Introduction

May 7, 2014 1:46 PM

Notation

In the past:

W - variable

i - Random variable of estimate
(i - Estimate

In this class, don't use [ - too much notation.

Instead of:
Y=a+px+R
(Y is random variable)

we use

y=PBo+Pix+e
because capitals will represent matrices.
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Modeling

Data: (x1,y1), (x2,¥2), s (O, )
Aim: build a model for y conditional on x. x is known - not random.

Let's assume that y ~ N(u(x),02)
can also write y|x but we'll omit the condition for simplicit of notation.

Let's use maximum likelihood to estimate the model parameters.

n
L(#(x) 0'2) = 1_[ 1 e_le.'z(Jﬁ_ﬂ(xi))z o i.e_% Z?:1(Yi_ﬂ(xi))2
’ 1 _Lov2 J3 o™

Suppose for now that 62 is known. We'll estimate it later.
Maximizing the likelihood is equivalent to minimizing
n

2
Z(Yi — u(xy)
=1
This is the least squares approach.

Intuitively, for some given function u(x), this approach gives the
parameters that provide the best fit of () to the data.

e.g. u(x) = By + B1x (linear function)
least squares approach: find estimates of 8, and f; that minimize
(i = Bo— B1x;)?



Simple Linear Regression Model

May 9, 2014 1:04 PM

Simple Linear Regression Model
y ~N(By + Bix,0%)
y= Bo+pBx + & € ~N(0,02)

structural part  random part

Assumptions
i) E(e)=0 (=EW;) =P+ P1x)
i) V(e)=0% V) =02
iii) €4,€y, ..., €, are indepenent
iid.
iv) (Distributional Assumption): € ~ N(0,0), i =1,2,...,n

This assumption automatically accounts for assumptions i) - iii)

Independent and Identically Distributed

Denoted i.i.d., iid, or IID
Each random variable has the same probability distribution as the others and are all mutually independent.

Interpretation of Model Parameters
e Parameters: fy, 51,0
* B, is the mean value of the response (y) when the explanatory (x) is zero.
¢ Interpretation of
E(ylx =c) = By + Bic
Eylx=c+1) =B+ pi(c+1)
SEQlx=c+1D)—-EQylx=c)=p
= [3; is the average change in y for a unit increase in x.

Least Squares Estimates of 8, and £,

Notation
6 = True (unknown) parameter

0 = estimate of 8 based on the sample data.
V(é) = Variance of the sampling distribution of 8 (unknown, based on model parameters)

7(8) = An estimate of V(0)
se(8) = |V(8) = stardard error of §

Example

6 = u (Simple response model y;~N (u, 62)

~ ~ a? A 02

0 =x, V)=V =—, 7(8) = —
v V@) =vw=2, 96)=Z

Finding the Least Squares Estimates (LSE)
Bo, B1 : Unknown parameters

Bo, 1 : Estimates

True mean: y; = E(y;) = By + B1xi

Fitted values for y; : i; = Bo + f1x;

True (unknown) error: €; = y; — By — B1x;
Residual (estimated) error: e; = y; — o — f1X;

fitted regression line:
i =Po+ P1x

N de e =t
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Minimization Procedure
Choose 3, and f3; such that

S(ﬂo,ﬁl)—Z(yl Bo = frx)*

is minimized at (ﬁo.ﬁ1)

Solve
D e = —ZZ(yl Bo— Frxi) = 0
it) 6.81 = _szl(yl .BO 1xl) =0
) :Zyl—nﬁo ﬁlle—o
i=1

Sy —Bo—hix=02[fo =y pix]
i) =>Z:xi()’i—[?0—51951') =0

> x5 (0= - hils - 0) =
i=1

= 10—y =) xilx—x)
i=1 i=1
5 Zl 1% i—y) Sxy

2 S im0 S

i=1
Aside

n n
Z(xl —x) = in —nx=0
i=1 i=1
Similarly,

n

0

—_—

i(yi -y =0 zi(xi —0@i=Y) = ) 0=V =% ) Bi=)
i=1 i=1 i=1

i=1

Properties of the LES of 5, and f;
Expectation Value
B, and B, are unbiased for 5, and 3,

= E(Bo) = Py and E(ﬁl) =P

Proof
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E(B) =E (E—;) = gi; E(Sxy)

Since Sy, is constant but Sy, is random.
n

Use form Sy, = Z(xi —X)V;

n

R 1 z 1 K
E('BI)ZS__E(E (xi_x)yi> E (x; —x) E(yl) =5 Bo E (x; —x) + By § xi(x;—x) | =B
XX i=1 XX

—50"'/317% i=1 i=1

Now, .
E(Eo)=E(y_.[§1f)=E(37)—9?E(Bl)
T
1 n
y=y D vi=Bothixty ZeeE(y)—ﬁowlx

i=1
= E(Bo) = Bo + Prx —xpP; = ﬁo

fi is unbiased for u. Recall i = f, + fB1x
H= o+ Pix .
E(@) =E(Bo) +E(B1)x =Bo +Pix =u

Variance of 3, and f3;

v(po) =03+ 5)
2

V(ﬁ1) I

XX

S 1%
[’31 = —Sxy = S_ E (x; — x)y;
pwd XX i=1

, RN 1 (N 1\
V(ﬁl)=V<$2(xl x)%) ngv@(xl x)yl> Sfxi(xi—xw(yi)

i=1 i=1 =1
Can bring variance into the sum because y; are independent
2 2
c o)
S.. =

= o2 Oxx
Sxx Sxx

Bo=y—Brx=- Zyl (ixi(xi_x)%)x:i(%_(xisz_:ﬂ>3’i

Linear combmatlon of mdependent Vi

S

— 0%\ n —x)2x
V(Bo) = Z(————) vy 1)_022(%—(—’“57")"> =GZZ(%+("1 S; <

n S,..x? 1 x2
=02<—2+ = +0>=0‘2(—+—)
n Six n o Sex

V(dy) = (; (xOS_ x)—)az

where p, is the fitted values at x = x,,

Recall
Bo =y — B1x N
3 1
> o=y + kG- =2y +§—Z (i = D)y,
i=1 >
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Z( (x —x)(xo —x))
—— | Vi

:V(“°)=Z<z+(xl x)(xo—a_q> 02zozi<l+(xi—x)2<xo—x)2+z(xi—x)(xo—x)>262<1+<x0—x)2>

— Sxx n? S)%x NSxx n Sxx
i=
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Least Squares Estimate

May 14, 2014 1:37 PM

Covariance
Cov(U,V) = E[(U — uy)(V — py)]

Consequences of Least Squares Estimate
n

i) Zei =0
i=1

Residual Errore; =y, —f; = y; — ,@1 — ﬁox

l

11) Z eixi = 0

=1 n
= z(ei —e)x; =0 Z(el- —é)(x;j—x) =0= Cov(e,x) =0
= Sample correlation between e and x is 0

