Introduction

May 7, 2014 1:46 PM

Notation

In the past: μ - variable $\tilde{\mu}$ - Random variable of estimate $\hat{\mu}$ - Estimate

In this class, don't use $\tilde{\mu}$ - too much notation.

Instead of: $Y = \alpha + \beta x + R$ (Y is random variable)

we use $y = \beta_0 + \beta_1 x + \varepsilon$ because capitals will represent matrices.

Modeling

Data: (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) Aim: build a model for *y* conditional on *x*. *x* is known - not random.

Let's assume that $y \sim N(\mu(x), \sigma^2)$ can also write y|x but we'll omit the condition for simplicit of notation.

Let's use maximum likelihood to estimate the model parameters.

$$L(\mu(x),\sigma^2) = \prod_{i=1}^n \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2\sigma^2} (y_i - \mu(x_i))^2} \propto \frac{1}{\sigma^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu(x_i))^2}$$

Suppose for now that σ^2 is known. We'll estimate it later. Maximizing the likelihood is equivalent to minimizing

$$\sum_{i=1}^{n} (y_i - \mu(x_i))^2$$

This is the least squares approach.

Intuitively, for some given function $\mu(x)$, this approach gives the parameters that provide the best fit of $\mu(x)$ to the data.

e.g. $\mu(x) = \beta_0 + \beta_1 x$ (linear function)

least squares approach: find estimates of β_0 and β_1 that minimize $\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$

Simple Linear Regression Model

May 9, 2014 1:04 PM

Simple Linear Regression Model

$$y \sim N(\beta_0 + \beta_1 x, \sigma^2)$$

$$y = \underbrace{\beta_0 + \beta_1 x}_{\text{structural part}} + \underbrace{\epsilon_i}_{\text{random part}}, \quad \epsilon \sim N(0, \sigma^2)$$

Assumptions

- i) $E(\epsilon_i) = 0 \quad (\Rightarrow E(y_i) = \beta_0 + \beta_1 x)$ ii) $V(\epsilon_i) = \sigma^2 \quad (\Rightarrow V(y_i) = \sigma^2)$
- iii) $\epsilon_1, \epsilon_2, \dots, \epsilon_n$ are independent
- i.i.d. iv) (Distributional Assumption): $\epsilon \sim N(0, \sigma)$, i = 1, 2, ..., n

This assumption automatically accounts for assumptions i) - iii)

Independent and Identically Distributed

Denoted i.i.d., iid, or IID Each random variable has the same probability distribution as the others and are all mutually independent.

Interpretation of Model Parameters

- Parameters: β_0, β_1, σ
- β_0 is the **mean** value of the response (y) when the explanatory (x) is zero.
- Interpretation of β_1
 - $E(y|x=c) = \beta_0 + \beta_1 c$ $E(y|x = c + 1) = \beta_0 + \beta_1(c + 1)$ $\Rightarrow E(y|x = c + 1) - E(y|x = c) = \beta_1$ $\Rightarrow \beta_1$ is the average change in *y* for a unit increase in *x*.

Least Squares Estimates of β_0 and β_1 Notation

 θ = True (unknown) parameter $\hat{\theta}$ = estimate of θ based on the sample data. $V(\hat{\theta})$ = Variance of the sampling distribution of θ (unknown, based on model parameters) $\hat{V}(\hat{\theta}) = \text{An estimate of } V(\hat{\theta})$ $se(\hat{\theta}) = \sqrt{\hat{V}(\hat{\theta})} = \text{stardard error of } \hat{\theta}$

Example

$$\theta = \mu \text{ (Simple response model } y_i \sim N(\mu, \sigma^2)$$
$$\hat{\theta} = \bar{x}, \qquad V(\hat{\theta}) = V(\bar{x}) = \frac{\sigma^2}{n}, \qquad \hat{V}(\hat{\theta}) = \frac{\hat{\sigma}^2}{n}$$

Finding the Least Squares Estimates (LSE)

 β_0, β_1 : Unknown parameters $\hat{\beta}_0, \hat{\beta}_1$: Estimates True mean: $\mu_i = E(y_i) = \beta_0 + \beta_1 x_i$ Fitted values for $y_i : \hat{\mu}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ True (unknown) error: $\epsilon_i = y_i - \beta_0 - \beta_1 x_i$ Residual (estimated) error: $e_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$

Minimization Procedure

Choose $\hat{\beta}_0$ and $\hat{\beta}_1$ such that

$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

is minimized at $(\hat{\beta}_0, \hat{\beta}_1)$

Solve

$$i) \quad \frac{\partial S}{\partial \beta_0} = -2 \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$ii) \quad \frac{\partial S}{\partial \beta_1} = -2 \sum_{i=1}^n x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$i) \quad \Rightarrow \sum_{i=1}^n y_i - n\hat{\beta}_0 - \hat{\beta}_1 \sum_{i=1}^n x_i = 0$$

$$\stackrel{\neq n}{\Rightarrow} \overline{y} - \hat{\beta}_0 - \hat{\beta}_1 \overline{x} = 0 \Rightarrow \boxed{\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}}$$

$$ii) \quad \Rightarrow \sum_{i=1}^n x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\Rightarrow \sum_{i=1}^n x_i ((y_i - \overline{y}) - \hat{\beta}_1 (x_i - \overline{x}))) = 0$$

$$\Rightarrow \sum_{i=1}^n x_i (y_i - \overline{y}) = \hat{\beta}_1 \sum_{i=1}^n x_i (x_i - \overline{x})$$

$$\Rightarrow \boxed{\hat{\beta}_1 = \frac{\sum_{i=1}^n x_i (y_i - \overline{y})}{\sum_{i=1}^n x_i (x_i - \overline{x})} = \frac{S_{xy}}{S_{xx}}}$$
where
$$\boxed{S_{xy} = \sum_{i=1}^n x_i (y_i - \overline{y}) = \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^n (x_i - \overline{x})(x_i - \overline{x})} = \sum_{i=1}^n (x_i - \overline{x})(x_i - \overline{x}) =$$

Aside:

$$\sum_{i=1}^{n} (x_i - \bar{x}) = \sum_{i=1}^{n} x_i - n\bar{x} = 0$$

Similarly,

~

$$\sum_{i=1}^{n} (y_i - \bar{y}) = 0 \Rightarrow \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i(y_i - \bar{y}) - \bar{x} \underbrace{\sum_{i=1}^{n} (y_i - \bar{y})}_{i=1}$$

Properties of the LES of β_0 and β_1 Expectation Value $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased for β_0 and β_1 $\Rightarrow E(\hat{\beta}_0) = \beta_0$ and $E(\hat{\beta}_1) = \beta_1$

Proof

$$E(\hat{\beta}_{1}) = E\left(\frac{S_{xy}}{S_{xx}}\right) = \frac{1}{S_{xx}}E(S_{xy})$$

Since S_{xx} is constant but S_{xy} is random.
Use form $S_{xy} = \sum_{i=1}^{n} (x_{i} - \bar{x})y_{i}$
$$E(\hat{\beta}_{1}) = \frac{1}{S_{xx}}E\left(\sum_{i=1}^{n} (x_{i} - \bar{x})y_{i}\right) = \frac{1}{S_{xx}}\sum_{i=1}^{n} (x_{i} - \bar{x}) \underbrace{E(y_{i})}_{=\beta_{0} + \beta_{1}x_{i}} = \frac{1}{S_{xx}}\left(\beta_{0}\sum_{i=1}^{n} (x_{i} - \bar{x}) + \beta_{1}\sum_{i=1}^{n} x_{i}(x_{i} - \bar{x})\right) = \beta_{1}$$

Now.

$$F(\hat{\beta}_0) = E(\bar{y} - \hat{\beta}_1 \bar{x}) = E(\bar{y}) - \bar{x} \underbrace{E(\hat{\beta}_1)}_{\hat{\beta}_1}$$
$$\bar{y} = \frac{1}{n} \sum_{i=1}^n y_i = \beta_0 + \beta_1 \bar{x} + \frac{1}{n} \sum_{i=1}^n \epsilon_i \Rightarrow E(\bar{y}) = \beta_0 + \beta_1 \bar{x}$$
$$\Rightarrow E(\hat{\beta}_0) = \beta_0 + \beta_1 \bar{x} - \bar{x}\beta_1 = \beta_0$$

Consequences

 $\hat{\mu} \text{ is unbiased for } \mu. \text{ Recall } \hat{\mu} = \hat{\beta}_0 + \hat{\beta}_1 x$ $\mu = \beta_0 + \beta_1 x$ $E(\hat{\mu}) = E(\hat{\beta}_0) + E(\hat{\beta}_1) x = \beta_0 + \beta_1 x = \mu$

Variance

Variance of
$$\hat{\beta}_0$$
 and $\hat{\beta}_1$
 $V(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right)$
 $V(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$

Proof

$$\hat{\beta}_{1} = \frac{S_{xy}}{S_{xx}} = \frac{1}{S_{xx}} \sum_{i=1}^{n} (x_{i} - \bar{x}) y_{i}$$

$$V(\hat{\beta}_{1}) = V\left(\frac{1}{S_{xx}} \sum_{i=1}^{n} (x_{i} - \bar{x}) y_{i}\right) = \frac{1}{S_{xx}^{2}} V\left(\sum_{i=1}^{n} (x_{i} - \bar{x}) y_{i}\right) = \frac{1}{S_{xx}^{2}} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} V(y_{i})$$
Can bring variance into the sum because y_{i} are independent

e into the sum because *y_i* are independent an bring variar $\sigma^2 = \sigma^2$

$$=\frac{\sigma}{S_{xx}^2}S_{xx}=\frac{\sigma}{S_{xx}}$$

$$\begin{aligned} \hat{\beta}_{0} &= \bar{y} - \hat{\beta}_{1}\bar{x} = \frac{1}{n}\sum_{i=1}^{n} y_{i} - \left(\frac{1}{S_{xx}}\sum_{i=1}^{n} (x_{i} - \bar{x})y_{i}\right)\bar{x} = \sum_{i=1}^{n} \left(\frac{1}{n} - \frac{(x_{i} - \bar{x})\bar{x}}{S_{xx}}\right)y_{i} \\ \text{Linear combination of independent } y_{i} \\ V(\hat{\beta}_{0}) &= \sum_{i=1}^{n} \left(\frac{1}{n} - \frac{(x_{i} - \bar{x})\bar{x}}{S_{xx}}\right)^{2} V(y_{i}) = \sigma^{2}\sum_{i=1}^{n} \left(\frac{1}{n} - \frac{(x_{i} - \bar{x})\bar{x}}{S_{xx}}\right)^{2} = \sigma^{2}\sum_{i=1}^{n} \left(\frac{1}{n^{2}} + \frac{(x_{i} - \bar{x})^{2}\bar{x}^{2}}{S_{xx}^{2}} - \frac{2(x_{i} - \bar{x})\bar{x}}{nS_{xx}}\right) \\ &= \sigma^{2} \left(\frac{n}{n^{2}} + \frac{S_{xx}\bar{x}^{2}}{S_{xx}^{2}} + 0\right) = \sigma^{2} \left(\frac{1}{n} + \frac{\bar{x}^{2}}{S_{xx}}\right) \end{aligned}$$

Consequence $V(\hat{\mu}_0) = \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)\sigma^2$ where μ_0 is the fitted values at $x = x_0$

Recall

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

 $\Rightarrow \hat{\mu}_0 = \bar{y} + \hat{\beta}_1 (x_0 - \bar{x}) = \frac{1}{n} \sum_{i=1}^n y_i + \frac{1}{S_{xx}} \sum_{i=1}^n (x_i - \bar{x}) y_i$

$$\Rightarrow \hat{\mu}_{0} = \sum_{i=1}^{n} \left(\frac{1}{n} + \frac{(x_{i} - \bar{x})(x_{0} - \bar{x})}{S_{xx}} \right) y_{i}$$

$$\Rightarrow V(\hat{\mu}_{0}) = \sum_{i=1}^{n} \left(\frac{1}{n} + \frac{(x_{i} - \bar{x})(x_{0} - \bar{x})}{S_{xx}} \right)^{2} \sigma^{2} = \sigma^{2} \sum_{i=1}^{n} \left(\frac{1}{n^{2}} + \frac{(x_{i} - \bar{x})^{2}(x_{0} - \bar{x})^{2}}{S_{xx}^{2}} + \frac{2(x_{i} - \bar{x})(x_{0} - \bar{x})}{nS_{xx}} \right) = \sigma^{2} \left(\frac{1}{n} + \frac{(x_{0} - \bar{x})^{2}}{S_{xx}} \right)$$

