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Abstract
Semidefinite programming (SDP) with diagonal constraints arise in many optimiza-
tion problems, such as Max-Cut, community detection and group synchronization.
Although SDPs can be solved to arbitrary precision in polynomial time, generic con-
vex solvers do not scalewell with the dimension of the problem. In order to address this
issue, Burer and Monteiro (Math Program 95(2):329–357, 2003) proposed to reduce
the dimension of the problem by appealing to a low-rank factorization and solve the
subsequent non-convex problem instead. In this paper, we present coordinate ascent
based methods to solve this non-convex problem with provable convergence guaran-
tees. More specifically, we prove that the block-coordinate maximization algorithm
applied to the non-convex Burer–Monteiro method globally converges to a first-order
stationary point with a sublinear rate without any assumptions on the problem. We
further show that this algorithm converges linearly around a local maximum provided
that the objective function exhibits quadratic decay. We establish that this condition
generically holds when the rank of the factorization is sufficiently large. Furthermore,
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incorporating Lanczos method to the block-coordinate maximization, we propose an
algorithm that is guaranteed to return a solution that provides 1 − O (1/r) approx-
imation to the original SDP without any assumptions, where r is the rank of the
factorization. This approximation ratio is known to be optimal (up to constants) under
the unique games conjecture, and we can explicitly quantify the number of iterations
to obtain such a solution.

Keywords Semidefinite programming · Burer–Monteiro method · Coordinate
descent · Non-convex optimization · Large-scale optimization

Mathematics Subject Classification 65K05, 90C22, 90C25, 90C26, 90C27, 90C30,
58C05, 49M37

1 Introduction

A variety of problems in statistical estimation and machine learning require solving
a combinatorial optimization problem, which are often intractable [42]. Semidefinite
programs (SDP) are commonly used as convex relaxations for these problems, pro-
viding efficient algorithms with approximate optimality [34]. A generic SDP in this
framework can be written as

maximize 〈A, X〉 (CVX)

subject to Xii = 1, for i ∈ [n],
X � 0,

where A, X ∈ Symn (real symmetric matrices of size n × n) and [n] = {1, 2, ..., n}.
This problem appears as a convex relaxation to the celebrated Max-Cut problem [22],
graphical model inference [19], community detection problems [6], and group syn-
chronization [32].

Although SDPs serve as reliable relaxations to many combinatorial problems, the
resulting convex problem is still computationally challenging. Interior point methods
can solve SDPs to arbitrary accuracy in polynomial-time, but they do not scale well
with the problem dimension n. A popular approach to remedy these limitations is to
introduce a low-rank factorization X = σσ�, where σ ∈ R

n×r with r denoting the
rank. This reformulation removes the positive semidefinite cone constraint in (CVX)
since X = σσ� is guaranteed to be a positive semidefinite matrix, and choosing
r � n provides computational efficiency as well as storage benefits. This method is
often referred to as Burer–Monteiro approach [15]. Denoting i th row of σ by σi , i.e.,
σ = [σ1, σ2, ..., σn]�, the resulting non-convex problem can be written as follows

maximize 〈A, σσ�〉 (Non-CVX)

subject to ‖σi‖ = 1, for i ∈ [n].

In the original Burer–Monteiro approach [15], the authors proposed to use an aug-
mented Lagrangian method for a general form SDP. However, it has been recently
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observed that feasible methods (such as block-coordinate maximization [25,43], Rie-
mannian gradient [25,32] and Riemannian trust-region methods [1,11,26]) provide
empirically faster rates since feasibility can be efficiently guaranteed via projec-
tion onto the Cartesian product of spheres. Despite overwhelming empirical evidence
[25,32,43], convergence properties of these feasible methods are not well-understood
(except the Riemannian trust-region method, for which a sublinear convergence rate
is shown in [11] and a local superlinear convergence is shown in [1] with no rate
estimate). Among these methods, block-coordinate maximization and Riemannian
gradient ascent are simpler to implement and have computational complexity ofO (nr)
andO (n2r), respectively, whereas Riemannian trust-region requires to solve the trust-
region subproblem at each iteration, which is usually solved iteratively using the
Lanczos method in a few iterations, whose per iteration requires O (n2r) arithmetic
operations. Furthermore, block-coordinate maximization does not have any step size
or tuning parameters, unlike Riemannian gradient ascent and Riemannian trust-region
methods. Empirical studies further motivate the use of block-coordinate maximiza-
tion by presenting superior performance compared to existing methods on large-scale
problems, often with linear convergence [25]. In this paper, we provide the first local
and global convergence rate guarantees for the block-coordinatemaximizationmethod
(applied to Burer–Monteiro approach) in the literature, which are consistent with the
empirical performance of the algorithm. Our contributions can be summarized as
follows:

– We establish the global sublinear convergence of the block-coordinate maximiza-
tion algorithm applied to (Non-CVX) without any assumptions on the cost matrix
A.

– We show that this algorithm enjoys a linear rate around a neighborhood of any local
maximum when the objective function satisfies the quadratic decay assumption.

– We establish that the quadratic decay condition that leads to local linear conver-
gence generically holds when the rank of the factorization satisfies r ≥ √

2n.
– Incorporating Lanczos methods into the block-coordinate maximization proce-
dure, we propose an algorithm that returns an approximate second-order stationary
point of (Non-CVX). By choosing the rank of the factorization sufficiently large
and selecting the parameters of the algorithm according to the cost matrix A,
we show that the solution returned by this algorithm is not only an approximate
local maximum to (Non-CVX), but also provides 1 − O (1/r) approximation to
(CVX). We highlight that this approximation ratio is optimal under the unique
games conjecture.

– We validate our theoretical results via numerical examples and compare the per-
formance of the block-coordinate maximization algorithm with various manifold
optimization methods to demonstrate its performance.

1.1 Related work

There are numerous papers that analyze the landscape of the solution space of
(Non-CVX). In particular, it is known that (CVX) admits an optimal solution of rank
r such that r(r + 1)/2 ≤ n [7,35]. Using this observation, it has been shown in
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[15,16,26] that when r ≥ √
2n, if σ is a rank deficient second-order stationary point

of (Non-CVX), then σ is a global maximum for (Non-CVX) and X = σσ� is a global
maximum for (CVX). The recent paper [12] showed that when r ≥ √

2n, for almost all
A, everyσ that is a first-order stationary point is rank deficient. For arbitrary rank r , it is
shown that all local maxima are within a n‖A‖2/√r gap from the optimum of (CVX)
[33], and any ε-approximate concave point iswithin aRg(Non − CVX)/(r−1)+nε/2
gap from the optimum of (CVX) [32], where Rg(Non-CVX) is the range of the prob-
lem (Non-CVX), i.e., the difference between the maximum and the minimum values
of the objective in (Non-CVX).

Javanmard et al. [25] showed that when applied to solve (Non-CVX), Riemannian
gradient ascent and block-coordinate maximization methods provide excellent numer-
ical results, yet no convergence guarantee is provided. Similar experimental results
are also observed in [43] for the block-coordinate maximization algorithm and in [32]
for the Riemannian gradient ascent algorithm. Concurrent to this work, in [43], the
authors analyzed the convergence of the deterministic block-coordinate maximization
algorithm. In particular, they showed that the deterministic block-coordinate maxi-
mization algorithm is asymptotically convergent (see [43, Theorem 3.2]) and enjoys a
local liner convergence with no explicit rate estimates (see [43, Theorem 3.5]). They
also proved that the deterministic block-coordinate maximization approach converges
to a local maximum generically under random initialization using the center-stable
manifold theorem similar to [30]. These results hold under the assumption that the
iterates generated by the algorithm satisfy a certain condition that is seemingly impos-
sible to verify without actually running the algorithm. To alleviate this issue, the
authors suggested using a coordinate ascent method with a sufficiently small step
size, for which the aforementioned convergence results hold without this precarious
assumption. In [9], the authors provided a global sublinear convergence rate for the
Riemannian trust-region method for general non-convex problems and these results
have been used in [11,32] for the non-convex Burer–Monteiro approach. Augmented
Lagrangian methods have been proposed to solve (Non-CVX) as well [15,16], how-
ever these methods do not benefit from separability of the manifold constraints, and
hence are usually slower [12].

There also exist methods that solve (CVX) by exploiting its special structure
[5,21,27,39]. In particular, [27] reduces (CVX) to a sequence of approximate eigen-
pair computations that is efficiently solved using the power method. In [5,39], matrix
multiplicative weights algorithm is used to approximately solve (CVX), and these
ideas are extended in [21] using sketching techniques [40]. However, these meth-
ods require constructing X ∈ Symn explicitly, which is prohibitive when n goes
beyond a few thousands, whereas the Burer–Monteiro approach we consider in this
paper easily scales to very large instances as the low-rank factorization decreases the
dimension of the problem from O (n2) to O (nr) with r � n. For time complexity
comparison between these methods that are based on Lagrangian relaxation and the
Burer–Monteiro approach in this paper, we refer to Corollary 4.

Coordinate descent methods have been successfully applied to non-convex differ-
entiable optimization problems in several papers [31,36,38,41]. In [41], the authors
propose a coordinate gradient descent approach that may be viewed as a hybrid of
gradient-projection and coordinate descent to minimize the sum of a smooth function
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and a convex separable function. They analyze the greedy coordinate selection rule
and present local linear convergence, although no rate estimates are provided. [38]
considers a similar composite but convex optimization problem and provides explicit
rate estimates. These results are then generelized to non-convex problems by [36] and
[31]. However, these approaches heavily rely on the Euclidean geometry and cannot
handle non-convex constraints, which is the main focus of our paper.

1.2 Notations and preliminaries

Throughout the paper, matrices are denoted with a boldface font, and all vectors
are column vectors. The superscripts are used to denote iteration counters, i.e., σ k

denotes the value of σ at iteration k. For a vector g, ‖g‖ represents its Euclidean
norm. For matrices A, B, we write 〈A, B〉 = trace(AB�) for the inner product
associated to the Frobenius norm ‖A‖F = √〈A, A〉. Ai j represents the entry at the
i th row and j th column of A, Ai represents its i th row as a column vector, and
‖A‖1 = max1≤ j≤n

∑n
i=1 |Ai j | represents its 1-norm, and ‖A‖1,1 = ∑n

i, j=1 |Ai j |
represents its L1,1-norm. For a function h, ∇h and gradh represent its Euclidean and
Riemannian gradients, respectively. Similarly, ∇2h and Hessh represent its Euclidean
and Riemannian Hessians, respectively. We let Sm−1 denote the unit sphere in R

m .
For a vector y, Diag(y) represents the diagonal matrix whose i th diagonal entry is yi .
Similarly for a matrix A, diag(A) represents the vector whose i th entry is Aii .

For brevity, we assume without loss of generality that A is a symmetric matrix
and Aii = 0, for all i ∈ [n] (the latter assumption is removed in Sect. 4 to keep our
presentation consistent with the existing works in the literature). Indeed, if A is not
symmetric, then we can replace A by (A + A�)/2, which is a symmetric matrix,
and the objective value (Non-CVX) remains the same for all σ ∈ R

n×r since σσ�
is symmetric. Similarly, replacing the diagonal entries of A by zeros decreases the
objective value by the constant Tr (A) for all feasible σ , since the diagonal entries of
σσ� are equal to 1.