Note: i) and ii) follow from the fact that 8, and #; minimize
n n

s =Z(yi—ﬁo —Bux)' =) e

i=1
n

z———o:Z(yo fo—Fix)=0=) =0

i=1
n

ﬁ———0=>2(yl ﬁo lxl)xl_0=>zelxl_0

i=1
n
111) Zﬁiei =0

Since Z(ﬁo + B1x; )el =0

iv) (x,y)is always on the fitted regressmn line
x=%  [A=Po+px=y—pix+pix=y

Estimate of o2
Recall V(y;) = V(g;) = o2
The LSE of 62 is

1

X Y S5,

T n-— 2
=1
Why n — 27
n - Number of data points
2 - number of parameters estimated (excluding o) in the structural part of the model.
Theoretically,

E(Z ) (n—2)o? :E(—l—z 1ez>=a

i=1 i=
= E(62) = 02
= &2 is an unbiased unbiased estimator of 2
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Hypothesis Tests and Confidence Intervals

May 14, 2014 2:07 PM

B is usually of interest

e.g. can test whether y is linearly related to x
Is By # 07
H0: ﬁl = 0, HA:ﬁl *0

or
On average, does a unit increase in x result in a 5 unit increase in y?
=Isf =57
HO:BI =5, HA:BI#:S

or

On average, does a unit increase in x result in a more than a 5 unit increase in y?
=1Is Bl > 57
HO:BI SS, HA:ﬂ1> 5

The main quantity (discrepancy measure) of interest is

B1— B _ p1— B
se(B1) 6/\/5_

[s the number of standard deviations of the estimate from the assumed (true) value.
Before we continue, we need to determine its distribution.
Some sampling distributions

X —
i) X~N(u,0?),then K

~N(0,1)

ii) IfZy,...,Zy areiid. N(0, 1) random variables, then Z?~x2(1), chi-squared distribution with 1 degree of
freedom (d.f.)
Z2 + -+ Z2~x?(n) chi-squared distribution with n d.f.

iii) IfZ~N(0,1) and U~y?(n) where Z is independent of U, then

Z
——6 ~t(n) tdistribution with n d.f.

n

0.5 — f®

0.4 .
) — k=6

0.3 =

«/’ = —
0.1 S
0.0 ===

0O 1 2 3 4 5 6 7 8 *
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F-distribution with m numerator d.f. and n denominator d.f.

Note: numerator and denominator are independent

31_181

Distribution of -

Sxx
iid. i
i) € ~ N(0,0%) > y; =B+ Bix+e€ ~N(PBy+ f1x,02%)

n

. S 1

Now, fy = 22 = — > (v - Dy
Sxx Sxx i=1

n
= By = Z Ciyi
i=1 A
y; is normal = [ is normal
~ ~ 2 ~ 2
Since E(B,) = By and V(By) = ;—xx then f;~N (’81’:_,“)
B1 = B

=>6. —————— ~N(0, 1)

/o
i.id. ..
i) € ~ N(o,az)=>;‘~N(o, 1), i=12.,n

- (EUE)Z ~y2(1) = Z (%)2 ~x2(n)

1
i = Yit—Bo = fuxi > ;Z(yi — Bo = Bux)? ~*(n)

For every estimated parameter, we lose 1 degree of freedom.

i 2

n e
1 (ff%)
:EEZ Vi — Bo — Prxi) ~x*(n—2)
i?ll
1 n—2)6?
:——Z-Zeiz ~X(n—2)z%~xz(n—2)
02 4 o

=1
iii) Note: B, is independent of 62 (to be shown later)
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Confidence Intervals

100(1 — a)% C.L for 3,
eg.a =0.050r0.01

Quantile
tg(n— 2)
2

J

" 1

Pr— B

~

o
/5=

= Confidence interval for f5; is

Bt tg_(n — 2)se(p1)
o

Saxx

P

<tam—2)|=1-«a
2

se(f,) =

General Form
Estimate = (Critical Value)x(std. error)
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Hypothesis Tests

May 16, 2014 1:51 PM

Two-Tailed Test
Hy:f1=Dbvs. Hy:B1# b
Under {-IO,
pr—b
g————_—_' ~t(n - 2)
/5
Compute the test statistic (based on sample)
B

In general
, estimate — true value

standard error
We will perform tests using significance levels (e.g. 5%, 1%, etc.)

Rule: at a 100a% significance level we reject Hy if t* > ta(n — 2)
2

One-Tailed test
HO:ﬂl < bVSHA:ﬁl >b
Test statistic under Hy is

Reject Hy if t* > t,(n— 2)
Otherwise fail to reject H,

Aside

Suppose we constructed a 95% confidence interval for 8,

If we test Hy: B1 = b vs Hy: 81 # b at a 5% significance level, then we reject H, iff b does not lie
in the above confidence interval.
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Predictions and Prediction Intervals

May 16, 2014 3:33 PM

Given x = x,, what is the predicted y?
Notes:
i) Predicted value 9, = Bo + ﬁlxp
ii) ypis arandom variable (future unknown value), independent of our sample.
iii) We cannot write E (yp) =yp (Jp isaRV, nota value)
iv) The prediction error is y, — ¥, (main quantity of interest when forming prediction
intervals)
v) E(9p—¥p) = E(9p) = E(vp) = E(Bo + Brxp) — E(Bo + Brxp + €p)
= Bo + B1xp — (Bo + Br1xp +0)=0
Unbiased prediction
vi) V(}A/p - yp) = V(}A/p) + V(yp) (¥p is independent of the sample)
=V(9) + 0> =V(ip) + 0

1o )

V(3 = yp) = 0? (1 +=+ (xpsx o) )

Overall
E(f’p - yp) =0

1 (x —JE)Z
Se(?p‘)/p)=6j1+g+ps—

XX

= 100(1 — @)% prediction interval (P.L.) for Yp is
(J’p yp)

Se()’p yp)
= 9p + ta(n = 2)se(9, = )

<ta(n 2)|=1—-«a

Analysis of Variance (ANOVA)

In the simple regression case, we use this to test Hy: f; = 0
Model:

Yi = Po + P1xi + €,
Bo=y—PHix, B =

fi; = Po + B1x; A
If; =0,theny; =y +¢€;and Sy =y

i=1,..,n
Sy

‘<

95)

XX

The idea of ANOVA is to separate the total variability (SST) into two components:
i) Variability due to (or explained by) regression. (Sum of squared regression or SSR)
ii) Variability due to error (Sum of squared errors or SSE)

Writey; - = i—a)+ @ -y
SST = Z(}’i - y)?

Decomp_ose SST
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ST = Z(yi -7 = Z(m i)+ (=)’
Z((yl A2 + (B = 907 + 20— i) (i — 7))

Z(yl fi;)? +Z(ul y)2+22(yl )@ = y)

SSE SSR Cross Term
n n

i) SSE= ) (=)= ) e?
i=1

= i=1n
ii) SSR = z(ﬁi —-y)? = p? Z(xi — %)% = BfSux
i= i=1

iii) Cross Term

= 22()’1 W —y) = Zﬁlzn:e (x; — %) = 2.31 <Ze iXi — iel) = 2/?1(0 - 0)

i=1 €i Bi(xi—%) i=1 i= i=1

=0

= SST = SSR + SSE
Where SSR = $25,, and SSE = Y, e?

