Review of Vectors on R™
September-12-11 11:43 AM

1.1 Notations
%= (x®, .., xM) g R
x® = i-th component of the vector X

Operations with vectors
Addition: % as above, j = (y@, ..., y(™)
F+§ = (D 4y®, x4 5 0m)

Scalar multiplication:
ax = (ax®, .., ax™), fora € R, X € R"

Standard inner product (dot product):

(#7) = xWy® 4 oo g x () m) = zx(i)ya) eR
i=1
Norm ("length") of a vector in R™:

m

121l = (%, %) = Z(x(i))z

i=1

Observe that ||%]] = 0, with equality holding iff # = 0 = (0, ..., 0)

1.2 Remark

Basic properties of standard inner product
Bilinearity :
2! 211?2 5/'5/1:}72»6 Rnl aiv a_Z)vﬁllBZ € RQ .
<X+ ApXp, Y > =1, <X, Y > Fay <X,y >
<K P11+ eV > =P <E Y1 > 2 <X Y, >
Symmetry:
<Xy>=<yE>VIyER"
Positivity
<%, > 2 0Vx € R" with equality iff x = 0

1.3 Proposition
Cauchy-Schwarz inequality (C-S)
<%y > <Xl xllyll, viye€eR"

1.5 Corollary (Triangle Inequality) (T)
1X + yll < IIXll + Iyll, v%, y € R"

1.6 Remark (Homogeneity) (H)
llaxll = lalllZll, Va € R, ¥ € R™

1.7 Distance
For¥ = (x®,...,xM)and y = (y@, ...,y™) in R™ define the
Euclidian distance between ¥ and j to be

n
&) =17 -5l = | ® =y )2
i=1

1.8 Corollary (TT)
d(%,7) <d(%,y) +d(y,2),V%,y,ZER"

1.9 Ball

Ford € R" and r > 0 denote
B(d; r) == {X¥ € R"|d(a,X) < r}- Open Ball
B(d; r) = {¥ € R"|d(d,X) < r}- Closed Ball

1.11 Notation
For¥ = (xM,..,x™) e R"
1-Norm of X

n
Il = ) |x®|
i=1

co-Norm of X
1Z]l0o = max(|x®], ..., |x™])
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Proof of Cauchy-Schwarz inequality
Ify =0thenget0 =0
Will assume y # 0 hence that ¥l >0

Define f : R = R by
f@®) =<i-ty,x—ty>VteR
Observe that f(t) = 0,Vt € R (By positivity of inner product)

On the other hand, use the bilinearity property to get:
f@t) =< %% >—<ty,X >—< ity >+< ty, ty >

= 1212 — 2t < £,5 > +e2 |72

=a+ bt +ct?

So f is a quadratic function such that f(t) > 0Vt € R
For such f, the discriminant A = b? — 4ac must satisfy A < 0

But what is A?

A=Db? - dac = 4(< %5 )2 — 4 x ]2 x [F]2
So

A<0= (<5 >)? < IZI? x 115112

= <Xy > < Xl x Il

QED

1.4 Exercise
Determine the cases when C-S holds with equality.

Comment about Triangle Inequality in R?
Q//

el
l/ ’

Proof of 1.5 Corollary

I+ P2 =<X+9,2+y>

=< XX >H< KLY >H< P, X >+< Y, J >

=% +2 <%y > +lIyll*

(€ —5) < NIZI* + 212121912 + 1712 = AIZN + 171)?
1% + y112 < 1121 + 11

QED

Proof of 1.6 Remark

llazll = V< ax, ax >= Ja? <% % >= |al|IZ

Immediate consequence of (H): every vector X # 0 in R" can be written uniquely in
the form ¥ = r X % where r > 0 and u € R™ has ||u|| = 1 (u is a unit vector)

Proof of 1.8 Corollary

dx@ ) =X -Zl =G -+ G -DI < IX -yl + Iy - 2l = d@Z, ) + d(§, 2)

1.10 Exercise
Let ¥ = (xM,...,x(™) be in R™ Prove that:
a) [xO|<llvi<i<n
n

by Nl < Y x|
i=1

Solution - by immediate algebra



Sequences in R™
September-14-11 11:30 AM

2.1 Sequences in R™

o L N
Fidrer = X1, %2, o, X, -
Xx € R", a € R"

Say that (¥x)y=, converges to d when the following happens:
Ve > 0,3ky € N such that || X, — dl|l < e Vk = kg

Note:
Can also say
d(%,d) < €,0r X € B(d,€), instead of ||X, — dll < e

2.2 Cauchy Sequences in R"

(X1)r=1 sequence in R™

Say that (¥x)y=, is a Cauchy sequence when the following
happens:

Ve > 03kg € Nsuch that ||%, — %,4]| < e Vp,q = ko

2.3 Component Sequences
(%)=, sequence in R™
Write explicitly

5 D@
Ze= 0,22, 1)

We get sequences in R
(i))m fori<i<n
T
(xk et orl<i<

They are called the component sequences of (X) =1
Conversely, with n sequences in R you can assemble them to
make a sequence in R"

2.4 Proposition
(X)i=1in R, @ € R. Then
X = ainR"

s

x,(cl) -aPinRvi<i<n

2.5 Proposition
(Xr)r=1sequence in R™. Then
(Xx) is Cauchy in R™

=

(x,&i))kzl is Cauchy in R

2.6 Cauchy Theorem in R"

Let (X )= be a sequence in R™.

Then (X)) =, is convergent (to some limit @ € R™) iff itis a
Cauchy sequence.

2.7 Bounded Sequences in R™
Say that a sequence (Xx)j=; in R" is bounded when 37 > 0
such that [|X || < r,Vk € N.

Note:
Can write [|%]l = || % — 0| = d(%,0)
Soll¥ll<re d(f,a) <rexe 5(6; r)

2.8 Proposition
Let (Xx )= be a sequence in R™. Then
(Xx)r=q is bounded in R™

=
o

[ee]
Each of the component sequences (x,gl))k_l y ey (x,((n)) is

k=1
bounded in R

2.9 Bolzano-Weierstrass Theorem in R™

Let ()_c’k)?;:l) be a bounded sequence in R™. Then we can find
indices1 < k(1) <k(2) < - <k(p) < -

Such that the subsequence (J?k(p))pzl is convergent.

That ic averv hniinded cannience hac a ranveraent eith-
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Will do R™ versions of two important theorems from MATH 147:
Cauchy, and Bolzano-Weierstrass

Remark about Def 2.1
For (Xx)r=q in R"™, d € R™ have
Xk k-0 ae ”fk —all koo 0

Proof of proposition 2.4

=

Know X = da inR

Want to know that x,&i) saPvi<i<n

Fix i. Observe that forall k > 1

0< |x,((l) - a(i)| =@ - DP| < |IZ—dll -0

By squeeze, |x,((i) - a(i)| -0= x,((i) - a®

=
Know x,((i) - a®inRV1<i<n. Sohave
|x,(cl) - a(i)| —-0,1<i<n

n

Dl —a] -0

i=1

By exercise 1.10(b)
n

0<llie—ill< ) |r —a®] >0
i=1

Hence ||X, — d|l — 0 by squeeze and hence X — d

Proof of 2.6 (Cauchy Theorem)
(%) (k=1 convergent in R™
=

O\® . .
Each of (xk )k=1 is convergent in R
=

D)% i
Each of (xk )k=1 is Cauchy in R
=

(%)% is Cauchy in R™
QED

2.8 Proof
Left as exercise

Proof of Lemma 2.11
(¥r) =1 convergent in R" = (x,({i))k | converges Vi<i<n
¢ Jke=
(tx) =1 is convergent = (x£+1)k:1 is convergent.
. o
So have (x,((l))k is convergentforeveryl1 <i<n+1
=1

Using reverse direction for Proposition 2.4 to conclude
(1), is convergent in R™*1

Proof of Theorem 2.9 (Bolzano-Weierstrass)

By induction on n.

Base case n=1. This is the B-W theorem from Math 147

Induction. Assume the statement is true for n.

Let (%)= be a bounded sequence in R™*1, For every k write ¥ =
Pk, tx) with y,, € R" and t; € R

Claim 1

(Jx) k=1 is abounded sequence in R™

(tr) =1 is abounded sequence in R

This follows from discussion about components of bounded sequences.

Claim 2

Can find an infinite set of indices @ < N such that the subsequence
(¥k)keq is convergent in R™

Why? The induction hypothesis which says that B-W holds in R"

Claim 3

Let Q be as in Claim 2. Can find infinite subset P € Q such that (tx)xep
is convergent in R.

We invoke the B-W theorem from Math 147 to the sequence (i) keq

Claim 4



HIUILED L > R\1) N R\L) N SN R\WpJ ~ "

- o .
Such that the subsequence (xk(p))p=1 is convergent.

That is, every bounded sequence has a convergent sub-
sequences.

2.10 Remarks

1.

Forn = 1 this is the Bolzano-Weierstrass from MATH 147.
Here we want to prove that the same results holds in R" for
every n. We will do this by induction on n.

2.

Notation: Subsequences and sub-subsequences of a sequence.

Given a sequence ()_C)k)?z;l) in R™. Subsequences of (¥x) =1
N o

are of the form (xk(p))p=1.

Giving a subsequence is equivalent to giving an infinite

subset P = {k(1),k(2), ...,k(p), ...} €N

Instead of (J?k(p))::):l) it is convenient to write (¥x)xep

With this notation, taking a sub-subsequence amounts to
dropping from (X )kep to (Xx)req Where Q S P is an infinite
set.

3.
Note that if ¥, — d in R™ then for any subsequence we will
have Xx(p) 2poo G

2.11 Lemma: Inductive Convergence
(%), sequence in R™+?

For every k can write X = (J, tx) with ¥, € R, tx € R

If (k) =1 converges in R™ and if (tx )=, converges in R then
(%)=, converges in R™*
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We invoke the B-W theorem from Math 147 to the sequence (tx)keq

Claim 4

Let P < N be the set of indices from Claim 3. Then the subsequence of
(%) kep is convergent in R"*1

Why? We have X, = (Y, t),Vk € P

Have jx = b € R", t; = s € R = % — (b,s) € R™*!

|



Open and Closed subsets of R™ Proof of Proposition 3.2
"="Know b € cl(A).

September-21-11 11:30 AM o 1
Then for every k € N have B (b; E) N A # 0, hence pick ¥, € B (b,;) N A. This way we get a

A. Open and Closed sequence in A such that ||, — b|| < %,Vk =1
3.1 Definitions Have ||% — b|| = e 0 by squeeze, hence %, - b
Let A be a subset of R™ .
1. Avector d € Ais said to be an interior point of A when 3 " & " Know 3(¥x)j=4 in A such that X, — b
r> 0suchthatB(d;r) € A Letr > 0. Since % — b can find ko € N such that ||#, — b|| < r,Vk = ko

. In particular have ||, — bl <r= Xy, € B(b;r)n A
The set of all interior points of A is called the interior of

A denoted as int(A) So B(b; r) N A # @, and done. QED
2. Avector b € R is said to be adherent to A when it has 3.3 Remark
th ty that B(B;7) N A # @, ¥r > 0 :
e property that B (b; ) 9, vr int(A) < A, by definition of int(A)
Accl(4)

The set of all adherent points of A is called the closure of

R . 2 N s > N s _ = >
A, denoted by cl(A) For every a € A can find sequence (xk)(k=1) in A such that X, — a. Justtake X, = a,vk > 1

3.2 Proposition 3.4 Example
A S R"b € R Then Sayn = 2,letA={(s,t):s5,t € R,t > 0} U{(s5,0):5 € R,s = 0}
b € cl(A)

=
3 sequence (%)%, in A such that % — b ‘

3.3 Remark and Definition |
For every A € R™ have int(4) € A € cl(A)

The set-difference cl(A) \ int(A) called the boundary of A,

denoted as bd (A) Then int(4) = {(s,t):s,t E R, t > 0} .
For ¥ = (s, t) with t > 0, can find r > 0 such that B(X;r) € A.E.g. take r = 3

3.4 Definition But ¥ = (x,0) is not interior to A - there isno r > 0 such that B(y,7) € A

A set A € R" said to be open when it satisfied A = int(A)

A set A € R™ said to be closed when it satisfies A = cl(4) () ={(st):xteRt >0}

bd(A) = int(A)\ cl(4) ={(s,0):x € R}
Warning
Most subsets A S R™ are neither open nor closed. So A not open
does not imply that A is closed.