Least Squares Estimate

May 14, 2014 1:37 PM

Covariance

 $Cov(U, V) = E[(U - \mu_U)(V - \mu_V)]$

Consequences of Least Squares Estimate

i)
$$\sum_{i=1}^{n} e_i = 0$$

Residual Error $e_i = y_i - \hat{\mu}_i = y_i - \hat{\beta}_1 - \hat{\beta}_0 x$
 $\Rightarrow \frac{1}{n} \sum_{i=1}^{n} e_i = \bar{e} = 0$
ii)
$$\sum_{i=1}^{n} e_i x_i = 0$$

 $\Rightarrow \sum_{i=1}^{n} (e_i - \bar{e}) x_i = 0 \Rightarrow \sum_{i=1}^{n} (e_i - \bar{e}) (x_i - \bar{x}) = 0 \Rightarrow \text{Cov}(e, x) = 0$
 $\Rightarrow \text{ Sample correlation between } e \text{ and } x \text{ is } 0$

Note: i) and ii) follow from the fact that $\hat{\beta}_0$ and $\hat{\beta}_1$ minimize

$$S = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 = \sum_{i=1}^{n} e_i^2$$

$$\Rightarrow \frac{\partial S}{\partial \beta_0} = 0 \Rightarrow \sum_{i=1}^{n} (y_0 - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0 \Rightarrow \sum_{i=1}^{n} e_i = 0$$

$$\Rightarrow \frac{\partial S}{\partial \beta_1} = 0 \Rightarrow \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) x_i = 0 \Rightarrow \sum_{i=1}^{n} e_i x_i = 0$$

iii)
$$\sum_{i=1}^{n} \hat{\mu}_{i} e_{i} = 0$$

Since
$$\sum_{i=1}^{n} (\hat{\beta}_{0} + \hat{\beta}_{1} x_{i}) e_{i} = 0$$

iv) (\bar{x}, \bar{x}) is always on the fitted

iv)
$$(\bar{x}, \bar{y})$$
 is always on the fitted regression line
 $x = \bar{x}, \qquad \hat{\mu} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x} = \bar{y} - \hat{\beta}_1 \bar{x} + \hat{\beta}_1 \bar{x} = \bar{y}$

Estimate of σ^2

Recall
$$V(y_i) = V(\epsilon_i) = \sigma^2$$

The LSE of σ^2 is
 $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n e_i^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$

Why n - 2?

n - Number of data points

2 - number of parameters estimated (excluding σ) in the structural part of the model. Theoretically,

$$E\left(\sum_{i=1}^{n} e_i^2\right) = (n-2)\sigma^2 \Rightarrow E\left(\frac{1}{n-2}\sum_{i=1}^{n} e_i^2\right) = \sigma$$
$$\Rightarrow E(\hat{\sigma}^2) = \sigma^2$$
$$\Rightarrow \hat{\sigma}^2 \text{ is an unbiased unbiased estimator of } \sigma^2$$

 $\Rightarrow \hat{\sigma}^2$ is an unbiased unbiased estimator of σ^2

Hypothesis Tests and Confidence Intervals

May 14, 2014 2:07 PM

 β_1 is usually of interest

e.g. can test whether y is linearly related to x

Is
$$\beta_1 \neq 0$$
?
 $H_0: \beta_1 = 0, \qquad H_A: \beta_1 \neq 0$

or

On average, does a unit increase in *x* result in a 5 unit increase in *y*? \Rightarrow Is $\beta_1 = 5$? $H_0: \beta_1 = 5$, $H_A: \beta_1 \neq 5$

or

On average, does a unit increase in *x* result in a more than a 5 unit increase in y?

 $\Rightarrow \text{ Is } \beta_1 > 5?$ $H_0: \beta_1 \le 5, \qquad H_A: \beta_1 > 5$

The main quantity (discrepancy measure) of interest is

$$\frac{\hat{\beta}_1 - \beta_1}{\operatorname{se}(\hat{\beta}_1)} = \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma} / \sqrt{S_{xx}}}$$

Is the number of standard deviations of the estimate from the assumed (true) value. Before we continue, we need to determine its distribution.

Some sampling distributions X - u

i)
$$X \sim N(\mu, \sigma^2)$$
, then $\frac{X - \mu}{\sigma} \sim N(0, 1)$

ii) If $Z_1, ..., Z_n$ are i.i.d. N(0, 1) random variables, then $Z_i^2 \sim \chi^2(1)$, chi-squared distribution with 1 degree of freedom (d.f.)

 $Z_1^2 + \dots + Z_n^2 \sim \chi^2(n)$ chi-squared distribution with *n* d.f.

iii) If $Z \sim N(0, 1)$ and $U \sim \chi^2(n)$ where Z is independent of U, then Z

$$\frac{U}{\sqrt{\frac{U}{n}}} \sim t(n) \ t \text{ distribution with } n \text{ d.f.}$$

iv)
$$\frac{m}{\frac{\chi^2(n)}{n}} \sim F(n)$$

F-distribution with m numerator d.f. and n denominator d.f. Note: numerator and denominator are independent

Distribution of
$$\frac{\hat{\beta}_1 - \beta_1}{\sigma/\sqrt{s_{xx}}}$$

i.i.d.
i) $\epsilon_i \sim N(0, \sigma^2) \Rightarrow y_i = \beta_0 + \beta_1 x + \epsilon_i \stackrel{\text{i.i.d.}}{\sim} N(\beta_0 + \beta_1 x, \sigma^2)$
Now, $\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{1}{S_{xx}} \sum_{i=1}^n (x_i - \bar{x}) y_i$
 $\Rightarrow \hat{\beta}_1 = \sum_{i=1}^n c_i y_i$
 $y_i \text{ is normal } \Rightarrow \hat{\beta}_1 \text{ is normal}$
Since $E(\hat{\beta}_1) = \beta_1$ and $V(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$ then $\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{S_{xx}}\right)$
 $\Rightarrow \frac{\hat{\beta}_1 - \beta_1}{\sigma/\sqrt{S_{xx}}} \sim N(0, 1)$
i.i.d.
ii) $\epsilon_i \sim N(0, \sigma^2) \Rightarrow \frac{\epsilon_i}{\sigma} \sim N(0, 1), \quad i = 1, 2, ..., n$
 $\Rightarrow \left(\frac{\epsilon_i}{\sigma}\right)^2 \sim \chi^2(1) \Rightarrow \sum_{i=1}^n \left(\frac{\epsilon_i}{\sigma}\right)^2 \sim \chi^2(n)$
 $\epsilon_i = y_{ii} - \beta_0 - \beta_1 x_i \Rightarrow \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 \sim \chi^2(n)$
For every estimated parameter, we lose 1 degree of freedom.
 $\Rightarrow \frac{1}{\sigma^2} \sum_{i=1}^n \left(\frac{\varphi_i}{y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i}\right)^2 \sim \chi^2(n - 2)$
 $\Rightarrow \frac{1}{\sigma^2} \sum_{i=1}^n e_i^2 \sim \chi(n - 2) \Rightarrow \frac{(n - 2)\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n - 2)$

iii) Note: $\hat{\beta}_1^{-1}$ is independent of $\hat{\sigma}^2$ (to be shown later)

$$\frac{\frac{\hat{\beta}_1 - \beta_1}{\sigma/\sqrt{S_{xx}}}}{\sqrt{\frac{(n-2)\hat{\sigma}^2}{n-2}}} \sim \frac{N(0,1)}{\sqrt{\frac{\chi^2(n-2)}{n-2}}} = t(n-2)$$
$$\Rightarrow \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}_1} \sim t(n-2)$$

$$\Rightarrow \frac{p_1 - p_1}{\hat{\sigma} / \sqrt{S_{xx}}} \sim t(n - 2)$$

Confidence Intervals

 $100(1 - \alpha)\%$ C.I. for β_1 e.g. $\alpha = 0.05$ or 0.01

$$\Rightarrow \text{Confidence interval for } \beta_1 \text{ is}$$

$$\widehat{\beta}_1 \pm t_{\frac{\alpha}{2}}(n-2)\text{se}(\widehat{\beta}_1)$$

$$\text{se}(\widehat{\beta}_1) = \frac{\widehat{\sigma}}{\sqrt{S_{xx}}}$$

General Form Estimate = (Critical Value)×(std. error)

Hypothesis Tests

May 16, 2014 1:51 PM

Two-Tailed Test

 $H_{0}: \beta_{1} = b \text{ v.s. } H_{A}: \beta_{1} \neq b$ Under H_{0} , $\frac{\hat{\beta}_{1} - b}{\hat{\sigma} / \sqrt{S_{xx}}} \sim t(n-2)$

Compute the test statistic (based on sample)

$$t^* = \frac{\hat{\beta}_1 - b}{\hat{\sigma} / \sqrt{S_{xx}}}$$

In general

 $t^* = \frac{\text{estimate} - \text{true value}}{1 - \frac{1}{2}}$

We will perform tests using significance levels (e.g. 5%, 1%, etc.) Rule: at a 100 α % significance level we reject H_0 if $t^* > t_{\alpha}(n-2)$

One-Tailed test

 $H_0: \beta_1 \le b \text{ vs } H_A: \beta_1 > b$ Test statistic under H_0 is $t^* = \frac{\hat{\beta}_1 - b}{\sigma/\sqrt{S_{xx}}}$ Reject H_0 if $t^* > t_{\alpha}(n-2)$

Otherwise fail to reject H_0

Aside

Suppose we constructed a 95% confidence interval for β_1 If we test $H_0: \beta_1 = b$ vs $H_A: \beta_1 \neq b$ at a 5% significance level, then we reject H_0 iff *b* does not lie in the above confidence interval.

Predictions and Prediction Intervals

May 16, 2014 3:33 PM

Given $x = x_p$, what is the predicted *y*? Notes:

- i) Predicted value $\hat{y}_p = \hat{\beta}_0 + \hat{\beta}_1 x_p$
- ii) y_p is a random variable (future unknown value), independent of our sample.
- iii) We **cannot** write $E(\hat{y}_p) = y_p (y_p \text{ is a R.V., not a value})$
- iv) The prediction error is $\hat{y}_p y_p$ (main quantity of interest when forming prediction intervals)
- v) $E(\hat{y}_p y_p) = E(\hat{y}_p) E(y_p) = E(\hat{\beta}_0 + \hat{\beta}_1 x_p) E(\beta_0 + \beta_1 x_p + \epsilon_p)$ $= \beta_0 + \beta_1 x_p (\beta_0 + \beta_1 x_p + 0) = 0$ Unbiased prediction

vi)
$$V(\hat{y}_p - y_p) = V(\hat{y}_p) + V(y_p) (y_p \text{ is independent of the sample})$$

 $= V(\hat{y}_p) + \sigma^2 = V(\hat{\mu}_p) + \sigma^2$
 $V(\hat{\mu}_p) = \sigma^2 \left(\frac{1}{n} + \frac{(x_p - \bar{x})^2}{S_{xx}}\right)$
 $V(\hat{y}_p - y_p) = \sigma^2 \left(1 + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{S_{xx}}\right)$

Overall

$$\begin{split} E(\hat{y}_p - y_p) &= 0\\ V(\hat{y}_p - y_p) &= \sigma^2 \left(1 + \frac{1}{n} + \frac{\left(x_p - \bar{x}\right)^2}{S_{xx}} \right)\\ &= \left(\hat{y}_p - y_p\right) = \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{\left(x_p - \bar{x}\right)^2}{S_{xx}}}\\ &\Rightarrow 100(1 - \alpha)\% \text{ prediction interval (P.I.) for } y_p \text{ is}\\ P\left(\left| \frac{\left(\hat{y}_p - y_p\right) - 0}{\operatorname{se}(\hat{y}_p - y_p)} \right| < t_{\frac{\alpha}{2}}(n - 2) \right) = 1 - \alpha\\ &\Rightarrow \hat{y}_p \pm t_{\frac{\alpha}{2}}(n - 2) \operatorname{se}(\hat{y}_p - y_p) \end{split}$$

Analysis of Variance (ANOVA)

In the simple regression case, we use this to test $H_0: \beta_1 = 0$ Model:

$$y_{i} = \beta_{0} + \beta_{1}x_{i} + \epsilon_{i}, \qquad i = 1, ..., n$$
$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}, \qquad \hat{\beta}_{1} = \frac{S_{xy}}{S_{xx}}$$
$$\hat{\mu}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{i}$$
If $\beta_{1} = 0$, then $y_{i} = \beta_{0} + \epsilon_{i}$ and $\hat{\beta}_{0} = \bar{y}$

The idea of ANOVA is to separate the total variability (SST) into two components:

- i) Variability due to (or explained by) regression. (Sum of squared regression or SSR)
- ii) Variability due to error (Sum of squared errors or SSE)

Write
$$y_i - \bar{y} = (y_i - \hat{\mu}_i) + (\hat{\mu}_i - \bar{y})$$

SST $= \sum_{i=1}^{n} (y_i - \bar{y})^2$
Decompose SST

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} ((y_i - \hat{\mu}_i) + (\hat{\mu}_i - \bar{y}))^2$$

$$= \sum_{i=1}^{n} ((y_i - \hat{\mu}_i)^2 + (\hat{\mu}_i - \bar{y})^2 + 2(y_i - \hat{\mu}_i)(\hat{\mu}_i - \bar{y}))$$

$$= \underbrace{\sum_{i=1}^{n} (y_i - \hat{\mu}_i)^2}_{SSE} + \underbrace{\sum_{i=1}^{n} (\hat{\mu}_i - \bar{y})^2}_{SSR} + 2\underbrace{\sum_{i=1}^{n} (y_i - \hat{\mu}_i)(\hat{\mu}_i - \bar{y})}_{Cross Term}$$

i) $SSE = \sum_{i=1}^{n} (y_i - \hat{\mu}_i)^2 = \sum_{i=1}^{n} e_i^2$
ii) $SSR = \sum_{i=1}^{n} (\hat{\mu}_i - \bar{y})^2 = \hat{\beta}_1^2 \sum_{i=1}^{n} (x_i - \bar{x})^2 = \hat{\beta}_1^2 S_{xx}$
iii) $Cross Term$

$$= 2 \sum_{i=1}^{n} \underbrace{(y_i - \hat{\mu}_i)}_{\hat{\mu}_1(x_i - \bar{x})} = 2\hat{\beta}_1 \sum_{i=1}^{n} e_i(x_i - \bar{x}) = 2\hat{\beta}_1 \left(\sum_{i=1}^{n} e_i x_i - \bar{x} \sum_{i=1}^{n} e_i\right) = 2\hat{\beta}_1(0 - 0)$$

$$= 0$$

 $\Rightarrow SST = SSR + SSE$ Where $SSR = \hat{\beta}_1^2 S_{xx}$ and $SSE = \sum_{i=1}^n e_i^2$ We will now consider the ratio (dividing top/bottom by number of degrees of freedom) $\frac{SSR}{1}$

$$\frac{1}{SSE/n-2}$$
Note: $\hat{\sigma}^2 = \frac{SSE}{n-2} = \frac{1}{n-2} \sum_{i=1}^n e_i^2$
Recall $E(\hat{\sigma}^2) = \sigma^2 \Rightarrow E\left(\frac{SSE}{n-2}\right) = \sigma^2$
 $E(SSR) = E(\hat{\beta}_1^2 S_{xx}) = S_{xx}E(\hat{\beta}_1^2) = S_{xx}\left(\operatorname{Var}(\hat{\beta}_1) + E^2(\hat{\beta}_1)\right) = S_{xx}\left(\frac{\sigma^2}{S_{xx}} + \beta_1^2\right) = \sigma^2 + \beta_1^2 S_{xx}$
So if $\beta_1 \neq 0$, the numerator will be greater than the denominator. Otherwise it will be close to

0

Distribution of the Ratio

$$N^{2}(0,1) = \chi_{1}^{2}(1)$$

$$\sum_{i=1}^{n} \chi_{1}^{2}(1) = \chi^{2}(n)$$

$$\frac{\chi^{2}(m)/m}{\chi^{2}(n)/n} = F(m,n)$$
Under the $H_{0}: \beta_{1} = 0$,
$$\frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{V(\hat{\beta}_{1})}} = \frac{\hat{\beta}_{1}}{\sqrt{V(\hat{\beta}_{1})}} \sim N(0,1) \Rightarrow \frac{\hat{\beta}_{1}^{2}}{V(\hat{\beta}_{1})} \sim \chi^{2}(1)$$

$$V(\hat{\beta}_{1}) = \frac{\sigma^{2}}{S_{xx}}$$

$$\Rightarrow \frac{\hat{\beta}_{1}^{2}S_{xx}}{\sigma^{2}} \sim \chi^{2}(1) \Rightarrow \frac{SSR}{\sigma^{2}} \sim \chi^{2}(1)$$
Also,
$$\epsilon_{i} \sim N(0,\sigma) \Rightarrow \frac{\epsilon_{i}}{\sigma} \sim N(0,1) \Rightarrow \frac{\epsilon_{i}^{2}}{\sigma^{2}} \sim \chi^{2}(1) \Rightarrow \frac{\sum_{i=1}^{n} \epsilon_{i}^{2}}{\sigma^{2}} \sim \chi^{2}(n)$$

$$\Rightarrow \frac{SSE}{\sigma^{2}} = \frac{\sum_{i=1}^{n} e_{i}^{2}}{\sigma^{2}} \sim \chi^{2}(n-2)$$
Note: SSR is independent of SSE

 $\Rightarrow \frac{\frac{SSR}{\sigma^2}}{\frac{SSE}{\sigma^2}} = \frac{\frac{SSR}{1}}{\frac{SSE}{n-2}} \sim F(1, n-2)$ Aside: Sometimes write $MSR = \frac{\frac{SSR}{1}}{1} = Mean \text{ Squared Regression}$ $MSF = \frac{\frac{SSF}{n-2}}{n-2} = Mean \text{ Squared Error}$ so that $F = \frac{MSR}{MSE} \sim F(1, n-2)$

Rule

Compute

$$F^{2} = \frac{\frac{\text{SSR}}{1}}{\frac{\text{SSE}}{n-2}}$$

If $F^{*} > F_{\alpha}(1, n-2)$, reject H_{0}

Last Class:

ANOVA

F-Statistic = $\frac{\text{MSR}}{\text{MSE}} = \frac{\frac{\text{SSR}}{1}}{\frac{\text{SSE}}{n-2}}$

Coefficient of Determination

 $R^2 = 1 - \frac{\text{SSE}}{\text{SST}} = \frac{\text{SSR}}{\text{SST}}$ is a measure of goodness of fit. Properties

- i) $0 \le R^2 \le 1$ ii) $R^2 = 1$ iff SSE = $0 \Leftrightarrow \text{All } e_i = 0$ (perfect fit) iii) $R^2 = 0$ iff SSR = $0 \Rightarrow \hat{\mu}_i = \bar{y}$ (flat fitted line) $\left(S_{rv}\right)^2$

iv)
$$R^{2} = \frac{SSR}{SST} = \frac{\hat{\beta}_{1}^{2} S_{xx}}{S_{yy}} = \frac{\left(\frac{S_{xy}}{S_{xx}}\right)^{2} S_{xx}}{S_{yy}} = \frac{S_{xy}^{2}}{S_{xx} S_{yy}} = \left(\frac{S_{xy}}{\sqrt{S_{xx} S_{yy}}}\right)^{2} = r^{2}$$

 $SSR = \sum_{\substack{i=1\\n}} (\hat{\mu}_{i} - \bar{y})^{2}$
 $SST = \sum_{\substack{i=1\\i=1}} (y_{i} - \bar{y})^{2}$

Back to Tutorial 1

Q8 Predicted Value
=
$$\hat{\beta}_0 + \hat{\beta}_1 120 = \dots = 1637.687$$

95% *PI*

$$\begin{split} \hat{y}_p &\pm t_{0.025}(98) \sqrt{\hat{V}(\hat{y}_p - y_p)} \\ \hat{V}(\hat{y}_p - y_p) &= \sigma^2 \left(1 + \frac{1}{n} + \frac{(120 - \bar{x})^2}{S_{xx}} \right) \\ &\Rightarrow 1637.687 \pm 1.9896 \times 428.365 \Rightarrow (787.587, 2487.767) \end{split}$$

Review of Matrix Algebra

May 28, 2014 1:41 PM

Important Results

Notation

 $A_{m \times n} = (a_{ij})_{m \times n} \leftarrow$ matrix of constants. m rows and n columns

 $\begin{array}{l} x = (x_1, \dots, x_n) \\ y = (y_1, \dots, y_n) \end{array}$ vectors of constants

- i) $A_{n \times n}$ is symmetric if $A^T = A$
- ii) Orthogonal vectors and matrices: \rightarrow 2 vectors are orthogonal if $x^T y = 0$ \rightarrow Orthogonal Matrices: *A* is orthogonal iff $A^T A = A A^T = I$
- iii) Vectors $x_1, x_2, ..., x_n$ are linearly independent iff $c_1x_1 + c_2x_2 + \cdots + c_nx_n = 0 \Rightarrow c_1 = c_2 = c_1 = c_2$ $\cdots = c_n = 0$
- iv) Rank of a matrix rank $(A_{m \times n}) = \max \#$ of linearly independent columns
- v) Trace tr($A_{m \times m}$) = $\sum_{i=1}^{m} a_{ii}$ $tr(A_{m \times n} B_{n \times m}) = tr(B_{n \times m} A_{m \times n})$ If $c \in \mathbb{R}$, $\operatorname{tr}(c) = c$
- vi) Eigenvectors and Eigenvalues of a square matrix. A vector $v \neq 0$ is called an eigenvector of A if $\exists \lambda \not i Av = \lambda v$
- vii) Spectral Decomposition: eigenvalue of a symmetric matrix.

For a symmetric matrix $A_{n \times n}$, the eigenvalues $\lambda_1, \dots, \lambda_n$ are then Furthermore, \exists an orthogonal matrix $P \ni A = P \Lambda P^T$ where $\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$ and P =

 $[v_1, v_2, \dots, v_n]$

- viii) Idempotent Matrix: $A_{n \times n}$ is idempotent if $A^2 = A \cdot A = A$
 - a. If *A* is idempotent then all eigenvalues are either zero or one. Proof

$$\lambda v = Av = AAv = A(\lambda v) = \lambda Av = \lambda^2 v$$
$$v \neq 0 \Rightarrow \lambda = \lambda^2 \Rightarrow \lambda \in \{0, 1\}$$

b. If *A* idempotent, \exists an orthogonal matrix $P \ni A = P \wedge P^T$ where

$$\Lambda = \begin{bmatrix} 1 & & & & & \\ & 1 & & & & \\ & & 1 & & & \\ & & 0 & & & \\ & 0 & & \ddots & & \\ & 0 & & & 0 \end{bmatrix}$$

 0^{L} tr(A) = tr(PAP^T) = tr(PP^TA) = tr(IA) = tr(A) = $\sum_{i=1}^{n} \lambda_i$ = # of 1 eigenvalues

Random Vectors

May 28, 2014 2:11 PM

Random Vector

Suppose $y_1, ..., y_n$ are random variables such that $E(y_i) = \mu_i, V(y_i) = \sigma_i^2$ and $Cov(y_i, y_j) = \sigma_{ij}$ $y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \end{bmatrix} = (y_1, \dots, y_n)^T$ is called a **random vector.**

Expected value of a random vector:

$$E(y) = \begin{bmatrix} E(y_1) \\ E(y_2) \\ \vdots \\ E(y_n) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}$$

Variance-Covariance Matrix

$$V(y) = \begin{bmatrix} \sigma_{11}^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22}^2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn}^2 \end{bmatrix} = \{\text{Cov}(y_i, y_j)\}_{n \times n}$$

• It is a symmetric matrix
• If y_1, \dots, y_n are uncorrelated then

$$\text{Cov}(y_i, y_j) = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

$$\Rightarrow V(y) = \begin{bmatrix} \sigma_{11}^{-1} & 0 & \cdots & 0\\ 0 & \sigma_{22}^{2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \sigma_{nn}^{2} \end{bmatrix}$$

$$\circ \quad \text{If } \sigma_{i}^{2} = \sigma^{2} \text{ then } V(y) = \sigma^{2} I_{n \times n}$$

Can write

• If

 $V(y) = E[(y-\mu)(y-\mu)^T]$ Results on E(y) and V(y)Notation: $y = (y_1, \dots, y_n) \leftarrow random vector$ $A = \{a_{ij}\}_{p \times n} \leftarrow \text{matrix of constants}$ $b = (b_1, \dots, b_p)^T \leftarrow \text{vector of constants}$ $c = (c_1, \dots, c_n) \leftarrow \text{vector of constants}$ Results i) $E(A_{p\times n}y_{1\times n} + b_{p\times 1}) = AE(y) + b$ ii) Var(y+c) + Var(y)iii) $Var(Ay) = AV(y)A^T$ $Var(Ay) = E[(Ay - A\mu)(Ay - A\mu)^{T}] = E[A(y - \mu) \cdot [A(y - \mu)]^{T}] = AE((y - \mu)(y - \mu)^{T})A^{T} = AV(y)A^{T}$