We will now consider the ratio (dividing top/bottom by number of degrees of freedom)
SSR /
1

SSE/

2 SSE_ 1 N
Note: 6 = z e;
1

-2
i=
Recall E(&z) =0’=E (SSEZ) = g?

E(SSR) = E(.Blzsxx) = SxxE(.Blz) Sxx (Var(ﬁl) +E (ﬁl)) Sxx (3'__ + Bl) =0+ .Blzsxx

So if §; # 0, the numerator will be greater than the denominator. Otherwise it will be close to 0

Distribution of the Ratio
Nz(o 1) =¥ (1)

lem = ()

)( (m)/
Z(n)/n = F(m,n)
Under the Hy: 51 = 0,
5] 2] 52
hobo B von = V(ﬁ{ )~X2(1)
) Jv(ﬂ ) h
V(.B1) =
- %wzm )
Also,
2 n 2
€,~N(0,0) = —~1v(0 1= E—~X 1= ‘0—16‘~X2(n)
SSE L
oS -2

Note: SSR is independent of SSE
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SSR

a2 SSR
72/, /)

= =
SSE SSE/ _ 9

?/
-2

Aside: Sometimes write

~F(1,n

SSR
MSR = T = Mean Squared Regression

SSF
MSF = o= Mean Squared Error
so that
F = MR F(1 2)
=g F
Rule
Compute
SSR/
LR
SSE/ _9

If F* > F,(1,n — 2), reject H,
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May 28, 2014 1:04 PM

Last Class:
ANOVA

Coefficient of Determination
R2=1-— E — ﬂ
SST SST
is a measure of goodness of fit.
Properties
i) 0<R?<1
ii) R? = 1iff SSE = 0 & All ¢; = 0 (perfect fit)
iii) R? = 0iff SSR = 0= j3; = y (flat fitted line)

52 (5ﬂ> S 2 2
SR M ) S (e Vo

iv) R = = =
) SST Sy Syy SexSyy  \SxxSyy

SSR= ) (4 — 7)?
i=1
n

SST = ) (v = 7)?
i=1

Back to Tutorial 1
Q8 Predicted Value

= fo + 1120 = --- = 1637.687
95% PI
Ip £ t0.025(98) ,V(f’p )

~ 1 (120 — x)?
PGy =3) = 0?14+ )
n Sxx

= 1637.687 + 1.9896 x 428.365 = (787.587,2487.767)
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Review of Matrix Algebra

May 28, 2014 1:41 PM

Important Results

Notation

Apxn = (aij)mxn < matrix of constants. m rows and n columns
x = (xq, .., Xp)
y =1 ¥n)
i) A,xn is symmetricif AT = A
ii) Orthogonal vectors and matrices:
— 2 vectors are orthogonal if xTy = 0
- Orthogonal Matrices: A4 is orthognal iff ATA = AAT =1
iii) Vectors x4, x5, ..., X,, are linearly independentiff c;x; + cox; + -+ cpxp, =02 ¢ = ¢ =
o=cy, =0
iv) Rank of a matrix rank(4,,x,) = max # of linearly independent columns
v) Trace tr(Ap,xm) = Xisq Qi
tr(Amannxm) = tT(anmAmxn)
Ifce R tr(c) =c¢
vi) Eigenvectors and Eigenvalues of a square matrix. A vector v # 0 is called an eigenvector of
Aif3ds Av = v
vii) Spectral Decomposition: eigenvalue of a symmetric matrix.
For a symmetric matrix A, «,, the eigenvalues 14, ..., 1,, are real.

} vectors of constants

4 0 - 0
Furthermore, 3 an orthogonal matrx P 5 A = PAPT where A = . /1:2 : and P =
0 0 - 1,

[v1, V5, o, U
viii) Idempotent Matrix: A, x,, is idempotentifA> = A-A=A
a. If Aisidempotent then all eigenvalues are either zero or one.

Av = Av = AAv = AQv) = 14v = 1%v
ve0=21=212=21€{0,1}
b. If Aidempotent, 3 an orthogonal matrix P > A = PAPT where
1
1

0

o
n

tr(4) = tr(PAPT) = tr(PPTA) = tr(IA) = tr(A) = Z A; = # of 1 eigenvalues
i=1
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Random Vectors

May 28, 2014 2:11 PM

Random Vector

Suppose y, ..., y, are random variables such that E (y;) = p;, V(¥;) = ¢/ and Cov(yi,yj) = 0yj

V1
y= yz = (y1, .., y)7 is called a random vector.
Yn
Expected value of a random vector:
[E(y1) 1258
e = B0 - |1
.E(yn) Hn
Variance-Covariance Matrix
(01 012 O
2 .. :
V(y) = 0-?1 0-?2 . = {Cov(yi’yj)}nxn
LOn1  On2 Ur%n

e Itis asymmetric matrix
e Ifyy,..,y, are uncorrelated then

0 ifi%)
COV(YirYj)z{l i

ifi=j
6121 0O - 0
v =0 % 0
0 0 - o

o Ife? =c?thenV(y) = 62l,xp

Can write
V) =Ely - -w’]
Results on E(y) and V(y)
Notation:
y = (34, -, Y) < random vector
A= {aij} < matrix of constants
pxn

b= (bl, ...,bp)T « vector of constants
¢ = (¢4, ..., €p) < vector of constants
Results
)] E(Apxnylxn + bpxl) =AE(y)+b
ii) Var(y +c¢) + Var(y)
iii) Var(4dy) = AV(y)AT

Var(Ay) = E[(Ay — Aw)(Ay — AWT] = E|[A(y — ) - |A(y — || = AE((y — ) (v — W) AT = AV(») AT
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Aside - Question about homework

n 2
52 = i=1€i
n—1

E|6?|=0? S E

Z()’i - /?xi)z] =(n-1)o?

n t n n
o N2 - -
Z(}’i—ﬁxi) ZZJ’zZ‘l'[)’ZZXiZ—Zﬁin}’i
i=1 i=1 i=1 i=1
Warning
y; and y are not independent



Multivariate Normal

May 30,2014  1:31PM

Multivariate Normal Distribution
Ify = (yq, ..., yn)T follows a multivariate normal distribution then

) _( ) Iz Ze 2(3/ WTE (-

where y = E(y) = mean vector; and
¥ = V(y) = Variance-Covariance matrix
We write y~MVN(u, X)

1) Ify~MVN(u, %), then

u = Ay~MVN(Au, ALAT)

2) Ify~MVN(u,X),zero correlation implies independence of y4, ..., y,

3) Ify~MVN(u,%),and u = Ay, w = By, then u and w are independent iff AV (y)BT = 0
Proof of 3)
Cov(u,w) = E[(u — Ap)(w —Bw)"] = AV (y)B”
So if Cov = 0 then we have independence

4) Ify~MVN(0, 1), then
i) yi, ,ynlng(O 1)

i) y'y= Zyi ~x*(n)

=1
iii) Ifz = Py, where P is orthogonal (PPT = PTP = I) then z~MVN(0, )
iv) Ify~MVN(0,%), where £ = PAPT (Recall that X is symmetric = P is orthogonal)
then

(A=2PT)y~MVN(0, D)

Matrix and Vector Differentiation
1) fy)= f(yl,yz. s V)