3.6 Definition

Say that A € R™ has the "no-escape” property when the
following happens:

Whenever (%)%, is a sequence in A such that #; — b € R?
then b must also belong to A.

3.7 Proposition
For A € R™ have (4 is closed) < (A has the'no —
escape'property)

Proof: Exercise.

3.8 Remark
1. Forevery A € R™ have that int(A) is open. Moreover
int(A) is the largest possible open set which sites inside
A.
2. Forevery A € R™ we have that cl(A4) is closed, and in fact
it is the smallest possible closed set which contains A.
Proof: in homework
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Compact subsets of R"
September-23-11 11:32 AM

B Compact Sets

3.9 Definition
A subset A € R" is said to be bounded when 3r > 0 such that ||X]| <
VX €A

Note

"IX|l < r, VX € A" is equivalent to saying that A © E(ﬁ; 7). Could also
use an open ball; pick 7’ > r then have ||X|| < r’,¥X € Ahence A C
B(0,r")

3.10 Definition
A subset A € R™ is said to be compact when it is both closed and
bounded.

Note
There are several equivalent descriptions of compactness (Some of
them extend to spaces more general than R™ - see PMath 351)

3.11 Definition

A subset A € R™ is said to be sequentially compact when the
following happens:

For every sequence (¥y)y= in A, one can find a convergent

subsequence (a?k(p)):zl such that the limit d = lim,_,q Xx(p) still

belongs to A

3.12 Theorem
For A € R™ have that A is compact iff A is sequentially compact.

C Duality Open < Closed

Via taking complements

3.13 Duality interior vs. closure
For every A € R™ have that

int(R™\ 4) = R™ \ cl(A)

cl(R™\ A) = R™\ int(A)

3.14 Corollary (Duality open vs. closed)
For A € R™ have (A is closed) < (R™ \ 4 is open)

3.15 Remark
We have one description for what it means that A € R™ is open.
Aopen © A = int(A) © every d € A is an interior point of A

We have three equivalent descriptions for what it means that A € R" is
closed:

1. A =cl(A) (by Definition 3.5.2)

2. Ahas the "no-escape” property (Proposition 3.7)

3. R™\ Ais an open set (Corollary 3.14)
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Proof of Theorem 3.12

"=" Know that A is closed and bounded. Let (X} )=, be a sequence in A.
Aisbounded = (¥;)j~, is a bounded sequence = 3 (fk(p)):zl convergent.
Denote the limy,_,o, X(p) =: d(€ R™)

Since A is closed, it has the no escape property, therefore @ € A

" "

=
Know A is sequentially compact. Want to prove that A is closed and bounded.
This is problem 7 in homework 2.

QED

Note
Theorem 3.12 is part of a theorem of Heine-Borel

Proof of Proposition 3.13
Will do first equality, second can by done by similar argument or the 2nd can be
deduced using the first.

So prove the first equality
wen

Take b € int(R" \ A). So 3r > 0 s.t. B(b;7) € R"\ A
But then B(b; ) N A = @ and it follows that b is not adherent to A. Hence b ¢
cl(A). Hence beR" \ cl(4)

W
Take b € R" \ cl(A) = be cl(A) = b is not adherent to A.
From Def 3.1.2 it follows that 3r > 0 such that B(l;; NA=9
Butif B(b;r) N A = @, then must have the B(b;7) € R" \ A
Finally from B(E; r) € R™ \ A we conclude that be int(R™ \ A)
QED for first formula

Proof of Corollary 3.14
N

Aclosed = cl(4) = A= int(R"\ A) =R" \ cl(4) =R"\ 4
= R™\ Ais open (it is equal to its interior)

=
R™\ Ais open = int(R" \ A) = R"\ 4

= R"\ cl(4) = R™"\ A = cl(4) = A (by taking complements again)
= Ais closed

|



Continuous Functions
September-26-11 11:30 AM

4.1 Definition
ACRYfiA>R™A%Q
1. Letd € A.Say that A is continuous at @ when the following happens:
Ve> 0,36 >0s.t.llf(X) —fl@)ll <evVx e Awith|[X —dll <&
2. Let B be a subset of A. Say that f is continuous on B when f is continuous
ateveryd € B
Note
In particular, may have B=A, get definition for "f is continuous on A"

4.2 Remark
Given € > 0 have to find § > 0 such that

f(B(4;6) n 4) € B(f(@); €)

4.3 Definition

AC R f:A—- R™,d € A. Say that f respects sequences in A which converge
to @ when the following happens:

Whenever (¥;)r=, is a sequence in A such that ¥, =_ d it follows that

f(fk) k-0 f(a)

4.4 Proposition

ACRYf:A->R™,d € AThen

f respects sequences in A which converge to @
=

fis continuous at @

4.5 Definition

ACR", f:A— R™ Forevery d € A, write explicitly f(d) =
(FO@, .. f™ @)

Get n functions f@W, ..., fM : 4 5 R

For 1 < j < m, the function f): A —» Ris called the j-th component of f

4.6 Proposition

ACSRYfiA>R™MGEA

fis continuous at d

=

Each of the component functions f @, ..., f(™ is continuous at d
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Proof of Proposition 4.4

" = " Know f respects sequences convergent at d

Want f satisfies e — § at d

So fixan € > 0. Need to prove that 3§ > 0 such that

@ NIf) - f@ll <evieds.tl|xi-dl<s

Assume by contradiction that I cannot find a § > 0 such that (*)
holds. So no matter what § > 0 I try, (*) will fail.

Try § = 1, and it fails.
Hence 3X; € A s.t.||%; — dll < 1, but nevertheless ||f (¥;) —
f@l=1

For each k € N, take § = % and it fails. 3x; € A s.t. ||, —all < %
but nevertheless ||(f (%) — f(@)|| = €

Observe that in this way we get a sequence (¥y)p=; in A where
£ — @ll < Vk €N = [ — @ll >4e0 0, hence ¥y >peo @
Andyet ||f (%) — f(@)Il = & Vk € N hence ||f (%) — f@I! -
0,f()! = f(@).

So f does not respect the sequence ¥; — d, contradiction with the
hypothesis.

Hence the assumption that there is no delta for which (*) works
leads to contradiction. Hence 34. Done with " = "

Proof of "& "
Exercise, on homework 3

Proof of Proposition 4.6

f continuous at d

=

f respects sequences in A which converge to d

S (%)

Each of ), ..., f(™ respects sequences in A which converge to d
=3

Each of f1,.., f0™ is continuous at d

@)
Take (Xy)p=q in A such that ¥, — d
For every k € N, write f (%) = (f(l)(k’k), ,f(m)()?k))

Know from prop 2.4 that f (%) = f(@) iff f D (#) = FD (@)
vi<j<m



Uniform Continuity
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5.1 Remark

ACRY,f:A->R™

Suppose we want to discuss at the same time the continuity of f
at several points of A: dy, dy, ..., dp € A

Havee > 0,V1 <k <pwefind§, >0s.t.x € A||¥ —dll <

8= If@ - f@ll <e

To find a single delta which works for all @, take
& == min{6,: 1 < k < p} > 0 and works Vd

But what happens if we did this for infinitely many pointsin A at
the same time, or all the points of A.

Here we can't always find a § > 0 good for all @'s at the same
time.

5.2 Uniform Continuity

ACRY, f:A—>R™

Say that f is uniformly continuous on A when the following
happens:

Ve>0,36>0: If@) - f@ll<eviaeA:lIZ—dl <o

5.4 Proposition

Let A € R™ be a compact set.

Let f: A > R™ be a function. If f is continuous on A then fis
uniformly continuous on A

5.5 Definition

B<S AcC R, f:A— R™, function

We say that f is uniformly continuous on B when the restriction
of F to B is uniformly continuous

ve > 0,35 > 0s.t.||[f(®) — f(b)|| <eVZbeBs.t.||Z—b|| <68

Please us this definition in Problem 6(a) of Homework 3
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5.3 Example
f continuous on A, but not uniformly continuous on A

Let A = (0,1) x (0,1) € R?
fa-R f(60)=2

Observe that f is continuous at every d@ = (s,t) € A

Indeed, check with sequences. Suppose X, — d@ where ¥; = (si, t;) € A
Then sy = s,t, = t

Take ratio of convergent sequence as in Calc 1, get

Sk

te t

Hence f (Xx) - f(@)

So have that f is continuous on A
Claim: But fi is not uniformly continuous on A

Opponent gives € = %
Canlfindé > 0s.t.

[f (@) = f(@l <% VX, d € Awith || — dll

Assume 36 which satisfies the above.
. o . 11
Consider the sequence (X )y~ in A where x; = (— =

r) Yk =2

Note that [|X; — Xx41ll = 0
Hence 3k, € N s.t. ||¥; — ¥4l < 8 Vk = kq. In particular ||J?ko - )?k0+1|| < § soitshould

follow that | (%x,) = f (Fp+1)| <3

But f()?ko) == = k. Similarly f(fkoﬂ) =ko+1

EN S

N R 1
|f(xkg) _f(xko+1)| =lkg—ko—1=1< 3
Contradiction, coming from the assumption that § exists.

Proof of Proposition 5.4
Given € > 0, Want to find § > 0 s.t.
XdeAlX-dl<e=lf@ - f@l<e

Assume by contradiction that no such § exists.

Pickk € N, use 6§ = % We can find dy, X, in A such that ||X — d |l < %but nevertheless
[l (%) — f(@)Il = & In this way we find two sequences in A, (¥;) = and (dy)f=q is
compact and hence sequentially compact. So can find 1 < k(1) < k(2) < -- < k(p) < -+

such that (J?k(p)):_l converges to a limit ¥ € 4

Claim: For the same 1 < k(1) < k(2) < --- < k(p) < :-- we have that

lim ) = %o

For every p € N write [|dx(y) — Zoll < lldke) ~ Zxall + 1) = Foll < o5+ 1%k =
Xll-0+0=0

So by squeeze, ||dx(p) — Zo|| — 0. Done claim

Now, fis continuous at % so it respects ¥,y = % and dy ) = Zo. S0 f (Ziqy)) = f(*o) and
f(Akam) = f()
If Gwy) = F (@)l < I (Fiwy) = F @l + [If Go) = f ()l > 0 +0 =0

Contradiction with construction of %y, d; which said ||f(Zkq)) — f (G| = e VP EN

So assumption that I cannot find a § leads to contradiction. It remains that we can find §.
QED



Extreme Value Theorem
September-30-11 12:05 PM

Supremum / Infemum

This is about global minimum and maximum of a continuous function on
a compact set. Will use the concepts inf(4) and sup(4) for a bounded
nonempty subset A € R.

inf(A) = smallest possible limit of a sequence in A

sup(B) = largest possible limit of a sequence in A

Have that inf(A) is the greatest lower bound (GLB) for A
i) inf(A) <aVa€eA
if) If a € R has the property that @ < a,Va € A4, then it follows that
inf(4A) = a
sup(A) is the lowest upper bound (LUB) for A

Note:
For a general bounded set A, inf A and sup A may or may not belong to A

6.1 Remark

K € R a nonempty compact set.

Then K is bounded, hence can talk about a = infK and f = sup K. We
are certain thata,f € K

(Why? Because K is closed so it has "no-escape” property for sequences.