The rest of the paper is organized as follows. In Sect. 2, we present the algorithm
and discuss its per iteration cost. In Sect. 3, we prove the global sublinear convergence
and local linear convergence of the algorithm with explicit rate estimates. In Sect. 4,
we introduce a second-order method based on block-coordinate maximization and
Lanczos method that is guaranteed to return solutions with global optimality guaran-
tees. We also provide a global sublinear convergence rate estimate for this algorithm.
We perform numerical experiments to validate our theoretical results in Sect. 5 and
conclude the paper in Sect. 6.

2 Block-coordinatemaximization algorithm

In this section, we discuss the block-coordinate maximization (BCM) algorithm, its
update rule and per iteration computational cost. Throughout the paper, we let f :
R
n×r → R denote the objective function of (Non-CVX), i.e.,
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Algorithm 1 Block-Coordinate Maximization (BCM)
Initialize σ 0 ∈ R

n×r and calculate g0i =∑ j �=i Ai jσ
0
j , for all i ∈ [n].

for k = 0, 1, 2, . . . do
Choose block ik = i using one of the coordinate selection rules.
σ k+1
ik

← gkik
/‖gkik ‖.

gk+1
i ← gki − Aiik σ

k
ik

+ Aiik σ
k+1
ik

, for all i �= ik .
end for

f (σ ) = 〈A, σσ�〉.

Given the current iterate σ k , the BCM algorithm chooses a row ik ∈ [n] of the matrix
σ k and maximizes the following objective

f (σ k) =
n∑

i=1

〈σ k
i , gki 〉, where gki :=

∑

j �=i

Ai j σ
k
j ,

over the block σ k
ik

∈ S
r−1.More formally, we canwrite the update rule of the algorithm

as follows

σ k+1
ik

= arg max‖ζ‖=1
f (σ k

1 , . . . , σ k
ik−1, ζ, σ k

ik+1, . . . , σ
k
n ),

= arg max‖ζ‖=1
2〈ζ, gkik 〉 +

∑

i �=ik

∑

j �=i,ik

Ai j 〈σ k
i , σ k

j 〉, (1)

= arg max‖ζ‖=1
〈ζ, gkik 〉 =

gkik
‖gkik‖

, (2)

with the convention that σ k+1
ik

= σ k
ik
when ‖gkik‖ = 0. Blocks σ k

ik
that are updated at

each iteration can be chosen through any deterministic or randomized rule, and in this
paper we focus on three coordinate selection rules:

– Uniform sampling: ik = i with probability pi = 1/n.
– Importance sampling: ik = i with probability pi = ‖gki ‖/

∑n
j=1 ‖gkj‖.

– Greedy coordinate selection: ik = argmaxi∈[n](‖gki ‖ − 〈σ k
i , gki 〉).

Per iteration computational cost of the BCM algorithm with uniform sampling is
O (nr) as after ik is chosen uniformly at random, gkik can be computed in 2(n−1)r float-
ing point operations. On the other hand, the BCMalgorithmwith importance sampling
and greedy coordinate selection requires all {‖gki ‖}ni=1, which can be naively computed
in O (n2r) floating point operations per iteration. Instead, a smarter implementation
is to keep both {σ k

i }ni=1 and {gki }ni=1’s in the memory (only the current iterates, not
all the past ones) and update them as presented in Algorithm 1, which can be done
in 2(n − 1)r floating point operations. Therefore, per iteration computational cost of
the BCM method with all three coordinate selection rules is O (nr) for dense A (i.e.,
when no structure is available on A). However, in many SDP applications (such as
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Max-Cut and graphical model inference), A is induced by a graph and letting d denote
the maximum degree of the graph that induces A, the computational cost of the BCM
algorithm becomesO (dr). In comparison, per iteration computational complexity of
the Riemannian gradient ascent algorithm is O (n2r), whereas the Riemannian trust-
region algorithm runs a few iterations of a subroutine (e.g., power method) to solve
the trust-region subproblem, whose per iteration cost is typically O (n2r).

Using any of the coordinate selection rules, the function values of the iterates
generated by the BCM algorithm is a non-decreasing sequence by the definition of
the algorithm. The increase in the function value per iteration (before reaching to
stationarity) can be explicitly computed as we present in the following lemma.

Lemma 1 Suppose at the kth iteration of the BCM algorithm, ik th block is chosen
(with some coordinate selection rule). Then, the BCM algorithm yields the following
ascent on the objective value:

f (σ k+1) − f (σ k) = 2
(
‖gkik‖ − 〈σ k

ik , g
k
ik 〉
)
≥ 0.

Proof According to the decomposition in (1), we can compute the objective function
as follows:

f (σ k+1) = 2〈σ k+1
ik

, gk+1
ik

〉 +
∑

i �=ik

∑

j �=i,ik

Ai j 〈σ k+1
i , σ k+1

j 〉,

= 2〈σ k+1
ik

, gkik 〉 +
∑

i �=ik

∑

j �=i,ik

Ai j 〈σ k
i , σ k

j 〉, (3)

where the latter equality follows since gk+1
ik

= gkik and all the terms in the sum are

independent of σ k+1
ik

. After adding and subtracting 2〈σ k
ik
, gkik 〉 to the right-hand side

of (3), we obtain

f (σ k+1) = f (σ k) + 2
(
〈σ k+1

ik
, gkik 〉 − 〈σ k

ik , g
k
ik 〉
)

.

By the update rule of the algorithm, we have σ k+1
ik

= gkik
/‖gkik‖, and plugging this

value in the above equation concludes the proof. ��

3 Convergence rate of BCM

In this section, we analyze the convergence rate of the BCM algorithm. As the feasible
set of the problem in (Non-CVX) defines a smooth manifold, we will use certain
tools from manifold optimization throughout the paper, which are highlighted in the
following subsection. We refer to [2, Section 5.4] for a more detailed treatment of this
topic.
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3.1 Riemannian geometry of the problem

Wedefine the following submanifold ofmatricesRn×r that corresponds to theRieman-
nian geometry induced by the constraints of the problem (Non-CVX) in the Euclidean
space:

Mr :=
{
σ = (σ1, . . . , σn)

� ∈ R
n×r : ‖σi‖ = 1, ∀i ∈ [n]

}
.

This manifold represents the Cartesian product of n unit spheres in Rr . For any given
point σ ∈ Mr , its tangent space can be found by taking the differential of the equality
constraints as follows

TσMr :=
{
u = (u1, . . . , un)

� ∈ R
n×r : 〈ui , σi 〉 = 0, ∀i ∈ [n]

}
.

TheRiemannian gradient of f on thismanifold can be computed by the projection of
its Euclidean gradient onto the tangent bundle. In particular, let P⊥

σ : Rn×r → TσMr

denote the projection operator from the Euclidean space to the tangent space of σ .
When applied to a given matrix w = (w1, . . . , wn)

� ∈ R
n×r , this projection operator

yields

P⊥
σ (w) = (w1 − 〈σ1, w1〉σ1, . . . , wn − 〈σn, wn〉σn)�,

= w − Diag(diag(wσ�)) σ .

Therefore, the Riemannian gradient of f at σ can be computed as follows

grad f (σ ) = P⊥
σ (∇ f (σ )) = 2 (A− Λ) σ ,

where Λ = Diag(diag(Aσσ�)). Or equivalently, the Riemannian gradient of f at σ

can be explicitly expressed as follows

grad f (σ ) = 2 (g1 − 〈σ1, g1〉σ1, . . . , gn − 〈σn, gn〉σn)�,

and its magnitude is given by

‖grad f (σ )‖2F = 2
n∑

i=1

‖gi − 〈σi , gi 〉σi‖2 = 2
n∑

i=1

(
‖gi‖2 − 〈σi , gi 〉2

)
. (4)

Using the same approach, we can calculate the Riemannian Hessian of f at σ

along the direction of a vector u ∈ TσMr by projecting the directional derivative of
the gradient vector field onto the tangent space of σ as follows

Hess f (σ )[u] = P⊥ (Dgrad f (σ )[u]) ,
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where D grad f (σ )[u] denotes the directional gradient of grad f (σ ) along the direction
u. This yields

Hess f (σ )[u] = P⊥ (2(A− Λ)u − 2Diag(diag(Aσu� + Auσ�))σ
)

= P⊥ (2(A− Λ)u) , (5)

and in particular, for any u ∈ TσMr , we have

〈u,Hess f (σ )[u]〉 = 2〈u, (A− Λ)u〉. (6)

The geodesics t �→ σ (t) (i.e., curves of shortest path with zero acceleration) can
be expressed as a function of σ = σ (0) ∈ Mr and u ∈ TσMr as follows

σi (t) = σi cos(‖ui‖t) + ui
‖ui‖ sin(‖ui‖t). (7)

This geodesic can be thought as the curve on the manifold that are obtained by moving
from σ ∈ Mr towards the direction pointed by u ∈ TσMr (Table 1). According to this
definition, the exponential map Expσ : TσMr → Mr corresponds to evaluating the
point at t = 1 on the geodesic function, i.e., letting σ ′ = Expσ (u), where u ∈ TσMr ,
we have

σ ′
i = σi cos(‖ui‖) + ui

‖ui‖ sin(‖ui‖).

According to this geodesic map, we can also define the following geodesic distance
between two points σ and σ ′ on the manifold:

dist(σ , σ ′) =
(

n∑

i=1

(arccos 〈σi , σ ′
i 〉)2
)1/2

. (8)

More specifically, letting σ ′ = Expσ (u), we obtain

dist(σ , σ ′) =
(

n∑

i=1

(arccos 〈σi , σi cos ‖ui‖〉)2
)1/2

= ‖u‖F.

Similarly, the distance between a point σ and a non-empty, closed and (geodesically)
convex set Ω can be found as

dist(σ ,Ω) = min
σ ′∈Ω

dist(σ , σ ′).
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Table 1 Summary of certain definitions stated in Sect. 3.1

Projection to the tangent space TσMr at σ P⊥σ (w) = w − Diag(diag(wσ�)) σ

Riemannian gradient at σ grad f (σ ) = 2 (A− Λ) σ where Λ = Diag(diag(Aσσ�))

Riemannian Hessian at σ along u ∈ TσMr Hess f (σ )[u] = P⊥ (2(A− Λ)u)

Geodesic t → σ (t) σi (t) = σi cos(‖ui‖t) + ui‖ui ‖ sin(‖ui‖t)
Exponential map σ ′ = Expσ (u) σ ′

i = σi cos(‖ui‖) + ui‖ui ‖ sin(‖ui‖)

3.2 Global rate of convergence

In this section, we show that the BCM algorithm is globally convergent to a first-order
stationary point of the problem with a sublinear rate. In particular, in the following
theorem, we consider the BCM algorithm with greedy coordinate selection and show
that its functional ascent (see Lemma 1) can be related to the norm of the Riemannian
gradient of the function evaluated at the current iterate. By doing so, we prove that the
BCM algorithm returns a solution with arbitrarily small Riemannian gradient.