0y1 —f ()]

d _
$a}'f(}’) = ayzf(”

0
a—yn f)l

€1
> e[}
Cn

f)=c"y= Zci}’i

-f(y) = dyc y=c

3) A ( U)nxn

fO)=yTAy = zn: zn: aijyiyj

i=1j=1
d d
— =—yTAy =24
dyf(y) o7 Y y
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Multiple Linear Regression

May 30,2014  2:04 PM

Multiple linear regression (MLR) assumes that y is linearly related to a combination of x;'s

Mod

y = regression variate
X1, ..., Xp = predictive/explanatory variables
Data {(yi,xil,xiz, ....,xip),i =1, ...,n}

el yiBo + B1xi + Poxz + -+ Bpxp + €

Assumptions:

)
ii)
iii)
iv)

Inte

E(El’) =0
V(e) = o?
€4, ..., €n are independent of each other = y;, ..., y,, are independent

Stronger Distribution Assumption:
iid.
€1,€2, 0 €n ~ N(0,02)
= y4, ..., Yy are independently N(ﬁo + frx1 + -+ Bpxp, 02)

NB: If iv) is true then i), ii), and iii) are true.

rpretation of Parameters

Elyi|xi, Xiz, s Xip)| = Bo + Baxia + -+ Bpxip

Elyilxis + ¢, %z, o, xip| = Bo + Br(eis + € + -+ Bpxip

> E[yl-|xl-1 + ¢, X, ...,xip] - E[yi|xi1,xi2, ...,xip] = B4cC

Let c = 1 = f; is the average change in the response when x is increased by 1 unit and all
other x's are held fixed.

Matrix Form

y=Xp+e
V1 €1 B1
Y2 €2

y=| e=|7| B= ﬁz
“Yn €n Bn
1 X171 X2 o X1p

ke[l o
_1 Xn1 Xn2

Assu
)
ii)
iii)
iv)

Xnp nx(n+1)

mptions

E(e)=0=E(y)=XB

V(E) = Uzlnxn = V(y) = V((:') = GZIan
€4, ..., €n are iid random variables
€~MVN(0,c%1)

Parameter Estimation
= o, By, .-, Bp unknown parameters
= Bo,Brrs s Bp estimates (based on sample)

= LS

E of B. Find By, By, ... ,ﬁp such that
n

S(BorBas v ) = ) (v = o — Buxs = = iy’
i=1

is minimal.

Note:

SB=@-xB "y —-xB)
=" -B" XDy -XB) =y"y—y"XB—-B"X"y+ BTX"XB
=yTy—y"XB - B"X"Y)" + BTXTXB =y "y - 2y"XB + BTX"XB
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d d

EECTB =, dBBTAB = ZAB
&%S(ﬁ) =0-20y"X)T +2(X"X)B

Set equal to zero to find B
=> —2XTy +2XTXB =0
=>XTXB=X"y
Assume X has full column rank
s>rank(X)=p+1
Then X7 X has full column rank = rank(X"X) =p + 1
= XTX is invertible = (XTX) 1 exists
and so
B=W"x)"x"y
To find B4, ..., Ep, the the ith entry of 8

Properties of the LSE
1) Expected value of B
E(B) = B = B is unbiased for B.
Proof:

E(B) = E((X"X)7XTy) = XTX)'XTE(y) = XTX)'(X"X)B = 1B = B

2) Variance of B: V(B) = o2(XTX)7*

Proof:
V(B) =v(IXTX)XT]y) = [(X"X) XTIV (y) [(X ") X"
= o [(XTXO) XTI XXTX) ™ = 02(XTX) !

An estimate for o2

2 n el _ ele
n—(p+1) n-p-1

Wheree =y — XB

An estimate for the variance of B is
7(B)=62(xTx)t

Useful Results
Let H = X(XTX)71XT (hat matrix)
Then
i) fitted values:
f=XB=XXTX)"'xTy = Hy
ii) residuals:
e=y—-XB=y—-fi=y—-Hy=(U—-H)y
Note:
i) Hisidempotent:
HH = X(XTX) "I XTX(XTX)"1XT = X(XTX)"'XT =H
ii) H is symmetric=>HT = H
iii) (I — H) is idempotent
I-H)(I-H)=I1?—-IH—HI+H*=1-2H+H?>=1—-H

Further Results and Consequences of Least Squares

i) Fitted Values:
p=Xxp=Hy
E(m) = E(XB) =XE(B) =XB =p
V(@) = V(Hy) = HV(y)HT = 02HHT = 0?H? = 0?H

ii) Residuals:
e=y—-p=~U-H)y
E(e)=(U-HEQY) =XB—-HXB=X-X)B=0
Vi) =(U-My)=U-HDVvU-DT =c?(U-H)?=0*1I-H)
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iii) XTe=0and fie =0
XTe=X"TI-Hy=X"-X"H)y=X"-XTy=0
jie=(xB) e=x(Be)=0
71 think should be fiTe = (XB) e = BTXTe = 0

iv) Sampling distribution of 8
Note: y~MVN (X, 5?I) from the 4th model assumption.
B=X"X)"'XTy ~ MVN(B, a2(X" X))\

v) PBand e are independent of each other
e=(—-H)y~MVN(0,6%(I — H))

Since B and e are MVN we need to show
Cov(B,e) = 0 for independent
Cov(B,e) = Cov((XTX)"*XTy, (I — H)y) = XTX)"*XTV(y)(I — H)T
=o?((XTX)"1XT - (XTX)"'XTH] = 0
= Independent .
: ~2 1 2 _ 1 T
Vl) g~ = ;l_:ﬁ £, ei = me e

[s unbiased for o2

RecallV(e) = %(I — H)
By definition, it is
T
V(e)=E|[(e— E(@)(e— E(e)' | = E(ee™
Now, E(eTe) = E(tr(e"e)) = E(tr(ee”)) = tr(E(ee)) = tr(V(e)) = tr((I — H)o?) =
o?tr(I — H) = Uz(tr(lnxn) — tr(H)) = 0'2(7'1 — tr(H)) = 0'2(7’1 — tr(X(XTX)_lXT)) =
o? (n - tr((XTX)‘lXTX)) = ¢? (n - tr(l(p_l)x(p_l))) =oc?(n—-p—1)
=>E(e"e)=(n—p—1)o?
ele
= E(6?%) = E(—) =g?
n—p-—1
Note: 62 is independent of 8 since e is independent of 8
vii) Sampling distribution of 2
n—p—1)52
Result: E_pz—) ~x!(n—-p-1)
o
Note
1) [ — H is symmetric
= (Spectral Decomposition) (I — H) = PAPT where P is orthogonal (PTP = PPT =

1
2) (I — H)isidempotent

1
= EigenvaluesareQor1=>A = 1 0
0
#1l'sistr(—H)=n—-p—1
V(PTe) = PT(I — H)o?P = PTPAc?PTP = ¢2A
Letu = P"e~ MVN(0,0%A)
= Uy, ...,un_p_lll(«iN(O,az), Up—p, vy U =0
n U2 n—-p-1 U2
i\“ _ AN
= —) = —) = -p-—-1
Z(”) Z (G) x*(n-p-1)
= 1=
(-p-D0 _ele MWW _1 o oy Sl
G2 2 o2 52 o2 o2
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viii) Gauss-Markov Theorem
Recall B = (XTX)~1XTy. This is the best linear unbiased estimator of B.
In other words, of all linear unbiased estimators of 8, B has the smallest variance.

