Alex Edmonds

 $aedmonds @cs.toronto.edu \\ www.cs.toronto.edu/~edmonds \\$

CURRICULUM VITAE

ABOUT	I completed my PhD at the University of Toronto, supervised by Aleksandar Nikolov and Toni Pitassi. The focus of my research was on differential privacy, particularly the local model, with connections to learning theory, information theory, and duality. Our research provided algorithms which we showed to be nearly optimal in sample complexity for solving fundamental statistical estimation and PAC learning tasks. Currently, I am interested in becoming more involved in implementations of differential privacy. I can bring a strong theoretical grounding to the task of putting differential privacy into practice.		
EDUCATION	Doctor of Philosophy 2017 - 2017 University of Toronto – Computer Science	23	
	Master of Science2015 - 20University of Toronto – Computer Science2015 - 20	17	
	Honours Bachelor of Science2008 - 20University of Toronto – Mathematics Specialist Program	14	
ACADEMIC AWARDS	PhD Thesis recommended for departmental award by external examiner201University College Galois Mathematics Scholarship201University College Alumni Association Scholarship201George Roderick Fraser Scholarship for Mathematical Studies201	23 14 12 08	
RESEARCH	Edmonds, A. (2023). "Sample-Complexity Optimality Under Local Differential Privacy and Related Models" (PhD Thesis). www.cs.toronto.edu/~edmonds/doc/alex-edmonds.phd-thesis.pdf.		
	My PhD thesis gives a harmonized presentation of the results from [ENU19] and [ENP22] on the sample complexity of learning and estimation tasks under local differential privacy (LDP), while also extending the previous work with new results from joint research with Nikolov and Pitassi related to pan-privacy and the correlational statistical query model.		
	Edmonds, A., A. Nikolov, T. Pitassi (2022). "Learning versus Refutation in Non- interactive Local Differential Privacy". NeurIPS 2022. arxiv.org/abs/2210.15439.		
	This paper's main result is a complete characterization of the sample complexity of agnostic PAC learning for non-interactive LDP protocols in terms of the		

	approximate γ_2 -norm of a natural matrix associated with the class. Com- with previous work, this gives an equivalence between learning and refutation the agnostic setting. We also give results for realizable variants of learning refutation.	bined ion in g and
	Edmonds, A., A. Nikolov, J. Ullman (2020). "The Power of Factorization I anisms in Local and Central Differential Privacy". Symposium on Theo Computing, STOC 2020. arxiv.org/abs/1911.08339.	Mech- ory of
	This work gives a general characterization for answering linear queries a non-interactive local differential privacy (LDP). In particular, we provide a g alization of the factorization mechanism and, by providing a lower bound, we this approach to be nearly optimal in sample complexity. This result is extended to draw implications for particular PAC learning tasks as well.	under gener- show ended
	Edmonds, A. (2017). "Concepts of Efficient Samplability". MSc Thesis. www.cs.toronto.edu/~edmonds/doc/alex-edmonds.msc-thesis.pdf.	
	My MSc at the University of Toronto was supervised by Dan Roy, with v I studied formalizations of the notion of computationally efficient probab sampling, in relation to traditional open problems in complexity theory.	whom ilistic
PROJECTS	OpenDP: Truncated and modular noise mechanisms 2024 (ong	going)
	Currently, I am working with Michael Shoemate on OpenDP's Rust code implementing parameters which would enable noise mechanisms for different privacy to be post-processed by way of truncation or modular arithmetic.	ebase, ential
	CSC2401 Project: Unsupervised dialect translation with Word2Vec	2016
	This project explored techniques for unsupervised translation between lang whose vocabularies sufficiently overlap, by way of semantic vector embedded These techniques were applied towards translation from both Middle English Elizabethan English to contemporary English and vice versa.	uages dings. h and
	CSC2515 Project: Attribute prediction with bidirectional RNNs	2015
	This joint project with classmate Noah Fleming, applied an LSTM neural ne to a corpus of amateur fiction to predict author attributes.	twork
	Undergraduate Final Project: Gödel's incompleteness theorem	2014
	As a final undergraduate project, I gave seminar for my peers which presenter classic proof of Gödel's First Incompleteness Theorem.	ed the
PRESENTATIONS	Conference on Neural Information Processing Systems (NeurIPS) Learning versus Refutation in Noninteractive Local Differential Privacy	2022
	Symposium on Theory of Computing (STOC) The Power of Factorization Mechanisms in Local and Central Differential Pr.	2020 ivacy

