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Abstract
We study the complexity of heavy-tailed sampling and present a separation result in terms of ob-

taining high-accuracy versus low-accuracy guarantees i.e., samplers that require only O(log(1/ε)) versus
Ω(poly(1/ε)) iterations to output a sample which is ε-close to the target in χ2-divergence. Our results
are presented for proximal samplers that are based on Gaussian versus stable oracles. We show that
proximal samplers based on the Gaussian oracle have a fundamental barrier in that they necessarily
achieve only low-accuracy guarantees when sampling from a class of heavy-tailed targets. In contrast,
proximal samplers based on the stable oracle exhibit high-accuracy guarantees, thereby overcoming the
aforementioned limitation. We also prove lower bounds for samplers under the stable oracle and show
that our upper bounds cannot be fundamentally improved.

1 Introduction
The task of sampling from heavy-tailed targets arises in various domains such as Bayesian statistics (Gelman et al.,
2008; Ghosh et al., 2018), machine learning (Chandrasekaran et al., 2009; Balcan and Zhang, 2017; Nguyen et al.,
2019; Şimşekli et al., 2020; Diakonikolas et al., 2020), robust statistics (Kotz and Nadarajah, 2004; Jarner and Roberts,
2007; Kamatani, 2018; Yang et al., 2022), multiple comparison procedures (Genz et al., 2004; Genz and Bretz,
2009), and study of geophysical systems (Sardeshmukh and Penland, 2015; Qi and Majda, 2016; Provost et al.,
2023). This problem is particularly challenging when using gradient-based Markov Chain Monte Carlo
(MCMC) algorithms due to diminishing gradients, which occurs when the tails of the target density decay
at a slow (e.g. polynomial) rate. Indeed, canonical algorithms like Langevin Monte Carlo (LMC) have been
empirically observed to perform poorly (Li et al., 2019; Huang et al., 2021; He et al., 2024b) when sampling
from such heavy-tailed targets.

Several approaches have been proposed in the literature to overcome these limitations of LMC and related
algorithms. The predominant ones include (i) transformation-based approaches, where a diffeomorphic
(invertible) transformation is used to first map the heavy-tailed density to a light-tailed one so that a
light-tailed sampling algorithm can be used (Johnson and Geyer, 2012; Yang et al., 2022; He et al., 2024a),
(ii) discretizing general Itô diffusions with non-standard Brownian motion that have heavy-tailed densities
as their equilibrium density (Erdogdu et al., 2018; Li et al., 2019; He et al., 2024b), and (iii) discretizing
stable-driven stochastic differential equations (Zhang and Zhang, 2023). However, the few theoretical results
available on the analysis of algorithms based on approaches (i) and (ii) provide only low-accuracy heavy-
tailed samplers; such algorithms require poly(1/ε) iterations to obtain a sample that is ε-close to the target
in a reasonable metric of choice. Furthermore, quantitative complexity guarantees for the sampling approach
used in (iii) are not yet available; thus, existing comparisons are mainly based on empirical studies.
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ν ≥ 1 ν ∈ (0, 1)

Oracle Gaussian (Alg. 1) Stable (Alg. 2 & 3) Gaussian (Alg. 1) Stable (Alg. 2 & 3)

Complexity Ω̃(ε−
1
ν ) (Cor. 2.2) O(log(ε−1)) (Cor. 3.3) Ω̃(ε−

1
ν ) (Cor. 2.2) Õ(ε−

1
ν+1) (Cor. 3.3)

Table 1: Separation for Proximal Samplers: Gaussian vs. practical Stable oracles (α=1): Upper and
lower iteration complexity bounds to generate an ε-accurate sample in χ2-divergence from the generalized Cauchy
target densities with degrees of freedom ν, i.e. πν ∝ (1 + |x|2)−(d+ν)/2. Here, Ω̃, Õ hide constants depending on ν
and polylog(d, 1/ε). For the proximal sampler with a general α-Stable oracle (Algorithm 2), the upper bound for
ν ∈ (0, 1) is O(log(1/ε)) when α = ν. The lower bounds are from Corollary 2.2 via 2TV2 ≤ χ2.