Consider another linear estimator 8 = My, where M = (XTX)"1XT + 4

Note: E(8) = E(My) = (XTX)"'XTXB + AXB = B + AXB

So this is unbiased iff AX = 0

Now, V(8) = MV(y)MT = 0?MMT = o?((XTX)7'XT + A)(X(XTX)~1 + A7)

=o? (X" + (XTX)TXTAT + AX (XTX) T + AAT> = g2(XTX)"1 + 02AAT
0 0

=V(B) + o2AAT

Consider a linear predictor x”9

Now, V(x78) = xTV(8)x = x"V(B)x + xTAATx = V(xB) + 02 (ATx)T (AT x)

=0
=>V(x"8) = V(x"B)
= ﬁ produces the smallest variance

STAT 331 Page 21



Notes on Handout

June 11, 2014 1:45 PM

ﬁ:i"’N(.Bi: o%v;;)
Bi — Bi

o ~N(0,1)
t(k)=N(0'1)
X2 (k)
k
(n—p—1)42
( o >~ x*(n—p-1)
n—-p—1 n—-p-—1
Bi—Bi b—p NOD
N ;. — Bi
= & =—~ 2 =tlh—-p—-1)
(n—p-1)52 G+/Vi Zlm—p—-1)
[T e
n—-p-—1

V. —9)=V@)+ V@) =02 +V(xIB) = 02 + xTV(B)x. = 02(1 + 2T (XTX)"1x,)
Aside: i
e = ﬁAO + ﬁAlx* =[1 x.] |:ﬁ0]

In matrix form,

V([)’o COV(ﬁo 31)
(ﬂ) [COV([)’O [)’1 V(ﬁ1 ] [1
Voo 1701]

SV =xTVv(B)x, =1 x.] [vlo V11l |x,
= V(.BO) + ZCOV(Bo,ﬁl)x* + xzv(ﬁl)

— 2
] = Voo + V10X« + Vo1 X« + V11X

Note
ANOVA has more power than doing 'p' individual t-tests (of §; = 0 vs §; # 0)
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Multicollinearity

June 13, 2014 1:02 PM

Multicollinearity

We assume the columns of X were linearly independent = (X7X)~* would exist = 8 =
(XTX)"1XTy where

1 X111 xlp
1 X . X

x=|, " =[¥o X1 - Xp]
T xm Xnp nx(p+1)

Two Cases

1) Exact linear dependence.
Suppose at least one of the x;'s is a linear combination of the other x;'s.
= |XTX|=0orranke<p+1
= B = (XTX)~1XTy does not exist

e.g. Supposey = o + f1x1 + B2x, + € and x; = 5 + 3x, (perfect linear dependence)
=y =P+ P1(5+3x) + Pax; +€=(Bo+581) + BB+ P2)xy+ €

Bo Bi
Remedy: Drop x; if x, is included since x, is redundant

2) Non-linear Dependence
Suppose there exists a near (but not perfect) linear relationship between one x; and the

other x]-'s.

1

Then (XTX) ™1 still exists. However, | XTX| = 0 = TXTX] will bew very large.

Consequences
i) Numerically / Computationally unstable
ii) Incorrect signs of ﬁj's (doesn't agree with what's plausible)
i) f ;'s will be sensitive to small changes in the data
iv) Implausible values/magnitudes for [?j's
v) Since V(B) = a2(XTX)™%, variance estimates tend to be inflated.

a) Important predictors may show up insignificant.
b) Confidence Intervals are very wide (which makes it useless for interpretation

of Bj's

Remedies for Multicollinearity
i) Check for pairwise correlation of predictors.
In R, cov(X) « Variance-Covariance Matrix
cor(X) < Correlation Matrix
plot(X) « Pairwise scatter plots

ii) A better measure:
Variance Inflation Factors (VIF)
a) Treat x; as the response
b) Regress x; on the other predictors
= Model xj = ag + ayx; + -+ Q1 Xj_1 + Qjp1 X1+ F 0pxp + €7
¢) Denote the model R-squared as R]-2

Compute VIF; = % called the variance inflation factor

—R?%
]
d) Calculate VIF;forj=1,..,p
Rule of Thumb
lrgjggé {VIFj} = 10 evidence of multicollinearity
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Note: It can be shown that V(Bj) is proportional to 1—_112]? = VIF;
i) Rjz = 0 = no inflation = VIF; = 1 = x; is linearly independent of the other

predictors
ii) Rjz > (0 = VIF > 1 = inflation in the variance estimate of ﬁ’j
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Dummy Variable Regression

June 20, 2014 1:09 PM

Idea: Extend the linear regression model to include categorical variables (factors) via indicator variables.

Example: Factors + Continuous Variables

Fuel Consumption < Response (y)
Data: Engine Size < Predictor (x;)
Make « Predictor, Categorical (x,)
Supposen = 10 cases
Make #1: y1,¥2,¥3, ¥4 (BMW)
Make #2: yg, ..., 10 (Audi)

0 i=1234
Letxi; = {1 i=5,..,10

Case #1

Assume make has an effect on y, and it is the same regardless of engine size (the effect of enginge size of y doesn't
depend on make)

_ | Bot+pBixn ,i=1,2,3,4
EGo = {ﬁo + By + Bixi1 ,i=5,..,10

= E(y;) = o + Prxin + Barxiz
= Model y; = By + B1xj1 + Boxip +€,i =1,...,10

Matrix Form: y + X + €
We can test for example:
Hy: f; = 0 (does make have an affect on y?)

-
—

Case #2
Assume make has an effect on y, but this effect changes with engine size (called an interaction)
E(y,) = { Bo + Bixin ,i=1,234

2 Bo + (By + Ba)xiy + Boxiz ,i=5,...,10

—

E(y;) = Bo + Bixix + Bax12 + BaXirXip

STAT 331 Page 25



2-way interaction
Matrix Form:y + X + ¢

Bo : : :
y €
y = 1 , ﬁ = Bl , €= 1 , X = 1 Xa1 0 0
= y, - B € 1 x5 1 x5
n n H M H H
Bs S
1 x101 1 X0

Can test for example Hy: 53 = 0 (Does the effect of enginge size on y depend on make?)

Example: Comparing Several Groups

Diet « predictor, categorical (x)
Data: .
Weight « response (y)
Supposen = 10 persons.
Diet #1: y4,¥5,¥3
Diet #2: y4, Vs, Ve

Diet #3: y7,¥8, Y9, Y10
Question: Does diet affect weight gain?

Uy =123
LetE(y;) =M, =456
Uz i=78910
Can test Hy: ; = 1y = Uz (Does average weight gained depend on diet?)