Aside - Question about homework $\sum_{n=2}^{n}$

$$\hat{\sigma}^{2} = \frac{\sum_{i=1}^{n} e_{i}^{2}}{n-1}$$

$$E[\hat{\sigma}^{2}] = \sigma^{2} \iff E\left[\sum_{i=1}^{n} (y_{i} - \hat{\beta}x_{i})^{2}\right] = (n-1)\sigma^{2}$$

$$\sum_{i=1}^{n} (y_{i} - \hat{\beta}x_{i})^{2} = \sum_{i=1}^{n} y_{i}^{2} + \hat{\beta}^{2} \sum_{i=1}^{n} x_{i}^{2} - 2\hat{\beta} \sum_{i=1}^{n} x_{i}y_{i}$$
We repose

 y_i and \overline{y} are not independent

Multivariate Normal

May 30, 2014 1:31 PM

Multivariate Normal Distribution

If $y = (y_1, ..., y_n)^T$ follows a multivariate normal distribution then

 $f(y) = \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} |\Sigma|^{-\frac{1}{2}} e^{-\frac{1}{2}(y-\mu)^T \Sigma^{-1}(y-\mu)}$ where $\mu = E(y)$ = mean vector; and $\Sigma = V(y)$ = Variance-Covariance matrix We write $y \sim MVN(\mu, \Sigma)$ 1) If $y \sim MVN(\mu, \Sigma)$, then $u = Ay \sim MVN(A\mu, A\Sigma A^T)$

2) If $y \sim MVN(\mu, \Sigma)$, zero correlation implies independence of y_1, \dots, y_n

3) If $y \sim MVN(\mu, \Sigma)$, and u = Ay, w = By, then u and w are independent iff $AV(y)B^T = 0$ Proof of 3)

 $Cov(\boldsymbol{u}, \boldsymbol{w}) = E[(\boldsymbol{u} - A\boldsymbol{\mu})(\boldsymbol{w} - B\boldsymbol{\mu})^T] = AV(y)B^T$ So if Cov = 0 then we have independence

4) If
$$y \sim MVN(\mathbf{0}, I)$$
, then

i)
$$y_1, ..., y_n \stackrel{ndu}{\sim} N(0, 1)$$

ii) $y^T y = \sum_{i=1}^n y_i^2 \sim \chi^2(n)$

- iii) If $\mathbf{z} = P\mathbf{y}$, where *P* is orthogonal $(PP^T = P^T P = I)$ then $\mathbf{z} \sim MVN(\mathbf{0}, I)$
- iv) If $\mathbf{y} \sim MVN(\mathbf{0}, \Sigma)$, where $\Sigma = P \Lambda P^T$ (Recall that Σ is symmetric $\Rightarrow P$ is orthogonal) then

$$\left(\Lambda^{-\frac{1}{2}P^T}\right)_{y \sim MVN(0,I)}$$

Matrix and Vector Differentiation

1)
$$f(y) = f(y_1, y_2, ..., y_n)$$

$$\Rightarrow \frac{d}{dy} f(y) = \begin{bmatrix} \frac{\partial}{\partial y_1} f(y) \\ \frac{\partial}{\partial y_2} f(y) \\ \vdots \\ \frac{\partial}{\partial y_n} f(y) \end{bmatrix}$$

2)
$$c = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

$$f(y) = c^T y = \sum_{i=1}^n c_i y_i$$

$$\frac{d}{dy} f(y) = \frac{d}{dy} c^T y = c$$

3)
$$A = (a_{ij})_{n \times n}$$

$$f(y) = y^T A y = \sum_{i=1}^n \sum_{j=1}^n a_{ij} y_i y_j$$

$$\frac{d}{dy} f(y) = \frac{d}{dy} y^T A y = 2A y$$

Multiple Linear Regression

May 30, 2014 2:04 PM

Multiple linear regression (MLR) assumes that y is linearly related to a combination of x_i 's

- *y* = regression variate
- $x_1, ..., x_p$ = predictive/explanatory variables
- Data { $(y_i, x_{i1}, x_{i2}, \dots, x_{ip}), i = 1, \dots, n$ }

Model $y_i\beta_0 + \beta_1 x_i + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon_i$

Assumptions:

- i) $E(\epsilon_i) = 0$
- ii) $V(\epsilon_i) = \sigma^2$
- iii) $\epsilon_1, \dots, \epsilon_n$ are independent of each other $\Rightarrow y_1, \dots, y_n$ are independent
- iv) Stronger Distribution Assumption:

 $\epsilon_1, \epsilon_2, \dots, \epsilon_n \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$ $\Rightarrow y_1, \dots, y_n \text{ are independently } N(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p, \sigma^2)$ NB: If iv) is true then i), ii), and iii) are true.

Interpretation of Parameters

$$E[y_i|x_{i1}, x_{i2}, \dots, x_{ip}] = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

$$E[y_i|x_{i1} + c, x_{i2}, \dots, x_{ip}] = \beta_0 + \beta_1 (x_{i1} + c) + \dots + \beta_p x_{ip}$$

$$\Rightarrow E[y_i|x_{i1} + c, x_{i2}, \dots, x_{ip}] - E[y_i|x_{i1}, x_{i2}, \dots, x_{ip}] = \beta_1 c$$

Let $c = 1 \Rightarrow \beta_1$ is the average change in the response when x_1 is increased by 1 unit and all other *x*'s are held fixed.

Matrix Form

$$\mathbf{y} = X\mathbf{\beta} + \mathbf{\epsilon}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}, \quad \mathbf{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}_{n \times (n+1)}$$

Assumptions

- i) $E(\boldsymbol{\epsilon}) = \mathbf{0} \Rightarrow E(\boldsymbol{y}) = X\boldsymbol{\beta}$
- ii) $V(\boldsymbol{\epsilon}) = \sigma^2 I_{n \times n} \Rightarrow V(\boldsymbol{y}) = V(\boldsymbol{\epsilon}) = \sigma^2 I_{n \times n}$
- iii) $\epsilon_1, \dots, \epsilon_n$ are iid random variables
- iv) $\epsilon \sim \text{MVN}(\mathbf{0}, \sigma^2 I)$

Parameter Estimation

- $\rightarrow \beta_0, \beta_1, \dots, \beta_p \text{ unknown parameters}$ $\rightarrow \hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p \text{ estimates (based on sample)}$
- $\Rightarrow \text{LSE of } \boldsymbol{\beta}. \text{ Find } \hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p \text{ such that}$

$$S(\beta_0,\beta_1,\ldots,\beta_p) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_1 - \cdots - \beta_p x_p)^p$$

is minimal.

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{T}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$

= $(\boldsymbol{y}^{T} - \boldsymbol{\beta}^{T}\boldsymbol{X}^{T})(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) = \boldsymbol{y}^{T}\boldsymbol{y} - \boldsymbol{y}^{T}\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{\beta}^{T}\boldsymbol{X}^{T}\boldsymbol{y} + \boldsymbol{\beta}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{\beta}$
= $\boldsymbol{y}^{T}\boldsymbol{y} - \boldsymbol{y}^{T}\boldsymbol{X}\boldsymbol{\beta} - (\boldsymbol{\beta}^{T}\boldsymbol{X}^{T}\boldsymbol{y})^{T} + \boldsymbol{\beta}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{\beta} = \boldsymbol{y}^{T}\boldsymbol{y} - 2\boldsymbol{y}^{T}\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\beta}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{\beta}$

Note:

 $\frac{d}{d\boldsymbol{\beta}}\boldsymbol{c}^{T}\boldsymbol{\beta}=\boldsymbol{c},\qquad \frac{d}{d\boldsymbol{\beta}}\boldsymbol{\beta}^{T}\boldsymbol{A}\boldsymbol{\beta}=2\boldsymbol{A}\boldsymbol{\beta}$ $\frac{d}{d\boldsymbol{\beta}}S(\boldsymbol{\beta}) = 0 - 2(\boldsymbol{y}^T \boldsymbol{X})^T + 2(\boldsymbol{X}^T \boldsymbol{X})\boldsymbol{\beta}$ Set equal to zero to find $\hat{\beta}$ $\Rightarrow -2X^T y + 2X^T X \hat{\beta} = 0$ $\Rightarrow X^T X \widehat{\boldsymbol{\beta}} = X^T \boldsymbol{\gamma}$ Assume X has full column rank \Rightarrow rank(X) = p + 1Then $X^T X$ has full column rank \Rightarrow rank $(X^T X) = p + 1$ $\Rightarrow X^T X$ is invertible $\Rightarrow (X^T X)^{-1}$ exists and so $\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \boldsymbol{\gamma}$ To find $\hat{\beta}_1, \dots, \hat{\beta}_n$, the the ith entry of $\hat{\beta}$ Properties of the LSE 1) Expected value of $\hat{\beta}$ $E(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta} \Rightarrow \widehat{\boldsymbol{\beta}}$ is unbiased for $\boldsymbol{\beta}$. Proof: $E(\widehat{\boldsymbol{\beta}}) = E((X^T X)^{-1} X^T \boldsymbol{y}) = (X^T X)^{-1} X^T E(\boldsymbol{y}) = (X^T X)^{-1} (X^T X) \boldsymbol{\beta} = I \boldsymbol{\beta} = \boldsymbol{\beta}$ 2) Variance of $\hat{\boldsymbol{\beta}}$: $V(\hat{\boldsymbol{\beta}}) = \sigma^2 (X^T X)^{-1}$ Proof: $V(\widehat{\boldsymbol{\beta}}) = V([(X^T X)^{-1} X^T] \boldsymbol{y}) = [(X^T X)^{-1} X^T] \underbrace{V(\boldsymbol{y})}_{\sigma^2 I} \underbrace{[(X^T X)^{-1} X^T]^T}_{X(X^T X)^{-1}} = \sigma^2 [(X^T X)^{-1}] = \sigma^2 (X^T X)^{-1}$ An estimate for σ^2 $\sigma^{2} = \frac{\sum_{i=1}^{n} e_{i}^{2}}{n - (p+1)} = \frac{e^{T}e}{n - p - 1}$ Where $\boldsymbol{e} = \boldsymbol{y} - X \hat{\boldsymbol{\beta}}$ An estimate for the variance of $\hat{\beta}$ is $\hat{V}(\hat{\boldsymbol{\beta}}) = \hat{\sigma}^2 (X^T X)^{-1}$ **Useful Results** Let $H = X(X^T X)^{-1} X^T$ (hat matrix) Then i) fitted values: $\hat{\mu} = X\hat{\beta} = X(X^T X)^{-1} X^T y = Hy$ ii) residuals: $e = y - X\widehat{\beta} = y - \widehat{\mu} = y - Hy = (I - H)y$ Note: i) H is idempotent: $HH = X(X^{T}X)^{-1}X^{T}X(X^{T}X)^{-1}X^{T} = X(X^{T}X)^{-1}X^{T} = H$ ii) *H* is symmetric $\Rightarrow H^T = H$ iii) (I - H) is idempotent $(I - H)(I - H) = I^2 - IH - HI + H^2 = I - 2H + H^2 = I - H$ Further Results and Consequences of Least Squares i) Fitted Values: $\widehat{\boldsymbol{\mu}} = X\widehat{\boldsymbol{\beta}} = H\boldsymbol{y}$ $E(\widehat{\boldsymbol{\mu}}) = E(X\widehat{\boldsymbol{\beta}}) = XE(\widehat{\boldsymbol{\beta}}) = X\boldsymbol{\beta} = \boldsymbol{\mu}$ $V(\hat{\boldsymbol{\mu}}) = V(H\boldsymbol{y}) = HV(\boldsymbol{y})H^T = \sigma^2 H H^T = \sigma^2 H^2 = \sigma^2 H$ ii) Residuals: $\boldsymbol{e} = \boldsymbol{y} - \widehat{\boldsymbol{\mu}} = (I - H)\boldsymbol{y}$

STAT 331 Page 19

 $V(e) = ((I - H)y) = (I - H)V(y)(I - H)^{T} = \sigma^{2}(I - H)^{2} = \sigma^{2}(I - H)$