In stark contrast, when the target density is light-tailed it is well-known that algorithms like proximal
samplers based on Gaussian oracles and the Metropolis Adjusted Langevin Algorithm (MALA) have high-
accuracy guarantees; these algorithms require only polylog(1/ε) iterations to obtain a sample which is ε-
close to the target in some metric. See, for example, the works by Dwivedi et al. (2019); Lee et al. (2021b);
Wu et al. (2022b); Chen et al. (2022); Chen and Gatmiry (2023). Specifically, Lee et al. (2021b) analyzed
the proximal sampling algorithm to sample from a class of strongly log-concave densities and obtained
high-accuracy guarantees. Chen et al. (2022) established similar high-accuracy guarantees for the proximal
sampler to sample from target densities that satisfy a certain functional inequality, covering a range of light-
tailed densities with exponentially fast tail decay (e.g. log-Sobolev and Poincaré inequalities). However, it is
not clear if the proximal sampler achieves the same desirable performance when the target is not light-tailed.

In light of existing results, in this work, we first consider the following question:

Q1. What are the fundamental limits of proximal samplers under the Gaussian
oracle when sampling from heavy-tailed targets?

To answer this question, we construct lower bounds showing that Gaussian-based samplers necessarily
require poly(1/ε) iterations to sample from a class of heavy-tailed targets. These results complement the
lower bounds on the complexity of sampling from heavy-tailed densities using the LMC algorithm established
in Mousavi-Hosseini et al. (2023). With this lower bound in hand, we next consider the following question:

Q2. Is it possible to design high-accuracy samplers for heavy-tailed targets?

We answer this in the affirmative by constructing proximal samplers that are based on stable oracles (see
Definition 3.1 and Algorithm 2) by leveraging the fractional heat-flow corresponding to a class of stable-
driven SDEs. We analyze the complexity of this algorithm when sampling from heavy-tailed densities that
satisfy a fractional Poincaré inequality, and establish that they require only log(1/ε) iterations. Together,
our answers to Q1 and Q2 provide a clear separation between samplers based on Gaussian and stable oracles.
Our contributions can be summarized as follows.

• Lower bounds for the Gaussian oracle: In Section 2, we focus on Q1 and establish in Theorems 2.1
and 2.2 respectively that the Langevin diffusion and the proximal sampler based on the Gaussian oracle
necessarily have a fundamental barrier when sampling from heavy-tailed densities. Our proof technique
builds on Hairer (2010), and provides a novel perspective for obtaining algorithm-dependent lower bounds
for sampling, which may be of independent interest.

• A proximal sampler based on the stable oracle: In Section 3, we introduce a proximal sampler based
on the α-stable oracle, which fundamentally relies on the exact implementations of the fractional heat
flow that correspond to a stable-driven SDE. Here, the parameter α determines the allowed class of
heavy-tailed targets which could be sampled with high-accuracy. In Theorem 3.1 and Proposition 3.1,
we provide upper bounds on the iteration complexity that are of smaller order than the corresponding
lower bounds established for the Gaussian oracle. We provide a rejection-sampling based implementation
of the α-stable oracle for the case α = 1 and prove complexity upper bounds in Corollary 3.1. Finally,
in Theorem 3.2, considering a sub-class of Cauchy-type targets, we prove lower bounds showing that our
upper bounds cannot be fundamentally improved.