Model:
Formulation #1

(1 i=123
Letx; = {0 otherwise
L1 i=456
12 0 otherwise
Yo = 1 i=7,.8910
13 0 otherwise

Vi = BiXiy + BaXip + B3xis
(No intercept)

Matrix form: y + X + €

Yn

y = Hﬁ: [gl e=

Bs

€1
Ln

| x-

CoococococOoORrR R R

SO OO R RPLRFRLROOO

RRRR,POO0OO0O OO

Aside: Had we included the intercept, we would have had a column of 1s in X. However, the sum of the current
columns of X gives this columns of 1's = Redundant information.

Note: py = 1,y = Ba, 13 = B3
= Testing Hy = p; = py = Uz is equal to testing Hy: B; = B, = B3

Formulation #2 (More Common)
Let x. = 1 i=123 v =11 i =456

1 0 otherwise’ "2 0 otherwise
Model: y; = By + f1xi1 + Baxiz + €, i =1,2,...,10
Matrix form: y = X + ¢
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=
|
=
23
—
I
Il
[—
..M
o
e—
>
Il
R R R R RPRRPRR R RR
COO0OOCOOOR KRR
COoOO0OOR R R OOO

b1 =Po+ B  M2=PBo+PB M3 =Po

Note: Diet x is the base case in this formulation. 3, is the average weight gained under diet 3
B1 = 14 — s is the excess average weight gained under diet 1 relative to diet 3.

B> = Uy — U3 is the excess average weight gained under diet 2 relative to diet 3

Testing hy: 3 = U, = U3 is equivalent to testing Hy: f; = f, = 0
(ANOVA F-test provided in the R summary output)
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Residual Analysis

June 25, 2014 1:16 PM

True error €; = y; — W, i = Po + Pixin + - + BpXip

it
Model assumption: ;~N (0, 62)
Estimated Errors / Residuals e; = y; — i;
Properties:

n

1) Zei=0=>é=0
i=1
n

2) Zeixik =0,fork=1,2,..,p
i=1

= Cor(e,xx) =0

n

3) ) el =0

i=1
= Cor(g,,t_i) =0
4) e=y—f=y—Hy=(U—-H)ywhere H=XX"X)"x"
"= e~MVN(O, (I — H)o?) = e;~N(0,(1 — h;;)o?) and Cov(ei,ej) = —h;jo?
5) Studentized Residuals
di = i= 1,2, e, n

Note: d;'s do note follow a t-distribution since the numerator and denominator are not
independent of each other.

iid
dq,...,d, = N(0,1) (approximate)
It is useful to plot:
i) thed;'s and if the assumptions are not violated, one should see random scatter
ii) e;'s vs each predictor (should also see random scatter)
iii) e;'svs f1;'s (should also see random scatter)

Vi = Bo+ Pixin + Baxiz + €

— Estimate Residuals — e;'s

— Consider another predictor x5

To determine how useful the addition of x3 would be to the model, plot e vs. x3. If linear,
consider adding x5 to the model. (Conditional effect of x5 on y given x; and x5).

Added Variable Plots
Instead of plotting e vs x3, plot e vs e* where e; are the residuals of the model x3 = B + f1x1 +
Bx, +€*

In R:

library(car)
avPlot(mod)
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Variance Stabilizing Transformations

June 27, 2014 1:52 PM

Variance Stabilizing Transformation
Dealing with non-constant variance.

Y .

—F b .

L

" . - - ‘ ~ . L

0__ ‘ e 0 W 0'- \' ;l r
(Y —
a c o ° lf '_:
LU b ]
_rl-

;"

W&

Model: y; = By +' beta,x; + €, elu~dN(O a?)

Suppose we want to predict the value of y at x = x*. Would the width of the prediction interval be
overestimated /underestimated based on the model above? Underestimated

V(y) = a?[h(u)]?

variance of y; is a function of y;. Instead of using y, use some function of y, say g(y)
g(y) = g(u) +9' W —w

V(g®) = [g' W1 *[h()]?

Want g'(u)h(u) = c,a constnat= g'(u) =

=>9(M)=fr“)

Examples
) hG) == 9G) = [ = du=cinw
- Try g(y) = In(y)
i) hGo) = VE= g() = f% dyt = 20\
->Tryg(y) =y

h(ll)

Box Cox Transformations

Model y; = u; + €;
Box Cox Transformation is a family of power transformations

yi—
gly) == for some 1 € R
Choose 4 such that V(g(y;)) is constants.

Notes
i) 1=1= No transformation

ii) A= % = Square root transformation

iii) 1=0= %igg)g(yi) = In(y;) By L'Hopital's rule
Estimate A by maximum likelihood
(MLE) Assume g(y;)~N(u; 2, 07)
The log- llkellhood is

) =- Z(g(yl) i) = ——lnffa +(/1—1)zlnyl

STAT 331 Page 29



Maximizing [(1) with respect to A, 8, 03
— Not easy to do in practice
— Use the profile likelihood instead
i) Consider a sequence of A's, e.g. {—2,—1.9, ..., 1.9, 2}
ii) For each A using g(y;) as the response, find the LSE of 8; and g, Also compute [(1)
iii) Select the value of 2 which gies the largest [(1); denote by 1
InR:
library(MASS)
boxcox(model)
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Weighted Least Squares (WLS)

July2,2014  1:12PM

Consider the model y; = y; + €;
where Ei~N(0, sziz), non-constant variance.
and y; = Bo + B1xip + -+ + BpXip
Since Var(g;) = 0?v? = Var (%) =¢g?
L
Re-write the model as
Yi .80 €
(5 ) bty (3 ) o
Ui . P L% L%}
Letxio—;, :’;’( ,k=12,..,p
L

Vi
=y = o ﬁoxio +o 4 Bpxip + €
L
E.
eV =—~N(0,0%)
Vi

WLS Estimates

o 1
SB) = D (0 = Boxls == Bpxis)” = D — (v = o — rxia -
= i=1 !

In matrix form:

Wq
LetW = Wz , where w; = %
Wp ‘
=>5(8) = (y—xp) w(y - xp)
Results:
i) WLSEof Bis By = XTWX)1XTWy
i) E(Bw)=8
i) V(Bw)=c2XTWx)™?
V(y)=o?w?

1
iV) 62 = ;l_:ﬁz Wieiz

Residual Plots
Plote}” = %vs Xk or [I; to see if the variance has stabilized.
i

S(p) = 2 (Z-y

WLSE on ,81 , ...,[)’p
e.

- :Bpxip)z

2
2 S (/_?W) B z (v_i) _ Sum of squared weighted residuals

=>4 =
n—-p—1 n—-p-1 n—-p—1
How to estimate v;?

¢ Difficult in practice
¢ Construct a plot of e; vs x

e Tryv; = xz/k for somek = 1,2,...,p and some y € R (by trial and error)

e ~ . .
¢ Reconstruct plots ofv—‘ Vs [1; or x; until you have constant variance.
i
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Outliers (Extraneous Observations)

July 2, 2014 2:02 PM

Cases:
i) Outliers due to misrecording
Correct it or delete it.
Can replace with the average of the other observations if it is a predictor.
if) Outlier is a valid observation.
¢ Maybe a predictor is missing from the model which can explain this observation.
o Can fit the model
= With the outlier
= Without the outlier
o Keep the observation if conclusions (on fitted values, coefficients) do not change significantly.
o If conclusions are changed greatly, we say the outlier is influential.
= Remove it (or possibly correct it if you can)
= Removal may lead to a redefinition of the population.