Theorem 1 Let f ∗ = max‖σi‖=1,∀i∈[n] f (σ ). Then, for any K ≥ 1, BCM with greedy
coordinate selection yields the following guarantee

min
k∈[K−1] ‖grad f (σ

k)‖2F ≤ 2n‖A‖1( f ∗ − f (σ 0))

K
. (9)

Proof From Lemma 1, we have

f (σ k+1) − f (σ k) = 2
(
‖gkik‖ − 〈σ k

ik , g
k
ik 〉
)

= 2 max
i∈[n]

(
‖gki ‖ − 〈σ k

i , gki 〉
)

,

where the latter equality follows by the greedy coordinate selection rule. We can
rewrite this equation as follows:

f (σ k+1) − f (σ k) = max
i∈[n]

2‖gki ‖
(‖gki ‖ − 〈σ k

i , gki 〉
)

‖gki ‖
,

≥ max
i∈[n]

‖gki ‖2 − 〈σ k
i , gki 〉2

‖gki ‖
,

where the inequality follows since ‖gki ‖ ≥ 〈σ k
i , gki 〉 for all σ k

i ∈ R
r . Lower bounding

the maximum with the mean of its arguments, we get

f (σ k+1) − f (σ k) ≥ 1

n

n∑

i=1

‖gki ‖2 − 〈σ k
i , gki 〉2

‖gki ‖
. (10)

123



Convergence rate of block-coordinate maximization…

The ‖gki ‖ term in the denominator in (10) can be upper bounded as follows

‖gkik‖ ≤
∑

j �=ik

|Aik j |‖σ k
j ‖ ≤ ‖A‖1. (11)

Using this bound in (10), we get

f (σ k+1) − f (σ k) ≥ 1

n‖A‖1
n∑

i=1

(
‖gki ‖2 − 〈σ k

i , gki 〉2
)

= ‖grad f (σ k)‖2F
2n‖A‖1 . (12)

In order to conclude (9), we assume the contrary that ‖grad f (σ k)‖2F > ε for all
k ∈ [K − 1]. Then, using the boundedness of f , we observe that

f ∗ − f (σ 0) ≥ f (σ K ) − f (σ 0) =
K−1∑

k=0

[
f (σ k+1) − f (σ k)

]
.

Using the functional ascent bound of BCM in (12), we get

f ∗ − f (σ 0) ≥
K−1∑

k=0

‖grad f (σ k)‖2F
2n‖A‖1 >

K ε

2n‖A‖1 ,

where the latter inequality follows by the assumption. Then, by contradiction, the
algorithm returns a solution with ‖grad f (σ k)‖2F ≤ ε, for some k ∈ [K − 1], provided
that

K ≥ 2n‖A‖1( f ∗ − f (σ 0))

ε
.

��

Using a similar approach to Theorem 1, we show in the following corollary that
the BCM algorithm with uniform and importance sampling attains a similar sublinear
convergence rate in expectation. The proof of this corollary follows similar lines to
the proof of Theorem 1, hence is deferred to “Appendix A”.

Corollary 1 Let f ∗ = max‖σi‖=1,∀i∈[n] f (σ ). Then, for any K ≥ 1, randomized BCM
yields the following guarantee

min
k∈[K−1]E‖grad f (σ

k)‖2F ≤ 2L( f ∗ − f (σ 0))

K
, (13)
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where

L =
{
n‖A‖1, for uniform sampling,

‖A‖1,1, for importance sampling.
(14)

We can observe from (9), (13) and (14) that BCM with uniform sampling attains
the same sublinear rate as BCM with greedy coordinate selection in expectation as
they both require at most

⌈(
2n‖A‖1( f ∗ − f (σ 0))

)
/ε
⌉
iterations to return a solution

σ satisfying ‖grad f (σ )‖2F ≤ ε. On the other hand, we see that BCM with importance
sampling enjoys a tighter convergence rate compared to BCMwith uniform sampling,
as ‖A‖1,1 ≤ n‖A‖1 for all A ∈ R

n×n .

3.3 Local rate of convergence

Although the BCM algorithm enjoys the sublinear convergence rates presented in
Sect. 3.2, it is numerically observed that the rate of convergence is linear when σ k

is close to a local maximum [25,43]. In this section, we investigate this behavior and
prove that indeedBCMattains a linear convergence rate around a localmaximumunder
the quadratic decay condition on the objective function, which is classically defined as
follows [4,8]: Consider the unconstrained maximization problem: maxx ϕ(x), and let
Ωx̄ denote the set of local maximizers with objective value ϕ(x̄). Then, the quadratic
decay condition is said to be satisfied at x̄ for ϕ, if there exists constants μ, δ > 0
such that ϕ(x) ≤ ϕ(x̄) − μ dist2(x,Ωx̄ ), for all x such that ‖x − x̄‖ ≤ δ, where dist
measures the distance between point x and set Ωx̄ .

For the constrained optimization problem that we are considering in (Non-CVX),
this definition needs to be slightly reworked. In particular, let σ be a local maximum
of (Non-CVX) and consider the Taylor expansion of Expσ (u) around σ :

f (Expσ (u)) = f (σ ) + 1

2
〈u,Hess f (σ )[u]〉 +O

(
‖u‖3F

)
,

where the first-order term is zero as σ is a local maximum. Then, for a sufficiently
small neighborhood of σ , the quadratic decay condition is satisfied if and only if there
exists a constant μ > 0 such that 〈u,Hess f (σ )[u]〉 ≤ −μ dist2(Expσ (u),Ωσ ), for
all Expσ (u) sufficiently close to σ , where Ωσ is the set on which f has constant
value f (σ ). Assume for the sake of simplicity that σ is a strict local maximum,
i.e., Ωσ = {σ }. Then, the distance between Expσ (u) and σ can be found as the
norm of the tangent vector that connects these two points via the geodesic curve, i.e.,
dist(Expσ (u), σ ) = ‖u‖F. Therefore, the quadratic decay condition is satisfied if and
only if there exists a constant μ > 0 such that 〈u,Hess f (σ )[u]〉 ≤ −μ‖u‖2F for all
u ∈ TσMr , where we note that the condition that Expσ (u) is sufficiently close to σ

is dropped considering the limit as u → 0.
Unfortunately, no local maximum is a strict local maximum for the problem

(Non-CVX). To observe this, let O(r) = {Q ∈ R
r×r : Q�Q = QQ� = I}

denote the orthogonal group in dimension r . Then, it can be observed that f (σ Q) =
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〈A, σ QQ�σ�〉 = 〈A, σσ�〉 = f (σ ), for any Q ∈ O(r). Therefore, in order to
measure the distance between Expσ (u) and Ωσ , we define the following equivalence
relation ∼:

σ ∼ σ ′ ⇐⇒ ∃Q ∈ O(r) : σ = σ ′Q. (15)

This equivalence relation induces a quotient space denoted byMr/ ∼ and we let [σ ]
denote the equivalence class of a given matrix σ ∈ Mr . According to this definition,
f has constant value of f (σ ) on the set [σ ], i.e., Ωσ = [σ ]. We let Vσ ⊂ TσMr

denote the tangent space to the equivalence class [σ ], which can be found as Vσ =
{σ B : B ∈ R

r×r and B� = −B}.1 Therefore, dist(Expσ (u), [σ ]) = ‖u‖F if the
closest point to Expσ (u) in [σ ] is σ , or equivalently dist(Expσ (u), [σ ]) = ‖u‖F if
u ∈ TσMr \ Vσ . Consequently, we say that quadratic decay is satisfied at σ for f
if Hess f (σ ) is negative definite on the orthogonal complement of Vσ in TσMr . The
formal statement of this definition is as follows.

Definition 1 (Quadratic decay) Let σ be a local maximum of (Non-CVX). Quadratic
decay condition is said to be satisfied at σ for f if there exists a constant μ > 0 such
that

〈u,Hess f (σ )[u]〉 ≤ −μ‖u‖2F, for all u ∈ TσMr \ Vσ , (16)
where Vσ is the tangent space to the equivalence class [σ ].
In the following theorem, we present the linear convergence rate of the BCM algo-

rithm under the quadratic decay condition. We defer the validity of this condition to
Sect. 3.4 where we show that quadratic decay generically (over the set of matrices A)
holds for f when r is sufficiently large.

Theorem 2 Let σ̄ be a limit point of the BCM algorithm and assume that σ̄ is a local
maximum that satisfies the quadratic decay condition. If σ 0 is sufficiently close to the
equivalent class [σ̄ ], then the iterates generated by the BCM algorithm with greedy
coordinate selection enjoy the following linear convergence rate

f (σ̄ ) − f (σ k+1) ≤
(
1− μ

4n2‖A‖1
)(

f (σ̄ ) − f (σ k)
)

. (17)

Proof Wefirst discuss the outline of the proof for clarity.By (12),wehave the following
functional ascent bound on the iterates of the algorithm

f (σ k+1) − f (σ k) ≥ ‖grad f (σ k)‖2F
2n‖A‖1 . (18)

In order to prove linear convergence, our aim is to show that ‖grad f (σ k)‖2F ≥
c( f (σ̄ ) − f (σ k)) for some positive constant c such that c < 2n‖A‖1, in a neighbor-
hood around the limit points of the iterates generated by the algorithm. To prove this,

1 Note that the dimension of Vσ depends on the rank of σ , and hence the quotient space is not a manifold.
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we consider the Taylor approximation of ‖grad f (σ k)‖2F and f (σ k) around σ ∈ [σ̄ ],
where σ is the closest point to σ k in the set σ̄ . In the remainder of this proof, we show
that the desired inequality holds by relating the most significant terms in these Taylor
expansions. We defer bounding the higher-order terms to “Appendix B” in order not
to distract the reader from the content of the paper.

Let σ̄ be the limit point of a subsequence {σ k	}k	≥0 that contains σ k . Then, we
consider the solution σ ∈ [σ̄ ] such that σ is the projection of σ k onto [σ̄ ], i.e.,
dist(σ , σ k) ≤ dist(σ ′, σ k) for all σ ′ ∈ [σ̄ ]. Then, by construction there exists ū ∈
TσMr \ Vσ such that Expσ (ū) = σ k . For ease of presentation, we let u = ū/‖ū‖F
denote the normalized tangent vector and consider the following geodesic to describe
σ k :

σ k
i = σi cos(‖ui‖t) + ui

‖ui‖ sin(‖ui‖t), (19)

where it can be observed that t = ‖ū‖F recovers the original exponential map σ k =
Expσ (ū). The second order Taylor approximation to (19) yields (note that t = ‖ū‖F <

1, when σ and σ k are sufficiently close):

σ k
i = σi + tui − t2

2
‖ui‖2σi +O

(
t3
)

,

and using this approximation, we obtain

gki = gi + tvi − t2

2
g̃i +O

(
t3
)

,

where

vki =
∑

j �=i

Ai j u j and g̃i =
∑

j �=i

Ai j‖u j‖2σ j .

