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Abstract
We provide non-asymptotic convergence rates of the Polyak-Ruppert averaged stochastic gradi-
ent descent (SGD) to a normal random vector for a class of twice-differentiable test functions. A
crucial intermediate step is proving a non-asymptotic martingale central limit theorem (CLT), i.e.,
establishing the rates of convergence of a multivariate martingale difference sequence to a normal
random vector, which might be of independent interest. We obtain the explicit rates for the multi-
variate martingale CLT using a combination of Stein’s method and Lindeberg’s argument, which is
then used in conjunction with a non-asymptotic analysis of averaged SGD proposed in Polyak and
Juditsky (1992). Our results have potentially interesting consequences for computing confidence
intervals for parameter estimation with SGD and constructing hypothesis tests with SGD that are
valid in a non-asymptotic sense.
Keywords: Rates of Convergence for Martingale CLT, Non-Asymptotic Normality, Stochastic
Gradient Descent, Stein’s Method

1. Introduction

Consider the standard parametric population M-estimation or learning problem, of the form

θ∗ = min
θ∈Rd

{
f(θ) = EX [F (θ, Z)] =

∫
F (θ, Z) dP (Z)

}
. (1.1)

Here, the function F (θ, Z) is typically the loss function composed with functions from hypothesis
class parametrized by θ ∈ Rd, and depends on the random variable Z ∈ Rd. The distribution P (Z)
is typically unknown and hence the sample M-Estimator for the above problem involves sampling
N i.i.d. samples {Zi}Ni=1 from the distribution P (Z) and computing the minimizer of the sample
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average (Van der Vaart, 2000). That is

θ̂N = argmin
θ∈Rd

{
1

N

N∑
i=1

F (θ, Zi)

}
. (1.2)

Such an approach is also called as Stochastic Average Approximation (SAA) method in the opti-
mization literature (Nemirovski et al., 2009). When the loss functionF is the negative log-likelihood
function, the above approach correspond to the popular Maximum Likelihood Estimator (MLE). We
emphasize that one still needs to specify an algorithm to compute the minimizer θ̂N in (1.2), in prac-
tice. Asymptotic properties of the sample M-Estimator and the MLE, in particular consistency and
asymptotic normality, have been studied for decades in the statistics literature, since the pioneering
work of Cramér (1946). The asymptotic normality result of the sample M-estimator in (1.2), in
particular has proven to be extremely crucial for several inferential tasks. A critical drawback of
such asymptotic results is that they are typically established for the actual minimizer θ̂N and not the
computational algorithm used.

The Stochastic Gradient Descent (SGD) provides a direct method for solving population M-
estimation problem. Specifically, for the M-estimation problem, the SGD update equation is given
by the following iterative rule: θt = θt−1−ηtg(θt), where g(θt) is the stochastic gradient at θt of the
objective function f(θ). SGD has been the algorithm of choice for parameter estimation in several
statistical problems due to its simplicity, online nature and superior performance (Nemirovski et al.,
2009). Indeed there has been an ever increasing interest in analyzing the theoretical properties of
SGD in the learning theory literature in the last decade under various assumption on the problem
structure. We refer the reader to Shapiro et al. (2009); Moulines and Bach (2011); Duchi et al.
(2011); Rakhlin et al. (2011); Lan et al. (2012); Bubeck (2015); Dieuleveut and Bach (2016) for a
non-exhaustive list of some recent developments. A notable drawback of such works is that they
mainly focus on quantifying the accuracy of the SGD in terms of optimization and/or statistical
estimation errors.

While uncertainty quantification of the sample M-Estimators in (1.2) has been a topic of intense
studies in the statistical literature (with the literature being too large to summarize) there has been
relatively less attention on establishing asymptotic normality of SGD, the practical algorithm of
choice. Quantifying the uncertainty of SGD began in the works of Chung (1954); Sacks (1958);
Fabian (1968); Ruppert (1988), with Polyak and Juditsky (1992) providing a definitive result. A
crucial step in Polyak and Juditsky (1992), for uncertainty quantification is that of establishing the
asymptotic normality of the averaged SGD iterates, which in turn depends on Martingale Central
Limit Theorems established in the probability theory literature (Liptser and Shiryayev, 2012). Re-
cent works, for example, Chen et al. (2016); Su and Zhu (2018); Duchi and Ruan (2018); Toulis
and Airoldi (2017); Li et al. (2018), essentially leverage the asymptotic normality analysis out-
lined in Polyak and Juditsky (1992) and provide several extensions, including obtaining confidence
intervals for SGD that are valid in an asymptotic sense.

While asymptotic inference based on the asymptotic normality result is interesting and leads
to qualitative confidence intervals, their validity is often times questionable due to their asymptotic
nature; in practical scenarios the SGD algorithm is only run for a finite number of steps. Indeed,
even for the well-studied case of the sample M-estimator (or MLE) in (1.2), the role of asymptotic
normality, i.e., the case of N → ∞, for inference is questionable because of its qualitative nature;
see for example Geyer (2013); Kuchibhotla (2018). A more quantitative approach is to obtain
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explicit bounds for the rate of convergence to normality in a suitable metric. Indeed such results for
the MLE have recently been obtained recently. Using Stein’s method, Anastasiou (2018) establish
the rate of convergence to normality of θ̂N in the case of multivariate MLE. A main drawback of
such a result, similar to the asymptotic results, is that the rates are established only for the actual
minimizer θ̂N , and not the estimator that is computed in practice using a specific algorithm.

In this work, we study the problem of quantifying the rate of convergence to normality of the
Polyak-Ruppert averaged SGD algorithm. Indeed SGD and its several variants are the practical
algorithm of choice used to solve the population M-estimation problem in practice and its crucial
to understand their finite sample convergence to normality for the purpose of non-asymptotic in-
ference. A main step in order to obtain such results is to first establish the rate of convergence
to normality of a multivariate martingale difference sequence. We use a combination of Stein’s
method and Lindeberg’s telescoping sum argument to establish such a result. We then adapt the
proof of Polyak and Juditsky (1992) and use it in conjunction with our martingale result to provide
quantative bounds for the SGD iterates to normality. Our results have consequences for construct-
ing confidence intervals for parameter estimation via SGD, that are valid in a non-asymptotic sense.
Furthermore, a wide variety of statistical hypothesis tests could also be formulated based on func-
tionals of solutions to convex optimization problems (Goldenshluger et al., 2015) that are typically
solved using SGD in practice; we refer the reader to the excellent survey on this topic by Juditsky
and Nemirovski (2019). Our results could be used in conjunction with such tests to obtain practical
quantitative hypothesis tests that are valid in a non-asymptotic sense.

Our Contributions: To summarize the discussion above, in this paper, we make the following
contributions.

• In Theorem 1, Corollaries 2 and 3, we prove a non-asymptotic multivariate martingale CLT,
i.e., we establish the explicit rates of convergence of a multivariate martingale difference
sequence to a normal random vector for the class of twice differentiable functions.
• In Theorems 4 and 6, we prove the rate of convergence of the Polyak-Ruppert averaged SGD

iterates to a normal random vector for solving system of linear equations and optimizing
strongly-convex functions respectively.