 $E(\boldsymbol{e}) = (I - H)E(\boldsymbol{y}) = X\boldsymbol{\beta} - HX\boldsymbol{\beta} = (X - X)\boldsymbol{\beta} = \boldsymbol{0}$

iii)
$$X^T e = 0$$
 and $\hat{\mu}e = 0$
 $X^T e = X^T (I + H)y = (X^T - X^T H)y = (X^T - X^T)y = 0$
 $\hat{\mu}e = (X\hat{\mu})^T e = X(\hat{\mu}e) = 0$
?! think should be $\hat{\mu}^T e = (X\hat{\mu})^T e = \hat{\mu}^T X^T e = 0$
iv) Sampling distribution of $\hat{\mu}$
Note: $y = VMV(X(\hat{\mu}, \sigma^2(X^TX))^{-1})$,
 $\hat{\mu} = (X^TX)^{-1}X^T y \sim MVN(\hat{\mu}, \sigma^2(X^TX))^{-1})$,
 $\hat{\mu} = (X^TX)^{-1}X^T y \sim MVN(\hat{\mu}, \sigma^2(X^TX))^{-1})$,
 $\hat{\mu} = (X^TX)^{-1}X^T y \sim MVN(\hat{\mu}, \sigma^2(X^TX))^{-1})$,
 $\hat{\mu} = (I - H)y \sim MVN(\hat{\mu}, \sigma^2(X^TX))^{-1})$,
 $\hat{\mu} = (I - H)y \sim MVN(\hat{\mu}, \sigma^2(X^TX))^{-1}X^T (I - H)y)$
Since $\hat{\mu}$ and e are MVN we need to show
 $Cov(\hat{\mu}, e) = 0$ for independent
 $Cov(\hat{\mu}, e) = 0$ for independent
 $Cov(\hat{\mu}, e) = 0$ for independent
 $(Cov(\hat{\mu}, e)) = Cov((X^TX)^{-1}X^Ty, (I - H)y) = (X^TX)^{-1}X^T V(y)(I - H)^T$
 $= \sigma^2((X^TX)^{-1}X^T - (X^TX)^{-1}X^TH) = 0$
 $= 1$ Independent
 $\hat{\mu} = \hat{\mu} = \frac{1}{n - p - 1} \sum_{i=1}^{n} e_i^2 = \frac{1}{n - p - 1} e^T e$
Is unbiased for σ^2
Proof
Recall $V(e) = \sigma^2(I - H)$
By definition, it is
 $V(e) \in E \left[(e - E(e))(e - E(e) \right]^T \right] = E(ee^T)$
Now, $E(e^T e) = E(tr(e^T e)) = E(tr(ee^T)) = tr(E(e^T)) = tr(V(e)) = tr(((I - H))\sigma^2) = \sigma^2(n - tr(X(X^TX)^{-1}X^T)) = \sigma^2(n - tr(X(x^TX)^{$

viii) Gauss-Markov Theorem

Recall $\hat{\beta} = (X^T X)^{-1} X^T y$. This is the best **linear unbiased** estimator of β . In other words, of all linear unbiased estimators of β , $\hat{\beta}$ has the smallest variance. *Proof:*

Consider another linear estimator $\widehat{\boldsymbol{\theta}} = M\boldsymbol{y}$, where $M = (X^TX)^{-1}X^T + A$ Note: $E(\widehat{\boldsymbol{\theta}}) = E(M\boldsymbol{y}) = (X^TX)^{-1}X^TX\boldsymbol{\beta} + AX\boldsymbol{\beta} = \boldsymbol{\beta} + AX\boldsymbol{\beta}$ So this is unbiased iff $AX = \boldsymbol{0}$ Now, $V(\widehat{\boldsymbol{\theta}}) = MV(\boldsymbol{y})M^T = \sigma^2 MM^T = \sigma^2 ((X^TX)^{-1}X^T + A)(X(X^TX)^{-1} + A^T)$ $= \sigma^2 \left((X^TX)^{-1} + (X^TX)^{-1}\underbrace{X^TA^T}_{0} + \underbrace{AX}_{0}(X^TX)^{-1} + AA^T \right) = \sigma^2 (X^TX)^{-1} + \sigma^2 AA^T$ $= V(\widehat{\boldsymbol{\beta}}) + \sigma^2 AA^T$ Consider a linear predictor $\boldsymbol{x}^T\widehat{\boldsymbol{\theta}}$ Now, $V(\boldsymbol{x}^T\widehat{\boldsymbol{\theta}}) = \boldsymbol{x}^T V(\widehat{\boldsymbol{\theta}})\boldsymbol{x} = \boldsymbol{x}^T V(\boldsymbol{\beta}^T)\boldsymbol{x} + \boldsymbol{x}^TAA^T\boldsymbol{x} = V(\boldsymbol{x}^T\widehat{\boldsymbol{\beta}}) + \underbrace{\sigma^2 (A^T\boldsymbol{x})^T(A^T\boldsymbol{x})}_{\geq 0}$ $\Rightarrow V(\boldsymbol{x}^T\widehat{\boldsymbol{\theta}}) \geq V(\boldsymbol{x}^T\widehat{\boldsymbol{\beta}})$

 $\Rightarrow \hat{\boldsymbol{\beta}}$ produces the smallest variance

Notes on Handout

June 11, 2014 1:45 PM

$$\begin{split} \hat{\beta}_{i} &\sim N(\beta_{i}, \sigma^{2} v_{ii}) \\ \hat{\beta}_{i} &= \beta_{i} \\ \sigma \sqrt{v_{ii}} \sim N(0, 1) \\ t(k) &= \frac{N(0, 1)}{\sqrt{\frac{\chi^{2}(k)}{k}}} \\ \\ \sqrt{\frac{\left(\frac{(n-p-1)\hat{\sigma}^{2}}{\sigma}\right)}{n-p-1}} \sim \sqrt{\frac{\chi^{2}(n-p-1)}{n-p-1}} \\ &\Rightarrow \frac{\hat{\beta}_{i} - \beta_{i}}{\sigma \sqrt{v_{ii}}} \\ &\Rightarrow \frac{\frac{\hat{\beta}_{i} - \beta_{i}}{\sigma \sqrt{v_{ii}}}}{\sqrt{\frac{\left(\frac{(n-p-1)\hat{\sigma}^{2}}{\sigma}\right)}{n-p-1}}} = \frac{\hat{\beta}_{i} - \beta_{i}}{\hat{\sigma} \sqrt{v_{ii}}} \sim \frac{N(0, 1)}{\sqrt{\frac{\chi^{2}(n-p-1)}{n-p-1}}} = t(n-p-1) \end{split}$$

 $V(y_* - \hat{y}_*) = V(y_*) + V(\hat{y}_*) = \sigma^2 + V(\mathbf{x}_*^T \hat{\boldsymbol{\beta}}) = \sigma^2 + \mathbf{x}_*^T V(\hat{\boldsymbol{\beta}}) \mathbf{x}_* = \sigma^2 (1 + \mathbf{x}_*^T (X^T X)^{-1} \mathbf{x}_*)$ Aside:

$$\begin{aligned} \hat{\mu}_{*} &= \hat{\beta}_{0} + \hat{\beta}_{1} x_{*} = \begin{bmatrix} 1 & x_{*} \end{bmatrix} \begin{bmatrix} \hat{\beta}_{0} \\ \hat{\beta}_{1} \end{bmatrix} \\ \text{In matrix form,} \\ V(\hat{\beta}) &= \begin{bmatrix} V(\hat{\beta}_{0}) & \text{Cov}(\hat{\beta}_{0}, \hat{\beta}_{1}) \\ \text{Cov}(\hat{\beta}_{0}, \hat{\beta}_{1}) & V(\hat{\beta}_{1}) \end{bmatrix} \\ \Rightarrow V(\hat{\mu}) &= \mathbf{x}_{*}^{T} V(\hat{\beta}) \mathbf{x}_{*} = \begin{bmatrix} 1 & x_{*} \end{bmatrix} \begin{bmatrix} v_{00} & v_{01} \\ v_{10} & v_{11} \end{bmatrix} \begin{bmatrix} 1 \\ x_{*} \end{bmatrix} = v_{00} + v_{10} x_{*} + v_{01} x_{*} + v_{11} x_{*}^{2} \\ &= V(\hat{\beta}_{0}) + 2 \text{Cov}(\hat{\beta}_{0}, \hat{\beta}_{1}) x_{*} + x_{*}^{2} V(\hat{\beta}_{1}) \end{aligned}$$

Note

ANOVA has more power than doing 'p' individual t-tests (of $\beta_i = 0$ vs $\beta_i \neq 0$)

Multicollinearity

June 13, 2014 1:02 PM

Multicollinearity

We assume the columns of *X* were linearly independent $\Rightarrow (X^T X)^{-1}$ would exist $\Rightarrow \hat{\beta} = (X^T X)^{-1} X^T \gamma$ where

$$X = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{bmatrix}_{n \times (p+1)} = \begin{bmatrix} x_0 & x_1 & \cdots & x_p \end{bmatrix}$$

Two Cases

1) Exact linear dependence. Suppose at least one of the x_j 's is a linear combination of the other x_j 's. $\Rightarrow |X^T X| = 0$ or ranke $<math>\Rightarrow \hat{\beta} = (X^T X)^{-1} X^T y$ does not exist

e.g. Suppose $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$ and $x_1 = 5 + 3x_2$ (perfect linear dependence) $\Rightarrow y = \beta_0 + \beta_1 (5 + 3x_2) + \beta_2 x_2 + \epsilon = \underbrace{(\beta_0 + 5\beta_1)}_{\beta_0^*} + \underbrace{(3\beta_1 + \beta_2)}_{\beta_1^*} x_2 + \epsilon$

Remedy: Drop x_1 if x_2 is included since x_1 is redundant

2) Non-linear Dependence

Suppose there exists a near (but not perfect) linear relationship between one x_j and the other x_j 's.

Then $(X^T X)^{-1}$ still exists. However, $|X^T X| \approx 0 \Rightarrow \frac{1}{|X^T X|}$ will be very large.

Consequences

- i) Numerically / Computationally unstable
- ii) Incorrect signs of $\hat{\beta}_i$'s (doesn't agree with what's plausible)
- iii) $\hat{\beta}_i$'s will be sensitive to small changes in the data
- iv) Implausible values/magnitudes for $\hat{\beta}_i$'s
- v) Since $V(\hat{\beta}) = \sigma^2 (X^T X)^{-1}$, variance estimates tend to be inflated.
 - a) Important predictors may show up insignificant.
 - b) Confidence Intervals are very wide (which makes it useless for interpretation of β_j 's

Remedies for Multicollinearity

- i) Check for pairwise correlation of predictors. In R, cov(X) ← Variance-Covariance Matrix cor(X) ← Correlation Matrix plot(X) ← Pairwise scatter plots
- ii) A better measure:
 - Variance Inflation Factors (VIF)
 - a) Treat x_i as the response
 - b) Regress x_j on the other predictors \Rightarrow Model $x_j = \alpha_0 + \alpha_1 x_1 + \dots + \alpha_{j-1} x_{j-1} + \alpha_{j+1} x_{j+1} + \dots + \alpha_p x_p + \epsilon^*$
 - c) Denote the model R-squared as R_j^2 Compute VIF_j = $\frac{1}{1-R_i^2}$, called the variance inflation factor
 - d) Calculate VIF_j for j = 1, ..., p

<u>Rule of Thumb</u>

 $\max_{1 \le j \le p} \{ VIF_j \} \ge 10 \text{ evidence of multicollinearity}$

- Note: It can be shown that $\hat{V}(\hat{\beta}_j)$ is proportional to $\frac{1}{1-R_j^2} = \text{VIF}_j$ i) $R_j^2 = 0 \Rightarrow \text{no inflation} \Rightarrow \text{VIF}_j = 1 \Rightarrow x_j$ is linearly independent of the other predictors
 - ii) $R_j^2 > 0 \Rightarrow \text{VIF} > 1 \Rightarrow \text{inflation in the variance estimate of } \hat{\beta}_j$

Dummy Variable Regression

June 20, 2014 1:09 PM

Idea: Extend the linear regression model to include categorical variables (factors) via indicator variables.

Example: Factors + Continuous Variables

Data: $\begin{cases} \text{Fuel Consumption} \leftarrow \text{Response } (y) \\ \text{Engine Size} \leftarrow \text{Predictor } (x_1) \\ \text{Make} \leftarrow \text{Predictor, Categorical } (x_2) \end{cases}$ Suppose n = 10 cases Make #1: y_1, y_2, y_3, y_4 (BMW) Make #2: y_5, \dots, y_{10} (Audi) Let $x_{i2} = \begin{cases} 0 & i = 1, 2, 3, 4 \\ 1 & i = 5, \dots, 10 \end{cases}$

Case #1

Assume make has an effect on *y*, and it is the same regardless of engine size (the effect of enginge size of y doesn't depend on make)

 $E(y_i) = \begin{cases} \beta_0 + \beta_1 x_{i1} &, i = 1, 2, 3, 4\\ \beta_0 + \beta_2 + \beta_1 x_{i1} &, i = 5, ..., 10 \end{cases}$ $\Rightarrow E(y_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}$ $\Rightarrow \text{Model } y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i, i = 1, ..., 10$

Matrix Form: $y + X\beta + \epsilon$

We can test for example:

 $H_0: \beta_2 = 0$ (does make have an affect on *y*?)