InR:
library(outliers)

Note
n

n
S(B) =D - =) et
i=1 i=1
is minimized in the LS algorithm.
The LS algorithm tends to fit more towards outliers (especially with the squaring of the e;)

An alternative algorithm: Minimize
n

S
i=1

The effect of the outlier on the fitted line will not be as significant under this algorithm compared to the least squares algorithm.

Check for Outliers

1) Constructaresidual plot.
Recall studentized residuals:
€
& 61— hy
Construct a plot of dy, ..., dy,. Note: dy, ..., d,, = N(0,1)
d;'s should be within (-3, 3)
Also, 95% of d;'s should be within (-2, 2)
In R, the plot code is as follows:
library(MASS)
plot(studres(model))
2) Aformal test

Ife;~N(0, (1 — hy;)02) then —=—~N(0, 1)

o\/1-hy;
Note e; is not independent of & = n—_;_—l ne?
e;
——+t(n—p—1)

=
To check that the i-th data point is an outlier
i) Delete the i-th observation and refit the model using n-1 observations.
e (—i),e,(=0), ...,e;_1(—1),€;41(—1), ..., e, (—1) are the new residuals
n

1
N . 20
ii) G6%(-i) = h—D-p— 1Z€j( i)
=1
j#i
Can show that
(n—p—2)62(-i)
oz~ (n-p-2)
iif) Test statistic:
€
=— ~t(n—p—2)
SDyT=hy T

Rule: If [t;| > ta(n — p — 2), then the it observation is an outlier.
2

This approach is not very conservative.

Another approach (Bonferroni Correction)
Rule: If [t;| > ta (n — p — 2) then the ith observation is an outlier.
2n

Consider a single test (n = 1) and a significance level « = 0.05
= Without correction, P(false positive) = P(reject Hy|H, is true) = 0.05
= With correction P(false positive) = % =a =0.05

There is no difference!
Consider now n > 1 tests and assume significance level of a = 0.05
= Without correction, P(> 1 false positive) = 1 — P(0 false positives) =1 — (1 —a)" - lasn -

n
= With correction, P(> 1 false positive) = 1 — P (0 false positives = 1 — (1 - %) ~1-— (1 - n%) =a
Asn — oo, P(=> 1 false positive) > 1 —e ™ * = a

InR
library(outliers)
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outlierTest(model)

e Aside
1-(I-x)*n=a
(1I-x)n=1-a
(1-x) = (1-a)*(1/n)
x=1-(1-a)"(1/n) = a/n

Influential Cases
Main problem: is the outlier influential? Does it affect our conclusions significantly when removed from the dataset?
Leverage
¢ Used to determine if an observation is an outlier in the x direction.
« A high leverage point is one which has a very large or small x-value relative to the other data points. (Far apart from the bulk of the data in the x direction).

Cases
i) Farin the x-direction = high leverage, far in the y direction = high influence
Consequence: Model coefficients and predictions are affected significantly.
ii) Low leverage (point lies around the average x) . Low influence since it will affect the model coefficients and predictions slightly.
iii) Point has high leverage but not an outlier in the y-direction. Not influential since changes in predictions and model coefficients are negligible.

Overall, high leverage is a prerequisite for making a case a high influence point, but not all high leverage points are highly influential.

Measure of Leverage

The hat matrix ? and leverage
e Recall H = X(XTX)71XT = [hy;]
e Also, e;~N(0,02(1 - hy))

Ifh;; = 1,thene; = 0=y, —; = 0=y, = [i;

So the fitted line tends towards the ith observation.

In this case, the ith observation has high leverage ("pull") h;; is called the leverage

nxn

Properties of Leverage
i) H=XXTX)"1XT « afunction of the x's only (not y)
= hy; is a function of the x's
11) V(ei) = 0'2(1 - hii) >0=> hii <1
We can further show that% <h;<1
i) tr(H) = tr(XXTX)7IXT) = tr((XTX)7IXTX) = tr(Ipanyxpeny) =P + 1

n
= z hij=p+1
i=1
= Average leverage h = pTH

Rule of thumb: If h;; > 2h then the i** pointis considered to be a high leverage point.
iv) h;; is smallest when x; is near x.

)2
SLR setting: Can show that h;; = % + (—x‘s—@ which is minimized at x; = X

xx

Identifying highly influential cases
Recall § = (XTX)~1xTy ~ MVN(B, 02(XTX)™?)

= (XTX)%(é —B) ~ MVN(0,021)

= % (XTX)%@ - B)~MVN(0,1)
T

w=[Farni@-p)| [ arni@-p)| 2w+

G- w@-p)

4 " r+1)
Also, (n_’:zi)a—z ~x’(n—-p-1)

(B-B) "B - B)
= o+ Do? ~F(p+1n—-p—-1)

Cook's Distance
A measure of influence

(B- E—i)T(XTX)(g -B)

D; =

¢ (p+1)82
where Ei is the vector of models coefficients when the ith data points is excluded.
Note

i) D; does not have a F distribution but it may be compared toan F(p + 1,n — p — 1) distirbution.
ii) Rule of thumb: If D; > 1 (sometimes 0.5) then the i*" data point s influential.
iii) We can also write

Di =

Cook's distance is a measure of distance/influence on
a) model coefficients
b) fitted values
iv) Can also write
hy; df
T1-hy; p+1

D;
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d; is the studentized residual

dj=——o
boeT-hy
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Model Selection (Ch. 7)

July 11, 2014 1:29 PM

Average prediction variance:
e Suppose we have p predictions
¢ Prediction model variance = V(Ypew — Jnew) = V Dnew — fnew) = Vnew) + V (flnew ) =
02 +V(flnew)
¢ Do prediction for n points:
Average prediction error variance

=0%+-— ZV(MJ—O’ +— tr(V(u))

V() = 02

1 a? +1

=02 +—tr(c’H) =c?+—(p+1) =0o? (1 + E————)
n n n

If you start adding unnecessary predictors, 2 may grow a bit larger and also 'p' increases.
= Average prediction variance increases with p.
Model Selection Handout

E

D RZ=1——

D SST
n

SST= ) (i~ 7

constant regardless of the models
To show that R? increases with p, need to show that SSE decrases with p
n

SSE = (v — i)?

e.g. Consider ’Ewo models;

Model 1: y; = By + B1xi1 + B2Xiz + €;
Model 2: y; = By + B1xi1 + €

Want to show that SSE(Ml) < SSE(M,)

SSE(M,) = OmlllezZ(yl Bo — B1xi1 — B2Xiz)?

SSE(M,) = mln Z()’l Bo — Bixi1)?
Note: SSE(MZ) = SSE(M1 when B, = 0)

Remove the constraint on 5, agove
= SSE(M,) < SSE(M,)
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General F-Test

July 18, 2014 1:44 PM

y = f1Trt + [, Ctrl + %, TestBy =B, ="
y = B*(Trt+ Ctrl) + =

0 1
0 1
Trt=|0]{, Ctrl =11
1 0
1 0

Additional Sub Sequence Principle
¢ Useful for comparing nested models. Nested means one model is a special case of another.
e eg Modell:y = o+ f1x1 + Boxy + f3x3 + €
Model 2: y= BO + ﬂlxl + B3X3 + €

[s the reduced model adequate?