The rest of the paper is organized as follows. Section 1.1 introduces our notation. Section 2
contains all the relevant results for multivariate martingales and Section 3 contains our results on
SGD. We conclude the paper in Section 4 with a brief discussion and future work. All the proofs
are provided in the Appendix Sections A - C.

1.1. Notation

For a real vector v ∈ Rd, and a real tensor T ∈ Rd1×d2×···×dm , we define the operator norm as
‖v‖op , ‖v‖2, and ‖T‖op = sup‖u‖2=1‖T [u]‖op defined recursively. For a matrix A ∈ Rd×d,
‖A‖2, ‖A‖F, ‖A‖∗ denote the operator, Frobenius, and nuclear norms, respectively. For a k times
differentiable function f and i ≥ 1, we define

M0(f) = sup
x∈Rd

‖f(x)‖op, and Mi(f) = sup
x,y∈Rd,x 6=y

‖∇i−1f(x)−∇i−1f(y)‖op
‖x−y‖2

.

Additionally, throughout the text we let [n] denote the set [n] = {1, 2, ..., n}. For random variables
X and Y , we use X ∼ Nd(µ,Σ) to indicate that X is a d-variate Gaussian random vector with
mean µ ∈ Rd, and covariance Σ ∈ Rd×d. We use X a.s.

= Y to denote X is equal to Y almost surely.
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2. Convergence Rates of a Multivariate Martingale CLT

In this section, we prove a multivariate martingale central limit theorem (CLT) with explicit rates and
constants. Convergence rates of univariate martingale CLT have been studied extensively, and even
a synthetic review would go beyond the page limits – see for example Bolthausen (1982); Rinott
and Rotar (1999); Chow and Teicher (2012); Mourrat (2013); Hall and Heyde (2014); Röllin (2018)
and the references therein. In the standard literature, rates are established for one-dimensional ran-
dom variables using Lindeberg’s telescoping sum argument (Bolthausen, 1982; Mourrat, 2013; Fan,
2019). In order to obtain explicit bounds, we adapt an approach from Röllin (2018) to the multi-
variate setting, which is based on a combination of Stein’s method (Stein, 1986) and Lindeberg’s
telescoping sum argument (Bolthausen, 1982). We state the following non-asymptotic multivariate
martingale CLT.

Theorem 1 Let X1, X2, ..., Xn ∈ Rd be a martingale difference sequence adapted to a filtra-
tion F0,F1, ...,Fn with Vk = E[XkX

>
k |Fk−1] almost surely. Denote their summation by Sn =∑n

i=1Xi, and for k ∈ [n], the partial covariance by Pk =
∑n

i=k Vi, and the variance of the
summation by Σn = Var(Sn). If we assume that

P1 = Σn almost surely, (2.1)

then for Z ∼ Nd(0, I) and h : Rd → R a twice differentiable function, we have∣∣∣E[h(Σ−
1/2

n Sn)− E[h(Z)]
]∣∣∣ ≤ 3π

8

√
dM2(h)

n∑
k=1

E
[
‖Σ1/2

n P−1k Σ
1/2
n ‖

1/2
2 ‖Σ

−1/2
n Xk‖32

]
. (2.2)

Theorem 1 provides a non-asymptotic martingale CLT result under the assumption (2.1). We em-
phasize that all the constants in the bound are explicit; yet the bound cannot be expressed in terms
of the Wasserstein distance since the second derivative of the test function h appears on the right
hand side. This is the main difference between our result and that of Röllin (2018); the bounds
in Röllin (2018) are for the univariate case and in Wasserstein metric whereas Theorem 1 estab-
lishes the bounds in the multivariate setting but the resulting bound cannot be expressed in terms of
Wasserstein distance due to a subtlety of the Stein’s method in high dimensions.

The function h in Theorem 1 is often referred to as the test function, and the bound (2.2) depends
only on its smoothness, i.e., we require M2(h) < ∞. The remaining terms will be determined by
the characteristics of the martingale difference sequence. For example, for a sequence with positive
definite conditional covariances, Theorem 1 yields the following result.

Corollary 2 Instantiate the notation and assumptions of Theorem 1. For a martingale difference
sequence satisfying αI � Vk � βI almost surely for all k ∈ [n] and E

[
‖Xk‖32

]
≤ γd3/2, we have∣∣∣E[h(Σ−

1/2
n Sn)− E[h(Z)]

]∣∣∣ ≤3πγ
√
β

4α2
M2(h)

d2√
n
.

The above bounds yields a convergence rate of order d2/
√
n for any smooth test function, where

d is the dimension of the parameters and n is the number of samples in the martingale sequence.
We are not aware of a multivariate CLT result to compare the dimension dependence, but our result
improves upon the dependence in Reinert and Röllin (2009) where it is of order d3 for the standard
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multivariate CLT for the independent random vectors. We emphasize that the dimension dependence
of order d2 is a result of the particular Stein equation being used in the proof.

In Section 3, we will use Corollary 2 to prove a non-asymptotic normality result for SGD. When
translated to the optimization terminology, n will denote the number of iterations in a stochastic
algorithm, and d will denote the dimension of the parameters.

2.1. Relaxing the Assumptions

Theorem 1 and the consequent corollary rely on the assumptions that (i) the eigenvalues of the
conditional covariances Vk are bounded away from 0, i.e., Vk � αI , and (ii) the summation of
the conditional covariances are deterministic, i.e., P1

a.s.
= Σn. Even though these assumptions are

satisfied in the setting of Polyak and Juditsky (1992) for stochastic gradient algorithms, we discuss
relaxations to the assumptions which may be used to extend our results to other settings, or of
independent interest.

The following corollary provides a relaxation to the assumption Vk � αI , at the expense of
introducing a stronger upper bound on the third conditional moment.

Corollary 3 Instantiate the notation and assumptions of Theorem 1. If we further assume that
there are constants β and δ such that

E
[
‖Xk‖32|Fk−1

]
≤ β ∨ δTr(Vk) almost surely (2.3)

then, we have∣∣∣E[h(Σ−
1/2

n Sn)− E[h(Z)]
]∣∣∣ (2.4)

≤ 2
M1(h)√

n
Tr( 1

nΣn)
1/2 +

3π

4
δ
√
dnM2(h)‖Σ−1/2

n ‖32
[

Tr( 1
nΣn) + β2/3

]
.

