .
Thus [t < 1 eventually with k so eventually
k
Corollary |kakxk| < |akt"|
k k+1 ; . .
Z apx” & Z ___X *1 have the same radius too Since Z a,t* converges, so does Z|kakxk| by comparison.

(Since the derived series of the integrated series is the beginning again.
Furthermore, if |x| > R then |a,x™| » 0 hence |na,x™| = nla,x™| » 0

Integrated Series Formula So X, kayx* diverges.
Ifs() = Z @x’ on (=R, R) &[a,b] € (=R, R) then Proof of Integrated Series Formula
n
b it b _ k .
f s(E)dt = Z ak-" kdt sp(x) = Z aix® — s(x) uniformly on |a, b]
a k=0 "¢ e

b
Hence f s, (t)dt — s(t) dt
Special Case n

Pickany x € (=R, R). Use a,b] = [0, %] i.e.f (Z a tk> dt = Zakf thdt —»f s(t)dt

Get f s(t)dt = Z akf thdt = Z—ak—x"“ k=0
o o k+1
k=0 k=0

Proof of Derived Series Formula
Derived Series Formula >

o Let g(x) = Z kagxk—1
Iff(x) = Z azx® on (=R,R) ) = S )
= Note g is continuous on (—R, R), since it is a power series.
then fis differentiable and Just saw "
it kak
F1(x) = Z kagx*1 Vx € (—R,R) f g(®)dt = Z o xk = Z agx* Vx € (—R,R)
=1 k=1 k=1
Sof(x) =ay+ f g()dt
By FTCII get
frx) =g)
Application
Prove
x?  x3 x™ o xk
1+x+—+§+ +—+ o
k=0
R = oo, check with ratio test
Let f(x) = Z o
Want f(x) = e
Notice f'(x) = Z ikx"‘1 = Z ! xk-1 = Z x_ =f(x)
pe=] k! pe=] (k—1)! e k!
Now find
fQ) _ e - feE)
ex ) T e T
f(x)
So p =C= f(x) =Ce*

fO)=1=1xeso0
flx) =e*
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Fun Stuff with Power Series

Getting power series for known function. Good to memorise these expansions
March-30-11 9:35 AM o

1
We did e* = ZZ—Ix" onallof R

Lifting Principle for Integration L , 7m0
If f(x) < g(x) on [a, ) Knowm=f_(_x)= 1—x+x2—x3+4 for|x| <1
thin X Integrate
x dt x? x3 x*
f@de< [ glode miam o [ LR X k<1
fa a nt+x) =) = -ty gt ok
1
— 2 4 6 8
—1+x—2—1—x +xF—=x"+x° =
Integrate
¢ —jx Y e okl <1
A T+x2™ 737577 SR

Estimate this integral using power series, with error < 1075
1

Z o
e *dx
0

x? x3 x"
X — —_— J— cee J— “ee
Know e —1+x+2!+3!+ +n!+
P x2n
Soe‘xz =1-—x2 +§—§+ LR (—l)nT'F'”
Integrate
x 3 5 7 9 2n+1
2 x x x x L X
dt = x — — - et (=1 4.
foe Ytz xa toxa Tt Gy oxa
Plugin x Z%and get
1
F e = LI ! ! + ! + eR
s T T X3 T x5 %2 27 x7x31 22x9x4l "
By error formula in AST we know
1
F gl 1o 1 1 12399
o T 2T B3 T B x5x2 27 x7x3! 26880
1 1

<1075

i < =
With error < 55— 5= 1 = 110529 =

Power series for sin and cos
Start with cosx < 1 on [0, )
Lift 1:

X t
fcostdtgfdt on [0,00) = sinx < x
0 0

Lift 2:

X X
f sintdt S.f tdt
0 0

%2
—cosx+157

Lift 3:
X tZ X
J (1——>dtsf costdt
0 ; 2 0

x —— < sinx
x!

Lift 4
X t3 X
f (t——'>dtsf sintdt
0 3! 0
x?  x*
ETR < —cosx+1
x?  x*
cosx < 1—5 +E on [0, o)
Lift 5
—_ x3  x°
smx_x—§‘+§
By extending the pattern we learn sin x is always between
x3 x5 2n-1
Ly (=D gnd
S TR I G e s TR
x3 xS 2n-1 2n+1
X— =t — =t (D) ——— + (- —
31 5! =D 2n-1)! =D 2n+ D!

Thus forx >0
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2n+1

<

X3 xS x2n—1 x
sinx —|(x——+——--+ (D"
< 31 5! =D (2n—1)!> @2n+1)!
But this is good for x< 0 too since all the functions are odd.