An illustration of our results for Cauchy target densities, πν ∝ (1 + |x|2)−(d+ν)/2 where ν is the degrees of
freedom, is provided in Table 1. We specifically consider the practical version of the stable proximal sampler
with α = 1 (i.e., Algorithm 2 with the stable oracle implemented by Algorithm 3), and show that it always
outperforms the Gaussian proximal sampler (Algorithm 1). Indeed, when ν ≥ 1, the separation between
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these algorithms is obvious. In the case ν ∈ (0, 1), Algorithm 2 & 3 has a poly(1/ε) complexity, nevertheless,
it still improves the complexity of the Gaussian proximal sampler by a factor of ε. We also show via lower
bounds (in Section 3.4) that the poly(1/ε) complexity for Algorithm 2 & 3, when ν ∈ (0, 1), can only be
improved up to certain factors. We remark that for the ideal proximal sampler (Algorithm 2), the upper
bound when ν ∈ (0, 1) is also O(log(1/ε)). These results demonstrate a clear separation between Gaussian
and stable proximal samplers.

Related works. We first discuss works analyzing the complexity of heavy-tailed sampling as character-
ized by a functional inequality assumption. Chandrasekaran et al. (2009) analyzed the connection between
sampling algorithms for a class of s-concave densities satisfying a certain isoperimetry condition related to
weighted Poincaré inequalities. He et al. (2024b) undertook a mean-square analysis of discretization of a
specific Itô diffusion that characterizes a class of heavy-tailed densities satisfying a weighted Poincaré in-
equality. Andrieu et al. (2022) and Andrieu et al. (2023) analyzed the complexity of pseudo-marginal MCMC
algorithms and the random-walk Metropolis algorithm respectively, under weak Poincaré inequalities. As
mentioned before, Mousavi-Hosseini et al. (2023) showed lower bounds for the LMC algorithm when the
target density satisfies a weak Poincaré inequality. He et al. (2024a) and Yang et al. (2022) analyzed a trans-
formation based approach for heavy-tailed sampling under conditions closely related to the same functional
inequality. This transformation methodology is also used to demonstrate asymptotic exponential ergodicity
for other sampling algorithms like the bouncy particle sampler and the zig-zag sampler, in the heavy-tailed
settings (Deligiannidis et al., 2019; Durmus et al., 2020; Bierkens et al., 2019). These works provide only
low-accuracy guarantees for heavy-tailed sampling and do not consider the use of weak Fractional Poincaré
inequalities.

Recent years have witnessed a significant focus on (strongly) log-concave sampling, leading to an exten-
sive body of work that is challenging to encapsulate succinctly. In the context of (strongly) log-concave
or light-tailed distributions, a plethora of non-asymptotic investigations have been conducted on LMC
variations, including advanced integrators (Shen and Lee, 2019; Li et al., 2019; He et al., 2020), under-
damped LMC (Cheng et al., 2018; Eberle et al., 2019; Cao et al., 2023; Dalalyan and Riou-Durand, 2020),
and MALA (Dwivedi et al., 2019; Lee et al., 2020; Chewi et al., 2021; Wu et al., 2022a). Outside the realm
of log-concavity, the dissipativity assumption, which regulates the growth of the potential, has been used
in numerous studies to derive convergence guarantees (Durmus and Moulines, 2017; Raginsky et al., 2017;
Erdogdu et al., 2018; Erdogdu and Hosseinzadeh, 2021; Mou et al., 2022; Erdogdu et al., 2022; Balasubramanian et al.,
2022).

While research on upper bounds of sampling algorithms’ complexity has advanced considerably, the
exploration of lower bounds is still nascent. Chewi et al. (2022b) explored the query complexity of sampling
from strongly log-concave distributions in one-dimensional settings. Li et al. (2022) established lower bounds
for LMC in sampling from strongly log-concave distributions. Chatterji et al. (2022) presented lower bounds
for sampling from strongly log-concave distributions with noisy gradients. Ge et al. (2020) focused on lower
bounds for estimating normalizing constants of log-concave densities. Contributions by Lee et al. (2021a)
and Wu et al. (2022a) provide lower bounds in the metropolized algorithm category, including Langevin and
Hamiltonian Monte Carlo, in strongly log-concave contexts. Finally, Chewi et al. (2022a) contributed to
lower bounds in Fisher information for non-log-concave sampling.