General F-Test

For testing linear set of hypotheses
Hy:AB =¢, Aisrx(p+1)

Example
Yy =Po+ P1x1+ Paxz + Paxz + €
1) Hp:B2=p3=0

H02A£=£
Bo

_|A _[0 0 1 0 _ 10

B=1p,| A_[o 00 1]’ g_[o
B3

OR

000 1 -1

A_,o 0 0 1]

2 Hoiba= 0P = 0
4=1p 1 0 —1]’ 9:[0

The test statistic under Hy: AB = ¢
= Let @ =A[_3:>HO:Q =c

Estimate § = AB

Note: -

B~MVN(B,aT(XTX)T)

fisa linear form = O~MVN
F(6)=F(AB)=4B =9

v(0) = V(4B) = AV(B)AT = A(XTX)1AT
=0 =MVN@O,AXTX) 14T5?)

Want
P(8—8)~MVN(0,02%)
v(P(8-0)) =0
Pv(9)PT = Io?

STAT 331 Page 36



PAXTX) 1ATPT o2 = 021
1 1
PIAXTX) LAT]2[AXTX)1AT]2PT = |
1
LetP = (AXTX)"tAT)2
Back to test statistic
P(6 - 8) ~ MVN(0,521)

1 .
= EP(Q —8) ~MVN(0,I)

[z~ [re-0]-ro

1 . ~
> —(8-0) PTP(8 - 0)~x*()

Know that
(n—p—1)6?
%wz(n—p—l)

~ T ~

0—-0) PTP(6—6
:(_ ) Az(_ )~F(r,n—p—1)

oo

0—-6) (AXTX)"14T)"1(6-¢6

=>(_ _)(( )A ) (_ _)~F(r,n—p—1)

r-62

Rule: Reject if
F*>F,(rn—-p—1)

Too difficult to compute on an exam.

Alternative (Equivalent) Statistic
[SSEReduced — SSEFull]/r

SSEFull/
n

F* =
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General F-Test Examples

July 23,2014  1:26 PM

General F-Test (Test a linear set of hypotheses)

Compare two models
i) Full Model SSEy,SSR,SSTy, 67

ii) Reduced Model SSE,, SSR ¢, SSTy, G2

Statistic:
(SSEye — SSEy) /
T
F* =
SSEf
dfy

r = # of restrictions
dfs = degrees of freedom under full

IfF* > F, (r, dff) reject the null hypothesis

Example 1
Recall Chapter 5 example (comparing several groups)
Data { Diet  « Categorical
Weight < Response
n = 10 people
Diet #1: y1,¥2,V3
Diet #2: y4, Vs, Ve
Diet #3: y7,¥8,Y9, Y10
Model:y = f1x1 + fax; + f3x3 + €
N {1 j=123 o {1 j=456 e = {1 j=789,10
Y710 otherwise’ 27710 otherwise’ 3710 otherwise
Question: Does weight gained depend on diet?
Ho:B1 = B2 = B3
(Cannot use the regular ANOVA F-Test here)

General F-test: Hy: AB = ¢, f = { ]
01 -1
A_[1 o 0]’ c=
r =# of rows =2

(SSEye — SSEf) /

o7
Compare to F,(2,10 — 3 = 7)

F*

Model: Weight = 8; - Trt + 3, - Ctrl

AB =c¢
:B: Zl]: A:[ll_l]l g:[()], >r=1
- 2
(SSEe — SSEy) /

* 1

F* = —
5

Full:

modl = lm(weight ~ group - 1)
SSEf = (0.6964)%(18), 67 = 0.6964%

STAT 331 Page 38



Reduced Model:
modr = 1lm(weight ~ 1)
SSE,. = (0.704)2(19)

F* =1.416967
Fy95(1,18) = qf(0.95,1,18) = 4.413873
= Conclusion. Since F* < 4.41 we conclude that weight does not depend on diet.

Example: Show that the ANOVA F-test is a special case of the general F-test
H0=ﬁ1=[32="'=ﬁp=0

1 =1 0 o e
0 1 -1 0 « 0
A=t ¢ 1w
00 0 - 1 -1
0 0 0 - 0 1
>r=p
(SSE,e — SSEj) /
= P
SSEf
n—p-—1
Now, SSE,, = SSE(y = By + €) = SST
(SST — SSEy) / SRy
o P = P_ 14
SSE; SSE;
n—-p—1 n—-p-—1
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Logistic Regression

July 25,2014  1:07 PM

Earlier lectures: y; was continuous
What if y; is binary (an indicator)?

Example

— {1 i™ row is a bad buy
Vi 0 otherwise
i=12,..,n
Explanatory variables:

x;1 = Vehicle Age
x;, = Milage

x;3 = Nationality
Xis = Online Sale?

Aim: predict whether a car is a bad buy?
Previous Model: y; = g + B1xi1 + Baxiz + Baxiz + Laxis
Can we use this? For now, let's ignore x,,x3,x4 = y ~ x4

Model for a binary response
Regression would have modelled E (y|x)
If y;~Bernoulli(7;) then

Vi 0 1

) 1—-m m
= E(yilx;) = m;

Question: Can 7; be explained by our x;'s? Can we somehow use linear regression as before,
perhaps by slightly changing the form of the model?

To answer this, consider the model n; = By + B1xi1

Range of 7; is (—, ) we want to relate n; to m; where m; € [0, 1]

"Trick" Use a transformation on 7; say g(m;) so that for ; € [0,1], g(m;) € (—o0, )

Structural Part of Model

9(m) =m; = Bo + P1xin
Common Forms of g(;)
1) Logistic. g(;) = ln( T )

1—TL'i
i

Interpretation: is the odds of success. We can think of logistic regression as

1-m;
modelling the log odds.

2) Probit Link
Let ®(z) = P(N(0,1) = z)
Then g(r;) = ®~*(1;)

3) Complementary log-log
g(my) = log(—(logm;))

Logistic Regression Model
n (1 fiﬂ'-) =1; = Po + Prxin + - + Ppxip = XB

;i el eXB
Note:ln( l): i 2 M = —— = —xp3
1-m; Ni V7 14ei T 14eXF

Interpretation of §;: f; is the increase or decrease in the log odds of success, when x; is
increased by 1 unit, and all other x's are held constant. Can show f; = log odds ratio =
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ln (1__;7:1)
(%)
Want to estimate f;

Recall: y;~Bernoulli(r;)

= P(yl = 1) =_7TirP(yi = O) =T
Pi=j)=n/1-m)"), j=01
Likelihood function:
n
Lg) =] [= -t
i=1
Log likelihood
n

1(B) = Z(}’i logm; + (1 —y;) log(1 — m;))
-1

Find 8 a% =0

The resulting g is the maximum likelihood estimated, denoted j

KU 0 R T O R ) By
aT]i Y T 1- T : L

df;  om; om; 9B lmy 1-m
= [yi(1—m) — (A — yImlx;; = [y — mlxg;
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