But regardless of x

x2n+1
[ZEE] Ikt
x3 x5 7 2n+1
MY =% — e e — g (=1 _
Thus sinx = x 3!+5! 7!+ +(-1) Zn T D)1
Differentiating gives
. PO R 6 1nx2n
CosSx = _Z—I—E_a-i—."—}_(_) (71?
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A cool function Let ¢(x) = |x| on [—1, 1] and extend to R by the rule ¢ (x + 2) = @(x)

ASANAANA

L4 ‘ -
Note:
1. lex) — )| < |x —y| because slope from (x,(p(x)) to (y, (p(y)) is<1
2. Ifx, y have no integer strictly between them, then @(x) — @(y) = +(x — y)

Now take the series
n

3 3 9 27
1@ = Y (5) 0@ = 900 +5 04 + T00(16x) + Zp(642) + -

April-01-11  9:35 AM

n=0
Observe that
3\" 3\" 3\"
n
H(Z) p@™ )| < (4_}) & Z (4_}) converges, by M test so does w
R n=0

So series converges uniformly on R by M-test and since each (Z) is continuous so f(x) is continuous

on R as well.

This f, which is all teeth is nowhere differentiable on R
letx € R
We will find a sequence where t,;, = 0 while

[+ tm) — f(x)

> o0oasn— oo

tm

Note

(Fa+t)-f@) <) (0@ 6+ 6) - o)
tm h ; tm

For eachm = 1,2, 3, ... there is no integer strictly between 4™x and 4™x + %

1 1
XA if nointeger in (4mx, 4Mx + E)

1

Putt,, = 1
———— if no integer in <4mx — 5 4mx)

Clearlyty,, - 0asm — o
These t,;, were chosen so that

4Mx & 4™ (x + t,,) = 4Mx + 4™, = 4Mx +

have no integer between them

flx+ty) — f(x)

tm

N| =

Now look at

For n > m we get
AM(x + t,) = 4"x + 4"ty = 4™x + even integer
So (p(4"(x + tm)) = @(4"x)
(F+ tm) = £OO) < 3" ((w(4"(x +tm) — <p(4”x))>
us = -
56

tm

Th

tm
When n = m we get
m m
(E) (p(4m(x - tm)) —p(4™x) = 4 (3) 4Mx — 4Mt, — 4Mx _ y3m
4 tm
Since no integer between the two

e+ ty) — fx)

4

tm

1

v +::Z (Z) ((p(4"(x +tm)) — ¢(4"x))

So |—mmm =t
tm tm
m-1 m-—1 m-—1
S gm_ Z (i)” (4" (x + tm)) — 9(4™0)| > 3m Z (E)n Aot tn) =4 Z gn
n;% 41 | am tm | n=0 4 tm n=0
2 2
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3 5 7 9

EStlmatlng U Know arctanx = x — —+— — — + = — - for x| <1
April-04-11  9:34 AM

3 5 7 19 L
s
Sawforx—l,thatz—arctanl—1—§+E—;+---

However, this is too slow.

Here's an identity about arctan that helps

x +
arctan x + arctan y = arctan (1—x—y) ,when 0 < xy <1, x,y=0
- Xy

Proof of arctan identity
Pickany y > 0 and x such that 0 < x < i

Let f(x) = arctan x

_ x_+l)
g(x) = arctan (1 e
Forx € [0, l) we have

1
e = 1+x2
7 = 1 A=) = Gty 1+y?
L +(_x+y)2 (1-xy)? (1 —xy)?+ (x + y)?
1—xy
1+y? 1+y? 1+y? 1

=1—2xy+xzyz+x2+y2+2xy=1+xzyz+x2+yz=(1+x2)(1+yz)=1+x2

Sog(x) =fx)+C
Putx=0,get g(0) = arctany = f(0) +c =¢
Hence arctan (LJ;) = arctan x + arctan y

Example
2
4 t 1—2( t 1+ t 1)—2 t 5 =2 t (5)
arctan¢ = 2 (arctan ¢ + arctan ¢ | = Zarctan 1_1 = 2arctan (-
25
10
= arctan (33) + aretan (1) = artan| 15 | < artan (1)
= arctan | +arctan | 1> | = arctan 1_2_5 = arctan | 75
144
Example
1
tan 1+ arctan (=) = arctan | — 239 | ~ arctan (2a0) = arctan (120 )
arctan arctan { - | = arctan 1_i = arctan | o= | = arctan { /5
39

T 1 1 1 1
Thus Z + arctan (E?)) = 4 arctan (g) = m = 16 arctan (g) — 4 arctan (E?))

Now,

oo 11 L,
arctan 539 =239~ 3x 2393

1 NN 1
a—239~arcan239Wl erTOT_gng(iz—

4 1
4a=— =4 —_— [ < - —=
a 539 arctan239 with error < 3% 2392

and
1 1 1 1 1 1
arctan— = —

575 3x55 5x55 7x5 Toxsd 1ixsil
1 1 1 1 1
SOb=§—

with error < ——

3><53+5><55_7x57+9x59zarcmn(§) 11 x 511

16

AN
16b ~ 16 arctan (—) with error < 11 x5

5

Errors

If a1 = by witherror < ¢;

and a, = b, with error < ¢,

then a; — a; = by — by, witherror < c; + ¢,

So

4 16
~ i -7
16b — 4a = w with error < 3% 2393 +11 X 5ii <13x10
Well,
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16b — 4q = 22388592868 4 | 4159258473906
4= 29408203125

m = 3.141592654

m— (16b —4a) = 6.9 x 1078
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