6.2 Definition
AC R, f:A->R™
1. The image of fis the set f(4) = {y € R™|3I¥ € As.t.f(X) = y}
2. We say that f is bounded in A if f(A) is a bounded subset of R™.
Equivalently, this means that 3r > 0s.t. [|f (D) < rv¥ € A

6.3 Remark and Notation (special case m=1)
AC R™ f:A— R.Then

fisbounded & 3r > 0s.t.|[f(X)|<rVX€EA
Here f(A) is a bounded subset of R

So we can talk about inf and sup of the set F(4) € R™ We abbreviate
them as follows:

inf(f) = inf{f (¥)1% € A}

SlA}p(f) = sup{f (¥)|¥ € 4}
Also, use the notation for the oscillation of fon A

oscy(f) = sip(f) —inf(f)

6.4 Definition

A S R", f:A - Rabounded function.

An element d € 4 is said to be:
« A global minimum for f on A when f(d) = inf,(f)
« A global maximum for f on Awhen f (@) = sup,(f)

Note
A bounded function f on A may or may not have a global min/max and if
it does, then it may have one or several.

6.6 Theorem (EVT)
A S R"™ compact, f: A = R continuous. Then fis bounded, and has at
least one point of global max and at least one point of global min.

We will derive EVT from the following fact (important on its own)
6.7 Proposition

A € R"™ compact, f: A - R™ continuous. Then the image set f(4) € R™
is a compact set of R™.
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6.5 Example

A=(01)%x(0,1) cR?

fiA- ]Rdefinedbyf((s,t)) =|s—t|lv0<s t<1

f(A4) =[0,1) hence inf,(f) = 0,supa(f) =1

f has many points of global min: all points (s,s) with 0 < s <1

But f has no points of global max. There is no point d € A such that f(d) = 1

Proof of Proposition 6.7

Denote f(4) = B € R™

We will verify that B is sequentially compact (know this this is equivalent to
compact - Theorem 3.12)

So let us fix a sequence ()=, in B. Have to prove that (y,);=; has a
convergent subsequence with limit still in B.

For every k € N have ¥, € B = f(A), hence can find ¥, € A s.t. f(X) = P

A is compact by hypothesis, hence it is sequentially compact. So we can find
1<k(D)<k@) < <k(p)<-stiXyy >d€eA

Function fis continuous on A, hence respects convergent sequences in A, so
have f (%)) = f(@) = Ji, > f(@ =b€B

So we have found a convergent subsequence (37"(1’));1 of (J1)y=, which

converges to a value of B. QED

Proof of Proposition 6.6 (EVT)
Have A € R™ compact, f: A = R continuous
Want: f is bounded, and 3d,,d, € As.t.f(d;) < f(X) < f(d,) VXE A

Denote f(A) =K< R

Then K is compact by proposition 6.7

So we can talk about a = inf(K), 8 = sup(K) and moreover a, 8 € K (By
Remark 6.1)

Since @, B € K = f(A) wecan find d,,d, € As.t.f(d,) = a,f(d,) =P
But then for every ¥ € A we can write f(¥) € K
asf@<sp=>flA)<fE<f@)viel

QED



Integration Intro
October-05-11 11:32 AM

Goal
A S R", f: A —» R Want to associate to f a real number, called the
integral of f on A denoted

fA F@)dz

What kind of A € R™? A will be a bounded subset of R™

What kind of f? f will be in any case a bounded function. But need
more conditions.

Case of f continuous, but will also allow some discontinuities.
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Historical Note
¢ Idea that a continuous function has an integral - Cauchy (~1820)
¢ Concept of integrable function - Riemann (~1850)



Rectangles and their divisions

October-05-11 11:41 AM

We prefer half-open rectangles

7.1 Definition

We call a half-open rectangle in R™ a set of the form

P = (aq,b1] X (az, by] X -+ X (an, by] where a; < b; V1 < i < n,and are in R
P={¥eRa; <xD<hVvi<i<n}

n n
ForP = n(ai, b;] we denote vol(P) = H(bi -a)
i=1

i=1
diam(P) = sup{||X — y|l|X,y € P} = ||b - ﬁ”
where d = (ay,az, ...,ay) ,b = (by, by, ..., by)

7.2 Notation and Remark
We denote by P, the collection of all half-open rectangles in R™
Note: P, is a set of sets

P € P, means P is a half-open rectangle

Note that
P,QeEP,PNQ+0=>PNQEP,

Exercise: Verify this by algebra.

7.3 Definition
Let P € P,. By a division of P we understand a set A = {P;, P,, ..., B} of half-open
rectangles such that

T

U Pi=Pand P, NP =QVi+j

=1

Notation
1Al = max(diam(P;),1 <i<r)

7.4 Remark
Special case of division: grid divisions.
n

P = H(ai:bi] SIVEN
i=1

A grid division of P is obtained by decomposing each (a;, b;] and then taking the
Cartesian products

Ti
(ap,b;] = U]]@ =0, O, ]J@ _ (xlgz)_ngo] R
j=1

Then P is divided into r = ry1, ..., rectangles of the form
withl<i; <n,1<ip<mn,

7.5 Definition

P € PpandletA = {P;,...,B-},T ={Q4, ..., Qs} be divisions of O
Say that I refines A (denote I' < A)

When for every 1 < j < s there exists 1 < i < rsuchthatQ; € P;

7.6 Remark

IfT < Athen can write T = {Q13, Q15,, -, @r1, Qray ov) Qrs, }
Where {Qil, . Ql-sl} is a division of P;

7.7 Remark

Let A = {P,, ..., B.} be any division of P. One can find a grid-division T such thatT < A
Proof: Exercise
Geometric idea: extend lines of division for each sub-rectangle.

7.8 Proposition

Let P € P, and let A’, A" be two divisions of . Then one can find a division T of P such
thatI' < A"and T < A"

Say that I' is a common refinement for A’ and A"

7.9 Remark
P € P, A = {Py, ..., .} is a division of P then
T

z vol(P;) = vol(P)

i=1
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Proof of Proposition 7.8

Write A" = {P{,P,,, ..., B’}

A ={P, Py, ... B}

Putl' ={P/ NP1 <i<r1<j<swhereP NP/ +@}

So I' consists of some q number of half-open rectangles, where g < r X s
Have that I is a division of P.

Verification is by immediate Boolean algebra. Exercise.

We observe that I' < A”. Indeed every rectangle P/ N % of T is included in
arectangle of A’, namely P/ N P/’ € P;. Same argument with P/ n P}’ gives
T < A" QED

Proof of Remark 7.9
What do we so if A is not a grid division?
If A = {Py, ..., B} is not a grid division then refine it to a grid division I =
{Q4, ..., Qs} then reduce
s

N
z vol(Q;) = vol(P) to Z vol(P;) by suitably grouping terms
d=1 i=1



Definition of Integral

October-07-11 11:53 AM

Riemann integral - ~1850
We will use Darboux sums — ~1870

8.1 Definition
P € P, Let f: P > Rbe abounded function. LetA = {P,, ..., P,} be a
division of P
Then the upper Darboux sum for f and A is
T

UCF,8) = )" vol(P) x sup(f)
i=1 4

And the lower Darboux sum for fand A is
r

L(f,8) = ) wol(P) x inf(f)

i=1

8.2 Remark
P, f,A as defined above.
T

UG, A) = L(F ) = ) wol(P) (sup/ = infr)

i=1
r

= ZUOI(PL') x o0scp,(f) =20
i=1

8.3 Lemma

P € P, f:P = Rbounded function.

Suppose A, T are divisions of P such thatI" < A
Then U(f,T) < U(f,A) and L(f,T) = L(f, D)
UMD -L(,D SUED - LN

8.4 Proposition
P € P, f: P -» Rbounded function. Let A’, A" be two divisions. Then
L(f,A) < U(f, A7)

8.5 Remark
P € P,, f: P > R bounded. Consider the following set of real numbers:
S = {s € R|3division A of L(f,A) = s}
T = {t € R|3division A of P with U(f,A) = t}
Then Prop 8.4 saysthats <tVs e S,VteT
Make some observations from here:
a) Sisbounded above (since every t € T is an upper bound for S)
Hence can talk about sup(S)
Observe that sup(S) < ¢, Vt € T (since tis some upper bound for S,
while sup(S) is the smallest upper bound for S
b) Tisbounded below (e.g. sup(S)) is alower bound for T. Hence can
consider inf(T), and will have inf(T) > sup(S)

Have sup § < infT
When can this hold with equality?
Some equivalent conditions for this:
1. supS =infT
2. Ve>03seSandteTs.t.s—t<e
3. 3 sequences (sg)peq in S and (¢ )j=, in T such that t, — s - 0
Exercise

Now recall that we had S = {s € S|3 division A of P with L(f,A) = s}
Hence sup(S) = sup{L(f,A)|A division of P}

Likewise

inf(T) = inf{U (f, A)|A division of P}

8.6 Definition
P € P, f:P - Rbounded function
e Two number sup{L(f, A)|A division of P} is called the lower
integral of f, denoted

J’Ef or _L_f()'c')dfé

¢ The number inf{U(f, A)|A division of P} is called the upper
integral of f, denoted

Lfor J:f(i’)dfc’

8.7 Proposition
P € P, f:P = Rbounded

Then! | f<u f f Moreover, the following are equivalent:

P P
1) lfpf:ufpf
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Proof of Lemma 8.3
Will show the inequality for U. L is similar.

Write A = {Py, ..., B}T = {Qu1, -, Q1 sy o) Qs o, Qs } Where

Qi1 V-UQis, =P Vi

Forevery1l <i<rand1 < <s; have that supg, ,(f) < supp,(f) This is just
because Q;; € P;

Then write _ )
IEDY (Z vol(Qy) - SQur)(f)> <> (Z vol(Qy,) sgp(f))
i=1 \j=1 b =1 \j=1 i
= Z (z uol(Qi_j)) sup(f) = Z vol(P;) - sup(f) = U(f,4)
i=1 \j=1 Py i=1 Py
QED

Proof of Proposition 8.4
Can find division T of P such that ' < A’ and T’ < A" (from Lecture 7, prop 7.8)
Then L(f,A") < L(f,T) < U(f,T) < U(f,A")
Lemma 8.3, Remark 8.2, Lemma 8.3
QED

Proof of Proposition 8.7

The inequality [ [, f < u [, f is just the inequality sup S < infT from remark 8.5
The equivalent conditions 1, 2, 3, are suitable re-writings of the "(inf=sup)"
equivalences in remark 8.5

However, condition 2 from (inf=sup) says less. It says 3s € S,t € T witht —s < ¢
That is, 3A’, A" divisions of P such that U(f,A"”") — L(f,A") < ¢

But then let A be a division of P such that A < A’, A < A”. Then have U(f,A) <
U(f,A")and L(f,A = L(f,A")=>U(f,A) — L(f,A) < U(f,A") - L(f,A) < ¢
This is how 2 is fixed. Same for 3.