This yields the following Taylor approximation to ‖grad f (σ k)‖2F:

‖grad f (σ k)‖2F = 2
n∑

i=1

(
‖gki ‖2 − 〈σ k

i , gki 〉2
)

= 2
n∑

i=1

(
‖gi + tvi − t2

2
g̃i‖2

−〈σi + tui − t2

2
‖ui‖2σi , gi + tvi − t2

2
g̃i 〉

2
)

+O
(
t3
)

,

= 2
n∑

i=1

{
‖gi‖2 + 2t〈gi , vi 〉 − t2〈gi , g̃i 〉 + t2‖vi‖2
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−
(
〈σi , gi 〉 + t〈σi , vi 〉 − t2

2
〈σi , g̃i 〉

+t〈ui , gi 〉 + t2〈ui , vi 〉 − t2

2
‖ui‖2〈σi , gi 〉

)2
}

+O
(
t3
)

.

Observe that as σ is a local maximum, we have σi = gi/‖gi‖ for all i ∈ [n]. This
follows since the first-order stationarity condition implies σi = ±gi/‖gi‖ for all
i ∈ [n]; and having σi = −gi/‖gi‖ for some i ∈ [n] conflicts with the assumption
that σ is a local maximum as replacing σi with any other feasible point on the sphere
increases the objective function. We also have that 〈σi , ui 〉 = 0 for all i ∈ [n], as
u ∈ TσMr . Using these facts in the above equality, we get

‖grad f (σ k)‖2F = 2
n∑

i=1

[
‖gi‖2 + 2t‖gi‖〈σi , vi 〉 − t2‖gi‖〈σi , g̃i 〉 + t2‖vi‖2

−
(
‖gi‖ + t〈σi , vi 〉 − t2

2
〈σi , g̃i 〉

+ t2〈ui , vi 〉 − t2

2
‖ui‖2‖gi‖

)2 ]
+O

(
t3
)

,

= 2
n∑

i=1

[
‖gi‖2 + 2t‖gi‖〈σi , vi 〉 − t2‖gi‖〈σi , g̃i 〉 + t2‖vi‖2

−
(
‖gi‖2 + 2t‖gi‖〈σi , vi 〉 − t2‖gi‖〈σi , g̃i 〉 + 2t2‖gi‖〈ui , vi 〉

− t2‖ui‖2‖gi‖2 + t2〈σi , vi 〉2
)]

+O
(
t3
)

,

= 2t2
n∑

i=1

(
‖vi‖2 − 〈σi , vi 〉2

−2‖gi‖〈ui , vi 〉 + ‖ui‖2‖gi‖2
)
+O

(
t3
)

. (20)

Since 〈σi , ui 〉 = 0 for all i ∈ [n], we have by the Pythagorean theorem that

‖vi‖2 − 〈σi , vi 〉2 − 〈 ui
‖ui‖ , vi 〉

2 ≥ 0.

Using this inequality in (20), we get

‖grad f (σ k)‖2F ≥ 2t2
n∑

i=1

(
〈 ui
‖ui‖ , vi 〉

2 − 2‖gi‖〈ui , vi 〉 + ‖ui‖2‖gi‖2
)

+O
(
t3
)

,

= 2t2
n∑

i=1

(
‖ui‖‖gi‖ − 〈 ui

‖ui‖ , vi 〉
)2

+O
(
t3
)

. (21)
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In order to lower bound (21) by c( f (σ )− f (σ k)), we consider the second order Taylor
approximation of f (σ k), which can be written as follows

f (σ k) =
n∑

i=1

〈σ k
i , gki 〉,

=
n∑

i=1

〈σi + tui − t2

2
‖ui‖2σi , gi + tvi − t2

2
g̃i 〉 +O

(
t3
)

,

=
n∑

i=1

(
〈σi , gi 〉 + t〈σi , vi 〉 − t2

2
〈σi , g̃i 〉 + t〈ui , gi 〉 + t2〈ui , vi 〉

− t2

2
‖ui‖2〈σi , gi 〉

)
+O

(
t3
)

.

Similar to the previous derivations, using the fact that σi = gi/‖gi‖ and 〈σi , ui 〉 = 0
for all i ∈ [n], we obtain

f (σ k) = f (σ ) +
n∑

i=1

(
t〈σi , vi 〉 − t2

2
〈σi , g̃i 〉 + t2〈ui , vi 〉 − t2

2
‖ui‖2〈σi , gi 〉

)
+O (t3) ,

= f (σ ) +
n∑

i=1

⎛

⎝t
∑

j �=i

Ai j 〈σi , u j 〉 − t2

2

∑

j �=i

Ai j‖u j‖2〈σi , σ j 〉

+t2〈ui , vi 〉 − t2

2
‖ui‖2〈σi , gi 〉

)
+O (t3) ,

= f (σ ) + t
n∑

j=1

∑

i �= j

A ji 〈σi , u j 〉 − t2

2

n∑

j=1

∑

i �= j

A ji‖u j‖2〈σi , σ j 〉

+ t2
n∑

i=1

(
〈ui , vi 〉 − 1

2
‖ui‖2〈σi , gi 〉

)
+O (t3) ,

where the last line follows since A is symmetric.Using the definition g j =∑i �= j A jiσi
and σi = gi/‖gi‖ in the above inequality yields

f (σ k) = f (σ ) + t
n∑

j=1

〈g j , u j 〉 − t2

2

n∑

j=1

‖u j‖2〈g j , σ j 〉

+ t2
n∑

i=1

(
〈ui , vi 〉 − 1

2
‖ui‖2〈σi , gi 〉

)
+O

(
t3
)

,

= f (σ ) + t2
n∑

i=1

(
〈ui , vi 〉 − ‖ui‖2‖gi‖

)
+O

(
t3
)

. (22)
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Reorganizing terms, we get

f (σ̄ ) − f (σ k) = f (σ ) − f (σ k) = t2
n∑

i=1

(
‖ui‖2‖gi‖ − 〈ui , vi 〉

)
+O

(
t3
)

.

(23)

Turning back our attention to (21), we can lower bound the right-hand side as follows

‖grad f (σ k)‖2F ≥ 2t2
n∑

i=1

1

‖ui‖2
(
‖ui‖2‖gi‖ − 〈ui , vi 〉

)2 +O
(
t3
)

,

≥ 2t2
n∑

i=1

(
‖ui‖2‖gi‖ − 〈ui , vi 〉

)2 +O
(
t3
)

,

≥ 2t2

n

(
n∑

i=1

(
‖ui‖2‖gi‖ − 〈ui , vi 〉

))2

+O
(
t3
)

,

where the second inequality follows since ‖ui‖2 ≤ ‖u‖2F = 1 and the last inequality

follows since
(∑n

i=1 ai
)2 ≤ n

∑n
i=1 a

2
i , for all ai ∈ R, i ∈ [n]. Using the second

order approximation derived in (23) in the above inequality, we obtain

‖grad f (σ k)‖2F ≥ f (σ̄ ) − f (σ k)

n

n∑

i=1

2
(
‖ui‖2‖gi‖ − 〈ui , vi 〉

)
+O

(
t3
)

,

= 2〈u, (Λ − A)u〉
n

(
f (σ̄ ) − f (σ k)

)
+O

(
t3
)

,

whereΛ = Diag(‖g1‖, . . . , ‖gn‖). Since we have 2〈u, (A− Λ)u〉 ≤ −μ‖u‖2F by the
quadratic decay condition, we conclude that

‖grad f (σ k)‖2F ≥ μ

n

(
f (σ̄ ) − f (σ k)

)
+O

(
t3
)

. (24)

This implies that whenever σ k is sufficiently close to σ , i.e., whenever t is sufficiently
small (cf. (19)), the remainder in the Taylor approximation, i.e., theO (t3) terms, will
be dominated by μ

n

(
f (σ̄ ) − f (σ k)

)
. In particular, if σ 0 is sufficiently close to σ̄ to

satisfy O (t3) ≥ − μ
2n

(
f (σ̄ ) − f (σ k)

)
in the above inequality (see Appendix B for a

proof of this), we then have

‖grad f (σ k)‖2F ≥ μ

2n

(
f (σ̄ ) − f (σ k)

)
. (25)

Combining this inequality with (18), we get

f (σ k+1) − f (σ k) ≥ μ

4n2‖A‖1
(
f (σ̄ ) − f (σ k)

)
. (26)
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Rearranging terms in the above inequality concludes the proof. ��
The linear convergence rate of the BCM algorithmwith greedy coordinate selection

in Theorem 2 can be extended for importance sampling and uniform sampling as we
highlight in the following (its proof follows similar lines to the proofs of Theorem 2
and Corollary 1 and hence is omitted).

Corollary 2 Let the conditions in Theorem 2 hold. Then, the iterates generated by the
BCM algorithm enjoys the local linear convergence rate

f (σ̄ ) − E f (σ k) ≤ (1− ρ)k
(
f (σ̄ ) − f (σ 0)

)
, (27)

where ρ = μ
4n‖A‖1,1 for importance sampling and ρ = μ

4n2‖A‖1 for uniform sampling.

3.4 Quadratic decay condition holds generically

In this section, we consider the quadratic decay condition, which is a condition on
(Non-CVX), and relate it to a condition on the original problem in (CVX). In particular,
we characterize sufficient conditions on (CVX) for quadratic decay to hold. We first
provide some background on semidefinite programming (see for example [3], for a
more detailed treatment of this topic). Consider the SDP in (CVX):

maximize 〈A, X〉
subject to Xii = 1, for i ∈ [n],

X � 0,

and its dual:

minimize 〈1, y〉
subject to Z = Diag(y) − A,

Z � 0,

where 1 is the vector of ones of appropriate size. Let X∗ and (y∗, Z∗) denote the primal
and dual optimal solutions, respectively, and let r∗ denote the rank of X∗. Then, there
exists a Q ∈ O(n) such that

X∗ = QDiag(λ1, . . . , λr∗ , 0, . . . , 0) Q�,

Z∗ = QDiag(0, . . . , 0, ωr∗+1, . . . , ωn) Q�.

We say that strict complementarity holds if λi > 0 for i = 1, . . . , r∗ and ω j > 0 for
j = r∗ + 1, . . . , n. Furthermore, let Q1 ∈ R

n×r∗ and Q2 ∈ R
n×(n−r∗) respectively

denote the first r∗ columns and the last n − r∗ columns of Q and let qi denote the i th
row of Q1, i.e., Q1 = [q1, q2, . . . , qn]�. Then, (y∗, Z∗) is dual nondegenerate if and
only if {q1q�

1 , . . . , qnq�
n } spans Symr∗ , i.e., the set of real symmetric r∗×r∗ matrices
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[3, Theorem 3]. Strict complementarity and dual nondegeneracy are known to hold
generically (over the set of possible cost matrices A ∈ R

n×n , i.e., they fail to hold only
on a subset of measure zero of Rn×n) as proven in [3, Lemma 2]. Using these defini-
tions, we show in the next theorem that strict complementarity and dual nondegeneracy
are sufficient for quadratic decay to hold at the maximizer of (Non-CVX).