Case #2

Assume make has an effect on *y*, but this effect changes with engine size (called an **interaction**)

$$E(y_2) = \begin{cases} \beta_0 + \beta_1 x_{i1} &, i = 1, 2, 3, 4\\ \beta_0 + (\beta_1 + \beta_3) x_{i1} + \beta_2 x_{i2} &, i = 5, \dots, 10 \end{cases}$$

 $E(y_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{12} + \beta_3 x_{i1} x_{i2}$

2-way interaction Matrix Form: $y + X\beta + \epsilon$

$$\underline{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \qquad \underline{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}, \qquad \underline{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}, \qquad X = \begin{bmatrix} 1 & x_{11} & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{41} & 0 & 0 \\ 1 & x_{51} & 1 & x_{51} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{10,1} & 1 & x_{10,1} \end{bmatrix}$$

Can test for example $H_0: \beta_3 = 0$ (Does the effect of enginge size on *y* depend on make?)

Example: Comparing Several Groups

Data: $\begin{cases} \text{Diet} \leftarrow \text{predictor, categorical } (x) \\ \text{Weight} \leftarrow \text{response } (y) \end{cases}$ Suppose n = 10 persons. Diet #1: *y*₁, *y*₂, *y*₃ Diet #2: *y*₄, *y*₅, *y*₆ Diet #3: y_7, y_8, y_9, y_{10} Question: Does diet affect weight gain? Let $E(y_i) = \begin{cases} \mu_1 & i = 1,2,3 \\ \mu_2 & i = 4,5,6 \\ \mu_3 & i = 7,8,9,10 \end{cases}$ Can test $H_0: \mu_1 = \mu_2 = \mu_3$ (Does average weight gained depend on diet?)

Model:

Formulation #1
Let
$$x_{i1} = \begin{cases} 1 & i = 1,2,3 \\ 0 & \text{otherwise} \end{cases}$$

 $x_{i2} = \begin{cases} 1 & i = 4,5,6 \\ 0 & \text{otherwise} \end{cases}$
 $x_{i3} = \begin{cases} 1 & i = 7,8,9,10 \\ 0 & \text{otherwise} \end{cases}$
 $y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3}$
(No intercept)

Matrix form:
$$y + X\beta + \epsilon$$

$$\underline{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \underline{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}, \quad \underline{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}, \quad X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Aside: Had we included the intercept, we would have had a column of 1s in X. However, the sum of the current columns of X gives this columns of 1's \Rightarrow Redundant information.

1 0 0

Note: $\mu_1 = \beta_1, \mu_2 = \beta_2, \mu_3 = \beta_3$ \Rightarrow Testing $H_0 = \mu_1 = \mu_2 = \mu_3$ is equal to testing $H_0: \beta_1 = \beta_2 = \beta_3$

Formulation #2 (More Common)

Let $x_1 = \begin{cases} 1 & i = 1,2,3 \\ 0 & \text{otherwise} \end{cases}$, $x_2 = \begin{cases} 1 & i = 4,5,6 \\ 0 & \text{otherwise} \end{cases}$ Model: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$, i = 1, 2, ..., 10Matrix form: $\underline{y} = X\underline{\beta} + \underline{\epsilon}$

$$\underline{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \qquad \underline{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}, \qquad \underline{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}, \qquad X = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

 $\mu_1 = \beta_0 + \beta_1$, $\mu_2 = \beta_0 + \beta_2$, $\mu_3 = \beta_0$ Note: Diet *x* is the base case in this formulation. β_0 is the average weight gained under diet 3 $\beta_1 = \mu_1 - \mu_3$ is the excess average weight gained under diet 1 relative to diet 3. $\beta_2 = \mu_2 - \mu_3$ is the excess average weight gained under diet 2 relative to diet 3

Testing $h_0: \mu_1 = \mu_2 = \mu_3$ is equivalent to testing $H_0: \beta_1 = \beta_2 = 0$ (ANOVA F-test provided in the R summary output)

Residual Analysis

June 25, 2014 1:16 PM

True error $\epsilon_i = y_i - \mu_i$, $\mu_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$ Model assumption: $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ Estimated Errors / Residuals $e_i = y_i - \hat{\mu}_i$ Properties:

1)
$$\sum_{\substack{i=1\\n}} e_i = 0 \Rightarrow \overline{e} = 0$$

2)
$$\sum_{\substack{i=1\\n}} e_i x_{ik} = 0, \text{ for } k = 1, 2, \dots, p$$

$$\Rightarrow \operatorname{Cor}(\underline{e}, \underline{x}_k) = 0$$

3)
$$\sum_{i=1}^{n} e_{i}\hat{\mu}_{i} = 0$$

$$\Rightarrow \operatorname{Cor}(\underline{e}, \underline{\hat{\mu}}) = 0$$

4)
$$\underline{e} = y - \underline{\hat{\mu}} = y - Hy = (I - H)y \text{ where } H = X(X^{T}X)^{-1}X^{T}$$

$$\Rightarrow \underline{e} \sim MVN(0, (I - H)\sigma^2) \Rightarrow e_i \sim N(0, (1 - h_{ii})\sigma^2) \text{ and } Cov(e_i, e_j) = -h_{ij}\sigma^2$$

5) **Studentized Residuals** $d_i = \frac{e_i}{1 - \frac{e_i}{1 - \frac{1}{1 -$

$$=\frac{e_i}{\hat{\sigma}\sqrt{1-h_{ii}}}, \qquad i=1,2,\dots,n$$

Note: d_i 's do note follow a t-distribution since the numerator and denominator are not independent of each other.

 $d_1, ..., d_n \stackrel{\text{iid}}{\approx} N(0, 1)$ (approximate) It is useful to plot:

- i) the d_i 's and if the assumptions are not violated, one should see random scatter
- ii) e_i 's vs each predictor (should also see random scatter)
- iii) e_i 's vs $\hat{\mu}_i$'s (should also see random scatter)

 $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon$

 \rightarrow Estimate Residuals $\rightarrow e_i$'s

 \rightarrow Consider another predictor x_3

To determine how useful the addition of x_3 would be to the model, plot e vs. x_3 . If linear, consider adding x_3 to the model. (Conditional effect of x_3 on y given x_1 and x_2).

Added Variable Plots

Instead of plotting \underline{e} vs \underline{x}_3 , plot \underline{e} vs \underline{e}^* where e_i^* are the residuals of the model $x_3 = \beta_0^* + \beta_1^* x_1 + \beta_2^* x_2 + \epsilon^*$

In R: library(car) avPlot(mod)

Variance Stabilizing Transformations

June 27, 2014 1:52 PM

Variance Stabilizing Transformation

Dealing with non-constant variance.

Model: $y_i = \beta_0 + beta_1 x_i + \epsilon_i$, $\epsilon_i^{iid} N(0, \sigma^2)$ Suppose we want to predict the value of y at $x = x^*$. Would the width of the prediction interval be overestimated/underestimated based on the model above? Underestimated

 $V(y_i) = \sigma^2 [h(\mu_i)]^2$ variance of y_i is a function of μ_i . Instead of using y, use some function of y, say g(y) $g(y) \approx g(\mu) + g'(\mu)(y - \mu)$ $V(g(y)) = [g'(\mu)]^2 \sigma^2 [h(\mu)]^2$ Want $g'(\mu)h(\mu) = c$, a constnat $\Rightarrow g'(\mu) = \frac{c}{h(\mu)}$ $\Rightarrow g(\mu) = \int \frac{c}{h(\mu)}$ Examples i) $h(\mu) = \mu \Rightarrow g(\mu) = \int \frac{c}{h(\mu)} d\mu = c \ln(\mu)$

i)
$$h(\mu) = \mu \Rightarrow g(\mu) = \int \frac{c}{\mu} dx$$

 $\Rightarrow \text{Try } g(y) = \ln(y)$

ii)
$$h(\mu) = \sqrt{\mu} \Rightarrow g(\mu) = \int \frac{c}{\sqrt{\mu}} d\mu = 2c\sqrt{\mu}$$

 $\Rightarrow \operatorname{Try} g(y) = \sqrt{y}$

Box Cox Transformations

Model $y_i = \mu_i + \epsilon_i$ Box Cox Transformation is a family of power transformations $g(y_i) = \frac{y_i^{\lambda} - 1}{\lambda}$ for some $\lambda \in \mathbb{R}$ Choose λ such that $V(g(y_i))$ is constants. **Notes** i) $\lambda = 1 \Rightarrow$ No transformation ii) $\lambda = \frac{1}{2} \Rightarrow$ Square root transformation iii) $\lambda = 0 \Rightarrow \lim_{\lambda \to 0} g(y_i) = \ln(y_i)$ By L'Hôpital's rule

Estimate λ by maximum likelihood

(MLE) Assume $g(y_i) \sim N(\mu_{i,\lambda}, \sigma_{\lambda}^2)$ The log-likelihood is

$$l(\lambda) = -\frac{1}{2\sigma_{\lambda}^{2}} \sum_{i=1}^{n} (g(y_{i}) - \mu_{i,\lambda})^{2} = -\frac{n}{2} \ln \sigma_{\lambda}^{2} + (\lambda - 1) \sum_{i=1}^{n} \ln y_{i}$$

Maximizing $l(\lambda)$ with respect to λ , β_{λ} , σ_{λ}

 \rightarrow Not easy to do in practice

- \rightarrow Use the profile likelihood instead

 - i) Consider a sequence of λ 's, e.g. $\{-2, -1.9, ..., 1.9, 2\}$ ii) For each λ using $g(y_i)$ as the response, find the LSE of $\underline{\beta}_{\lambda}$ and σ_{λ} , Also compute $l(\lambda)$
- iii) Select the value of λ which gies the largest $l(\lambda)$; denote by $\hat{\lambda}$

In R:

library(MASS) boxcox(model)

Weighted Least Squares (WLS)

July 2, 2014 1:12 PM

Consider the model $y_i = \mu_i + \epsilon_i$ where $\epsilon_i \sim N(0, \sigma^2 v_i^2)$, non-constant variance. and $\mu_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$ Since $\operatorname{Var}(\epsilon_i) = \sigma^2 v_i^2 \Rightarrow \operatorname{Var}\left(\frac{\epsilon_i}{v_i}\right) = \sigma^2$ Re-write the model as $\frac{y_i}{v_i} = \frac{\beta_0}{v_i} + \beta_1 \left(\frac{x_{i1}}{v_i}\right) + \dots + \beta_p \left(\frac{x_{ip}}{v_i}\right) + \frac{\epsilon_i}{v_i}$ Let $x_{i0}^w = \frac{1}{v_i}$, $x_{ik}^w = \frac{x_{ik}}{v_i}$, k = 1, 2, ..., p $\Rightarrow y_i^w = \frac{y_i}{y_i} = \beta_0 x_{i0}^w + \dots + \beta_p x_{ip}^w + \epsilon_i^w$ $\epsilon_i^w = \frac{\epsilon_i}{v_i} \sim N(0, \sigma^2)$ **WLS Estimates** $S(\beta) = \sum_{i=1}^{n} (y_{i}^{w} - \beta_{0} x_{i0}^{w} - \dots - \beta_{p} x_{ip}^{w})^{2} = \sum_{i=1}^{n} \frac{1}{v_{i}^{2}} (y_{i} - \beta_{0} - \beta_{1} x_{i1} - \dots - \beta_{p} x_{ip})^{2}$ In matrix form: Let $W = \begin{bmatrix} w_1 & & \\ & w_2 & \\ & & \ddots & \\ & & & & w_n \end{bmatrix}$, where $w_i = \frac{1}{v_i^2}$ $\Rightarrow S(\beta) = (y - X\beta)^T W(y - X\beta)$ **Results**: i) WLSE of β is $\hat{\beta}_w = (X^T W X)^{-1} X^T W y$ ii) $E(\hat{\beta}_w) = \overline{\beta}$ iii) $V(\overline{\beta}_w) = \overline{\sigma}^2 (X^T W X)^{-1}$ $V(y) = \sigma^2 W^{-1}$ iv) $\hat{\sigma}^2 = \frac{1}{n-p-1} \sum_{i=1}^{n} w_i e_i^2$ **Residual Plots**

Plot $e_i^w = \frac{e_i}{v_i} \operatorname{vs} x_{ik}$ or $\hat{\mu}_i$ to see if the variance has stabilized.