2 Lower Bounds for Sampling with the Gaussian Oracle
In this section, we focus on Q1 for both the Langevin diffusion (in continuous time) and the proximal
sampler (in discrete time), where both procedures have the target density as their invariant measures. Our
results below illustrate the limitation of the Gaussian oracle1 for heavy-tailed sampling in both continuous
and discrete time, showing that the phenomenon is not because of the discretization effect, but is inherently
related to the use of Gaussian oracles.

Langevin diffusion. We first start with the overdamped Langevin diffusion (LD):

dXt = −∇V (Xt)dt +
√

2dBt. (LD)

LD achieves high-accuracy “sampling” in continuous time, i.e. a polylog(1/ε) convergence rate in the light-
tailed setting. We make the following dissipativity-type assumption.

1Here, for the sake of unified presentation, we refer the use of Brownian motion in (LD) as Gaussian oracle.
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Assumption 2.1. The target density is given by πX(x) ∝ exp(−V (x)), where V : Rd → R satisfies

∀x ∈ R
d,

(d + ν1)|x|2
1 + |x|2 ≤ 〈x,∇V (x)〉 ≤ (d + ν2)|x|2

1 + |x|2 for some ν2 ≥ ν1 ≥ 0.

Remark 2.1. The upper bound on 〈x,∇V (x)〉 ensures that V grows at most logarithmically in |x|. Conse-
quently, πX is heavy-tailed and in fact does not satisfy a Poincaré inequality. The lower bound on 〈x,∇V (x)〉
is only needed for deriving the dimension dependency in our guarantees. If one is only interested in the ε
dependency, this condition can be replaced with 0 ≤ 〈x,∇V (x)〉.

A classical example of a density satisfying the above assumption is the generalized Cauchy density with
degrees of freedom ν = ν1 = ν2 > 0, where the potential is given by

Vν(x) :=
d + ν

2
ln(1 + |x|2). (1)

The following result, proved in Appendix A, provides a lower bound on the performance of LD.

Theorem 2.1. Suppose πX ∝ exp(−V ) satisfies Assumption 2.1. Let Xt be the solution of the Langevin
diffusion, and µt := Law(Xt). Then, for any δ > 0,

TV(πX , µt) ≥ Cν1,ν2d
ν1−ν2

2 (1+δ) (Cδ(µ0) + κδt)
−

ν2(1+δ)
2 ,

where κδ := 1 ∨ 2
d+ν2

∨ ν2(1+δ)
(d+ν2)δ

, Cδ(µ0) := 1
d+ν2

E[(1 + |X0|2)γ ]1/γ with γ = κδ(d + ν2)/2, and Cν1,ν2 is a

constant depending only on ν1 and ν2.

If we assume |X0| ≤ O(
√
d) for simplicity, then by choosing δ = 2 ln ln t

ν2 ln t ∧ 2 ln ln d
(ν2−ν1) ln d , we obtain

TV(πX , µt) ≥ Ω̃ν1,ν2(d
ν1−ν2

2 t−
ν2
2 ).

Thus, LD requires at least T = Ω̃ν1,ν2

(
d

ν1−ν2
ν2 (1/ε)2/ν2

)
to reach ε error in total variation. While this

bound may be small in high dimensions when ν2 > ν1, for the canonical model of Cauchy-type potentials
with ν2 = ν1 = ν, it will be independent of dimension, as stated by the following result. Note that
Assumption 2.1 can also cover a general scaling by replacing |x| with c|x| for some constant c, which would
introduce a multiplicative factor of 1/c2 for the lower bound on T . This is expected as e.g., mixing to the
Gibbs potential c2|x|2 can be faster than mixing to |x|2 by a factor of 1/c2.

Corollary 2.1. Consider the generalized Cauchy density πX
ν ∝ exp(−Vν) where Vν is as in (1). Let Xt be

the solution of the Langevin diffusion, and µt := Law(Xt). For simplicity, assume the initialization satisfies

|X0| ≤ O(
√
d). Then, achieving TV(πX

ν , µT ) ≤ ε requires T ≥ Ω̃ν

(
ε−

2
ν

)
.