Theorem 3 Suppose that X∗ = σσ� and (y∗, Z∗) = (diag(Λ),Λ − A) are respec-
tively primal and dual optimal solutions satisfying strict complementarity and dual
nondegeneracy, where Λ = Diag(‖g1‖, . . . , ‖gn‖). If r ≥ rank(X∗), then quadratic
decay is satisfied for f at all σ̄ such that σ̄ σ̄� = X∗.

Proof Suppose rank(X∗) = r∗ ≤ r , then by strict complementarity, we have
rank(Z∗) = n − r∗ and kernel of Z∗ is equal to the column space of X∗, i.e.,
ker(Z∗) = col(X∗). Since X∗ = σσ� and Z∗ = Λ − A, we equivalently have
ker(Λ − A) = col(σ ). As Z∗ is feasible for the dual, then Z∗ = Λ − A � 0, and
consequently 〈u, (Λ − A)u〉 ≥ 0, for all u ∈ R

n×r .
Now consider the quadratic form h(u) := 〈u, (Λ − A)u〉 over u ∈ TσMr . First,

we show that h(u) = 0 if and only if u ∈ Vσ . The if direction of the proof is
straightforward, i.e., (Λ− A)σ = 0 and u = σ B for some skew-symmetric matrix B
directly imply h(u) = 0 for all u ∈ Vσ . To show the only if direction, let u ∈ TσMr

such that h(u) = 0, or equivalently tr((Λ− A)uu�) = 0. As bothΛ− A and uu� are
positive semidefinite matrices, this implies (Λ − A)u = 0. Therefore, columns of u
are in ker(Λ − A) = col(σ ), which implies there exists B ∈ R

r×r such that u = σ B
(note that it is not possible to make this claim without strict complementarity). As
u ∈ TσMr , then 〈σi , ui 〉 = 〈σi , B�σi 〉 = 〈σiσ�

i , B〉 = 0, for all i ∈ [n]. Without
loss of generality, assume that the last r − r∗ columns of σ are equal to zero. Then,
by dual nondegeneracy of the SDP, the principal submatrices of dimension r∗ × r∗ of
{σiσ�

i }ni=1 spans Sr∗ . Consider the decomposition

B =
[
B11 B12
B21 B22

]
,

where B11 ∈ R
r∗×r∗ and B22 ∈ R

(r−r∗)×(r−r∗). Then, the dual nondegeneracy implies
that B11 is a skew-symmetric matrix, i.e., B�

11 = −B11. Furthermore, as the last
r − r∗ columns of σ are equal to zero, then u = σ B does not depend on B21 and B22.
Therefore, we can pick B21 = −B�

12 and B22 = 0 such that B is a skew-symmetric
matrix and observe that u ∈ Vσ . The same argument can be extended for all σ̄ such
that σ̄ σ̄� = X∗ using parallel transport.

To conclude the proof, we let {u	}n(r−1)
	=1 be an orthogonal basis to TσMr such that

{u	}s	=1 is a basis for Vσ . Let M ∈ R
n(r−1)×n(r−1) such that Mi j = 〈ui , (Λ − A)u j 〉.

Consider the function h̄ : R
n(r−1) → R

n(r−1) such that h̄(v) = v�Mv and
observe that h̄(vec(u)) = h(u). Let L = [vec(u1), . . . , vec(us)]� ∈ R

s×n(r−1),
then v�Mv > 0 for all v such that Lv = 0 and v �= 0. Then, by Finsler’s Lemma,
L�⊥ML⊥ � 0, where L⊥ is any basis of the right null-space of L. Equivalently, there
exists μ > 0 such that h(u) ≥ μ‖u‖2F for all u ∈ TσMr \ Vσ . ��
Remark 1 Finsler’s Lemma [13, LemmaC.11.2] also yields thatμ = λmin(L�⊥ML⊥).
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This theorem states that quadratic decay holds for all global maxima of (Non-CVX)
provided that the rank of the factorization is large enough so that the global maximum
values of (CVX) and (Non-CVX) are equal to one another. For this case, the set of
all global maxima is an equivalence class corresponding to a solution since strict
complementarity and dual nondegeneracy imply that the primal solution of (CVX)
is unique. On top of this, when r ≥ √

2n, it is known that (see [11, Theorem 2])
any local maximum is global generically (i.e., for almost all cost matrices A). As
strict complementarity and dual nondegeneracy also hold generically for (CVX), then
consequently, when r ≥ √

2n, quadratic decay holds for all local maxima generically
as we highlight in the following corollary.

Corollary 3 If r ≥ √
2n, then quadratic decay holds for all local maxima generically.

4 Approximately achieving themaximum value of (CVX)

Our results in Sect. 3 show that the BCM algorithm converges with a sublinear rate
to a first-order stationary solution and with a linear rate to a local maximum when
initialized sufficiently close to it. In this section, we incorporate a second-order oracle
to BCM in order to obtain an algorithm, which we refer to as BCM2, that returns an
approximate second-order stationary point. More specifically, at the current iteration
of the algorithm, if the normof the gradient is large,we take aBCMstep.Otherwise,we
run a subroutine (e.g., Lanczos method) to find the leading eigenvector of the Hessian.
The main motivation for designing such an algorithm is that the approximate second-
order stationary solutions provideO (1/r) approximation to (CVX). In particular, call
σ an ε-approximate concave point if 〈u,Hess f (σ )[u]〉 ≤ ε〈u, u〉, for all u ∈ TσMr .
Then, the following theoremprovides an approximation ratio between the approximate
concave points of (Non-CVX) and the maximum value of (CVX).

Theorem 4 [32, Theorem 1] Let σ ∈ Mr be an ε-approximate concave point. Then,
for any positive semidefinite A, the following approximation ratio holds:

f (σ ) ≥
(
1− 1

r − 1

)
SDP(A) − n

2
ε, (28)

where SDP(A) is the maximum value of (CVX).

This approximation ratio followsdue to a generalization of the randomized rounding
approach (most famously presented by [22]) applied to an ε-approximate concave
point. In fact, it can be shown that it is not possible to find a better approximation
ratio (in terms of the dependence on the rank of the factorization r ) for all problems
A. This result is highlighted in the following theorem.

Theorem 5 [14, Theorems 1 & 3] Let SDP(A) be the maximum value of (CVX) and
SDPr (A) be the maximum value of (Non-CVX). Then, for all positive semidefinite
matrices A, the following approximation ratio holds:

1 ≥ SDPr (A)

SDP(A)
≥ γ (r) = 2

r

(
Γ ((r + 1)/2)

Γ (r/2)

)2

= 1− Θ(1/r), (29)
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Algorithm 2 BCM2
1: Initialize σ 0 ∈ R

n×r and calculate g0i =∑ j �=i Ai jσ
0
j , for all i ∈ [n].

2: for k = 0, 1, 2, . . . do

3: Compute ‖grad f (σ k )‖2F = 2
∑n

i=1(‖gki ‖2 − 〈σ k
i , gki 〉

2
).

4: if ‖grad f (σ k )‖2F > ε3/(1350‖A‖1) then
5: ik ← argmaxi∈[n](‖gki ‖ − 〈σ k

i , gki 〉)
6: σ k+1

ik
← gkik

/‖gkik ‖.
7: gk+1

i ← gki − Aiik σ
k
ik

+ Aiik σ
k+1
ik

, for all i �= ik .
8: else
9: Find a direction uk ∈ Tσ kMr such that 〈uk ,Hess f (σ k )[uk ]〉 ≥ λmax(Hess f (σ k ))/2,

〈uk , grad f (σ k )〉 ≥ 0, and ‖uk‖F = 1.

10: σ k+1
i ← σ k

i cos(‖uki ‖t) +
uki

‖uki ‖
sin(‖uki ‖t), for all i ∈ [n], where t = ε/(15‖A‖1).

11: gk+1
i ←∑

j �=i Ai jσ
k+1
j , for all i ∈ [n].

12: end if
13: end for

whereΓ (z) = ∫∞
0 xz−1e−xdx is the Gamma function. Furthermore, under the unique

games conjecture, there is no polynomial-time algorithm that approximates SDPr (A)

with an approximation ratio greater than γ (r) + ε for any ε > 0.

These results provide motivation to design algorithms with second-order guaran-
tees to solve (Non-CVX) and for this reason, we propose the BCM2 algorithm (see
Algorithm 2), which can be described as follows: When the Frobenius norm of the
Riemannian gradient is at least as large as ‖grad f (σ k)‖2F > ε3/(1350‖A‖1), we use
BCM to update the current solution. Otherwise, we assume that there is a second-order
oracle that returns an update direction uk ∈ Tσ kMr such that 〈uk,Hess f (σ k)[uk]〉 ≥
λmax(Hess f (σ k))/2, 〈uk, grad f (σ k)〉 ≥ 0, and ‖uk‖F = 1. Notice that finding
a tangent vector uk that satisfy 〈uk,Hess f (σ k)[uk]〉 ≥ λmax(Hess f (σ k))/2 and
‖uk‖F = 1 is an eigenpair problem and can be solved efficiently using the Lanc-
zos method. The condition 〈uk, grad f (σ k)〉 ≥ 0, on the other hand, can always be
satisfied by switching the sign of uk . It is a straightforward exercise to explicitly con-
struct such a vector and it can be found in [9, Lemma 11]. Once the update direction
uk ∈ Tσ kMr is obtained, we take a step towards this direction using the geodesics on
the manifold. When the step size is carefully chosen, it can be shown that the objec-
tive value of the iterates generated by this procedure is a monotonically increasing
sequence until the approximate second-order stationary condition is satisfied. This
property is presented in the following lemma.

Lemma 2 Let uk ∈ Tσ kMr such that ‖uk‖F = 1, 〈uk, grad f (σ k)〉 ≥ 0, and
〈uk,Hess f (σ k)[uk]〉 ≥ ε/2. Consider the update rule given by the exponential map
σ k+1 = Expσ k (tuk), i.e.,

σ k+1
i = σ k

i cos(‖uki ‖t) +
uki

‖uki ‖
sin(‖uki ‖t), for all i ∈ [n], (30)
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where t = ε
15‖A‖1 is the step size. These iterates satisfy the following ascent in the

function value:

f (σ k+1) − f (σ k) ≥ ε3

2700‖A‖21
.