Compared to Corollary 2, the above result assumes that the test function is both Lipschitz and
smooth. One should think of Σn as of order n as it is the variance of the sum Sn; thus, the resulting
bound (2.4) still decays with rate

√
n. The parameters in the assumption (2.3) will depend on the

dimension d; in a typical application, β and δ will be of order d3/2 and
√
d, respectively. Therefore,

the first term on the right hand side of (2.4) is of order
√
d/n and the second term is of order d2/

√
n,

i.e., the second term will dominate and determine the convergence rate.
The assumption P1

a.s.
= Σ as given in (2.1) holds for the stochastic gradient schemes that we

consider in this paper, but it may not hold for a class of specialized algorithms where the random-
ness introduced through the current iteration depends on the previous step; thus, the conditional
covariances are random variables and their summation is not deterministic. This may be the case,
for example, when the batch size in SGD is increased over each iteration by including previously
unused samples in the updates (Martens, 2010; Erdogdu and Montanari, 2015).

Relaxing the assumption (2.1) has been the focus of many papers; see for example Bolthausen
(1982); Mourrat (2013); Röllin (2018). Since this assumption is conveniently satisfied for the
stochastic algorithms that we consider in the current paper, we omit a rigorous relaxation of this
condition. However, a classical approach for this task would rely on a construction first introduced
by Bolthausen (1982), and also used in Mourrat (2013); Röllin (2018). The resulting bound would
be identical to the right hand size of (2.4) with an additional error term E[

∥∥I − Σ−1n P1

∥∥
∗]

1/2 quan-
tifying the difference between P1 and Σn.
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3. Rates to Normality for Stochastic Gradient Descent

As discussed in Section 1, the rates of convergence of the Martingale CLT established in Theorem 1
plays a crucial role in obtaining non-asymptotic results on the convergence to normality of the SGD
iterates. We elaborate about this in this section. Specifically, we consider the problem of minimizing
a smooth and strongly-convex function f : Rd → R by stochastic gradient descent. Specifically, we
make the following assumptions on the function f(θ).

Assumption 1 We assume that the function f(θ) satisfies, for some constants L,LH , µ > 0 and
any points θ, θ′ ∈ Rd:

• Strong convexity: f(θ)− f(θ′)− 〈∇f(θ′), θ − θ′〉 ≥ µ
2‖θ − θ

′‖22.

• Hessian-Smoothness: ‖∇2f(θ′)−∇2f(θ)‖2 ≤ LH‖θ′ − θ‖2, ∀ θ, θ′ ∈ Rd.

Recall that we denote the minimizer as θ∗ = argmin
θ∈Rd

f(θ) and we consider the following SGD

updates along with the Polyak-Ruppert averaging scheme. Starting with θ0 ∈ Rd we define the
following sequence

θt = θt−1 − ηtg(θt), θ̄t =
1

t

t−1∑
i=0

θi, (3.1)

where, with ζt being a sequence of mean-zero i.i.d random vectors, we have

g(θt) = ∇f(θt−1) + ζt. (3.2)

This covers the popular framework of sub-sampling based stochastic gradient descent and zeroth-
order stochastic gradient descent as well. Before proceeding to analyze the general SGD, it is
instructive to consider the following linear setting, following the strategy in Polyak and Juditsky
(1992). As will be seen in Section 3.2, the proof of the general setting will largely follow from the
proof of the linear setting considered in Section 3.1.

3.1. Linear Problem Setting

To gain intuition, we first consider the case of solving the system of linear equations of the form
Aθ = b where the matrix A ∈ Rd×d is assumed to be positive definite. Let θ∗ denote the true
solution of this linear system. Following Polyak and Juditsky (1992), we consider the following
stochastic iterative algorithm for obtaining a solution for the linear system:

θt = θt−1 − ηtyt, yt = Aθt−1 − b+ ζt, (3.3)

θ̄t =
1

t

t−1∑
i=0

θi.

Here, with a slight abuse of notation, ζt is a random perturbation to the residual term Aθt−1 −
b. Furthermore, we denote by the tuple (Ω,F ,Ft,P) an increasing sequence of Borel fields and
assume that ζt is a martingale difference sequence adapted to the filtration Ft. We now proceed to
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provide the main result of this section. Let ∆t = θt − θ∗ and note that we have ∆t = ∆t−1 −
ηt[A∆t−1 + ζt]. We also denote the average residual by

∆̄t =
1

t

t−1∑
i=0

∆i.

We now present our non-asymptotic result on the rate of convergence of the vector
√
t ∆̄t to a

normal random vector Z. Define,

%(η, t) ,
t−1∑
j=1

{
e−2c1

∑t−1
i=j ηi +

[
C ′

η1−c2j

t∑
i=j

mt
je
−λmt

j (mi
j −mi−1

j )

]2}
(3.4)

where mi
j ,

∑i
k=j ηk and ηj denotes the step-size (or learning rate) from (3.3). Then, we have the

following result.

Theorem 4 Consider solving the system of linear equations Aθ = b using the iterative updates
in (3.3). Let the matrix A be positive definite, with 0 < c = λmin(A) ≤ λmax(A) = C < ∞.
Furthermore, let the noise ζt satisfy the following assumptions:

E[ζt|Ft−1] = 0, E
[
‖ζt‖22|Ft−1

]
≤ Kd <∞, E

[
ζtζ
>
t |Ft−1

]
a.s.
= V.

Then, for some universal constants K,K2, C
′, c1 > 0, c2 ∈ (0, 1), a standard normal random

vector Z, and for a twice differentiable function h : Rd → R, we have the following non-asymptotic
bound, quantifying the rate of convergence of the iterates,

E
[
|h(
√
t ∆̄t)− h(A−1V

1/2Z)|
]
≤

t∑
k=1

E

[
1.18
√
dM2(h)

∥∥[A−1V A−1]−1/2
ζk
∥∥3
2

t
√

(t− (k − 1))

]

+
M1(h)√

t

[
K2[E‖∆0‖2]

η0
+
√
Kd K%(η, t)

]
+
M2(h)

t

[
K2

2

[
E‖∆0‖22

]
η20

+Kd K%(η, t)

]
.

The above bound quantifies the non-asymptotic rate of convergence of
√
t ∆̄t to normality, for any

given matrix A, V . The rate is presented in a way so that it explicitly quantifies the dependence
on the learning rate ηj and it holds for any t ≥ 1. The current bound depends on the dimension
d through the following terms: the factor

√
d in the first term; the spectrum of A−1V A−1; and

expected norms E[‖ζk‖2] (through Kd) and E
[
‖ζk‖32

]
. Under conditions similar to Corollary 2, we

now provide another corollary in order to gain some intuition on the dependence of the bound on
the dimensionality d. The proof of the corollary below follows from Corollary 2 and the proof of
Theorem 1 in Polyak and Juditsky (1992).