Aside

$$S(\underline{\beta}) = \sum_{i=1}^{n} \left(\frac{y_i}{v_i} - \frac{\mu_i}{v_i}\right)^2$$
WLSE on $\hat{\beta}_1^w, \dots, \hat{\beta}_p^w$
 $\Rightarrow \hat{\sigma}^2 = \frac{S(\underline{\hat{\beta}}^w)}{n-p-1} = \frac{\sum \left(\frac{e_i}{v_i}\right)^2}{n-p-1} = \frac{\text{Sum of squared weighted residuals}}{n-p-1}$

How to estimate v_i ?

- Difficult in practice
- Construct a plot of e_i vs x_{ik}
- Try $v_i = x_{ik}^{\gamma}$ for some k = 1, 2, ..., p and some $\gamma \in \mathbb{R}$ (by trial and error)
- Reconstruct plots of $\frac{e_i}{v_i}$ vs $\hat{\mu}_i$ or x_{ik} until you have constant variance.

Outliers (Extraneous Observations)

July 2, 2014 2:02 PM

Cases:

- i) Outliers due to misrecording
 - Correct it or delete it.

Can replace with the average of the other observations if it is a predictor.

- ii) Outlier is a valid observation.
 - Maybe a predictor is missing from the model which can explain this observation.
 - Can fit the model
 - With the outlier
 - Without the outlier
 - Keep the observation if conclusions (on fitted values, coefficients) do not change significantly.
 - If conclusions are changed greatly, we say the outlier is influential.
 - Remove it (or possibly correct it if you can)
 - Removal may lead to a redefinition of the population.

In R: library(outliers)

Note

$$S(\hat{\beta}) = \sum_{i=1}^{n} (y_i - \hat{\mu}_i)^2 = \sum_{i=1}^{n} e_i^2$$

is minimized in the LS algorithm. The LS algorithm tends to fit more towards outliers (especially with the squaring of the e_i) An alternative algorithm: Minimize

 $\sum_{i=1}^{n} |e_i|$

The effect of the outlier on the fitted line will not be as significant under this algorithm compared to the least squares algorithm.

Check for Outliers

- 1) Construct a residual plot.
- Recall studentized residuals:

ei $\overline{\hat{\sigma}}\sqrt{1-h_{ii}}$ Construct a plot of d_1, \dots, d_n . Note: $d_1, \dots, d_n \approx N(0, 1)$ d_i 's should be within (-3, 3) Also, 95% of d_i 's should be within (-2, 2) In R, the plot code is as follows: library(MASS) plot(studres(model)) 2) A formal test If $e_i \sim N(0, (1 - h_{ii})\sigma^2)$ then $\frac{e_i}{\sigma\sqrt{1-h_{ii}}} \sim N(0, 1)$ Note e_i is not independent of $\hat{\sigma} = \frac{1}{n-p-1} \sum_{i=1}^n e_i^2$

$$\Rightarrow \frac{e_i}{\hat{\sigma} \sqrt{1 - h_i}} \neq t(n - p - 1)$$

To check that the i-th data point is an outlier

i) Delete the i-th observation and refit the model using n-1 observations. $e_1(-i), e_2(-i), \dots, e_{i-1}(-1), e_{i+1}(-1), \dots, e_n(-1)$ are the new residuals

ii)
$$\hat{\sigma}^2(-i) = \frac{1}{(n-1)-p-1} \sum_{\substack{j=1\\j\neq i}}^n e_j^2(-i)$$

Can show that
 $\frac{(n-p-2)\hat{\sigma}^2(-i)}{r^2} \sim \chi^2(n-p-2)$

iii) Test statistic:
$$e_i$$

 $t_i = \frac{c_i}{\hat{\sigma}(-i)\sqrt{1 - h_{ii}}} \sim t(n - p - 2)$ Rule: If $|t_i| > t_{\underline{\alpha}}(n-p-2)$, then the *i*th observation is an outlier.

This approach is not very conservative.

Another approach (Bonferroni Correction) Rule: If $|t_i| > t_{\frac{\alpha}{2\pi}}(n-p-2)$ then the ith observation is an outlier. Consider a single test (n = 1) and a significance level $\alpha = 0.05$ • Without correction, $P(\text{false positive}) = P(\text{reject } H_0|H_0 \text{ is true}) = 0.05$ • With correction $P(\text{false positive}) = \frac{\alpha}{1} = \alpha = 0.05$

There is no difference!

Consider now n > 1 tests and assume significance level of $\alpha = 0.05$

- Without correction, $P(\geq 1 \text{ false positive}) = 1 P(0 \text{ false positives}) = 1 (1 \alpha)^n \rightarrow 1 \text{ as } n \rightarrow \infty$
- With correction, $P(\geq 1 \text{ false positive}) = 1 P(0 \text{ false positives} = 1 \left(1 \frac{x}{n}\right)^n \approx 1 \left(1 n\frac{\alpha}{n}\right) = \alpha$

```
As n \to \infty, P (\geq 1 false positive) \to 1 - e^{-\alpha} \approx \alpha
```

In R

library(outliers)

```
Aside
1 - (1-x)^n = a
(1-x)^n = 1-a
(1-x) = (1-a)^{(1/n)}
x = 1 - (1-a)^{(1/n)} \approx a/n
```

Influential Cases

Main problem: is the outlier influential? Does it affect our conclusions significantly when removed from the dataset?

Leverage

- Used to determine if an observation is an outlier in the x direction.
- A high leverage point is one which has a very large or small x-value relative to the other data points. (Far apart from the bulk of the data in the x direction).

Cases

Far in the x-direction \Rightarrow high leverage, far in the y direction \Rightarrow high influence i)

- Consequence: Model coefficients and predictions are affected significantly.
- ii) Low leverage (point lies around the average x). Low influence since it will affect the model coefficients and predictions slightly.
- iii) Point has high leverage but not an outlier in the y-direction. Not influential since changes in predictions and model coefficients are negligible.

Overall, high leverage is a prerequisite for making a case a high influence point, but not all high leverage points are highly influential.

Measure of Leverage

The hat matrix ? and leverage • Recall $H = X(X^T X)^{-1} X^T = [h_{ij}]_{n \times n}$

• Also,
$$e_i \sim N(0, \sigma^2(1 - h_{ii}))$$

If $h_{ii} \approx 1$, then $e_i \approx 0 \Rightarrow y_i - \hat{\mu}_i \approx 0 \Rightarrow y_i \approx \hat{\mu}_i$ So the fitted line tends towards the ith observation. In this case, the ith observation has high leverage ("pull") h_{ii} is called the leverage

Properties of Leverage

- i) $H = X(X^T X)^{-1} X^T \leftarrow$ a function of the x's only (not y) \Rightarrow h_{ii} is a function of the x's $V(e_i) = \sigma^2 (1 - h_{ii}) \ge 0 \Rightarrow h_{ii} \le 1$ ii)
- We can further show that $\frac{1}{n} \leq h_{ii} \leq 1$

iii)
$$tr(H) = tr(X(X^TX)^{-1}X^T) = tr((X^TX)^{-1}X^TX) = tr(I_{(p+1)\times(p+1)}) = p+1$$

$$\Rightarrow \sum_{i=1}^{n} h_{ii} = p + 1$$

 \Rightarrow Average leverage $\overline{h} = \frac{p+1}{n}$

Rule of thumb: If $h_{ii} > 2\bar{h}$ then the i^{th} point is considered to be a high leverage point.

iv) h_{ii} is smallest when x_i is near \bar{x} . SLR setting: Can show that $h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{s_{xx}}$ which is minimized at $x_i = \bar{x}$

Identifying highly influential cases

 $\operatorname{Recall} \hat{\beta} = (X^T X)^{-1} X^T y \sim MVN \left(\beta, \sigma^2 (X^T X)^{-1}\right)$

$$\Rightarrow (X^T X)^{\frac{1}{2}} (\hat{\beta} - \underline{\beta}) \sim MVN(0, \sigma^2 I)$$

$$\Rightarrow \frac{1}{\sigma} (X^T X)^{\frac{1}{2}} (\hat{\beta} - \underline{\beta}) \sim MVN(0, I)$$

$$W = \left[\frac{1}{\sigma} (X^T X)^{\frac{1}{2}} (\hat{\beta} - \underline{\beta})\right]^T \left[\frac{1}{\sigma} (X^T X)^{\frac{1}{2}} (\hat{\beta} - \underline{\beta})\right] \sim \chi^2 (p+1)$$

$$\Rightarrow W = \frac{(\hat{\beta} - \underline{\beta})^T (X^T X) (\hat{\beta} - \underline{\beta})}{\sigma^2} \sim \chi^2 (p+1)$$

$$\text{Also, } \frac{(n-p-1)\hat{\sigma}^2}{\sigma^2} \sim \chi^2 (n-p-1)$$

$$\Rightarrow \frac{(\hat{\beta} - \underline{\beta})^T (X^T X) (\hat{\beta} - \underline{\beta})}{(p+1)\sigma^2} \sim F(p+1, n-p-1)$$

Cook's Distance

A measure of influence

 $D_i = \frac{\left(\hat{\beta} - \hat{\beta}_{-i}\right)^T (X^T X) \left(\hat{\beta} - \hat{\beta}_i\right)}{(p+1)\hat{\sigma}^2}$

where $\hat{\beta}_i$ is the vector of models coefficients when the ith data points is excluded.

Note

- i) D_i does not have a F distribution but it may be compared to an F(p + 1, n p 1) distirbution.
- ii) Rule of thumb: If $D_i > 1$ (sometimes 0.5) then the i^{th} data point is influential.
- iii) We can also write

 $D_i = \frac{\left(\underline{\hat{\mu}} - \underline{\hat{\mu}}_{-1}\right)^T \left(\underline{\hat{\mu}} - \underline{\hat{\mu}}_{-1}\right)}{(p+1)\widehat{\sigma}^2}$

Cook's distance is a measure of distance/influence on a) model coefficientsb) fitted values ies

iv) Can also write
$$D_i = \frac{h_{ii}}{1 - h_{ii}} \cdot \frac{d_i^2}{p + 1}$$

 d_i is the studentized residual e_i

$$d_i = \frac{1}{\hat{\sigma}\sqrt{1 - h_{ii}}}$$

Model Selection (Ch. 7)

July 11, 2014 1:29 PM

Average prediction variance:

- Suppose we have *p* predictions
- Prediction model variance = $V(y_{\text{new}} \hat{y}_{\text{new}}) = V(y_{\text{new}} \hat{\mu}_{\text{new}}) = V(y_{\text{new}}) + V(\hat{\mu}_{\text{new}}) = \sigma^2 + V(\hat{\mu}_{\text{new}})$
- Do prediction for *n* points: Average prediction error variance

$$= \sigma^{2} + \frac{1}{n} \sum_{i=1}^{n} V(\hat{\mu}_{i}) = \sigma^{2} + \frac{1}{n} \operatorname{tr} \left(V(\underline{\hat{\mu}}) \right)$$
$$V(\underline{\hat{\mu}}) = \sigma^{2} H$$
$$= \sigma^{2} + \frac{1}{n} \operatorname{tr} (\sigma^{2} H) = \sigma^{2} + \frac{\sigma^{2}}{n} (p+1) = \sigma^{2} \left(1 + \frac{p+1}{n} \right)$$

If you start adding unnecessary predictors, $\hat{\sigma}^2$ may grow a bit larger and also 'p' increases. \Rightarrow Average prediction variance increases with *p*.

Model Selection Handout

i)
$$R^2 = 1 - \frac{\text{SSE}}{\text{SST}}$$

 $\text{SST} = \sum_{i=1}^{n} (y_i - \bar{y})^2$

constant regardless of the models

To show that R^2 increases with p, need to show that SSE decrases with p

$$SSE = \sum_{i=1}^{n} (y_i - \hat{\mu}_i)^2$$

e.g. Consider two models; Model 1: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$ Model 2: $y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$ Want to show that $SSE(M_1) \leq SSE(M_2)$

$$SSE(M_{1}) = \min_{\beta_{0},\beta_{1},\beta_{2}} \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i1} - \beta_{2}x_{i2})^{2}$$

$$SSE(M_{2}) = \min_{\beta_{0},\beta_{1}} \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i1})^{2}$$

Note: $SSE(M_{2}) = SSE(M_{1} \text{ when } \beta_{2} = 0)$
Remove the constraint on β_{2} agove

 $\Rightarrow SSE(M_2) \leq SSE(M_1)$

General F-Test

July 18, 2014 1:44 PM

$$y = \beta_1 \operatorname{Trt} + \beta_2 \operatorname{Ctrl} + \Sigma, \qquad \operatorname{Test} \beta_1 = \beta_2 = \beta^*$$
$$y = \beta^* (\operatorname{Trt} + \operatorname{Ctrl}) + \Sigma$$
$$\operatorname{Trt} = \begin{bmatrix} 0\\0\\\vdots\\0\\1\\\vdots\\1 \end{bmatrix}, \qquad \operatorname{Ctrl} = \begin{bmatrix} 1\\1\\\vdots\\1\\0\\\vdots\\0 \end{bmatrix}$$

Additional Sub Sequence Principle

- Useful for comparing nested models. Nested means one model is a special case of another.
- e.g. Model 1: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$ Model 2: $y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \epsilon$

Is the reduced model adequate?