Proof The Taylor expansion of σ k+1 around σ k is given by

σ k+1
i = σ k

i

∞∑

	=0

(−1)	

(2	)! (‖uki ‖t)2	 + uki

∞∑

	=0

(−1)	

(2	 + 1)! (‖u
k
i ‖t)2	+1,

= σ k
i + tuki − t2

2
‖uki ‖2σ k

i − t3

6
‖uki ‖2uki + . . . ,

and using this, we can compute the Taylor expansion of f (σ k+1) as follows

f (σ k+1) =
n∑

i=1

∑

j �=i

Ai j 〈σ k+1
i , σ k+1

j 〉,

=
n∑

i=1

∑

j �=i

Ai j

[
〈σ k

i , σ k
j 〉 + t

(
〈σ k

i , ukj 〉 + 〈uki , σ k
j 〉
)

+ t2

2

(
−‖ukj‖2〈σ k

i , σ k
j 〉 + 2〈uki , ukj 〉 − ‖uki ‖2〈σ k

i , σ k
j 〉
) ]

− t3β,

where β represents the third and higher-order terms. Using the definitions of f (σ k)

and its derivatives, the above equality can be written as follows

f (σ k+1) = f (σ k) + t〈uk, grad f (σ k)〉 + t2

2
〈uk,Hess f (σ k)[uk]〉 − t3β. (31)

Here, our aim is to upper bound the magnitude of the remainder term corresponding to
the third and higher-order terms. To this end, we upper bound the higher-order terms
using the Cauchy-Schwarz inequality for each term individually. This yields

|β| ≤
n∑

i=1

∑

j �=i

|Ai j |
( ∞∑

	=3

t	−3

	! (‖uki ‖ + ‖ukj‖)	
)

.

As t < 1 and A is a symmetric matrix, we can upper bound the right hand-side of the
above inequality as follows

|β| ≤ ‖A‖1
n∑

i=1

( ∞∑

	=3

2	

	! ‖u
k
i ‖	

)

.
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Since ‖ui‖ ≤ 1 for all i ∈ [n], we consequently have

|β| ≤ ‖A‖1
(

n∑

i=1

‖uki ‖2
)( ∞∑

	=3

2	

	!

)

= ‖A‖1
∞∑

	=3

2	

	! .

where the latter equality follows since ‖uk‖F = 1. Using
∑∞

	=3
2	

	! = e2 − 5 ≤ 5/2
above and plugging this bound back in (31), we obtain

f (σ k+1) ≥ f (σ k) + t〈uk, grad f (σ k)〉 + t2

2
〈uk,Hess f (σ k)[uk]〉 − 5‖A‖1

2
t3.

(32)

Since we are given that 〈uk, grad f (σ k)〉 ≥ 0 and 〈uk,Hess f (σ k)[uk]〉 ≥ ε/2, (32)
yields

f (σ k+1) − f (σ k) ≥ ε

4
t2 − 5‖A‖1

2
t3.

Choosing t = ε
15‖A‖1 maximizes the right-hand side of the above inequality and

concludes the proof. ��

Using this ascent lemma, we next analyze the global convergence of Algorithm 2
in Theorem 6, where we assume that we have access to a subroutine that solves the
eigenpair problem to the desired accuracy. We then implement the subroutine using
the Lanczos algorithm (presented in Algorithm 3) and present its convergence in
Theorem 7. In particular, we have the following theorem for the former case.

Theorem 6 ConsiderAlgorithm2, whereBCMisusedat iteration k if‖grad f (σ k)‖2F ≥
ε3/(1350‖A‖1) and a second-order step (see lines 9-11 of Algorithm 2) is taken oth-
erwise. Let KBCM denote the number of BCM epochs made and let KH denote the
number of second-order oracle iterations made such that K = nKBCM + KH. Then,
as soon as

KBCM + KH =
⌈
675n‖A‖21

ε2

⌉

, (33)

Algorithm 2 is guaranteed to return a solution σ K that satisfies

f (σ K ) ≥
(
1− 1

r − 1

)
SDP(A) − n

2
ε, (34)

where SDP(A) is the maximum value of (CVX).
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Proof As we have proven previously in (12), each iteration of BCM yields the follow-
ing functional ascent

f (σ k+1) − f (σ k) ≥ ‖grad f (σ k)‖2F
2n‖A‖1 ≥ ε3

2700n‖A‖21
, (35)

where the latter inequality holds since BCM is applied at iteration k of Algorithm 2 if
‖grad f (σ k)‖2F ≥ ε3

1350‖A‖1 . Similarly, by Lemma 2, each iteration of the second-order
oracle yields the following functional ascent

f (σ k+1) − f (σ k) ≥ ε3

2700‖A‖21
. (36)

Hence, an epoch (n iterations) of BCM yields the same amount of function value
improvement as an iteration of the second-order oracle. Let

f ∗ =
(
1− 1

r − 1

)
SDP(A)

denote the desired approximation ratio and consider the approximation gap of the
solution σ with respect to f ∗ that is given by

h(σ ) = f ∗ − f (σ ). (37)

The aim of the algorithm is to find a solution σ that satisfy h(σ ) ≤ ε for some ε > 0.
Consider that the BCM2 algorithm runs KBCM epochs of BCM and KH iterations of
the second-order oracle such that a total of K = nKBCM + KH iterations are made.
Let G = {0 ≤ k ≤ K − 1 : ‖grad f (σ k)‖2F ≥ ε3

1350‖A‖1 } be the set of iterations at
which BCM step is taken and letH = {0 ≤ k ≤ K − 1} \ G be the set of iterations at
which a second-order oracle step is taken. Then, the approximation gap decreases at
each iteration by the following amount:

h(σ k) − h(σ k+1) ≥ ε3

2700‖A‖21
δk, (38)

where, for notational simplicity, we introduced

δk =
{

1
n , if k ∈ G,

1, if k ∈ H.
(39)

By Theorem 4, we are given that any ε-approximate concave point σ satisfies

h(σ ) ≤ n

2
ε. (40)
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Hence, the right-hand side of (38) can be lower bounded as follows

h(σ k) − h(σ k+1) ≥ 2δk
675n3‖A‖21

h3(σ k). (41)

Considering the reciprocal of the approximation gap, we observe that

1

h2(σ k+1)
− 1

h2(σ k)
=
(
h(σ k) − h(σ k+1)

) (
h(σ k) + h(σ k+1)

)

h2(σ k+1)h2(σ k)
,

≥ 2δk
675n3‖A‖21

h(σ k)
(
h(σ k) + h(σ k+1)

)

h2(σ k+1)
, (42)

where the inequality follows by (41). As the right-hand side of (41) is lower bounded
by zero, we have h(σ k) ≥ h(σ k+1). Thus, we can lower bound the right-hand side of
(42) as follows

1

h2(σ k+1)
− 1

h2(σ k)
≥ 4δk

675n3‖A‖21
. (43)

Summing (43) over k = 0, 1, . . . , K − 1, we get

1

h2(σ K )
− 1

h2(σ 0)
≥

K−1∑

k=0

4δk
675n3‖A‖21

= 4

675n3‖A‖21
(KBCM + KH).

Given that σ 0 is not an ε-approximate concave point (or else, there is nothing to prove),
we have

1

h2(σ K )
≥ 4

675n3‖A‖21
(KBCM + KH). (44)

Since by (40), we know that 1
h(σ )

≥ 2
nε

for any ε-approximate concave point, then as
soon as

KBCM + KH ≥ 675n‖A‖21
ε2

(45)

iterations made, BCM2 is guaranteed to return an ε-approximate concave point, i.e.,
there exists a solutionσ k for some1 < k < K such that h(σ k) ≤ n

2 ε. Since {h(σ k)}k≥0
is a nonincreasing sequence (as we have already shown in (41)), then the final iterate
of the algorithm σ K is guaranteed to satisfy h(σ K ) ≤ n

2 ε, i.e., σ K is an ε-approximate
concave point. ��

In Theorem 6, KBCM+KH represents the total number of epochs to guarantee (34),
whereas the iteration counter of the algorithm is given in terms of K = nKBCM+KH.
This is due to the fact that, at each iteration of the BCM algorithm, a single row
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of σ is updated and consequently n iterations of the BCM algorithm add up to an
epoch. On the other hand, at each iteration of the second-order step, all entries of
σ are updated, and hence each second-order iteration is an epoch. In terms of the
computational cost, an iteration of BCM requiresO (nr) operations and consequently
an epoch of BCM requiresO (n2r) operations, whereas the second-order direction of
update is typically found approximately via a few iterations of the power method or
the Lanczos method (see Theorem 7 for a more rigorous treatment of this statement),
which require O (n2r) operations. Therefore, an epoch of Algorithm 2 typically has
a computational complexity of O (n2r). Furthermore, by Theorem 6, we observe
that in at most O (n‖A‖21/ε2

)
epochs, Algorithm 2 returns a solution that achieves

the optimal approximation ratio up to an accuracy of O (nε). In particular, picking
ε = 2 SDP(A)/(n(r − 1)), we obtain the following corollary.

Corollary 4 Consider the setup of Theorem 6 and set ε = 2 SDP(A)/(n(r−1)). Then,
as soon as

K =
⌈
675n3(r − 1)2‖A‖21

4(SDP(A))2

⌉

, (46)

Algorithm 2 is guaranteed to return a solution σ K that satisfies

f (σ K ) ≥
(
1− 2

r − 1

)
SDP(A).

Remark 2 In order to understand the total running time of BCM2, consider the fol-
lowing example. Let A be the adjacency matrix of a random Erdos-Rényi graph on
n nodes and �cn edges. The size of the maximum cut in this graph normalized by
the number of nodes can be bounded between [c/2 + 0.4

√
c, c/2 + 0.6

√
c] with

high probability as n increases, for all sufficiently large c [20]. Since the maximum
value of (CVX) is within 0.878 of the maximum cut [22], we can then conclude that
SDP(A)/n = O (c) with high probability. We can also observe that for this graph, the
degree of a node approximately follows a Poisson distribution with mean 2c, which
can be approximated by a normal distribution with mean 2c and variance

√
2c, for

large c [20]. Then, we have ‖A‖1 = O (c log n) with high probability. Therefore,
for this problem, Corollary 4 states that in Õ (nr2) iterations (where tilde is used to
hide the logarithmic dependences), Algorithm 2 returns a O (1/r)-optimal solution
with high probability. Per iteration computational cost of the algorithm is O (nrc),
which results in a total running time of Õ (n2r3c). In comparison, Klein-Lu method
(see [27, Lemma 4]) requires Õ (n2r3c) running time and the matrix multiplicative
weights method (see [5, Theorem 3]) requires Õ (n2r3.5/c) running time to return a
1/r -optimal solution.

Remark 3 It has been shown in [37, Theorem 3.1] and [17, Theorem 3.5] that an
exactly feasible approximately second-order stationary point to (Non-CVX) is also
approximately optimal for (CVX). Our BCM2 algorithm returns such a solution and
in light of these results, we can conclude that it finds a high-quality solution to (CVX)
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with high probability whenever r ≥ √
2n. See Fig. 4 for an empirical validation of

this result.

In the description of Algorithm 2 (see line 9), we assumed that we have access
to a vector in the tangent space of the current iterate, which satisfies certain second-
order conditions. In Algorithm 3, we describe an efficient subroutine to find this
desired tangent vector based on the Lanczosmethod. In particular, the Lanczosmethod
returns a tridiagonal real symmetricmatrix whose diagonal entries are {α	}	≥1 and off-
diagonal entries are {β	}	≥2, where 	 denotes the iteration counter in Algorithm 3. The
entire spectrum of such a symmetric tridiagonal matrix can be efficiently computed
in almost linear time in the dimension of the matrix [18]. Consequently, letting y
denote the leading eigenvector of this tridiagonal matrix, we can construct the desired
tangent vector in Algorithm 2 as uk =∑	≥1 y	u	. It is well-known that after n(r−1)
iterations, the Lanczos method constructs the leading eigenvector exactly (since order-
n(r − 1) Krylov subspace spans the entire tangent space). Furthermore, it is also
possible to analyze the performance of the Lanczos method with early termination
[28]. Building on these ideas, we characterize the quality of the solution returned by
Algorithms 2+3 in the following theorem, whose proof can be found in “Appendix C”.