Corollary 5 Instantiate the notation and assumptions of Theorem 4. Assume that A and V are
such that αI �

[
A−1V A−1

]
� βI and E

[
‖ζk‖32

]
≤ γd3/2. Furthermore, assume that ηt = ηt−c3

for some c3 ∈ (0, 1). Then, we have Kd ≤ dβ and

E
[
|h(
√
t ∆̄t)− h(A−1V

1/2Z)|
]
≤ 2.36 γ

α3/2
M2(h)

d2√
t

+K4 M1(h)

√
d

t
+K5 M2(h)

d

t
,

where K4 and K5 are constants (that only depend on c2, c3, η, β,K,C ′,K2 and E
[
‖∆0‖22

]
) that

are independent of d and t.
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We emphasize that our goal through Corollary 5 is to demonstrate mainly the dependence of the
rate of averaged SGD to normality, on d and t. Hence, careful attention is not paid to get the exact
constants K4 and K5. Note that, under the setting assumed in Corollary 5, the dominant term is the
first term which is of the order O(d2/

√
t). It would be interesting to explore different assumptions

on the spectrum of A and V which might help reduce the dimension dependence. Finally, the
assumption on the third-moment of ζk is an additional assumption which is not required in the
asymptotic results proved in Polyak and Juditsky (1992). Indeed this is reminiscent of the Berry-
Essen type bounds required for rate of CLT with i.i.d data. Finally, note that one could also use
the assumptions and result in Corollary 3 to relax the assumption made in Corollary 5 further and
obtain a corresponding result.

3.2. Stochastic Gradient Setting

We now consider the stochastic gradient updates given in (3.1) and (3.2) for the optimization prob-
lem (1.1). The result of Theorem 6 below is analogous to that of Theorem 4 for the linear setting.

Theorem 6 Consider optimizing (1.1) using the iterative updates in (3.1). Let the function f satisfy
Assumption 1. Then, for some universal constants K,K2, C

′, c1 > 0, and c2 ∈ (0, 1), we have the
following non-asymptotic bound, quantifying the rate of convergence of the iterates to a Normal
random vector Z, for a twice differentiable function h : Rd → R.

E
[
|h(Σ

−1/2
t ∆̄t)− h(Z)|

]
(3.5)

≤ 3π

8t

√
dM2(h)

t∑
k=1

E
[∥∥Σ

1/2
t P−1k Σ

1/2
t

∥∥1/2

2

∥∥([∇2f(θ∗)]−1Σt[∇2f(θ∗)]−1
)−1/2

Xk

∥∥3
2

]
+
M1(h)‖Σ−1/2

t ‖2
t

[
K2[E‖∆0‖2]

η0
+
KLH

∑t−1
j=1
√
ηj√

2µ
+
√
Kd K%(η, t)

]

+
3M2(h)‖Σ−1/2

t ‖22
2t2

[
K2

2

[
E‖∆0‖22

]
η20

+
K2L2

H

∑t−1
j=1 ηj

2µ
+Kd K%(η, t)

]
,

where %(η, t) is defined in (3.4), Xk , [E[∇f(θk−1)]−∇f(θk−1)− ζk] and Σt ,
∑t

k=1 Vk where
Vk corresponds to the covariance matrix of Xk:

Vk
a.s.
= E

[
XkX

>
k |Fk−1

]
, ∀k ∈ [t].

We make several remarks about Theorem 6 and the bound (3.5). Notice the following difference
between the Theorem 4 for the linear setting and Theorem 6. First note that the scaling of ∆̄t for
Theorem 4 is simplified and reads as

√
t because of our assumption on the covariance matrix of the

martingale. In Theorem 6, the scaling is by Σ
−1/2
t . This leads to the rates controlled by ‖Σ−1/2

t ‖2/t
and ‖Σ−1/2

t ‖22/t2 for the second and third term respectively. Next note that in Polyak and Juditsky
(1992), a further assumption is made that the martingale Xt could be decomposed as a summation
of two term Xt = X0

t +X1
t such that

E
[
X0
t [X0

t ]>|Ft−1
]

a.s.
= E

[
ζ1ζ
>
1

]
, V.
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Furthermore, assumptions are made on the covariance matrix of the X1
t and the cross covariance

matrix betweenX0
t andX1

t so that the covariance ofXt is asymptotically almost surely equal to the
covariance of X0

t . In Theorem 6, one could potentially make similar non-asymptotic assumptions
to decompose the first term in the R.H.S of the upper bound as sum of two terms that mimic the
asymptotic covariance from Polyak and Juditsky (1992).

4. Discussion

In this paper, we establish non-asymptotic convergence rates to normality of the Polyak-Ruppert
averaged SGD algorithm. A main ingredient for establishing such a result is our result on conver-
gence rates of certain martingale CLTs, which might be of independent interest. Our results have
interesting consequences for confidence intervals and hypothesis tests based on SGD algorithm,
that are justifiable in a non-asymptotic sense. A straightforward approach would be to leverage the
bootstrap style algorithms proposed in Fang et al. (2018) or Su and Zhu (2018), and apply our non-
asymptotic martingale CLT result. Indeed a detailed look at the proof in the above papers, reveal
that their proof strategy is very similar to the analysis of Polyak and Juditsky (1992), and the only
probabilistic result used is the asymptotic martingale CLT result. Their results can be adapted to the
non-asymptotic regime using our non-asymptotic martingale CLT result in Theorem 1.

An important open problem, is to obtain Berry-Esseen bounds for multivariate martingales for
various confidence sets. One approach for the case of convex confidence sets, is to leverage our
Theorem 1, along with the idea of “differentiable functions approximating indicator functions of
convex sets” as done in Bentkus (2003, 2005). Note that such a method is routinely used for the
multivariate i.i.d case. It is also worth emphasizing that the geometry of the confidence set plays a
crucial role for general test functions. This is an active area of research, even for the i.i.d. setting;
see, for example, Chernozhukov et al. (2017). Our results in this paper form an important step
toward this in direction for the martingale case (and hence SGD inference).

There are several extensions possible for future work. First, our current results for martingale
CLT are established for the class of twice-differentiable functions. It would be interesting to extend
such results for other metrics, for example, Wasserstein or Kolmogorov distance. Next, it would be
interesting to establish non-asymptotic rates of convergence to normality for non-smooth optimiza-
tion problems and other variants of SGD algorithm.
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Appendix A. Proofs of the Martingale CLT Results

The proof of Theorem 1 relies on a combination of Stein’s method and Lindeberg’s telescopic sum
argument as first outlined by Röllin (2018) for real valued martingales. We start with the following
lemma which is standard in the literature of Stein’s method, and follows from similar steps already
carried out in Goldstein and Rinott (1996); Raič (2004); Gaunt (2016).

Lemma 7 Let h : Rd → R be twice differentiable and Z ∼ Nd(0, I). For µ ∈ Rd and Σ ∈ Rd×d
symmetric and positive definite, there is a solution f : Rd → R to the Stein equation

〈Σ,∇2f(x)〉 − 〈x− µ,∇f(x)〉 = h(x)− E[h(Σ
1/2Z + µ)], (A.1)

where we have

M3(f) ≤M2(h)
π

4

√
d‖Σ−1/2‖2.

The bound Mi(f) on the i-th order derivative of f are termed as the i-th Stein factor. The main
important property of Lemma 7 is that it connects the third Stein factor to the smoothness of the
test function h. In the one-dimensional case, one can obtain a bound on third Stein factor in terms
of the Lipschitz constant of the test function Stein (1986); Röllin (2018) without any smoothness
assumptions; however, at least polynomial smoothness is required in the higher dimensions Gorham
et al. (2016); Erdogdu et al. (2018). The proof for the above result is given below for reader’s con-
venience.