Proof of Proposition 8.9

Denote [ := ff
P
Havel =1 [, f = sup{L(f,A)|A division of P}
Hencel = L(f,Ay),Vk =1
Likewise
I= uff = inf{U(f, A)|A division of P}

P
=1 <U(f,Ak),Vk =1
Sohave L(f,Ar) <1< U(f,Ap),Vk =1

Then |I _L(f'Ak)l =1- L(f'Ak) < U(fJAk) - L(f'Ak) -0
So |I — L(f,Ax)| = 0 hence L(f,A) - I

Also U(f, Ar) = L(f, A) + (U(f, M) — L(f,A)) > 1+ 0 =0
QED



2) Forevery € > 0 there exists a division A of P with U(f,A) —
L(f,A) <¢

3) There exists a sequence of divisions (Ag)y=; of P such that
U(f, A1) = L(f, 8) = 0

8.8 Definition
P € P, f:P - Rbounded.
Ifl [, f = u [, f then we say that f is integrable on P and we define its

integral to be the common value of L [, f,u [, f. Notation:
[r
P

8.9 Proposition

P € P, f: P - Rbounded, integrable. Suppose (A;) -, is a sequence of
divisions of P such that U(f,Ay) — L(f,Ax) = 0

Then we have

’11330 U(f,A) = fpf = }lilgoL(frAk)
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Linear Combinations of Integrable Functions
October-14-11 11:54 AM

9.1 Remark

A €S R", f,g:A - R, bounded

Considerthesumh =f + g

h:A- R, h(X) =f(X) +g(X),vieA

Have that sups h < supy, f + sup, g and infg h > inf, f +inf, g

9.2 Lemma

PE R, f,g:P = Rbounded

Consider the sum f + g. Then for every division A of P we have
U(f+9,0) <U(f,A)+U(g,A) and L(f + g,A) = L(f,A) + L(g,A)

9.3 Proposition
P € P,, f,g:P — Rbounded, integrable.
Then f + g is also bounded and integrable, and has fPf +g= fpf + fpg

9.4 Remark
P € P,f: P - Rbounded, integrable.
Then af is bounded and integrable and has [ af = a [, f

9.5 Theorem
P € P,.LetInt,(P,R) = {f:p - R|f bounded and integrable}
Then Int;, (P, R) is closed under linear combinations and the map

Int,(P,R) > R: f ff is linear
P

Question
What about f - g, for f, g € Int, (P,R)

9.6 Lemma
If f € Int, (P, R) then f? € Int, (P, R)
Where f2: P — Ris defined by (f2)(x) = (f()_é))2 VX € P

9.7 Proposition

f,g € Int,(P,R) > f - g € Int,(P,R)
Where f - g: P > Rdefined by (f - ¢) (%) = f(¥) - g(¥),X € P
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Remark 9.1

Addition

a = Sljp(f) = sup{ f(¥)|x € A}

B = sgp(g) = sup{g(X)|x € A}

Forevery x € Ahave h(¥) = f(X) +g(X) = a + B

So « + B is an upper bound for {h(¥)|X € A}. Hence we have
sgp(h) <a+f= sgp(f) + sgp(g)

Same for inf

Proof of Lemma 9.2
Write A = {P;, ..., P.}. Then
T

U(f+g0) = Z vol(P;) - sgip(f +9) < ; vol(P;) (sglp(f) + sgip(g))

i=1 =

= (Z vol(P;) Sup(f)) + (Z vol(P;) sup(y)) =U(f,A) +U(g, D)
L P; - P

i=1 i=1
Inequality for L(f + g, A) done in the same way.

Proof of Proposition 9.3

Use the integrability criterion for f and for g.

Get sequences (A}) =, and (Ay)y=, of divisions of P such that

U(f, A)) — L(f, A)) » 0and U(g, AY) — L(g,A%) - 0

For every k > 1 let Ay, be a division of P such that A, < A}, A < A}
Then also have

U(f, ) — L(f,Ar) » 0and U(g, A) — L(g, ) > 0

For every k > 1 have

U(f + g,81) S U(f, M) + U(g, Ap) and L(f + g,Ay) = L(f, A) + L(g, A)
U(f+ 9,8 —L(f + g,00) SU(f,Ar) — L(f, Ap) + U(g,A) — L(g,Ay)
-0+0=0

So by squeeze, U(f + g,A) — L(f + g,Ax) = 0 so f + g is integrable.

Moreover, Prop 8.9 says that
ff+g = Ilim U(f+g,40,) = ]lim L(f +g,4)
P —00 —00

U(f + g,48,) S U(f,A) +U(g, Ay)
L(f + g,4¢) = L(f, Ap) + L(g,Ay)

But then just make k — oo

fpf+fpgsfpf+g Sfpf+Lg

So get
ff+g=jf+fg as claimed QED
P P P

9.4 Remark

P € P, f:P - Rbounded. Let @ € R, consider new function af
(af: P - Rdefined by (af)(X) = af (X) VX € P)

af is bounded (immediate)

Have3cases:a > 0,a =0,a <0

Case 1:
For every division A of P get U(af,A) = aU(f,A) and L(af,A) = aL(f,A)
Take infimum of U's and Supremum of L's.

realel o)

In particular, if f is integrable then af is integrable as well with
Jor=«y
P P

Case 2:
Have af = 0. af is integrable with [ af =0

Case 3:

For every division A of P have

U(af,A) = aL(f,A)

L(af,A) = aL(f,A)

Problem 4. a) in homework 5. Have there case @ = —1. General a < 0 is
treated in the same way.

This implies further that

ufpaf:a(lfpf) andlfpaf:a(ufpf)

If fis integrable, still get conclusion that af is integrable with
Jyor=Js
p

Proof of Theorem 9.5
Statement amounts to 2 things:
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1) Iff,g € Int,(P,R) then f + g € Int,(P,R)and [,f+g = [,f + [, g
This is Proposition 9.3

2) Iff € Int,(P,R) and a € Rthen af € Int,(P,R) and [,af = a [, f
This is Proposition 9.4

Proof of Lemma 9.6

f? bounded - immediate

Taker > Os.t. |[f(X)| <7, VX€EP
Then |[f2(X)| < r?, VX € P

But why is f2 integrable?

Recall that if A = {P;, ..., B-} is a division of P then
T

U(F,8) - L(f,A) = Z vol(P) - oscp,(f)
i=1

Claim 1
Letr > 0 be such that |f(¥)| <r,v¥ € P
Then for every @ # A € P we have osc,(f2) < 27 - 0sc,(f)
Verification of Claim 1
Denote w = osc4(f)
Have w := sup If (@) — FO)I

X,YEA
In particular, have that |f(¥) — f(J)| < wVX,y € A
But then for X,y € A write

D@ - PP = |(F@)* - )| = 1(F@ - r@)F@ + F3)|

Proof of Proposition 9.7

(f + 9)? =1f2 +2fg +g°
=f9=5(+9*~f* -9

f+g € Int,(P,R) by 9.3

(f + 92 f%, g% € Int,(P,R) by 9.6

((F +9)% - f2 — g%) € Int,(P,R) by 9.3
frg=2(F +9)% — > - g%) € Int, (P, R) by 9.4
QED



Integrals Respect Inequalities
October-21-11 11:18 AM

10.1 Remark
P € P,,f: P - Rbounded.
Supposethat @, € Rsuchthata < f(¥) < BVX€EP
Then for every division A = {P,, ..., P.} of P we get
T

U(f,p) = Z vol(P;) - sup(f) < Bvol(P) and
=1 Pi
L(f,A) = Z vol(P;) - ig_f(f) > a vol(P).
Then a voll=(}3) <[, f Sul, f < Bvol(P). In particular, if f is

integrable a - vol(P) < fpf < Bvol(P).
This is like a "mean value theorem"

< 1 <b
a= vol(P) ,I;,f -

10.2 Proposition
P € P, let f,g: P - Rbe bounded, integrable functions such
that f(¥) < g(X) VX €P (f < g).Then [,f < [, g

10.3 Proposition

P € P, f:P > Rbounded, integrable. Consider [f|: P - R
defined by |f1(x) = |f ()I.

Then |f| is bounded and integrable and |[, f| < [, |f|
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Implications of Remark 10.1
If f(X) = c VX, let @ = B = c. Then fis integrable with fPf = c¢ - vol(P)
If f is non-negative let @ = 0, then Assuming f is integrable « - vol(P) < fpf =>0< fPf

Proof of Propositions 10.2
Let h(¥) = g(¥) — f(X). his bounded and integrableand [,h = [, g — [, f
Since g = f, h is non-negative, so fph > 0. Hence ng = fP f.

Proof of Proposition 10.3
Verification of bounded f integrable will be on homework.
Similar to proof of 9.6

=If1G) = =If DI < If @I = IfI(X) vZ € P So—|f| < f < |f| by prop 10.2

[~nns[r=[in==[-n=[r<[in=][s]< [




Integrals over more general domains in R
October-21-11 11:31 AM

11.2 Lemma

P,Q € P, suchthatQ < P

Let g: Q » Randlet f: P —> R be defined by f(¥) = {QE)X);?;ZQ
Then we have that

g is bounded and is integrable on Q

=

fis bounded and integrable on P

Moreover, if these conditions hold then have fQ 9=Jf

11.3 Definition and Proposition
Let A € R™ be a (nonempty and) bounded set, and let f: A - Rbe a
bounded function. Pick a half-open rectangle P € %, such thatP 2 4
and extend f to a function:
f:P - R defined by
3 fifiea
f) = L _P
0 €—
if X y
Then it makes sense to declare:

fisintegrable on A
=

f is integrable on P
Moreover, if f is integrable them it makes sense to declare

[r=17
A P
11.4 Notation

A € R" is bounded
Denote Int,(4,R) = {f: A > R| f is bounded and integrable}

11.5 Theorem
A € R, bounded. Then the set of functions Int; (4, R) is closed under
linear combinations, and have

faf+ﬁg=aff+,8fg vf,g € Int,(A,R),Va,B € R
A A A

11.6 Remark

Other properties of the integral also go through in the same way.
e f,g€nty(AR) = f- g€ Int,(4R)
* femt,(AR) = If] € Inty (A R) and |, f| < [,If]

11.7 Remark
A S R™ bounded, let f: A —» R be defined by f(X¥) = 1VX € A
Can we be sure that f € Int, (4, R)?

Sayegn=2andA={(s,t) ER?|0<s,t<1st€EQ}
ThenA4 € P = (0,1] x (0,1]

f extends to f: P — R where

= )1, (s,t) €A

f(0) = {o, (50 €A

Not integrable.

What was the problem?

One way to look at it: bd(A) was way too large
bd(4) = cl(A)/int(A) = [0,1] x [0,1]

Will prove that things improve if we assume that bd (4) is "small"
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11.1 Example

n = 2. Look at the function f defined by the formula:
f((s, t)) =J1—-(s2+1t?)

f:D>RD={(st) € R:s?+t? <1} =B((0,0),1)

Range is half a sphere, Domain is not a rectangle, what do we do?

Proof of Lemma 11.2

Exercise

Direct verifications by using criterion with sequences of divisions. (Prop 8.7 and
Prop 8.9)

Proof of Proposition 11.3
Why does the definition make sense?

Must verify that the definition is independent of the choice of P. So suppose that
someone else picks P; € P, extends f to f;: P, » Rby

FG),ifieA

filx) = P st

0ifxe 2

Must verify that

f integrable on P < f; integrable on P;

Moreover, if these conditions hold then want |, f = fPlfl

Denote Q =P N P;.haveQ € P,andQ 2 A
Let f: Q — R be defined by
) = (), A X€eEA
0, X €EQ/A
Observe: Q € P and f extends g with 0.
Q S P; and f; extends g with 0.
Apply lemma 11.2 twice
f integrable on P &
g integrable on Q &
fl integrable on P;
If these considerations hold then Lemma 11.2 also says

J7=le=]R

Proof of Theorem 11.5

Take P € P, suchthatP 2 A4

Extend f, g € Int,(A,R) to f, § € Int, (P, R), then we use Theorem 9.5 for f, .
QED

g



Integrability for Continuous Functions Modulo Null Sets

October-24-11 11:28 AM

12.1 Definition
C < R"is a null set when the following happens:
Ve > 0,3 afinite famlly Q4, -, Q5 € P, such that

U Q; 2 Cand ZUOI(QJ <e¢

12.3 Remark
In definition 12.1 there were two requirements

1) Uoizc

2) Z vol(Q)) < &

But dld not ask for

3) QiNQj=0Vvi+j
But observe that if C is a null set, then we can always arrange
Q4, ..., Qs to also satisfy (3). This is done by refining Q4, ..., Qs
as necessary.

11.4 Remark
These are some obvious properties satisfied by null sets
e IfC € R"isanull setand if D € C then D is a null set as
well

e IfC;,C, € R™ are null sets then C; U C, is also a null set.

Lemma ('Two Ways of Being Small')

P € P,,f:P - R bounded function.
Suppose that Ve > 0 we can find a division

A={Q1, ., Qu Ry, ., RS}
Such that (Way 1) + (Way 2) hold.
(Way 1):

u

Z vol(Qj) <eg

=1
(Way 2):

osch(f) <eVl<k<v
Then f is integrable on P

12.5 Theorem

A € R™ bounded (nonempty) set such that bd(A) is a null set.