The above lower bound implies that LD is a low-accuracy “sampler” for this target density in the sense
that it depends polynomially on 1/ε; this dependence gets worse with smaller ν as the tails get heavier. It is
worth highlighting the gap between the upper bound of (Mousavi-Hosseini et al., 2023, Corollary 8), which
is Õ

(
1/ε4/ν

)
, and the lower bound in Corollary 2.1.

Gaussian proximal sampler. In the remainder of this section, we prove that the Gaussian proximal
sampler, described in Algorithm 1, also suffers from a poly(1/ε) rate when the target density is heavy-tailed.
In each iteration of Algorithm 1, the first step involves sampling a standard Gaussian random variable yk
centered at the current iterate xk with variance ηI; this is a one-step isotropic Brownian random walk. Alter-
natively, since the Fokker-Planck equation of the standard Brownian motion is the classical heat equation, this
step could also be interpreted as an exact simulation of the heat flow; see, for example, Carlen and Gangbo
(2003) and Wibisono (2018). Specifically, the density of yk is the solution to the heat flow at time η with
the initial condition being the density of xk. The second step is called the restricted Gaussian oracle (RGO)
as coined by Lee et al. (2021b); under which (xk, yk) is a reversible Markov chain whose stationary density
has x-marginal πX .
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Algorithm 1: Gaussian Proximal Sampler (Lee et al., 2021b)

Input: Sample x0, and step η > 0. for k = 0, 1, · · · , N − 1 // Gibbs sampler

Sample yk ∼ πY |X(·|xk) = N (xk, ηId) // Heat flow

Sample xk+1|yk ∼ πX|Y (·|yk) ∝ πX(·) exp
(−| · −yk|

2

2η

)
// Calls to RGO

return xN

Assumption 2.2. For some ν2 ≥ ν1 ≥ 0, the target πX(x) ∝ exp(−V (x)) with V : Rd → R satisfies

∀x ∈ R
d (d + ν1)|x|2

1 + |x|2 ≤ 〈x,∇V (x)〉, |∇V (x)| ≤ (d + ν2)|x|
1 + |x|2 , ∆V (x) ≤ (d + ν2)2

1 + |x|2 .

The first condition above also appears in Assumption 2.1 and the second condition implies the upper
bound of Assumption 2.1; thus, the above assumption is stronger. Note that the generalized Cauchy mea-
sure (1) satisfies this assumption with ν1 = ν2 = ν. Under Assumption 2.2, we state the following lower
bound on the Gaussian proximal sampler and defer its proof to Appendix A.

Theorem 2.2. Suppose πX ∝ exp(−V ) satisfies Assumption 2.2. Let xk denote the kth iterate of the
Gaussian proximal sampler (Algorithm 1) with step η and let ρXk := Law(xk). Then, for any δ > 0,

TV(πX , ρXk ) ≥ Cν1,ν2d
ν1−ν2

2 (1+δ) (Cδ(µ0) + κδηk)−
ν2(1+δ)

2 ,

where κδ, Cδ(µ0), and Cν1,ν2 are defined in Theorem 2.1.

Above, assuming |X0| ≤ O(
√
d) with the same choice of δ as in Theorem 2.1 yields TV(πX

ν , ρXk ) ≥
Ω̃ν1,ν2

(
d

ν1−ν2
2 (kη)

−ν2
2

)
. Note that in order for the RGO step to be efficiently implementable, we need

to have a sufficiently small η. The state-of-the-art implementation of RGO requires a step size of order
η = Õ(1/(Ld1/2)) when V has L-Lipschitz gradients (Fan et al., 2023). With this choice of step size, the
above lower bound requires at least N = Ω̃ν1,ν2

(
Ld1/2+(ν1−ν2)/ν2(1/ε)2/ν2

)
iterations. The assumptions

in Theorem 2.2 once again cover the canonical examples of generalized Cauchy densities, where we have
L = d + ν, which simplifies the lower bound as follows.