Proof [Proof of Lemma 7] For a twice differentiable test function g : Rd → R, and choosing µ = 0
and Σ = I , the Stein equation (A.1) reduces to

Tr(∇2u(x))− 〈x,∇u(x)〉 = g(x)− E[g(Z)].

It is well known that the function u that solves the Stein equation is given by

u(x) =

∫ ∞
0

E[g(Z)]− (Ptg)(x) dt,

where (Ptg)(x) = E
[
g(e−tx+

√
1− e−2tZ)

]
and (Pt)t≥0 is the semigroup associated with the

Ornstein-Uhlenbeck diffusion Barbour (1990). One can easily verify that (A.1) is recovered by the
following change of variables

h(x) = g(Σ−
1/2(x− µ)) and f(x) = u(Σ−

1/2(x− µ)),

where f(x) is given by

f(x) =

∫ ∞
0

E[g(Z)]− (Ptg)(Σ−
1/2(x− µ)) dt,

=

∫ ∞
0

E[h(Σ
1/2Z + µ)]− E

[
h(e−t(x− µ) +

√
1− e−2tΣ1/2Z + µ)

]
dt.
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Denoting the d-variate istoropic Gaussian density with φd(z), and following a similar approach
with Raič (2004); Goldstein and Rinott (1996), we take a derivative in the unit direction v ∈ Rd
(i.e. ‖v‖2 = 1), and apply integration by parts to obtain

〈∇f(x), v〉 =−
∫ ∞
0

e−tE
[
〈∇h(e−t(x− µ) +

√
1− e−2tΣ1/2Z + µ), v〉

]
dt,

=−
∫ ∞
0

e−t√
1− e−2t

∫
h(e−t(x− µ) +

√
1− e−2tΣ1/2z + µ)〈∇φd(z),Σ−

1/2v〉dzdt.

Taking one more derivative in the unit direction of w ∈ Rd yields

〈∇2f(x)v, w〉 =−
∫ ∞
0

e−2t√
1− e−2t

∫
〈∇h(e−t(x− µ) +

√
1− e−2tΣ1/2z + µ), w〉〈∇φd(z),Σ−

1/2v〉dzdt.

Using the smoothness properties of the test function h and ‖w‖2 = 1, we can write∣∣∣〈∇h(e−t(x− µ) +
√

1− e−2tΣ1/2z + µ)−∇h(e−t(y − µ) +
√

1− e−2tΣ1/2z + µ), w〉
∣∣∣

≤M2(h)e−t‖x− y‖2.

Using this we can bound the third Stein factor as follows,∣∣〈∇2f(x)v, w〉 − 〈∇2f(y)v, w〉
∣∣

‖x− y‖2
≤M2(h)

∫ ∞
0

e−3t√
1− e−2t

dt

∫ ∣∣∣〈∇φd(z),Σ−1/2v〉
∣∣∣dz,

≤M2(h)
π

4
‖Σ−1/2‖2

∫
‖z‖2φd(z) dz,

=M2(h)
π

2
√

2

Γ(d+1
2 )

Γ(d2)
‖Σ−1/2‖2,

≤M2(h)
π

4

√
d‖Σ−1/2‖2,

which completes the proof.

Before we prove Theorem 1, we define several useful sequences related to the martingale dif-
ference sequence {Xk}nk=1. Recalling the basic properties of the martingale difference sequences,
we have

E[Xk|Fk−1] = 0 and Vk = E[XkX
>
k |Fk−1] almost surely,

where 0 is understood to be a vector of zeros in Rd, and Vk is a random matrix in Rd×d. For k ∈ [n],
we define the partial sums as Sk = Xk + Sk−1 starting from S0 = 0, and the partial covariances as

V̄k =
k∑
i=1

Vi, Pk+1 = V̄n − V̄k, Σk = E[Vk], and Σn =
n∑
i=1

Σi.

We note that using the above definitions, we have Var(Sn) = Σ.
Proof [Proof of Theorem 1]
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Let Z ′, Z1, ..., Zn be a sequence of independent isotropic normal random vectors, also indepen-
dent of Fk for k ∈ [n]. Define

Z =
n∑
i=1

V
1/2
i Zi, Tk =

n∑
i=k

V
1/2
i Zi

with T1 = Z and Tn+1 = 0. Observe that Z ∼ N (0, Vn) since V̄n = Σn almost surely under
Assumption 2.1. We also note that V̄k ∈ Fk−1; thus, Pk and Pk+1 ∈ Fk−1. This implies

Tk|Fk−1 ∼ N (0, Pk) and Tk+1|Fk−1 ∼ N (0, Pk+1). (A.2)

Define the random variable Rk := h(Sk + Tk+1)− h(Sk−1 + Tk), and observe that

h(Sn)− h(Z) =
n∑
i=1

Ri. (A.3)

For Y ∼ N (0, I) independent from all random variables and the filtration, we write

E[Rk|Fk−1] =E[h(Sk + Tk+1)− h(Sk−1 + Tk)|Fk−1],

=E
[
h(Sk + Tk+1)− h(Sk−1 + P

1/2
k Y )|Fk−1

]
,

where Pk is as in (A.2). Using now the Stein equation as in (A.1), we obtain

E[Rk|Fk−1] = E[〈Pk,∇2fk(Sk + Tk+1)〉 − 〈Xk + Tk+1,∇fk(Sk + Tk+1)〉|Fk−1].

Observing that Sk and Tk+1 are independent conditional on Fk−1, and Tk+1|Fk−1 ∼ N (0, Pk+1)
and applying Lemma 7 to the right hand side above, we get

E[Rk|Fk−1] =E[〈Pk,∇2fk(Sk + Tk+1)〉 − 〈Xk,∇fk(Sk + Tk+1)〉 − 〈Pk+1,∇2fk(Sk + Tk+1)〉|Fk−1],
=E[〈Σk,∇2fk(Sk + Tk+1)〉 − 〈Xk,∇fk(Sk + Tk+1)〉|Fk−1].

For the first term above, we write

E[〈Σk,∇2fk(Sk + Tk+1)〉|Fk−1] =

∫ 1

0
E[〈Σk,∇3fk(Sk−1sXk + Tk+1)〉[Xk]|Fk−1]ds

+ E[〈Σk,∇2fk(Sk−1 + Tk+1)〉|Fk−1]

and for the second term, we use Taylor’s theorem and obtain

E[〈Xk,∇fk(Sk + Tk+1)|Fk−1〉] = E[〈Xk,∇fk(Sk−1 + Tk+1)〉|Fk−1]
+E[〈Xk,∇2fk(Sk−1 + Tk+1)Xk〉|Fk−1]

+

∫ 1

0
(1− s)E[〈Xk,∇3fk(Sk−1 + sXk + Tk+1)[Xk, Xk]〉|Fk−1]ds.