Let f: A —» R be a bounded function.
Suppose we found B, G € A (B-bad, G-good) such that
i) BUG=A,BNG=0
ii) fiscontinuous at every ¥ € G
iii) Bisanull set
Then f is integrable on A

Note
For exam might need to know individual parts or the outline
of the whole proof of the above theorem.

12.6 Corollary (Special case B = @)

A € R™ bounded with bd(A4) isanull set. f: A - Risa
bounded continuous function. Then f is integrable.
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12.2 Example of Null Set
C={teER*:0<t <1}
Claim: C is a null subset of R?
Verification of Claim Givene > 0
-1 i

1
PlckkENst—< F0r0<1<kleth (——] (Ti]
k
k+1 2k 2
TheaniQC, Zvoz(Qi):Z;ﬁ:_kz_gﬁ-:E<£
L= L=

i=0
Comment

This example generalizes naturally to cases when C is the graph of a p-Lipschitz function
h:D - R"
D € RMwithm<n

Proof of Lemma
Use integrability criterion from Prop 8.7, in the form with €. Given € > 0 have to find a
division A of P such that U(f,A) — L(f,A) < ¢

We apply the hypothesis for a suitable £’ > 0.
Lete' = c

1 + vol(P) + oscp(T—)
Hypothesis gives us A = {Q4, ..., Q,, Ry, -,
u

ZVOZ(QI) < &'andoscg,(f) <e'Vi<k<v
i=1
Calculate

U(f,A) —L(f,A) = Z vol(Q;) - ochj(f) + z vol(Ry,) - oscp, (f)

R,,} such that

n

Z vol(Q;) - oscp(f) + Z vol(Ry) - &' < oscp(f)e' + e'vol(P) = ¢ (oscp(f) + vol(P))

j=1 k=
(oscp(f) +vol(P))

= << £
1+ vol(P) + oscp(f)

Proof of Theorem 12.5

(Using A, f, B, G as in the theorem definition)

Enclose A in a rectangle P € P, and extend fto a function f: P - R by
(), X€EA

f& = { 0, ied

WLOG (by enlarging P as necessary) may assume that cl(4) € int(P)

Consider the set C = B U bd(4) <€ cl(A) € int(P)

Observe Cis a null set.

Claim 1:
f is continuous at every ¥ € P\C

Verification of Claim 1:
Fix ¥ € P\C. Observe that ¥ € (P\cl(A)) U int(A) (everywhere except the boundary)

Case I: X € P\cl(A) = int(P\A)
In this case, can find r > 0 such that B(¥;7) N A = @. Hence f = 0 on B(¥;7) N P and it
follows that f is continuous at ¥

Case II: X € int(A). In this case can find > 0 such that B(X;r) € A. For this r > 0 we have
that £(3) = f(),Vy € B(%;r). But observe that ¥ € G since¥ € C = ¥ € B

So ¥ € G = f is continuous at ¥ = f is continuous at ¥

Done with claim.

Claim 2:
For every € > 0 we can find some Q, ..., Qs € B, suchthat C € Q; U
S

Z vol(Q}) < & (Since Cis a null set)
j=1
and such that f is uniformly continuous on P\(Q}

-+ U Q¢ S P with

U--uQ)cP\C

Verification of Claim 2
Cisanull set, C € int(P) = can find Qq, ..., Qs € P, withC € Q; U ---U Q, C int(P)
S

£
and such that Z vol(Q}-) < >

i=1
For 1 <j < spick Q] € B, Q} € int(P) such that Q; € int(Q]’-) and vol(Q}) <2 ~v0l(Q]-)
ThenC € Q, U+ U Qs < int(Q1) U -~ U int(Q}) < int(Q] V- Q%) and
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s S
ZUOZ(Q{) < ZZvol(Ql-) <2 % =z
j=1 j=1
Consider the compact set K = cl(P)\ int(Q1 U -+ U Q%). K is compact since cl(P) is compact
and removing an open set.
f is continuous at every point of K (where for y € cl(P)\P we put f(3) = 0) By claim 1.
Since it is continuous at point in a compact set K, f is uniformly continuous on K
Therefore, fis continuous on P\C = P\ int(Q; U - U Q;) € K

Claim 3
Given € > 0 can find a division A = {Q7, ..., @i, Ry, ..., R, } of P such that
u

ZVOI(Q;-’) < eand such that oscg, (f) <evVl<r<wv

i=1

Verification of Claim 3

Take Q1, ..., Q¢ as in Claim 2. Make them become disjoint by performing intersections and by
eliminating redundant pieces.

S
In this way, Q}, ..., 9% = QY. .., @} and Z vol(Q)') <
j=1

On the other hand, f is uniformly continuous on P\(Q}, ..., Q!

Hence 3§ > 0s.t.%,5 € P\(Q7, -, Q)), IX =¥l <8 = |fX) - f()I<e

Complete Q7, ..., Q; to a division{Q{, ..., Qy/, Ry, ..., R, } such that diam(R,) < § V1 <k <wv
Then osch(f) <eVli<k<v

By the above 'Two-ways of being small' Lemma, f is integrable on P
Therefore, f is integrable on A € P



How to Calculate Integrals I Example

n=2

A={(s,t) € R? : s2 + t2 < 1}, closed unit disk

bd(A) = {(s,t) € R? : s? + t? = 1} a null set in R?

Due to theorem 12.5 every continuous function f: A — R is integrable.
13.1 Remark But how to calculate [, f

A C R™ bounded, f: A = R bounded function
From L12 have good criterion (Theorem 12.5) for f to be integrable.

November-02-11 11:30 AM

Concrete example to follow:

f:A- R, f((s,t)):w/l—(sz+t_2_)-

13.2 Remark and Notation

Sayn=p+qwithp,q €N We calculate fAf by a method called "theorem of Fubini"
e For A € RP,B C RY define Cartesian product Enclose AC P = (—2~,2] x (—=2,2]
AxB={(ab):dacAbecB}cR" f:P = Rby putting f(X¥) = 0 VX € P\A
By definition have | f = | f and we calcuate ff with Fubini
¢ Every P € P, can be written as A P P_
P=MxNwithM € P, N € P, For v € M = (=2, —2] look at the partial function f,: N - R
P = (ay,by] x -+ X (ap,bp] x (ap+1'bp+1] X+ X (ap, by ] Have f, = 0 for v € (=2, -1 U [1,2]

For v € (—1,1) we get

e LetP = M X N be as above = = F
(=22 > R, = F(o,w) =

Let f: P — R be a function fo: (=221 > foW) = (0, w)

For every ¥ € M define partial function f3: N = R

V=2 +wd),  wl<y1-v2
0, otherwise
Note that f; is continuous hence integrable. So hypothesis (ii) of Fubini holds. Also

by f3(W) = f(&,W), wew have hypothesis (i) since f € Int;, (P, R)
Notation . So apply Fubini. Define F: (—2,2] - R by
Notation used sometimes for f3 is f (¥, -) a 2)
2 n(l—v
B —)J—— ve(=1D
13.3 Theorem (Fubini) Fw) = J:zﬁ’(w)dw B 0 2 (=2, —1] U [1.2]
P =M x N and f: P > R as above. _ o velme TVl
Suppose that Finally, 5 ) )
i) f€int,(P,R) fe (7= royaw= n(1-v )dvzgg
ii) Forevery ¥ € M, the partial function f3: N — R belongs to A b 2 1 2 3
Int, (N, R)

Define a function F: M - R by
F(ﬁ):ff,;, beM
N

Then F € Int;, (M, R) and fF:ff
M P

13.4 Remark
Write X € PasX¥ = (¥,w) with? € Vandw e W

ff is also written ff(a?)da‘c’ oras ff(ﬁ, w)dvdw
P P P
- [ remaem

P

Left hand side of boxed formula is

fMF(ﬁ)du = fM ( fo,y(W)dW> i = fM ( fN £, wmw) di

So can say that
f £(5,W)did = f ( f 5, W)dW) v
MXN M N

Result: Reduces dimensionality of integrals to be calculated.

13.6 Remark

By symmetry, Fubini also applies to iterated integrals with
components considered in another order.

L £, W)@, W) = fN ( fo(ﬁ,W)dﬁ> dw

Holding if:
i) f € Int,(P,R)
ii) fw € Int,(M,R), YW € N where fi = f(,w)

Or could, by example have
P = (a;,b1] x (a3, b,] X (a3, bs] € R3
b
flxy, Z)dy> d(x,2)

ff(x,y.Z)d(x,y,Z) :f <
P (a1,b11x(asbs] \Va,

With two suitable conditions i), ii)
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How to Calculate Integrals II
November-04-11 11:48 AM

(A) Integrals and Volumes

14.1 Definition

ACS R f:A- Rsuchthat f(¥) >0,VX € A

Graphof fisT = {(¥,z) e R™!| ¥ € 4, x € R,z = f(X)}
ThesetS ={(¥,z) ER"! [¥€A4,z€R0<x < f(X)}is
called the subgraph of f.

14.3 Proposition

A S R™ bounded set, f € Int, (A, R) such that f(¥) = 0,V¥ €
A.Let S € R™*! be the subgraph of f. Then S has volume (in
R™** and vol(S) = [, f.

Comment
The proposition equates

J= s

LHS is n dimensional, RHS is n+1 dimensional.
Proof by following Darboux sums. Darboux sums for f can be
interpreted as volumes in R™*1, which "approximate" vol(S)

14.6 Remark

In calculations it is sometimes convenient to replaces values
of functions on a null set.

Underlying fact:

P €®,, f,g:P - Rbounded functions.

Suppose 3N < P null set such that f(¥) = g(¥) VX € P\N. If
f € Int, (P, R) then g € Int(P,R) and fpg = fpf

Proof of fact
Done by analysis of divisions of P

(B) Polar Coordinates

14.8 Definition

For0 <1 <7,thesetd = {(s,t) € R2|r; < VsZ+t2 <1y}
will be called the half-open annulus of radii r; and r,
centered at (0,0)

For such Annulus A, the map T: (ry,1,] X (0,21] - A
T((T, &9)) = (rcosf,rsinf)
is called parameterization of A by polar coordinates.

On R = (ry,1,] % (0, 27]

Vertical segments (constant r) become circles of radius r
inside A.

Horizontal segments (constant ) become chords of angle 6
in A.

T is a bijective map between (ry,7,] X (0,27] and A

14.9 Proposition

A and R as above. Let f: A — R be a bounded function. Let
g: R = Rbe the composted functiong = foT
g®=f(T®) ZeRr

More precisely, g((r, 9)) = f(rcos8,rsinf)

Then fA £((5,0)d (s, 6) = f 9(,0))r d(r,0) [PC]
R

Where does therin fR g((r, 0))r d(r,0) come from?
r is the Jacobian of T at (r, 6)

ffzfg-], J:R-R; J((r,0) =7 V(r,0) €R
A R

] is the Jacobian function for polar coordinates .
The discussion of Jacobian is in terms of partial derivatives
(taken for T:R — A)
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14.2/4 Example
n=2A={(st) e R?s2+t2<1}
f:A - R defined by f((s, t)) =,1—-(s2+t2)

Subgraph of fis
S= {(s,t,z) € R3|sz +t2<1,0<z<J1- (52 +t2)} ={(s,t,2) ER3|s2+ 2 +22<1,2> 0}

On Wednesday calculated [, f = 3373. S subgraph [ of f has vol(S) = 2?11

Moral: Volume of closed unit ball in R3 is equal to 4?"