Theorem 7 Suppose in Algorithm 3, we initialize u1 uniformly at random over TσMr .
Let

	∗ =

⎡

⎢⎢
⎢⎢⎢

(
1

2
+ 2

√‖A‖1
ε

)

log

⎛

⎜⎜
⎝

⌈
675n‖A‖21

ε2

⌉
1.648

√
n(r − 1)

δ

⎞

⎟⎟
⎠

⎤

⎥⎥
⎥⎥⎥

,

and consider that Algorithm 3 is run for min(	∗, n(r − 1)) iterations at each call
from Algorithm 2. Then, after K iterations (defined as in (46)), Algorithm 2 returns a
solution σ K that satisfies

f (σ K ) ≥
(
1− 1

r − 1

)
SDP(A) − n

2
ε,

with probability at least 1− δ.

Algorithm 3 Lanczos Method
1: Given σ , define H [u] = Hess f (σ )[u] + 4‖A‖1u. Initialize u1 ∈ TσMr such that ‖u1‖F = 1. Let

α1 = 〈u1, H [u1]〉 and r1 = H [u1] − α1u1.
2: for 	 ≥ 2 do
3: β	 = ‖r	−1‖F
4: u	 = r	−1/β	 (If β	 = 0, pick u	 ⊥ span(u1, . . . , u	−1) arbitrarily)
5: α	 = 〈u	, H [u	]〉
6: r	 = H [u	] − α	u	 − β	u	−1
7: end for
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5 Numerical experiments

In this section, we evaluate the empirical performance of the BCM algorithm. In what
follows, n is the dimension of the cost matrix A ∈ R

n×n , and r refers to the rank of
factorization. All algorithms are implemented on Matlab and the experiments are run
on a computer with 2.9 GHz processor and 16 GBmemory. RGD and RTR algorithms
are implemented using the Manopt package [10] with the default options and the
algorithms are terminated when the maximum allowed time is reached.

In all experiments, the cost matrix is generated as A = (G + G�)/n, where
Gi j ∼ N (0, 1) for all i �= j , and Gii = 0 for all i ∈ [n]. All experiments are based on
50 Monte Carlo runs over the initialization. For each run, the initial iterate σ 0 ∈ R

n×r

is the same for all algorithms and each row of σ 0 is generated uniformly at random
on Sr−1.

First, we compare various coordinate selection schemes forBCM(seeAlgorithm1).
We compare cyclic order i = (1, 2, . . . , n), uniform random selection, random per-
mutation order (i follows a cyclic order of a uniformly random permutation of [n]),
greedy coordinate selection, and selection by importance sampling. Figure 1 sum-
marizes the results of our experiments on n ∈ {200, 1000} with r = "√2n#. We
observe that greedy coordinate selection achieves higher function value after running
each algorithm the same number of iterations; yet, due to its high per-iteration cost,
cyclic, uniformly random, and random permutation selection rules perform better in
terms of overall runtime complexity. Furthermore, randomized rules that do not cycle
through all coordinates achieve lower function values after running each algorithm
the same number of iterations. This phenomenon is observed for a number of numer-
ical examples in different papers and unfortunately we do not have a good theoretical
understanding about this behavior except for a few preliminary results [23,24,29]. It
would be an interesting future direction to theoretically understand the slower conver-
gence of randomized coordinate selection rules in practice.

Next, we evaluate the performance of these algorithms for n ∈ {200, 1000, 5000}
with r = 2 and r = √

2n. In Fig. 2, empirical results illustrate the fast convergence of
BCM and BCM2 (see Algorithm 2) compared to RGD and RTR, for both r = "√2n#
and r = 2. The numerical results indicate our algorithms return a high-quality solution
much faster than RGD and RTR regardless of the rank of the factorization is larger or
smaller than the Barvinok-Pataki bound.

Wenext compare the final performance of differentmethods after convergence. That
is, we run all algorithms sufficiently enough until their function value stabilize, and
compare the final value obtained. In Fig. 3, we clearly observe that the final function
values obtained through BCM2 (Algorithm 2 with Lanczos method) and RTR are
larger than those obtained by other algorithms. We also observe that even when the
problem size is large (e.g., n = 20, 000), BCM returns a desirable solution within∼20
seconds, whereas it takes approximately a minute for RTR to return such a solution.

Finally, we consider a random SDP with a planted solution. In particular, we con-
sider a matrix X � 0 such that rank(X) = r and X ∈ S

n where n = r(r+1)
2 . We

then generate a MaxCut SDP for which X is an optimal solution, i.e., we find a cost
matrix A in the normal cone of X (this requires solving an auxiliary SDP). For each
r ∈ {4, 7, 10}, we generate 100 randomMaxCut SDPs as described above.We perform
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Fig. 1 Comparisons of different randomization schemes for n ∈ {200, 1000} with r = "√2n#

Fig. 2 Performance of BCM and BCM2 (Algorithms 1 and 2) compared to other methods. Here, RTR and
RGD refer to Riemannian Trust Region and Riemannian Gradient Descent, respectively

a Burer–Monteiro factorization to these SDPs for a range of ranks in [r−4, r+4]. We
solve the resulting non-convex problem using our BCM2 algorithm. Figure 4 shows
the percentage of experiments solved correctly for each value of r . We consider a trial
correct if the solution returned by BCM2 is sufficiently close to the maximizer of the
SDP. Figure 4 shows that there is a sharp phase transition at theBarvinok-Pataki bound.
Above this bound, the solutions returned by our BCM2 algorithm is approximately
optimal to (CVX) with high probability.

6 Conclusion

In this paper, we studied the Burer–Monteiro approach to solve large-scale SDPs. We
considered to solve this non-convex problem using the block-coordinatemaximization
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Fig. 3 Comparing the final performance of different methods after (near) convergence

Fig. 4 Phase transition in recovering the optimal solution of (CVX) by an approximately second-order
stationary solution of (Non-CVX)

algorithm that is extremely simple to implement.We proved that for various coordinate
selection rules, BCM attains a global sublinear convergence rate of O (1/ε) to guar-
antee E‖grad f (σ k)‖2F ≤ ε. We also showed the linear convergence of BCM around a
localmaximum that satisfy the quadratic decay condition.We proved that the quadratic
decay condition generically holds for all local maxima provided that r ≥ √

2n. These
are the first precise rate estimates for the non-convex Burer–Monteiro approach in the
literature to the best of our knowledge. We then introduced a new algorithm called
BCM2 based on BCM and Lanczos methods. We showed that BCM2 is guaranteed
to return a solution that provides 1−O (1/r) approximation to the SDP without any
assumptions on the cost matrix A, where the r -dependence of this approximation is
optimal under the unique games conjecture. We also presented numerical results that
verify our theoretical findings and show that BCM is faster than the state-of-the-art
methods. Even though in this paper, we only considered SDPs with diagonal con-
straints, it would be of interest to study the block-coordinate maximization approach
in more generic problems.
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A Proof of Corollary 1

Similar to the proof of Theorem 1, from Proposition 1, we have

f (σ k+1) − f (σ k) = 2
(
‖gkik‖ − 〈σ k

ik , g
k
ik 〉
)

,

=
2‖gkik‖

(
‖gkik‖ − 〈σ k

ik
, gkik 〉

)

‖gkik‖
,

≥ ‖gkik‖2 − 〈σ k
ik
, gkik 〉2

‖gkik‖
, (47)

where the inequality follows since ‖gkik‖ ≥ 〈σ k
ik
, gkik 〉, for all σ k

ik
∈ R

n×r . Letting Ek

denote the expectation over ik given σ k , we have

Ek f (σ
k+1) − f (σ k) ≥

n∑

i=1

pi
‖gki ‖2 − 〈σ k

i , gki 〉2
‖gki ‖

.

In particular, when pi = 1
n , for all i ∈ [n] (i.e., for uniform sampling case), we have

Ek f (σ
k+1) − f (σ k) ≥ 1

n‖A‖1
n∑

i=1

(
‖gki ‖2 − 〈σ k

i , gki 〉2
)

,

since ‖gki ‖ ≤ ‖A‖1, for all i ∈ [n] by (11). Therefore, we have

Ek f (σ
k+1) − f (σ k) ≥ ‖grad f (σ k)‖2F

2n‖A‖1 . (48)

On the other hand, when pi = ‖gki ‖∑n
j=1 ‖gkj ‖

(i.e., for importance sampling case), we have

Ek f (σ
k+1) − f (σ k) ≥

∑n
i=1 ‖gki ‖2 − 〈σ k

i , gki 〉2∑n
j=1 ‖gkj‖

= ‖grad f (σ k)‖2F
2
∑n

j=1 ‖gkj‖
.

Letting ‖A‖1,1 = ∑n
i, j=1 |Ai j | denote the L1,1 norm of matrix A, we observe that

∑n
j=1 ‖gkj‖ ≤ ‖A‖1,1, which in the above inequality yields

Ek f (σ
k+1) − f (σ k) ≥ ‖grad f (σ k)‖2F

2‖A‖1,1 . (49)

In order to prove (13), which corresponds to uniform sampling case, we assume the
contrary that E‖grad f (σ k)‖2F > ε, for all k ∈ [K − 1]. Then, using the boundedness
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of f , we get

f ∗ − f (σ 0) ≥ E f (σ K ) − f (σ 0) =
K−1∑

k=0

E

[
f (σ k+1) − f (σ k)

]

=
K−1∑

k=0

E

[
Ek f (σ

k+1) − f (σ k)
]
.

Using the expected functional ascent of BCM in (48) above, we get

f ∗ − f (σ 0) ≥
K−1∑

k=0

E‖grad f (σ k)‖2F
2n‖A‖1 >

K ε

2n‖A‖1 , (50)

where the last inequality follows by the assumption. Then, by contradiction, the algo-
rithm returns a solution with E‖grad f (σ k)‖2F ≤ ε, for some k ∈ [K − 1], provided
that

K ≥ 2n‖A‖1( f ∗ − f (σ 0))

ε
.

The proof of (14), which corresponds to importance sampling case, can be obtained
by using (49) (instead of (48)) in (50), and hence is omitted.

B Rest of the Proof of Theorem 2

In order to quantify how close σ 0 and σ should be so that this convergence rate holds,
we need to derive explicit bounds on the higher order terms in (21) and (23), which
we do in the following. The Taylor expansion of σ k around σ yields

σ k
i = σi cos(‖ui‖t) + ui

‖ui‖ sin(‖ui‖t),

= σi

[ ∞∑

	=0

(−1)	

(2	)! (‖ui‖t)2	
]

+ ui
‖ui‖

[ ∞∑

	=0

(−1)	

(2	 + 1)! (‖ui‖t)2	+1

]

.