Combining these, we obtain

|E[Rk|Fk−1]| =

∣∣∣∣∣
∫ 1

0
E[〈Σk,∇3fk(Sk−1 + sXk + Tk+1)[Xk]〉|Fk−1]ds

−
∫ 1

0
(1− s)E[〈Xk,∇3fk(Sk−1 + sXk + Tk+1)[Xk, Xk]〉|Fk−1]ds

∣∣∣∣∣
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For the first term above, we have

E[〈Σk,∇3fk(Sk−1 + sXk + Tk+1)[Xk]〉|Fk−1] ≤M3(f)E[Tr(Σk)‖Xk‖2|Fk−1],
≤M3(fk)E[‖Xk‖32|Fk−1],

and similarly for the second term, we have

E[〈Xk,∇3fk(Sk−1 + sXk + Tk+1)[Xk, Xk]〉|Fk−1] ≤M3(fk)E[‖Xk‖32|Fk−1].

Note that M3(fk) is Fk−1-measurable. Iterating this bound in (A.3) and taking expectations on
both sides, we obtain

|E[h(Sn)− E[h(Z)]]| ≤
n∑
k=1

1.5 E
[
M3(fk)‖Xk‖32|Fk−1

]
.

Scaling with Σ
−1/2
n together with Lemma 7, we obtain∣∣∣E[h(Σ−

1/2
n Sn)− E[h(Z)]

]∣∣∣ ≤ 3π

8

√
dM2(h)

n∑
k=1

E
[
‖P−1/2

k Σ
1/2
n ‖2‖Σ−

1/2
n Xk‖32

]
.

Proof [Proof of Corollary 2]
The assumptions in Corollary 2 imply nβI � Σn � nαI and (n− k)βI � Pk+1 � (n− k)αI

almost surely. Plugging these in the bound in Theorem 1, we obtain∣∣∣E[h(Σ−
1/2

n Sn)− E[h(Z)]
]∣∣∣ ≤ 3π

8

√
dM2(h)

n∑
k=1

E
[
‖P−1/2

k Σ
1/2
n ‖2‖Σ−

1/2
n Xk‖32

]
,

≤ 3π

8
M2(h)

γ
√
βd2

α2n

n∑
k=1

1√
n− k + 1

.

Finally, we notice that
∑n

k=1
1√

n−k+1
=
∑n

k=1
1√
k
< 2
√
n which concludes the proof.

Proof [Proof of Corollary 3] For a given matrix A ∈ Rd×d, define the random variable T ′k =
Tk +AZ ′ where Tk is as in the proof of Theorem 1, and let

Rk , h(Sk + T ′k+1)− h(Sk−1 + T ′k).

Following the same steps as in the proof of Theorem 1 where Tk replaced with T ′k, we obtain∣∣∣E[h(Σ−
1/2

n Sn)− E[h(Z)]
]∣∣∣

≤ 3π

8

√
dM2(h)

n∑
k=1

E
[
‖(Σ1/2

n (Pk +AΣ−1n A>)−1Σ
1/2
n ‖

1/2
2 ‖Σ

−1/2
n Xk‖32

]
+ 2M1(h) Tr(AΣ−1n A>)

1/2.
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Next, we define the stopping times,

τ0 = 0, τk = sup{m ≥ 0 : V̄m � k
nΣn} for 1 ≤ k ≤ n.

Since {τk = m} = {V̄m � k
nΣn} ∩ {V̄m+1 � k

nΣn}, and each of these events are Fm-measurable,
τk is a stopping time for each k. If j ≤ τk, we can write

Pj = V̄n − V̄j−1 = Σn − V̄j−1 � n−k
n Σn.

Therefore we can write,

E

 τk∑
j=τk−1+1

‖Σ1/2
n (Pj + Σn/n)−1Σ

1/2
n ‖

1/2
2 ‖Σ

−1/2
n Xj‖32


= E

 n∑
j=1

E
[
‖Σ1/2

n (Pj + Σn/n)−1Σ
1/2
n ‖

1/2
2 ‖Σ

−1/2
n Xj‖321{τk−1<j≤τk}|Fj−1

],
≤
√

n

n− k + 1
E

 n∑
j=1

1{τk−1<j≤τk}E
[
‖Σ−1/2

n Xj‖32|Fj−1
],

≤ δ‖Σ−1/2
n ‖32

√
n

n− k + 1
E

 n∑
j=1

1{τk−1<j≤τk}Tr(Vj)

,
≤ δ‖Σ−1/2

n ‖32
√

n

n− k + 1
E
[
Tr(V̄τk − V̄τk−1

)
]
,

≤ δ‖Σ−1/2
n ‖32

√
n

n− k + 1
( 1
n Tr(Σn) + β2/3).

Next, we sum over k and obtain

n∑
k=1

E
[
‖Σ1/2

n (Pk + Σn/n)−1Σ
1/2
n ‖

1/2
2 ‖Σ

−1/2
n Xk‖32

]
,

≤ δ‖Σ−1/2
n ‖32( 1

n Tr(Σn) + β2/3)
n∑
k=1

√
n

k
,

≤ 2δ‖Σ−1/2
n ‖32( 1

n Tr(Σn) + β2/3)n.

Therefore, choosing A = Σn/
√
n we obtain∣∣∣E[h(Σ−

1/2
n Sn)− E[h(Z)]

]∣∣∣
≤ 3π

4

√
dM2(h)δ‖Σ−1/2

n ‖32
{

1
n Tr(Σn) + β2/3

}
n+

2M1(h)√
n

Tr( 1
nΣn)

1/2.
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Appendix B. Proofs for Section 3.1

Proof [Proof of Theorem 4] The proof involves adapting the proof of Theorem in Polyak and Judit-
sky (1992) to our non-asymptotic setting and then applying our result from Theorem 1. To proceed,
define

Bt
j = ηj

t−1∑
i=j

i∏
k=j+1

[I − ηkA]

and set Bt = Bt
0 and W t

j = Bt
j − A−1. Then, by Lemma 2 in Polyak and Juditsky (1992), for the

above sequence of matrices Bt, t ∈ N and the triangular array of matrices W t
j , t ∈ N and j ≤ t, we

have the following decomposition for ∆̄t:

√
t∆̄t =

1√
tη0

Bt∆0︸ ︷︷ ︸
I1

+
1√
t

t−1∑
j=1

A−1ζj︸ ︷︷ ︸
I2

+
1√
t

t−1∑
j=1

W t
j ζj︸ ︷︷ ︸

I3

. (B.1)

In addition, we have ‖Bt‖2 ≤ K2 < ∞. We now proceed to provide a non-asymptotic result
about the rate of convergence of the iterates to normality. Recall that, with Z denoting an isotropic
normal random vector, we are looking for a non-asymptotic bound on E|h(

√
t∆̄t) − h(Z)|. Using

the triangle inequality,∣∣∣E[h(
√
t∆̄t)

]
− E[h(Z)]

∣∣∣ ≤ |E[h(I2)]− E[h(Z)]| (B.2)

+
∣∣∣E[h(√t∆̄t

)
− h(I2)

]∣∣∣, (B.3)

where I2 is as in (B.1).
Bound for (B.2). Note that I2 forms a martingale difference sequence. Hence, we use Theorem 1
to handle this term. Under our assumption, first note that we have

Pk = (t− (k − 1))A−1V A−1 Σt = tA−1V A−1.