Corollary 2.2. Consider the generalized Cauchy density πX
ν ∝ exp(−Vν) where Vν is as in (1). Let xk

denote the kth iterate of the Gaussian proximal sampler, and define ρXk := Law(xk), and choose the step

size η = Õ(1/(Ld1/2)). If we assume |X0| ≤ O(
√
d) for simplicity, then achieving TV(πX

ν , ρXN ) ≤ ε requires

N ≥ Ω̃ν

(
d

3
2 ε−

2
ν

)
iterations.

We emphasize that the above lower bound is of order poly(1/ε) as advertised. Thus, the RGO-based
proximal sampler can only yield a low-accuracy guarantee in this setting.

3 Stable Proximal Sampler and the Restricted α-Stable Oracle
Having characterized the limitations of Gaussian oracles for heavy-tailed sampling, thereby answering Q1, in
what follows, we will focus on Q2 and construct proximal samplers based on the α-stable oracle, and prove
that they achieve high-accuracy guarantees when sampling from heavy-tailed targets. First, we provide a
basic overview of α-stable processes and fractional heat flows.

Isotropic α-stable process. For t ≥ 0, let X
(α)
t be the isotropic stable Lévy process in R

d, starting from

x ∈ R
d, with the index of stability α ∈ (0, 2], defined uniquely via its characteristic function Exe

i〈ξ,X
(α)
t −x〉 =

e−t|ξ|α . When α = 2, X
(2)
t is a scaled Brownian motion, and when 0 < α < 2, it becomes a pure Lévy jump

process in R
d. The transition density of X

(α)
t is then given by

p(α)(t;x, y) = p
(α)
t (y − x) with p

(α)
t (y) = (2π)−d

∫

Rd

exp(−t|ξ|α)e−i〈ξ,y〉dξ, (2)

where the second equation above is the inverse Fourier transform of the characteristic function, thus returns
the density. The transition kernel and the density in (2) have closed-form expressions for the special cases
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Algorithm 2: Stable Proximal Sampler with parameter α

Input: Sample x0, step η > 0, and α ∈ (0, 2).
for k = 0, 1, · · · , N − 1 // Gibbs sampler

Sample yk ∼ πY |X(·|xk) = p(α)(η;xk, ·) // Fractional heat flow

Sample xk+1|yk ∼ πX|Y (·|yk) ∝ πX(·)p(α)(η; ·, yk) // Calls to RαSO

return xN

α = 1, 2. In particular, when α = 1, p
(1)
t reduces to a Cauchy density with degrees of freedom ν = 1,

i.e. p
(1)
t (y) ∝ (|y|2 + t2)−(d+1)/2. We finally note that the isotropic stable Lévy process X

(α)
t displays self-

similarity like the Brownian motion; the processes X
(α)
at and a1/αX

(α)
t have the same distribution. This

property is crucial in the development of the stable proximal sampler.

Fractional heat flow. The equation ∂tu(t, x) = −(−∆)α/2u(t, x) with the condition u(0, x) = u0(x) is an
extension of the classical heat flow, and is referred to as the fractional heat flow. Here, −(−∆)α/2 is the
fractional Laplacian operator with α ∈ (0, 2], which is the infinitesimal generator of the isotropic α-stable
process. For α = 2, it reduces to the standard Laplacian operator ∆.

Stable proximal sampler. Let π(x, y) be a joint density such that π(x, y) ∝ πX(x)p(α)(η;x, y), where πX

is the target and p(α)(η;x, y) is the transition density of the α-stable process, introduced in (2). It is easy to
verify that (i) the X-marginal of π is πX , (ii) the conditional density of Y given X is πY |X(·|x) = p(α)(η;x, ·),
(iii) the Y -marginal is πY = πX ∗ p(α)η , i.e. πY is obtained by evolving πX along the α-fractional heat flow
for time η, and (iv) the conditional density of X given Y is πX|Y (·|y) ∝ πX(·)p(α)(η; ·, y). Based on these,
we introduce the following stable oracle.