General F-Test

For testing linear set of hypotheses $H_0: A\beta = \underline{c}, \quad A \text{ is } r \times (p+1)$

Example

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$$
1) $H_0: \beta_2 = \beta_3 = 0$
 $H_0: A\beta = c$

$$\frac{\beta}{\beta_0} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad c = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
OR
 $A = \begin{bmatrix} 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
2) $H_0: \beta_2 = 0, \beta_1 = \beta_3$
 $A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}, \quad c = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

The test statistic under $H_0: A\underline{\beta} = \underline{c}$ $\Rightarrow \text{Let } \underline{\theta} = A\beta \Rightarrow H_0: \underline{\theta} = \underline{c}$

Estimate $\hat{\theta} = A\hat{\beta}$ Note: $\hat{\beta} \sim MVN(\underline{\beta}, \sigma^T (X^T X)^T)$ $\hat{\theta}$ is a linear form $\Rightarrow \hat{\theta} \sim MVN$ $F(\hat{\theta}) = F(A\hat{\beta}) = A\underline{B} = \underline{\theta}$ $V(\hat{\theta}) = V(A\underline{\hat{\beta}}) = AV(\underline{\hat{\beta}})A^T = A(X^T X)^{-1}A^T$ $\Rightarrow \hat{\theta} = MVN(\underline{\theta}, A(X^T X)^{-1}A^T \sigma^2)$

Want

$$P(\hat{\underline{\theta}} - \underline{\theta}) \sim MVN(0, \sigma^{2}I)$$

$$V\left(P(\hat{\underline{\theta}} - \underline{\theta})\right) = \sigma^{2}I$$

$$PV(\hat{\theta})P^{T} = I\sigma^{2}$$

$$PA(X^{T}X)^{-1}A^{T}P^{T}\sigma^{2} = \sigma^{2}I$$

$$P[A(X^{T}X)^{-1}A^{T}]^{\frac{1}{2}}[A(X^{T}X)^{-1}A^{T}]^{\frac{1}{2}}P^{T} = I$$
Let $P = (A(X^{T}X)^{-1}A^{T})^{-\frac{1}{2}}$

Back to test statistic

$$P(\hat{\underline{\theta}} - \underline{\theta}) \sim MVN(0, \sigma^{2}I)$$

$$\Rightarrow \frac{1}{\sigma}P(\hat{\underline{\theta}} - \underline{\theta}) \sim MVN(0, I)$$

$$\Rightarrow \left[\frac{1}{\sigma}P(\hat{\underline{\theta}} - \underline{\theta})\right]^{T} \left[\frac{1}{\sigma}P(\hat{\underline{\theta}} - \underline{\theta})\right] \sim \chi^{2}(r)$$

$$\Rightarrow \frac{1}{\sigma^{2}}(\hat{\underline{\theta}} - \underline{\theta})^{T}P^{T}P(\hat{\underline{\theta}} - \underline{\theta}) \sim \chi^{2}(r)$$
Know that

$$\frac{(n - p - 1)\hat{\sigma}^{2}}{\sigma^{2}} \sim \chi^{2}(n - p - 1)$$

$$\Rightarrow \frac{(\hat{\underline{\theta}} - \underline{\theta})^{T}P^{T}P(\hat{\underline{\theta}} - \theta)}{r \cdot \hat{\sigma}^{2}} \sim F(r, n - p - 1)$$

$$\Rightarrow \frac{(\hat{\underline{\theta}} - \underline{\theta})^{T}(A(X^{T}X)^{-1}A^{T})^{-1}(\hat{\underline{\theta}} - \underline{\theta})}{r \cdot \hat{\sigma}^{2}} \sim F(r, n - p - 1)$$

Rule: Reject if $F^* > F_{\alpha}(r, n - p - 1)$

Too difficult to compute on an exam.

Alternative (Equivalent) Statistic $F^* = \frac{[SSE_{Reduced} - SSE_{Full}]/r}{SSE_{Full}/n - p - 1}$

General F-Test Examples

July 23, 2014 1:26 PM

General F-Test (Test a linear set of hypotheses)

Compare two models

- i) Full Model SSE_f, SSR_f, SST_f, $\hat{\sigma}_f^2$
- ii) Reduced Model SSE_{re}, SSR_{re}, SST_{re}, $\hat{\sigma}_{re}^2$

Statistic:

$$F^* = \frac{\left(SSE_{re} - SSE_f\right)/r}{\frac{SSE_f}{df_f}}$$

r = # of restrictions df_f = degrees of freedom under full If $F^* > F_{\alpha}(r, df_f)$ reject the null hypothesis

Example 1

Recall Chapter 5 example (comparing several groups) $Data \begin{cases} Diet & \leftarrow Categorical \\ Weight & \leftarrow Response \end{cases}$ n = 10 people Diet #1: y_1, y_2, y_3 Diet #2: y_4, y_5, y_6 Diet #3: y_7, y_8, y_9, y_{10} Model: $y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$ $x_{1j} = \begin{cases} 1 & j = 1,2,3 \\ 0 & \text{otherwise'} \end{cases}$ $x_{2j} = \begin{cases} 1 & j = 4,5,6 \\ 0 & \text{otherwise'} \end{cases}$ $x_{3j} = \begin{cases} 1 & j = 7,8,9,10 \\ 0 & \text{otherwise} \end{cases}$ Question: Does weight gained depend on diet? $H_0:\beta_1=\beta_2=\beta_3$ (Cannot use the regular ANOVA F-Test here) General F-test: $H_0: A\underline{\beta} = \underline{c}, \ \underline{\beta} = \begin{vmatrix} p_1 \\ \beta_2 \\ \beta_2 \end{vmatrix}$ $A = \begin{bmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix}, \qquad \underline{c} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ r = # of rows = 2 $F^* = \frac{\left(\text{SSE}_{\text{re}} - \text{SSE}_f\right)/2}{\hat{\sigma}_f^2}$ Compare to $F_{\alpha}(2, 10 - 3 = 7)$ **FEV Example** Model: Weight = $\beta_1 \cdot \text{Trt} + \beta_2 \cdot \text{Ctrl}$ $A\beta = \underline{c}$ $\underline{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}, \quad A = [1, -1], \quad \underline{c} = [0], \quad \Rightarrow r = 1$ $\underbrace{\left(\text{SSE}_{re} - \text{SSE}_f \right) / 1}_{\widehat{\sigma}_f^2}$ Full: mod1 = lm(weight ~ group - 1) $SSE_f = (0.6964)^2 (18), \quad \hat{\sigma}_f^2 = 0.6964^2$

Reduced Model: modr = lm(weight ~ 1) $SSE_{re} = (0.704)^2(19)$

 $F^* = 1.416967$ $F_{0.95}(1, 18) = qf(0.95, 1, 18) = 4.413873$ \Rightarrow Conclusion. Since $F^* < 4.41$ we conclude that weight does not depend on diet.

Example: Show that the ANOVA F-test is a special case of the general F-test

$$H_{0} = \beta_{1} = \beta_{2} = \dots = \beta_{p} = 0$$

$$A = \begin{bmatrix} 1 & -1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -1 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

$$\Rightarrow r = p$$

$$F^{*} = \frac{(\text{SSE}_{re} - \text{SSE}_{f})/p}{\frac{\text{SSE}_{f}}{n - p - 1}}$$
Now, $\text{SSE}_{re} = \text{SSE}(y = \beta_{0} + \epsilon) = \text{SST}$

$$\Rightarrow F^{*} = \frac{(\text{SST} - \text{SSE}_{f})/p}{\frac{\text{SSE}_{f}}{n - p - 1}} = \frac{\text{SSR}_{f}/p}{\frac{\text{SSE}_{f}}{n - p - 1}}$$

Logistic Regression

July 25, 2014 1:07 PM

Earlier lectures: y_i was continuous What if y_i is binary (an indicator)?

Example

 $y_i = \begin{cases} 1 & i^{\text{th}} \text{ row is a bad buy} \\ 0 & \text{otherwise} \end{cases}$ i = 1, 2, ..., nExplanatory variables: $x_{i1} = \text{Vehicle Age}$ $x_{i2} = \text{Milage}$ $x_{i3} = \text{Nationality}$ $x_{i4} = \text{Online Sale?}$

Aim: predict whether a car is a bad buy? Previous Model: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4}$ Can we use this? For now, let's ignore $x_2, x_3, x_4 \Rightarrow y \sim x_1$

Model for a binary response Regression would have modelled E(y|x)If $y_i \sim \text{Bernoulli}(\pi_i)$ then

	<i>Y</i> _i	0	1
	$f(y_i)$	$1 - \pi_1$	π_1
$\Rightarrow E(y_i x_i) = \pi_i$			

Question: Can π_i be explained by our x_i 's? Can we somehow use linear regression as before, perhaps by slightly changing the form of the model?

To answer this, consider the model $\eta_i = \beta_0 + \beta_1 x_{i1}$ Range of η_i is $(-\infty, \infty)$ we want to relate η_i to π_i where $\pi_i \in [0, 1]$ "Trick" Use a transformation on π_i say $g(\pi_i)$ so that for $\pi_i \in [0, 1]$, $g(\pi_i) \in (-\infty, \infty)$

Structural Part of Model

 $g(\pi_i) = \eta_i = \beta_0 + \beta_1 x_{i1}$

Common Forms of $g(\pi_i)$

1) Logistic. $g(\pi_i) = \ln\left(\frac{\pi_i}{1-\pi_i}\right)$ Interpretation: $\frac{\pi_i}{1-\pi_i}$

Interpretation: $\frac{\pi_i}{1-\pi_i}$ is the odds of success. We can think of logistic regression as modelling the log odds.

2) Probit Link

Let
$$\Phi(z) = P(N(0, 1) = z)$$

Then $q(\pi_{1}) = \Phi^{-1}(\pi_{2})$

Then $g(\pi_i) = \Phi^{-1}(\pi_i)$ 3) Complementary log-log $g(\pi_i) = \log(-(\log \pi_i))$

Logistic Regression Model

$$\ln\left(\frac{\pi_i}{1-\pi_i}\right) = \eta_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} = X\beta$$

Note:
$$\ln\left(\frac{\pi_i}{1-\pi_i}\right) = \eta_i \Rightarrow \pi_i = \frac{e^{\eta_i}}{1+e^{\eta_i}} = \frac{e^{X\beta}}{1+e^{X\beta}}$$

Interpretation of β_j : β_j is the increase or decrease in the log odds of success, when x_j is increased by 1 unit, and all other x's are held constant. Can show $\beta_j = \log \text{ odds ratio} =$

Want to estimate β_i Want to estimate p_j Recall: $y_i \sim \text{Bernoulli}(\pi_i)$ $\Rightarrow P(y_i = 1) = \pi_i, P(y_i = 0) = \pi_i$ $P(y_i = j) = \pi_j^j (1 - \pi_i)^{1-j}, \quad j = 0, 1$ Likelihood function: $L(\underline{\beta}) = \prod_{i=1}^n \pi_i^{y_i} (1 - \pi_i)^{1-y_i}$ Log likelihood

Log likelihood

$$l(\underline{\beta}) = \sum_{i=1}^{n} (y_i \log \pi_i + (1 - y_i) \log(1 - \pi_i))$$

Find $\underline{\beta} \Rightarrow \frac{dl}{d\beta} = \underline{0}$

The resulting β is the maximum likelihood estimated, denoted $\hat{\beta}$

$$\frac{dl}{d\beta_j} = \frac{\partial l}{\partial \pi_i} \cdot \frac{\partial \pi_i}{\partial \eta_i} \cdot \frac{\partial \eta_i}{\partial \beta_j} = \left[\frac{y_i}{\pi_i} - \frac{1 - y_i}{1 - \pi_i}\right] \frac{\partial \pi_i}{\partial \eta_i} x_{ij} = \left[\frac{y_i}{\pi_i} - \frac{1 - y_i}{1 - \pi_i}\right] \pi_i (1 - \pi_i) x_{ij}$$
$$= [y_i(1 - \pi_i) - (1 - y_i)\pi_i] x_{ij} = [y_i - \pi_i] x_{ij}$$