Therefore,

R.H.S. of (B.2) =≤ 3π

8

√
dM2(h)

t∑
k=1

E

√ t

(t− (k − 1))

∥∥∥∥∥(A−1V A−1)−1/2ζk
t1/2

∥∥∥∥∥
3

2


≤

t∑
k=1

E

1.18
√
dM2(h)

∥∥∥[A−1V A−1]−1/2ζk∥∥∥3
2

t
√

(t− (k − 1))

 (B.4)

Bound for (B.3). A second-order Taylor expansion of h(I1 + I2 + I3) around I2 yields

h(I1 + I2 + I3) = h(I2) + 〈∇h(I2), I1 + I3〉+
1

2
〈∇2h(I2 + c̄(I1 + I3))(I1 + I3), I1 + I3〉, (B.5)
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where the last term on the right-hand side of (B.5) is the remainder term expressed in Lagrange’s
form for c̄, a positive constant in (0, 1). The result in (B.5) and the triangle inequality lead to

(B.3) =

∣∣∣∣E[〈∇h(I2), I1 + I3〉+
1

2
〈∇2h(I2 + c̄(I1 + I3))(I1 + I3), I1 + I3〉

]∣∣∣∣
≤ E|〈∇h(I2), (I1 + I3)〉|+

1

2
E
∣∣〈∇2h(I2 + c̄(I1 + I3))(I1 + I3), I1 + I3〉

∣∣
≤M1(h)E[‖I1 + I3‖2] +

1

2
E
[
‖∇2h(I2 + c̄(I1 + I3))(I1 + I3)‖2‖I1 + I3‖2

]
≤M1(h)E[‖I1 + I3‖2] +

M2(h)

2
E
[
‖I1 + I3‖22

]
≤M1(h)E[‖I1‖2 + ‖I3‖2] +M2(h)E

[
‖I1‖22 + ‖I3‖22

]
. (B.6)

First, we could upper bound E[‖I1‖2] as follows.

E‖I1‖2 =
1√
tη0

E[‖Bt∆0‖2] ≤
1√
tη0

E[‖Bt‖2‖∆0‖2] =
K2[E‖∆0‖2]√

tη0
(B.7)

Following the same approach, it is straightforward that

E
[
‖I1‖22

]
≤
K2

2

[
E‖∆0‖22

]
tη20

. (B.8)

Continuing now to find an upper bound for E[‖I3‖2] and E
[
‖I3‖22

]
, note that by definition we have

W t
j = A−1T tj + Stj ,

where T tj =
∏i
k=j+1[I − ηkA] and Stj = ηj

∑t−1
i=j T

t
j . Hence, we have

1

t

t−1∑
j=1

‖W t
j ‖22 =

1

t

t−1∑
j=1

‖A−1T tj + Stj‖22

≤ 2

t

t−1∑
j=1

[
‖A−1T tj ‖2 + ‖Stj‖2

]2 ≤ 4

t

t−1∑
j=1

[
‖A−1T tj ‖22 + ‖Stj‖22

]
=

4C

t

t−1∑
j=1

[
‖T tj ‖22

]
+

4

t

t−1∑
j=1

[
‖Stj‖22

]
Now, we have by Lemma 1, Part 3 in Polyak and Juditsky (1992)

‖T tj ‖22 ≤ K
[
e(−c1

∑t−1
i=j ηi)

]2
Furthermore, we have from page 846 in Polyak and Juditsky (1992), the following estimate for
‖Stj‖22, with mi

j ,
∑i

k=j ηk and some c2 > 0,

‖Stj‖22 ≤

 C ′

η1−c2j

t∑
i=j

mt
je
−λmt

j (mi
j −mi−1

j )

2
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Combining all the above estimates, we have for some constant K,

1

t

t−1∑
j=1

‖W t
j ‖22 ≤

K

t

t−1∑
j=1

[e(−c1 ∑t−1
i=j ηi)

]2
+

 C ′

η1−c2j

t∑
i=j

mt
je
−λmt

j (mi
j −mi−1

j )

2
Using the above result and the fact that E[ζᵀi ζj ] = 0 for i 6= j, we have that

E
[
‖I3‖22

]
=

1

t
E

∥∥∥∥∥∥
t−1∑
j=1

W t
j ζj

∥∥∥∥∥∥
2

2

 ≤ Kd

1

t

t−1∑
j=1

‖W t
j ‖22


≤ Kd K

t

t−1∑
j=1

[e(−c1 ∑t−1
i=j ηi)

]2
+

 C ′

η1−c2j

t∑
i=j

mt
je
−λmt

j (mi
j −mi−1

j )

2 (B.9)

Since E[‖I3‖2] ≤
[
E
[
‖I3‖22

]]1/2, then using the results in (B.7), (B.8), (B.9), and continuing from
(B.6), we have that

(B.3) ≤M1(h)√
t

K2[E‖∆0‖2]
η0

+

√√√√√Kd K
t−1∑
j=1

[e(−c1 ∑t−1
i=j ηi)

]2
+

 C ′

η1−c2j

t∑
i=j

mt
je
−λmt

j (mi
j −m

i−1
j )

2


+
M2(h)

t

K2
2

[
E‖∆0‖22

]
η20

+Kd K
t−1∑
j=1

[e(−c1 ∑t−1
i=j ηi)

]2
+

 C ′

η1−c2j

t∑
i=j

mt
je
−λmt

j (mi
j −mi−1

j )

2
.

(B.10)

The results now in (B.4) and (B.10) give the desired result.

Appendix C. Proofs for Section 3.2

Proof [Proof of Theorem 6] To proceed, first note that (3.1) and (3.2) could be recast as follows:

θt = θt−1 − ηt[∇f(θt−1) + ζt] + ηtE[∇f(θt−1)]− ηtE[∇f(θt−1)]

= θt−1 − ηtE[∇f(θt−1)] + ηt[E[∇f(θt−1)]−∇f(θt−1)− ζt]
, θt−1 − ηt[R(θt−1)] + ηtXt(θt−1 − θ∗).