Using this expansion, we can compute f (σ k) = ∑n
i, j=1 Ai j 〈σ k

i , σ k
j 〉. The first three

terms in the expansion are already given in (22) as follows

f (σ k) = f (σ ) + t2
n∑

i=1

(
〈ui , vi 〉 − ‖ui‖2‖gi‖

)
+ β f , (51)

where β f represents the higher order terms. In order to find an upper bound on |β f |,
we use the Cauchy-Schwarz inequality in the higher order terms in the expansion of
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f (σ k), which yields the following bound

|β f | ≤
n∑

i, j=1

|Ai j |
( ∞∑

	=3

t	

	! (‖ui‖ + ‖u j‖)	
)

.

As ‖u‖F = 1, we have ‖ui‖ ≤ 1 for all i ∈ [n], which implies

|β f | ≤
n∑

i, j=1

|Ai j |
( ∞∑

	=3

t	

	!2
	

)

,

where we note that t denotes the geodesic distance between σ k and [σ̄ ] as highlighted
in (19). Assuming that t ≤ 1, we obtain the following upper bound

|β f | ≤ t3n‖A‖1
( ∞∑

	=3

2	

	!

)

.

Using the inequality
∑∞

	=3
2	

	! = e2 − 5 ≤ 5/2 above, we get

|β f | ≤ 5n‖A‖1t3
2

.

Plugging this value back in (51), we obtain

f (σ k) ≤ f (σ ) + t2
n∑

i=1

(
〈ui , vi 〉 − ‖ui‖2‖gi‖

)
+ 5n‖A‖1t3

2
. (52)

Considering the same expansion for ‖grad f (σ k)‖2F = 2
∑n

i=1(‖gki ‖2−〈σ k
i , gki 〉2),

we get the following (see (21)):

‖grad f (σ k)‖2F = 2t2
n∑

i=1

(
‖ui‖‖gi‖ − 〈 ui

‖ui‖ , vi 〉
)2

+ βg, (53)

where βg represents the higher order terms. Upper bounding each higher order terms
using the Cauchy-Schwarz inequality as follows, we obtain

|βg| ≤ 2
n∑

i=1

⎡

⎣
n∑

j,m=1

|Ai j ||Aim |
( ∞∑

	=3

t	

	! (‖u j‖ + ‖um‖)	
)

+
n∑

j,m=1

|Ai j ||Aim |

⎛

⎜⎜
⎝

∞∑

	,s=0
	+s≥3

t	+s

	!s! (‖ui‖ + ‖u j‖)	+s

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦ .
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Using the fact that ‖ui‖ ≤ 1 for all i ∈ [n], we get the following upper bound

|βg| ≤ 2
n∑

i=1

⎡

⎢⎢
⎣

n∑

j,m=1

|Ai j ||Aim |
( ∞∑

	=3

t	

	!2
	

)

+
n∑

j,m=1

|Ai j ||Aim |

⎛

⎜⎜
⎝

∞∑

	,s=0
	+s≥3

t	+s

	!s! 2
	+s

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦ .

Using the upper bound
∑n

j,m=1 |Ai j ||Aim | ≤ ‖A‖21 above, we obtain

|βg| ≤ 2‖A‖21
n∑

i=1

⎡

⎢⎢
⎣

∞∑

	=3

t	

	!2
	 +

∞∑

	,s=0
	+s≥3

t	+s

	!s! 2
	+s

⎤

⎥⎥
⎦ .

Introducing a change of variables in the last sum, we get

|βg| ≤ 2‖A‖21
n∑

i=1

[ ∞∑

	=3

t	

	!2
	 +

∞∑

	=3

t	

	!2
	

(
	∑

s=0

	!
s!(	 − s)!

)]

,

= 2‖A‖21
n∑

i=1

[ ∞∑

	=3

t	

	!
(
2	 + 4	

)
]

.

Assuming that t ≤ 1, we obtain the following upper bound

|βg| ≤ 2‖A‖21t3
n∑

i=1

[ ∞∑

	=3

1

	!
(
2	 + 4	

)]

.

Using the inequality
∑∞

	=3
2	+4	

	! = e2 + e4 − 18 ≤ 44 above, we get

|βg| ≤ 88n‖A‖21t3.

Plugging this value back in (53), we obtain

‖grad f (σ k)‖2F ≥ 2t2
n∑

i=1

(
‖ui‖‖gi‖ − 〈 ui

‖ui‖ , vi 〉
)2

− 88n‖A‖21t3. (54)

Using the same bounding technique as in (24), we get

‖grad f (σ k)‖2F ≥ μ

n

(
f (σ̄ ) − f (σ k) − 5n‖A‖1t3

2

)
− 88n‖A‖21t3,

= μ

n

(
f (σ̄ ) − f (σ k)

)
− t3‖A‖1 (3μ + 88n‖A‖1) .
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Therefore, in order for (25) to hold, we need

t3‖A‖1 (3μ + 88n‖A‖1) ≤ μ

2n

(
f (σ̄ ) − f (σ k)

)
,

which can be equivalently rewritten as follows

t3 ≤ μ( f (σ̄ ) − f (σ k))

2n‖A‖1 (3μ + 88n‖A‖1) .

As f (σ k) is a monotonically non-decreasing sequence, then as soon as σ 0 is suffi-
ciently close to [σ̄ ] in the sense that

dist(σ 0, [σ̄ ]) ≤
(

μ( f (σ̄ ) − f (σ k))

2n‖A‖1 (3μ + 88n‖A‖1)
)1/3

,

then the linear convergence rate presented in (26) holds.

C Proof of Theorem 7

Before presenting the proof of Theorem7,wefirst introduce the following theorem that
characterizes the convergence rate of the Lanczos method with random initialization.

Theorem 8 [28, Theorem 4.2] Let A ∈ R
n×n be a positive semidefinite matrix, b ∈ R

n

be an arbitrary vector and λ	
L(A, b) denote the output of the Lanczos algorithm after

	 iterations when applied to find the leading eigenvalue of A (denoted by λ1(A)) with
initialization b. In particular,

λ	
L(A, b) = max

{ 〈x, Ax〉
〈x, x〉 : 0 �= x ∈ span(b, . . . , A	−1b)

}
.

Assume that b is uniformly distributed over the set {b ∈ R
n : ‖b‖ = 1} and let

ε ∈ [0, 1). Then, the probability that the Lanczos algorithm does not return an ε-
approximation to the leading eigenvalue of A exponentially decreases as follows

P

(
λ	
L(A, b) < (1− ε)λ1(A)

)
{
≤ 1.648

√
ne−

√
ε(2	−1), if 0 < 	 < n(r − 1),

= 0, if 	 ≥ n(r − 1).

Using this result, Theorem7 is proven as follows. Since the tangent space TσMr has
dimension n(r − 1), then we can define a symmetric matrix (where we drop the nota-
tional dependency on σ for simplicity) H ∈ R

n(r−1)×n(r−1) that represents the linear
operator Hess f (σ ) in the basis {u1, . . . , un(r−1)} such that span(u1, . . . , un(r−1)) =
TσMr . In particular, letting Hi j = 〈ui ,Hess f (σ )[u j ]〉 yields the desired matrix H
and the Lanczos algorithm is run to find the leading eigenvalue of this matrix. Here,
it is important to note that H is not a psd matrix, so it is required to shift H with a

123



M. A. Erdogdu et al.

large enough multiple of the identity matrix so that the resulting matrix is guaranteed
to be positive semidefinite. In particular, by inspecting the definition of Hess f (σ ) in
(5), it is easy to observe that ‖Hess f (σ )‖op ≤ 4‖A‖1. Therefore, it is sufficient to run
the Lanczos algorithm to find the leading eigenvalue of H̃ = H + 4‖A‖1 I , where
I denotes the appropriate sized identity matrix. On the other hand, we initialize the
Lanczos algorithm with a random vector u of unit norm (i.e., ‖u‖F = 1) in the tangent
space TσMr . Notice that u can equivalently be represented as a vector b ∈ R

n(r−1)

in the basis {u1, . . . , un(r−1)} as u = ∑n(r−1)
i=1 biui such that ‖b‖ = 1. Then, by

Theorem 8, we have

P

(
λ	
L(H̃, b) < (1− ε)λ1(H̃)

)
≤ 1.648

√
n(r − 1)e−

√
ε(2	−1).

Letting λ1(H) denote the leading eigenvalue of H , we run the Lanczos algorithm to
obtain a vector b∗ such that ‖b∗‖ = 1 and 〈b∗, Hb∗〉 ≥ λ1(H)/2. Thus, we want
P
(
λ	
L(H̃, b) < 4‖A‖1 + λ1(H)/2

)
to be small. Setting ε∗ = λ1(H)

16‖A‖1 , we can observe
that

(
1− ε∗

)
λ1(H̃) =

(
1− λ1(H)

16‖A‖1
)

(4‖A‖1 + λ1(H)) ,

= 4‖A‖1 + 3λ1(H)

4
− (λ1(H))2

16‖A‖1 ,

≥ 4‖A‖1 + λ1(H)

2
,

where the inequality follows since λ1(H) ≤ 4‖A‖1. Consequently, we have

P

(
λ	
L(H̃, b) < 4‖A‖1 + λ1(H)/2

)

≤ P

(
λ	
L(H̃, b) < (1− ε∗)λ1(H̃)

)
≤ 1.648

√
n(r − 1)e−

√
ε∗(2	−1).

By Theorem 6, we know that the Lanczos method is called at most
⌈
675n‖A‖21/ε2

⌉

times to search for an ε-approximate concave point and for any non-desired solution
we have λ1(H) ≥ ε by the definition of ε-approximate concave point. Then, by using a
union bound over all calls to the Lanczos method, we conclude that when the Lanczos
method is run for 	 iterations, we have the following guarantee

P (Algorithm 2+3 fails to return anε-approximate concave point)

≤
⌈
675n‖A‖21

ε2

⌉

1.648
√
n(r − 1)e

−
√

ε
16‖A‖1 (2	−1)

.
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In order to set this probability to some δ ∈ (0, 1), we let

	∗ =

⎡

⎢⎢⎢⎢⎢

(
1

2
+ 2

√‖A‖1
ε

)

log

⎛

⎜⎜
⎝

⌈
675n‖A‖21

ε2

⌉
1.648

√
n(r − 1)

δ

⎞

⎟⎟
⎠

⎤

⎥⎥⎥⎥⎥

= Õ
(√‖A‖1

ε
log

(
n
√
n(r − 1)

δ

))

,

where tilde is used to hide poly-logarithmic factors in ‖A‖1/ε. Since the Lanczos
algorithm is guaranteed to return the leading eigenvalue with probability 1 in at most
n(r − 1) iterations, then running each Lanczos subroutine for min(	∗, n(r − 1)) iter-
ations, it is guaranteed that Algorithm 2+3 returns an ε-approximate concave point
with probability at least 1− δ.
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