Definition 3.1 (Restricted α-Stable Oracle). Given y ∈ R
d, an oracle that outputs a random vector dis-

tributed according to πX|Y (·|y), is called the Restricted α-Stable Oracle (RαSO).

Note that when α = 2, the RαSO reduces to the RGO of Lee et al. (2021b). The Stable Proximal Sampler
(Algorithm 2) with parameter α is initialized at a point x0 ∈ R

d and performs Gibbs sampling on the joint
density π. In each iteration, the first step involves sampling an isotropic α-stable random vector yk centered
at the current iterate xk, which is a one-step isotropic α-stable random walk. This could also be interpreted
as an exact simulation of the fractional heat flow. Indeed, due to the relation between the fractional heat
flow and the isotropic stable process, the density of yk is exactly the solution to the α-fractional heat flow at
time η with the initial condition being the density of xk. When α = 2, the first step reduces to an isotropic
Brownian random walk and a simulation of the classical heat flow. The second step calls the RαSO at the
point yk.

3.1 Convergence guarantees
We next provide convergence guarantees for the stable proximal sampler in χ2-divergence assuming access
to the RαSO. Similar results for a practical implementation are presented in Section 3.2. To proceed, we
introduce the fractional Poincaré inequality, first introduced in Wang and Wang (2015) to characterize a
class of heavy-tailed densities including the canonical Cauchy class.

Definition 3.2 (Fractional Poincaré Inequality). For ϑ ∈ (0, 2), a probability density µ satisfies a ϑ-
fractional Poincaré inequality (FPI) if there exists a positive constant CFPI(ϑ) such that for any function

φ : Rd → R in the domain of E(ϑ)µ , we have

Varµ(φ) ≤ CFPI(ϑ)E(ϑ)µ (φ). (FPI)

where E(ϑ)µ is a non-local Dirichlet form associated with µ defined as

E(ϑ)µ (φ) := cd,ϑ

∫∫

{x 6=y}

(φ(x) − φ(y))2

|x− y|(d+ϑ)
dxµ(y)dy with cd,ϑ =

2ϑΓ((d + ϑ)/2)

πd/2|Γ(−ϑ/2)| .

Remark 3.1. FPI is a weaker condition than Assumption 2.2. In fact, any density satisfying the first 2
conditions in Assumption 2.2 satisfies ϑ-FPI for all ϑ < ν1 (Wang and Wang, 2015, Theorem 1.1). In
Proposition B.1, we show that as ϑ→ 2−, FPI becomes equivalent to the standard Poincaré inequality.
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Algorithm 3: RαSO Implementation for α = 1 via Rejection Sampling

Input: V , x∗ ∈ arg minV , η > 0, y ∈ R
d.

while TRUE // Rejection sampling

Generate (Z1, Z2, u) ∼ N (0, Id)⊗N (0, 1)⊗ U [0, 1]
x← y + ηZ1/|Z2| // Cauchy random vector

return x if u ≤ exp(−V (x) + V (x∗)) // Accept-reject step

In the sequel, ρXk denotes the law of xk, ρYk denotes the law of yk, and ρk = ρX,Y
k is the joint law of

(xk, yk). We provide the following convergence guarantee under an FPI, proved in Appendix B.2.

Theorem 3.1. Assume that πX satisfies the α-FPI with parameter CFPI(α) for α ∈ (0, 2). For any step size

η > 0 and initial density ρX0 , the kth iterate of Algorithm 2, with parameter α, satisfies

χ2(ρXk |πX) ≤ exp
(

−kη
(
CFPI(α) + η

)−1
)

χ2(ρX0 |πX).

As a consequence of Remark 3.1 and Proposition B.1, we recover the result in (Chen et al., 2022, Theorem
4), by letting α → 2−. While our results in Theorem 3.1 are based on Algorithm 2 which requires exact
calls to RαSO, the next result, proved in Appendix B.3, shows that even with an inexact implementation of
RαSO, the error accumulation is at most linear, and Algorithm 2 still converges quickly.