14.5 Remark
Another way to calculate volume of unit ball in R3. Take the open unit ball. B =
{(s,t,2)|s? +t2 + 22 <1} € R®

Enclose B with € = (—1,1] x (=1,1] x (-1,1]
1

Have vol(B) = fBl = J;‘IB (X)dx = f—1 <-f(—1,1]><(—1,1]13 (s, t,z)d(s, t)) dz

Fix z and look at partial function
L1 x (L1 >R, (s,t) » Ip(s,t,2)

_[1ifs62)€B _1ifd((s t),(0,0)) <1-22
(562 = {0 if(st,2) €8 { ( 0 otherw)ise ’

Get Ig(s,t,2)d(s,t) = (1 — z?)
(-1,11x(-1,1]
1 311 4
vol(B) = f n(l1—-z%)dz=nm [z I
o 3], 3

14.6 lllustration of Use
Let B = {(s,t,z) € R3|s?2 +t%> + 22 < 1},B = {(s,t,2z) € R3|s? + t? + z2 < 1}
How do I know vol (B) = vol (B) ?
Have B,B € P = (=2,2] x (=2,2] X (=2,2]
Sovol(B) = fIB(f)df, vol(B) = flg()?)d}?
P P
Take f = Iz, g = I in 'fact’, have that f, g agree on P\N where N =
{(s,t,2) € R3|s? + t% + z% = 1} (null set)

14.7 Polar Coordinates Example
Look again at A = {(s,t) € R*|s? + t2 < 1}
f:A - Rdefined by f((s,t)) = /1 — (s2 + t2)
2m
Calculated in 2 ways that ff =3
A
Now a third way. Write 4 as a union of circles of radiir € [0,1] centered at (0,0). On circle of

radius r have s? + t2 = r2 hence f((s,t)) = V1 — 2

1 _
Could then have ff? = f 2nry 1 —r2dr
A 0

Check

1 . 1
J. 2nry1—r2dr = J- mudu
0 0
u=1-r?>du=-2rdr

1 2 31° 2n¢
fo mudu = [n§u2]1 =3

But why does this hold? Is it Fubini?

14.10 Example

Maker; = 0,1, =1

A= {(s, t)ER?:0<+/s2+t2< 1} = B((0,0); 1) \ {(0,0)} This is called a "Punctured Disk"
Letf:A - R, f((s,t)) =\/1—(s:tT)

Have f € Int, (4, R)

bd(A) = {(s,t) € R? : s? + t2 = 1} U {(0,0)} null set

fis bounded and continuous on A so fis integrable on A

Let R = (0,1] x (0,2r], define g: R —» R by

g((r,B)) = f((rcosG,rsinQ)) = Jl— ((rcos 0)2 + (rsin 9)2) =41-72

Integrate for polar coordinates:

1/ r2m 1

- — 2

J.f:f rﬁ—rzd(r,e):f (J- T 1—r2d9>dr:f2nr\/1—r2dr:—”
A (0,11x(0,20] o \Jo 0 3




Directional Derivatives
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15.1 Definition

A € R™,d € int(A), Let ¥ be any vector in A
Let f: A - Rbe a function.

t

i+ t3) - fa
If ltilréﬂa 9 = /@ € R exists

t#0
Then we say that f has directional derivative at d in direction ¥

Notation for the limit:
. . f@+t3) - f(d)
0 @) = i/ EE D= TD

t
t#0

15.2 Remark
Notations as in Definition 15.1
1. If% = 0,then (65)(5) is sure to exist, and (66)(&) =0
2. Now suppose % # 0, hence [|3]] > 0
Haved € int(A),sodr > 0s.t. B(d,7) € A
Then it makes sense to define

( ! r) Rby ¢(t) = f(d + tv) ! <t< r
A=7s00=0) =Jla v), pirry=ert Ton
LANNTETRTH] - ve 7l [l
Indeed, if |t]| < ﬁa_”’hence @+ tv) —all = lesll = 1elP) < r

r r N N N N oy . .
So—m<t<m:>a+tveB(a;r)gA, and f(d + tv) is defined

@ is called the partial function of f around the point d in direction ¥

a+tv)—f(d t) — (0
%ilxblf( t) f@ = %ijra(p( ) . »(© = ¢'(0) When the derivative exists
t#0 t£0

15.3 Definition

ACSRY,d€int(Ad).Fixl<i<n

Lete; = (0,...,0,1,0, ..., 0) be the i*" vector of the standard basis of R

If (66,7}‘) (@) exists then this is called the i*" partial derivative of fat d denoted as

(@:/)(@)

15.4 Definition

f:A-R, a € int(A4) and suppose that (9;f)(d) exists forevery 1 < i < n.
The vector ((21)(@),(0£)(@), -, (9,/)(@) € R

is called the gradient vector of f at @, denoted (Vf)(d)

V = "Nabla" or "Grad" for gradient.

15.5 Proposition

ASRY, fiA->R  decint(4)

Let ¥ # 0 be in R™ and suppose that (9;f)(d) exists.

Then for every a € R the directional derivative exists as well

[H - Homogeneity] [(045/) (@) = a(9:) (@)

15.6 Remark

A S R", f:A-R, d € int(4)

Suppose that (93f)(d) exists for all € R". So can define function:
L:R" - R, L(®) = (0;1)(@)

Proposition 15.5 says L(a?¥) = aL(¥) Va € R, ¥ € R®
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Proof of Proposition 15.5
If @ = 0 then [H] amounts to 0 = 0 so assume a # 0. Denote a¥ = W

Must verify existence of
. fld+w)=f@ . f@d+tad) = f(@)
lim = lim a

. f@+sv) - f(d
=; lim a
t—0 t t—0 ta 5-0 S
t£0 t£0 5%0
=;:Puts = ta whent - 0,t #0gets - 0,s #0
This limit does exist and equals (93f) (d)a n
Question

Isn't L additive as well? So it would be a linear function
n

If yes, then for every & = (v(D, ...,v™) € Rwrite v = Z v and get

i=1
L@) = Y vOLE) = @@ = Y vOE@)
i=1 i=1
Answer

No :(

Problem 4 in homework 7 gives a function f: R? - R such that f is
continuous and (95 f)(a) exist for all @ € R?,v € R?

And yet, if we put

L() = (95,)(0) & € R?

Then L is not linear.

What do we do to get the answer "Yes"?
Go to the concept of a C* function



C! functions
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16.1 Remark

Directional/partial derivatives as functions.

A S R" open set, f:A-R, v ER®

If (931) (@) exists for every d € A then we get a new function
6,7f:A - R

called the directional derivative of f in direction ¥

Special case: ¥ = ¢;

If (9; /) (@) exists for every @ € A then we get a new function
aif: A-R

called the i*" partial derivative of f.

16.2 Definition
A € R™ A function f: A - R is said to be a C!-function when it has the
following properties:

e fis continuous on A

* f has partial derivatives at every d € A

e The new functions 9;f: A - R, 1 < i < nare continuous on A

The collection of all C!-functions from A to R is denoted C*(4, R)

Note

One uses the notation

C°(A,R) = {f:A - R| f is continuous on A}

Will also encounter C?(4,R), C3(4,R), ..., C*(4,R)

C™(A, R) defined as the set of all continuous functions whose partial
derivatives are in C"*"1(4, R)

16.4 Theorem
A S R"open, f € C*(4,R).
Then for every @ € A we have

lf() = f(@ - (x—d, (V@)

915_}2 T =0 [L-approx]
where (V/)(@) = ((0:/)(@), ..., (3,./)(@))

To prove this we do

16.5 Lemma

(Mean Value Theorem in directioni,1 <i < n)

A S R"™ open, f € C*(A,R), aEA.

Let 7 > 0 be such that B(d;r) € A.
Letibe anindexin{1,..,n}andlet X,y € B(d;r) be such that they only
possibly differ on the component i (Sox¥) =y, v1 <j<n,j# i)

Then 3b € B(a; r) such that
FG) =@ = (yD —x®)(@,£)(b) [MVT direction i]

16.6 Definition (Geometry)

X,y €ER"

The line segment connecting ¥ and y is the set
Co(%,y) ={(1—-t)Xx+ty|tel0,1]}

X+
y=Z+G -2
do X+ t(y —X),0 < t < 1to cover the line segment from ¥ to y

16.7 Proposition
MVT in direction ¥
A< R"open, f:A> R ¥ #0inR"
Suppose that
e fiscontinuous on A
e (93f)(a) exists for every d € A
¢ The new function d;f: A — R is continuous on A
Suppose we have X,y € A such that j — ¥ = a¥ for some a € R and such
that Co(X,y) < A.

Then 3b € Co(%,7) s.t. f(3) — f(&) = a(95,)(b)

Geometric Interpretation of L-Approx.

Instead of getting a tangent line to the graph of f, we get a tangent
hyperplane to the graph of f.

The hyperplane is an n-dimensional subset of R**1

16.8 Remark (Geometry)

Givenm € N,p € R™

How do we write the equation of a hyperplane H € R™ that passes
through p
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16.3 Remark
For f € C1(4,R), will prove a theorem of local linear approximation.

Look at the (known) special case n = 1. Make A = (@, 8) S R, a € (a, B)
f:A - Rdifferentiable at a.
Approximate formula says f(x) = f(a) + f'(a) - (x — a) for x close to a.

So have

1im (f() = £(@) = (@ x (x = @) = 0
But in fact have more!

fx) = f(a) = f'(a) X (x— a)|

X —a

|f(x) f(a)
X—?a |
x#a xX#a
Call the above (first formula) L-Approx.in 1 variable.

Have lim
x—a

- f'@)] =

Proof of Lemma 16.5

Case when x®® = y® trivial and get 0 = 0

So assume that x® = y®, sqy x® < y@

Denote x) = a,y® =g

Define ¥: (@, 8] » Rby W(s) = f ((x(l), o, x D) g (1)) ...,x("))) Va<s<p
Note that W(a) = f(¥),¥(B) = f(¥) and ¥ is continuous on (a, 8]

(Why? Check with sequences using the continuity of fand that x, =, x in (a, 8]
= (x®, L, x0D g x| ) o (O 30D g (4D ()

Claim
Take s such thata < s < f and putz = (x(l), v, x D g x GO
Then Y is differentiable at s, and W' (s) = (9;f) (l—;)

,x(")) € B(d;r)

Verification of Claim

W(s) = £(b) by definition of ¥

Y(s+h)=f ((x(l), o xD g p @D
W(s+h) —¥(s) f(b+he)—f(b)

€)= £(5 + hel)

So

h h
Take limit h — 0 (h # 0). Get claim since the expression on the right hand tends to
@:/)(b) m

Due to claim, we can apply MVT from Calculus I to ¥.