	Theory and Practice of Differential Privacy (poster presentation) The Power of Factorization Mechanisms in Local and Central Differential P	2019 rivacy
	Brookfield Institute for Innovation and Entrepreneurship Introduction to Differential Privacy	2019
RESEARCH PROGRAMS	Data Privacy: Foundations and Applications Simons Institute – Visiting Graduate Student	2019
	Foundations of Machine Learning Simons Institute – Visiting Graduate Student	2017
CONFERENCES & WORKSHOPS	Conference on Neural Information Processing Systems (NeurIPS)	2022
	Symposium on the Theory of Computing (STOC)	2020
	ACM CCS	2019
	• Theory and Practice of Differential Privacy	
	Data Privacy: Foundations and Applications Simons Institute	2019
	• Privacy and the Science of Data Analysis	
	• Beyond Differential Privacy	
	ACM CCS	2018
	• Theory and Practice of Differential Privacy	
	CanaDAM: Canadian Discrete and Algorithmic Mathematics Conference	2017
	Foundations of Machine Learning Simons Institute	2017
	Computational Challenges in Machine Learning	
	• Representation Learning	
	• Interactive Learning	
	• Foundations of Machine Learning Boot Camp	
	Avi Wigderson is 60: A Celebration of Mathematics & Computer Science Institute for Advanced Study	2016
	PoCo: Summer School in Polyhedral Combinatorics	2015
	Existential Polytime and Polyhedral Combinatorics	2015
REVIEW	Reviewer for:	
	• ACM Transactions on Algorithms (TALG)	2020

- IEEE Symposium on Foundation of Computer Science (FOCS) 2020
- Journal of Privacy and Confidentiality 2019

COURSES A selection of courses taken at the University of Toronto.

Graduate

- CSC2429 Algebraic Gems in Theoretical CS and Discrete Mathematics
- CSC2556 Algorithms for Collective Decision Making
- CSC2429 Proof Complexity, Mathematical Programming and Algorithms
- CSC2501 Computational Linguistics
- CSC2506 Probabilistic Graphical Models
- CSC2515 Machine Learning
- CSC2404 Computability and Logic
- CSC2401 Computational Complexity

Undergraduate

- MAT357, MAT457, MAT458 Real Analysis
- MAT347 Groups, Rings & Fields
- MAT461 Combinatorial Method
- MAT332 Complex Analysis
- MAT327 Topology
- MAT309 Mathematical Logic
- MAT332 Graph Theory
- MAT402 Classical Geometry

TEACHING Course Instructor – University of Toronto

Responsible for all aspects of the course, including: delivering and planning lectures; organizing tutorials; creating assignments, tests, and marking schemes; providing office hours; supervising teaching assistants.

• CSC236 Introduction to the Theory of Computation

Graduate Teaching Assistant – University of Toronto 2015 - 2023

Led tutorials, held office hours, and graded assignments and exams.

- CSC2541 AI and Ethics: Mathematical Foundations and Algorithms (graduate course)
- CSC2412 Algorithms for Private Data Analysis (graduate course)
- CSC263 Data Structures and Analysis
- CSC240 Enriched Introduction to the Theory of Computation
- CSC236 Introduction to the Theory of Computation

2018

	Graduate Teaching Assistant – Toronto Metropolitan University	2014 - 2015
	Led tutorials and graded assignments and exams.MTH110 Discrete Math I	
	• MTH210 Discrete Math II	
	• MTH141 Linear Algebra	
	• MTH240 Calculus II	
TECHNICAL SKILLS	Python, Rust, Go, Lua, C, C++, Matlab.	
COMMUNITY	Administrator of CS Graduate Student Union Matrix server for in	stant messaging 2020-2023
	CS Theory Student Seminar organizer	2020
	CS Theory Student Camping Retreat organizer	2019
	CS Graduate Student Union Board Games Club organizer	2017 - 2020
PERSONAL INTERESTS	Open-source software and hardware. Knowledge management. Co tional dance. Folk music. Classic movies.	ntact improvisa-