Note that Xt(θt−1 − θ∗) forms a martingale difference sequence. Whenever there is no confusion,
we just call it as Xt in the rest of the proof. Recall that the covariance matrix of Xt as

Vt
a.s.
= E

[
XtX

>
t |Ft−1

]
,

and note that Σt ,
∑t

i=1 Vi. Now, define

Bt
j = ηj

t−1∑
i=j

i∏
k=j+1

[I − ηk∇2f(θ∗)], W t
j = Bt

j −
[
∇2f(θ∗)

]−1
,
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and set Bt = Bt
0. Then, in this case, we have the following decomposition similar to that of linear

setting (specifically, (B.1)):

Σ
−1/2
t ∆̄t =

2Σ
−1/2
t

t η0
Bt∆0︸ ︷︷ ︸

I1

+
Σ
−1/2
t

t

t−1∑
j=1

∇2f(θ∗)−1Xj︸ ︷︷ ︸
I2

+
Σ
−1/2
t

t

t−1∑
j=1

W t
jXj︸ ︷︷ ︸

I3

+
Σ
−1/2
t

t

t−1∑
j=1

[
[
∇2f(θ∗)

]−1
+W t

j ]
([
R̄(∆j)−∇2f(θ∗)∆j

])
︸ ︷︷ ︸

I4

,

where R̄(θ) = R(θ − θ∗). First note that by triangle inequality, we have∣∣∣E[h(Σ
−1/2
t ∆̄t)

]
− E[h(Z)]

∣∣∣ ≤ |E[h(I2)]− E[h(Z)]| (C.1)

+
∣∣∣E[h(Σ

−1/2
t ∆̄t

)
− h(I2)

]∣∣∣. (C.2)

Bound for (C.1). Note that I2 forms a martingale difference sequence. Hence, we use Theorem 1
to handle this term. Under our assumption, similar to the proof of Theorem 4, we have

R.H.S. of (C.1) ≤ 3π

8t

√
dM2(h)

t∑
k=1

E
[∥∥∥Σ

1/2
t P−1k Σ

1/2
t

∥∥∥1/2
2

∥∥∥[[∇2f(θ∗)]−1 Σt [∇2f(θ∗)]−1
]−1/2

Xk

∥∥∥3
2

]
Bound for (C.2). To handle this term, we do a second-order taylor expansion of h(I1+I2+I3+I4)
around I2, to get

h(I1 + I2 + I3 + I4) = h(I2) + 〈∇h(I2), I1 + I3 + I4〉 (C.3)

+
1

2
〈∇2h(I2 + c̄(I1 + I3 + I4))(I1 + I3 + I4), I1 + I3 + I4〉,

where the last term on the right-hand side of (C.3) is the remainder term expressed in Lagrange’s
form for c̄, a positive constant in (0, 1). The result in (C.3) and the triangle inequality lead to

(C.2) =

∣∣∣∣E[〈∇h(I2), I1 + I3 + I4〉+
1

2
〈∇2h(I2 + c̄(I1 + I3 + I4))(I1 + I3 + I4), I1 + I3 + I4〉

]∣∣∣∣
≤ E|〈∇h(I2), (I1 + I3 + I4)〉|+

1

2
E
∣∣〈∇2h(I2 + c̄(I1 + I3 + I4))(I1 + I3 + I4), I1 + I3 + I4〉

∣∣
≤M1(h)E[‖I1 + I3 + I4‖2] +

1

2
E
[
‖∇2h(I2 + c̄(I1 + I3 + I4))(I1 + I3)‖2‖I1 + I3 + I4‖2

]
≤M1(h)E[‖I1 + I3 + I4‖2] +

M2(h)

2
E
[
‖I1 + I3 + I4‖22

]
≤M1(h)E[‖I1‖2 + ‖I3‖2 + ‖I4‖2] +

3

2
M2(h)E

[
‖I1‖22 + ‖I3‖22 + ‖I4‖22

]
.

Now, note that terms involving I1 and I3 could be handled in a way analogous to the proof of
Theorem 4. Hence, we deal with bounding the norm of terms involving I4. Furthermore, note that

21



NORMAL APPROXIMATION FOR SGD AND MARTINGALE CLT

as a consequence of the Hessian-smoothness assumption, we also have the following to be true for
any two points θ, θ′ ∈ Rd:

‖∇f(θ)−∇f(θ′)‖2 ≤ L‖θ − θ′‖2,

‖∇f(θ′)−∇f(θ)−∇2f(θ)(θ′ − θ)‖2 ≤
LH
2
‖θ′ − θ‖22.

Hence, in this case, we have that

‖I4‖2 ≤
K‖Σ−1/2t ‖2

t

t−1∑
j=1

∥∥∇2f(θ∗)−1 +W t
j

∥∥
2

∥∥[R̄(∆j)−∇2f(θ∗)∆j

]∥∥
2

≤ K‖Σ−1/2t ‖2
t

t−1∑
j=1

∥∥[R̄(∆j)−∇2f(θ∗)∆j

]∥∥
2

≤ K‖Σ−1/2t ‖2LH
2t

t−1∑
j=1

[‖∆j‖2].

Hence, we have

E[‖I4‖2] ≤
K‖Σ−1/2t ‖2LH

2t

t−1∑
j=1

E[‖∆j‖2].

Now, by the proof of Lemma A.3 in Su and Zhu (2018), we have the following bound

E
[
‖∆j‖22

]
≤ 2C

µ
ηj .

Hence, we have that

E[‖∆j‖2] ≤
√

E‖∆j‖22 ≤

√
2C

µ
ηj .

Combining the above equations, we finally have the following bound:

E[‖I4‖2] ≤
‖Σ−1/2t ‖2

t

KLH√
2µ

t−1∑
j=1

√
ηj

.
Similarly, we have that

‖I4‖22 ≤
K‖Σ−1/2t ‖22

t2

t−1∑
j=1

∥∥∇2f(θ∗)−1 +W t
j

∥∥2
2

∥∥[R̄(∆j)−∇2f(θ∗)∆j

]∥∥2
2
≤
K2‖Σ−1/2t ‖22L2

H

t2

t−1∑
j=1

[
‖∆j‖22

]
.

To calculate the expectation, we have

E
[
‖I4‖22

]
≤
‖Σ−1/2t ‖22K2L2

H

t2

t−1∑
j=1

E
[
‖∆j‖22

]
≤ ‖Σ

−1/2
t ‖2
t2

KL2
H

µ

t−1∑
j=1

ηj

.
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Going through the same steps as that in the proof of Theorem 4, we also have

E
[
‖I1‖22

]
≤
K2

2‖Σ
−1/2
t ‖22

[
E‖∆0‖22

]
t2η20

E
[
‖I3‖22

]
≤ Kd‖Σ

−1/2
t ‖22 K
t2

t−1∑
j=1

[e(−c1 ∑t−1
i=j ηi)

]2
+

 C ′

η1−c2j

t∑
i=j

mt
je
−λmt

j (mi
j −mi−1

j )

2.
where Kd = E

[
‖Xt‖22|Ft−1

]
. By using the above results and the fact that E[‖v‖2] ≤

[
E
[
‖v‖22

]]1/2
for a vector v ∈ Rd, we get the desired result.

23


	Introduction
	Notation

	Convergence Rates of a Multivariate Martingale CLT
	Relaxing the Assumptions

	Rates to Normality for Stochastic Gradient Descent
	Linear Problem Setting
	Stochastic Gradient Setting

	Discussion
	Proofs of the Martingale CLT Results
	Proofs for Section 3.1
	Proofs for Section 3.2