Gives 3s,@ < s < f8, such that E(ﬁ) ly(a) =W'(s)

B -
Convert W(a) = f(¥),¥(B) = (), a = x(’).ﬁ =y®
W (x) = (8;£)(B) for b = (x®, ..., x(=D, 5, x (D ()
fH-f&@
YO —x® = @N(E)

and done. QED

Proof of Theorem 16.4
Important Proof

Fix r > 0 such that B(d; ) € A. So f(X) makes sense for any ¥ such that ||¥ — d|| < r
Given € > 0. Want to find 0 < § < r such that
(||5c’ —dll < 5) If(®) - f@-(x-ad (Vf)(a)>l

X#d lI% — all

[Want]

Know
For every 1 < i < nknow that d;f: A - Ris continuous at d, hence 30 < §; < r such
that

- - - -> &
1 = all < &; = [(3: X)) = (@: @] <—=

Jn

Take § = min(8y, ..., 6,). S0 0 < § < r and have

5 o o - €
lIx—all <6 =100;/)x) — (0;/)a)] < \/_ﬁ Vi<i<n [Know 1]

Will show that § works in [Want].
So pick % = (x@,x®, .., x™) e B(@ &) \{d@} > 0< ¥ —dll <8

Define X, X4, ..., X € B(d; &) as follows
%= (aM,a?,...,a™) =3d

1= (x®,a®, .., x™)

% = (x0,x®,q®), . ™)

Zp= (x0,x®@, ., x™) = 3

Note that ||¥; — d|| < [¥—dl| <8, VO<i<n
n

Write f(3) — (&) = (&) — f (%) = Zf(fn) = f(En-1)
i=1

Observe
X = (x(l), xD @ D a(n))
2. . —(+@) +(i-1) 4@ A(i+1) AN
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. N m
Givenm € N,p € R =

How do we write the equation of a hyperplane H € R™ that passes Observe
through p %= (6@, ., x5O g+ )

Xioq = (x(l)’ v, x@D q@ qE+D a("))
One Possibility Can apply MVT in direction i, and get 3b; € B(d; ) such that
H={+aj; + -+ ay1Jn-1| @y @y € R} [Hyp 1] o e Be S0 = PR 0 SUER A
where ¥, ..., Jn_1 are linearly independent. @) = fFEimy) = (x@ = a®)(9:1) (by)

Another Possibility So N .,
H={GeER™|(G—p) L Hyp 2 . . -
R o o F@ =@ = Y fG) = fGi) = Y (<O = a®)@f)(B) = (F = &,7) [Know 2]

with Z # 0 in R™ called the normal vector

i=1 i=1
Relation between [Hyp 1] and [Hyp 2]: Where w = ((61f) (bl)' (aZf)(bz)' " (6nf)(bn))
span(Z) L span{yy, ..., Yn-1}

n
. Rt
16.9 Remark Observe [[# — (VH@IP? = )’ ((al-f)(bi) - 0N@)
ACS R"open, f€CYH4R) i=1
Consider the graph b; € B(d;6) > |(a; f)(b) — (@) @] < — by [Know 1]
r={&*t) eR*™ |¥€At=f(X}c R 2
Pickd € A, look atp = (@, f(a)) €T (_g_> — 2
(@r@) Z (@HE) - @pH@) Zl =) =¢
lim If (%) = f(@) — (¥ —d, (VH(@)
—— =0
{ g lx — all Hince .
. Vs . . N lw— (V)@ <& [Know 3]
SO f(x) ~ f(@) + (¥ — d, (Vf)(@)), for X € B(d,5),small §
’E‘}ﬂs isﬁa linfar funstionﬁin X ) ) Now calculate
P =(E @)~ Ef@+(E-ad 0 N@N=q If (@) — £(@) — (% — &, (VH(@)|
, =, 1(E = &,W) — (& = &, (IN@)] = (i - &, — (VH@)]

Claim . < 12 —all- I - (V@I < 1IF -l - &
q € H,where H is a special hyperplane going through p

1: Know 2
Tangent Plane 2: Bilinearity of inner product
5:=1(0,0,..,0,1,0,..,0,(8;£)(d), 1<i<n 3: By Cauchy-Schwartz

n 4: Know 3
H= [ﬁ+2ai§i | &y, @z, ..., q ER
= In summary, get

If(X) = f(@) — (X —d, (VA)(@)I <e
w= (=)@, 1% —all
H={qeR"™ | (G-p)LW) QED.
16.10 Proposition Remark 16.9
ASR"open, feCYH4R),deA Pickd € A, lookatp = (d,f(@)) €T
Then for every ¥ € R™ the direction derivative (33f) (@) exists and
[@5N(@ = (3, (VN (@) Recall (L-Approx) )

lf(X) - f(@—(x—a (V@) _ 0

Note that this is a linear function of X-a 1% — dll -

X#d

n So f(X) = f(a) + (X — ad, (Vf)(@)), for X € B(@,8),small §
L(®) = (B, (V) (@) = v(i)(a-f)(&) ’I‘his is_)a linfar funEtion_)in X. L. .
Z ‘ P =(Ef®)~ @@ +(E-aTN@)
16.11 Remark Claim
A S R"open, f € CL(A4,R),d € A G € H,where H is a special hyperplane going through p
> = . . - n =
Suppose (Vf)(a) # 0. Look at various unit vectors 4 € R", (||u]| = 1) Calculate
Have P—i=@Ef@+E—aTN@N - (@)= E-d&—d [ H@Y
(@)@ = (@ (V@) < Il - ITH@ 1 = @A @Il Denote # = £~ = (v®,v%, .., v®)
Equality holds precisely when || (Vf) (@) .
L p@ Then g = = (v, ., v®, > v® - (3,)@

ives £

“Tiop@r #

i=1
(93,)(@ = (V) (@ = max{(9z)(@) | i € R™, [lll = 1} =v®(1,0,..,0,(3:/)(@) +vP(0,1,0, ., 0, (3.1)(@)) + -

+v®(0,0, ..., 1, (3,£)(@)

Sogetd=p+ Z v®y; where y; = (O, 0,..,0,1,0,..,0, (6if)(&)), 1<i<n
=1
So ¢ € H where
n

H= [ﬁ+2ai37i | @y, ay, ..., an € R]

i=1

Informal interpretation:
fis increasing fastest in the direction of the gradient vector.

What about the normal vector to I at p?

Needw € R" ! suchthatw 1y, V1<i<n

Look for w in the form (W(l), w®, . wm, 1)

S00 = (y;, W) =w® + (8;)(@) = w® = —(8;/)(d)

Conclusion

w=(=(v)(@,1)

Proof of Proposition 16.10
Will assume  # 0 (for % = 0 we know that (85 f) (@) exists and is equal to 0)

Recall (L-Approx.) for f atd € A
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I lf(X) = f(@) = (¥ —a, (V@) _
im — =
X 1% — all

Get X — d = t, hence (¥ — a, (V) (@) = (tv, (V) (@) = (¥, (VF)(@))
also, [|IX —dll = lleB|l = [¢ll| 7]l

So (L-Approx.) becomes

lim If (@ + t9) — f(d) — (&, (V@)

0, setX = d + tv wheret > 0,t # 0

= 0, multiply by ||7||

=0 ERE

lim If(@+¢ev) — f@) - tv, (V@) _ 0[5l =0
t—0 |t|

+0 R . N

%if% f_(a_H#a_)_ (f}l (Vf)(c_i)) =0

t#0

fla+tv) —f(a)

It follows that lim—— T exists and is equal to (7, (Vf) (@))

t#0
QED



C1(4, R™) and the Chain Rule

November-21-11 11:59 AM

17.1 Definition
A € R" open, f: A - R™ (m € N)
For every ¥ € A write f(¥) = (f(l) @), fP0), ...,f(m)(a?))

And in this way we get functions f®: 4 - R, 1 < i < m called the components of f.

Compare to L4 about continuity, Def. 4.5, Prop. 4.6
If f® € C1(4,R), V1 < i < m then we say that f € C1(4, R™)

17.2 Definition
ACRMopen, f = (f,f@, . f0M) e c1(4,R™)
For every d € A the matrix

(V) @) . .
9, fM . (9. F®
Uun@ = (V@)@ |- ( 1fz )@ ( nfs )@
‘ ™) (g (ONE

(Vf(m))(&) (alf )(a) (anf )(a)

is called the Jacobian matrix of fat d.

Note

U@ € Mpxn(R)

UN@ ¢ = (8 D) (@)
UN@; = (VfO) (@

17.3 Remark

Im=1

Have f € C1(4,R),s0 (Jf)(@) € M;y,(R)
JH(@) is (Vf)(a), treated as a row-matrix

2:n=1(meN)

Take A = I = openintervalin R, f:] - R™

Have f = (f, £ @, .., f0W) with fO:] > R
Have f € C1(,R™) & (f® € C1(,R) V1 < i <m)
Means that (f(i)), exists and is continuous on [

Such fis called a path in R™

For every a € I, the derivative f'(a) = ((f(l))’(a), s (f(m))’(a)) € R™

is called the velocity vector of fat a.

(Ff®)@
Have (Jf)(a) = : € Mppy1(R)
(F)(@

So (Jf)(a) is the velocity vector f'(a), treated as a column matrix.

17.4 Remark
Can do algebraic operations with C* functions
1. ACR"open, f,g€CYAR)Thenf+g,f-g€C(AR)
with formulas for partial derivatives as in calculus 1
2. A < R"open, f,g € C1(4, R™), a,B ER
Form new function:
h:af + Bg, h:A - R™
h(X) = af (X) + Bg(¥) € R™, vieEA
For1 <i<mhave h® + af® + pg® € C1(4,R) = h € C1 (4, R™)

Moreover, ford € Aand 1 <i <m,1 <j <nhave
UM@ j) = (0;p0)(@ = a(9;f D)@ + B(9;9D) (@)
=a(N @ + LU @D

~ (Um)(@) = a(f)@ +BUg)(@

Linearity of Jacobian

|(](a’f +89)@ = a(H)@ + ,B(]g)(a)| (L = ), Linearity of Jacobian

Moral
C'(A,R™) is a vector space of functions, and J f is linear.

17.5 Theorem (Chain Rule)
m,n,p €N, A S RY, B € R™ open sets
f € C*(A,R™) such that f(a) € BVd € 4, g = C'(B,RP)

Consider the composed function
h:A - ]Rp, h = ge f
Then h € C*(A, RP) and for every d € A have

[Um@ = Ug)(f@) x UH(@] (M - )), Multiplicativity of Jacobian

Aside
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Examples for Remark 17.4

f - g have

(f9) = (9;f)g +9(39), 1<j<n

Lelbnltz rule, applied to partial functions for fg in the j* direction.

More general than f + g can do linear combinations af + g, a, f € R
Have af + Bg € C*(4,R) and

oj(af +pg) = a(9;f) +B(9f), 1<j<n

Linearity of derivative from Calc 1 applied to partial functions in
direction j

17.9 Proof of 2, by assuming 3

Have f € C'(4, R™) with f(¥) EB, VX € AC R"
Haveu € C1(B,R), v =uof:A-> R

Fixd € A, j € {1, ...,n}. Want to verify that

d+tej) —
lim l—i(i—e]tl—v(a—) exists and is equal to Z(O u) (b) (8, D)@
t#0

Pickr > O such that B(a;r) € A
Define ¢: (—7,7) > R, ¢(t) = v(fl + te?-)
v(ﬁ + teT-) —v(d) B o(t) — p(0)

Have

t t
So need that ¢’ (0) exists and is given by the right formula.
Consider the pathy: (—r,7) > B € R™, y(t) = f(d + t?j), —-r<t<r
e =v(d+te)=u (f(& + t?j')) =u(y(®)
So@(t) = u(y(t)) —-r<t<r
Formula from 3 applies, gives

w(O)—Z(a W) (O)© = Z(a w(B) - (6,rO)@
QED

Left to prove special case of Chain rule forn=p =1

Proof of Lemma 17.10
to+s)—(b+sv

lly (to )lsl( )| ” () b_w)”
1

= [ 0rtto + )= vy -3

What is component i of this vector? It is:

1 . . .

(100 +5) =y O(t0) ) = 1) (t0)

So have

||Y(to+s)|s—|(b+517)|| H (y(to +5) — y(to))—VH
Z

YOty + 5) YO ty) (}/(i))’(fo)
i=1

- 0 by definition of (y®)'(t,)

Proof of Proposition 17.11

Fix t, € I for which we verify the claim. Denote b= y(to), ¥ =7v"(ty)
Must prove that h is differentiable at t, with
R (ty) = ((Vg)(b), ) = (859)(b)

Mo* M) - 0y0(B)  want)

So what we want is lim
s—0

520
Calculate

h(to +5) = h(to) _ g(r(to+5) —g(r(t)) _ g(r(to +5)) — g(b)

s s
_ g(y(to + s)) — g(g + sfi) g(E + 51'7’) — g(Z)

+ b .
We know that gim ﬂ_sv_)_gg = (039) (b)

S*
So [Want] will follow if we prove

i [90 0+ 9)) = 9(B + 57)

5-0 S
520
To prove [Want'] we will use a Lipschitz condition for g.

Fixr > 0 such that B(I;; T) € B. Use problem 4 in homework 8 for the
compact convex set K = B (B, 2) to get ¢ > 0 such that

9@ - gD <cli -yl viyeK [Lip]

=0 [Want']

y is continuous at t, hence can find [ > 0 such that (¢, — L, t, + 1) S I and
suchthatt € (to— Lty + 1) = lly(®) — y(to)ll <£
So for |s| < l have ||y(t0 +5s)— B” < g =>y(ty+s)EK

For |s| < X g we also have that

1+l
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I(]h)(a) = (]g)(f(a)) x (J)(@)| (M — J), Multiplicativity of Jacobian

Aside
The chain rule from calc 1 is the special case of thiswherem=n=p =1

17.6 Remark

Equation (M-]) is usually written in terms of entries:
For1 <k <p, 1 <j <n,have
m

U@ = D UDE) 40y X UN@arsy

,f(m))_ g= (g(l), "_,g(p))_ h= (h(l), _"_h(p))
(@h®)@ = Y (3:9®)(B) x (3;r )@

Denote u := g("_), v = h), What is the relation between u and v?
h@ = g(f®) = (90(F@), .. g (F @)

Take component k = h®)(%) = g®)(£(2)) = v(X) = u(f(D))
The modified (M-]) says
m

(@)@ = Y @)(B) x (37 ©)(@
i=1

forb = f(d) an;v(f) =u(f(®), Ze4

i=1
Write f = (f @, ...
m

(C — R) Chain Rule, p=1

Notation
To make it more suggestive, people write

S ou - -
0@ = 225 (@, a—y% (5) = @) ()
a_m( Q)= 40y <L>( ) x axm (a)
Summarized

v o du ay®

ax) ~ Liay® ' aﬁ
i=1

Imprecise in two ways: should be (l), and does not specify to what points the

derivatives should be applled.

17.7 Remark

Special case whenn =p = 1.

Take I € R open interval

y:I > R™a Cl-path

Let B € R™ open such thaty(t) € B,vt € I.

Let g be in C(B,R)

Consider composed functionh = g oy € C*(I,R)
m

h(t) = Z 3,9(r(®) x (y(i))'(t) (C—R) Chainrulep=n=1
=1
R (@®) = (V¥ (®).y' ©®)

17.8 Remark
Had 3 formulas for the chain rule:
1. (M —)) In Theorem 17.5
2. (C—=R)forp =1inRemark17.6
3. (C—=R)forn=p=1inRemark17.7

Clearly 1 = 2 = 3 because 2 and 3 are special cases.
Conversely, 2 = 1. Saw this in Remark 17.6 - just have to fix avalue k € {1, ..., p}
withu = g, v = RO

Observe that 3 = 2 (Proof 17.9)

17.10 Lemma
I € Ropen interval,y: I - R™ a C!-path
Fix t, € I, denote b= y(to), v'(tg) =7
lly(to + )= (b +s)||

Is|

Then lim
s-0
S0
This is an approximation lemma: y (ty + s) = y(t,) + sy’ (t,)

17.11 Proposition ("CRforn = p = 1")
I € Ropen interval,y: - R™ a C? path.
B € R™ open such thaty(t) € B, Vt € ]
Let g be a function on C*(B,R) andleth = goysoh:I - R, h(t) = g(y(t)), tel
Then h € C'(I,R) and
m

K = Y @) (r®)- () © = (9 ©).y'©)
i=1
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such thatt € (to — L to + 1) = lly () — y(t)ll <5
So for |s| < l have ||y(t0 +5s)— 5” <3 Is y(to+s)eK
For |s| < —— x = S we also have that

1+|| II 13l
ror
||(b+sv) b||—|s||| ”<1+||17||X 3
[Lip] will apply to % = y(ty + ), 7 = b + s
clly(to +5) = (E +s3)|
Is|

>b+speK
So for |s| < min (l,}m)
|g(y(t0 + s)) - g(b + sf;’)| <

Is] -
But lemma 17.10 says that
ly(to +5) — (b + s9)|

- 0 So by squeeze we get

Is]
lg(v(to +)) — g(b +s3)]|
Is]

—s.0 0 Which is [Want']

The fact that A': I - R is continuous comes from immediately from the
formula

W) = z«zg)(y(t)) RIG

because (alg) y(t), (y(‘)) are all continuous.
QED



Special case whenm =n
November-30-11 11:31 AM

If m = n then the Jacobian matrix is a square matrix. Can talk about
determinant and about invertibility.

Recall

For M € My, (R) have M invertible & 3X € M, »,, (R) such that MX =
I, = XM

Various other descriptions M invertible < ker N = @ < detM # 0

18.1 Remark

For every n > 1, the formula for n X n determinant is a polynomial
expression in the entries of the matrix. That is, 3 polynomial B, of n?
indeterminates such that

M = |ty], o € Muxn (R) = det(M) = Pa(tas, tiz, -, tun)

. . . 2
Therefore, B, is a continuous function on R™

18.2 Lemma

Small Perturbation of Invertible Matrices

LetM = [aij]lsi,/'sn be an invertible matrix. 31 > 0 with the following
property:

IfN = ['Bij]lsi,jsn
then N is invertible as well.

€ My« (R) is such that |aij - ﬁij| <A V1I<ij<n

18.3 Proposition

A S R"open, f € C1(4,R"), d € Asuch that (Jf)(d) is invertible.
Then 3r > 0 s.t. B(d;r) € A and s.t. f is one-to-one and injective on
B(d;r).

18.4 Definition

U,V € R" open sets

A C*-diffeomorphism between U and V is a bijection f: U - V such
that both fand its inverse g: V — U are C!-functions.

18.5 Theorem
A S R"open, f € C1(A,R"), d € As.t. (Jf)(@) is an invertiblen X n
matrix. Denote f(d) = b.
Then 3U,V < R"™ open sets such that
i) deUCA, bevV
ii) fmaps U onto V bijectively
iii) The function g:V — U which inverts fis a C-function and has
U9(®) = (Un@)™

In short, we get a C!-diffeomorphism produced by f on an open
neighbourhood of d

18.6 Remark
Discussion around the steps in proof of Theorem 18.5
a) One can find 7 > 0 such that U = B(d;r) S A and such that f is
one-to-one on U. So we can putV := f(U) = {f(¥)|¥ € U} and

have that f gives a bijection from U to V with an inverse g:V - U.

b) Itcan be proved that by reducing r if necessary, one can arrange
that V is open, and such that g is C*-function.

¢) Forg:V — Uasinb, one proves that (]g)(E) = ((]f)(&))_1
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Determinant Example

t11 t12
det([t t D = Py(t11,t12, 21, t22) = tistar — tiztoy
21 t22

Proof of Lemma 18.2
Denote |[det(M)| =& >0
So | B, (@11, -, Anpn)| = |det(M)| = € where B, is as in Remark 18.1
Write continuity of B, at (&1, ..., @nn) € R® forg, 36 > 0s.t.
€
[1(B11s s Brn) — (@115 eves @)l <8 = 1Py (B vovs Brn) — Pa(@11, ooy )| < E

Set 1 = g. Will show that this A satisfies the Lemma.

Pick a matrix N = l‘BijJ1<ij<n such that |a;; — Bij| <AV1I<ij<n

Will show that N is invertible.
Observe first that

1GB12, s Bun) = (sl = | D (By =)’ < | 22=ni=5

i,j=1 i,j,=1
& &
= Py (Br1s woes Brn) — P11, s )| < 2 = |det(N) — det(M)| < 2 =

£ e € 3¢
—§<det(N)—£ <§:§<det(N) <?=>det(N) *0

So N is invertible m

Proof of Proposition 18.3

Denote (Jf)(@) =M = la”hsi,jsn

Soa;; = (61-f(i))(¢i) V1 <1i,j <n. Lemma 18.2 says 31 > 0 such thatif N = [B;, jl1<i j<n
has |aij - ,Bij| < AV1<i,j <nthenN is invertible.

Due to continuity of partial derivatives ajf(i) at d we can find r > 0 such that B(d;r) €
Aand such that |(9;f©)(b) — (9;f )@ < A,v1 <i,j < n,Vb € B(&71)
We will prove that this r satisfies the claim.

Fix X # ¥ in B(d; ). Must prove that f(¥) # f (). Assume by contradiction that f(¥) =
f@), thatis fOF) = fFOF)VI<i<n

For every 1 < i <n, we apply MVT in direction ¥ to the function f € C1(4, R) where
T=y—%

Geta point b € Co(%, 3) such that 0 = fO () — FO @) = ((VfD)(B;),B)

() G)

(Vf™)(bn)

with 8 = (9, ®)(B) v1 < i,j < nget |(3;fD)(b;) — (3, D)@ < 2

Therefore N is invertible.

But ((Vf(i))(a), 7) =0V1<i<n= ¥ €kerN soN is not invertible. Contradiction
QED

Consider the matrix N = lﬂijJ1<ij<n =

18.6 Remark Proof
a) Was done in Prop 18.3
b) We will accept (part with V being open is itself a theorem called the "open mapping
theorem")
c) Easy, do it now. Holds in fact for any C*-diffeomorphism.
Consider composed function h: U - U,h=go f
h@ =g(f®), VvieU
Chain rule says (Jh)(@) = (Jg)(b) - Uf)(@)
But on the other hand have, h(X) = ¥ VX € U
S0 h(®) = (hO@), ... k@) = (xD, ..., x®)
Yz = an@ =1,
So chain rule gives I, = (]g)(B) x (JH@a = (]g)(FJ) = ((]f)((i))_1

Hence (8;hV) () = {



Change of Variables

December-02-11 12:04 PM

18.7 Definition

ACRY, feCIARY),GEA

The Jacobian of fat d is defined as

J1(@) = |det(Uf)(@)| where (f)(d) € Mpxn

is the Jacobian matrix of f at d

18.8 Remark

A S R" open, f € C1(4,R")

Have new function |[J|s:4A - R

This is continuous.

If&k koo ﬁ inA then (6,)’(1))(&,() k-0 (61f(l))(ii)

= (N @ = UNH@) = det(U) @) - det(UN @)
Because det is polynomial hence continuous

~ [Jlg(@x) = /1£(@) so |]f respects sequences = continuous.

18.9 Theorem (Change of Variable)

A, B € R" open and bounded T: A - B a Cl—diffeomorphism.
Suppose in addition that |/| is bounded on 4
(FAc>0s.t.|JIr(X) <c, VX €A

Letg € Inty(B,R).Putf = goTsof:A-> R, f(X)=g(T(X)), X4
Then f € Int, (4, ®) and | 9G)d5 = | 1D Vlr @z, 1€~ V]

18.10 Remark (how to remember [C-V]
Do the substitutiony = T(X), (¥ € B,X € A)
] o dy =1/lr(Ddx
| 9625 = [ grG@)uinas = [ Yirfraz
B A A

This is analogous to substitution in one variable
y =T(x), dy = T'(x)dx

18.12 Remark
Why does the formula (C — V) hold?
|J17 keeps track of how volumes are distorted by T

Take again the case of T: R — A from example 18.11
k

k
Take a division R = U P;, A= U Qi, Q;=T()
. i=1 =1

Then fsz Z S;lp(f) -vol(P;)
i=1 !
Kk

Jo= Z sup(g) - vol(Q)
V1 < i < k we have sup(f) = supg(T(J?)) = sup(g)
P; P; o

But not true that vol(Q;) = vol(P;)
vol(Q;)

In fact have %l(Pi)

Since |/| is continuous, it is approximately constant for small P;

~ value of || on P;

On this specific example
vol(P) = (r' —r)(8' — 6)

2 _ .2 l ) +7r
vol(R,) = r—z—r 0 -9y 0l@) _THr

vol(P) ~ 2 -
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18.11 Example

Take R = (r1,13) X (0,2m), A = {(5,t) € R? |[r; < V52 + 2 <1} \
{(5,0)|ry <s <1y}

T((r,8)) = (rcos@,7sin@) = (T(l)(r, 0), T®(r, 6))
(VT®)(r,8) = (cos @, —rsinh)

(VT @) (r,8) = (sin@,7cos 8)

(T (r,6) = [cos 6 —rsinf

sinf rcos@
I/I7(r,8) =1 cos?6 +rsin?0 =7

Formula (C-V) says if g € Intg(4,R) then f = g o T € Intg(R, R) with

fg((s, t))d(s, t) = ff((r, 0)) cr-d(r,0) = frz frg(r cos@,rsin@)r d(r,0)
A R 1 Y0