Proposition 3.1. Suppose the RαSO in Algorithm 2 is implemented inexactly, i.e. there exists a positive

constant εTV such that TV(ρ̃
X|Y
k (·|y), ρ

X|Y
k (·|y)) ≤ εTV for all y ∈ R

d and k ≥ 1, where ρ̃
X|Y
k (·|y) is the

density of the inexact RαSO sample conditioned on y. Let ρ̃Xk be the density of the output of the kth step
of Algorithm 2 with the inexact RαSO and ρXk be the density of the output of kth step Algorithm 2 with the
exact RαSO. Then, for all k ≥ 0,

TV(ρ̃Xk , ρXk ) ≤ TV(ρ̃X0 , ρX0 ) + k εTV.

Further, if ρ̃X0 = ρX0 , for any K ≥ K0, we get TV(ρ̃KX , πX) ≤ ε, if εTV ≤ ε/2K, where the constant
K0 = (1 + CFPI(α)η

−1) log
(
χ2(ρ̃X0 |πX)/ε2

)
with CFPI(α) being the α-FPI parameter of πX .

3.2 A practical implementation of RαSO
In the sequel, we introduce a practical implementation of RαSO when α = 1. For this, we consider the
case when the target density πX ∝ e−V satisfies the 1-FPI with parameter CFPI(1). A more thorough
implementation of RαSO for other values of α will be investigated in future work.

Assumption 3.1. There exist constants β, L > 0 such that for any minimizer x∗ ∈ arg miny∈Rd V (y) and

for all x ∈ R
d, V satisfies V (x)− V (x∗) ≤ L|x− x∗|β .

Algorithm 3 provides an exact implementation of RαSO for α = 1 via rejection sampling. Inputs to
this algorithm are the intermediate points yk in the stable proximal sampler (Algorithm 2). Note that
Algorithm 3 requires a global minimizer of V , which is always assumed to exist, which guarantees that the
acceptance probability is non-trivial. It generates proposals with density p(1)(η; ·, y) and utilizes that p(1)

is a Cauchy density and Cauchy random vectors can be generated via ratios between a Gaussian random
vector and square-root of a χ2 random variable. Finally, the accept-reject step ensures that the output x
has density πX|Y (·|y) ∝ e−V p(1)(η; ·, y). This makes Algorithm 3 a zeroth-order algorithm requiring only
access to function evaluations of V . Under Assumption 3.1, by choosing a small step-size, we can control the
expected number of rejections in Algorithm 3. We now state the iteration complexity of our stable proximal
sampler with this RαSO implementation in the following result, whose proof is provided in Appendix B.3.

Corollary 3.1. Assume V satisfies Assumption 3.1. If we choose the step-size η = Θ(d−
1
2L− 1

β ), then
Algorithm 3 implements the RαSO with α = 1, with the expected number of zeroth-order calls to V of order
E[exp(L|yk|β)]. Further assume πX satisfies 1-FPI with parameter CFPI(1). Suppose we run Algorithm 2
with RαSO implemented for with α = 1 by Algorithm 3. Then, to return a sample which is ε-close in
χ2-divergence to the target, the expected number of iterations required by Algorithm 2 is

O
(
CFPI(1)d

1
2L

1
β log(χ2(ρX0 |πX)/ε)

)
.
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Note that the above result provides a high-accuracy guarantee for the implementable version of the stable
proximal sampler (Algorithm 3) for a class of heavy-tailed targets, overcoming the fundamental barrier
established in Theorem 2.2 for the Gaussian proximal sampler (i.e., Algorithm 1).

Remark 3.2. (1) Finding a global minimizer of the potential V can be hard, which could be avoided if
a lower bound on the potential V is available; see Appendix B.3. (2) A trivial bound for E[exp(L|yk|β)]

is exp(LM) for M = EπX [|X |β] + χ2(ρX0 |πX)EπX [|X |2β]
1
2 . Since our main focus is high vs low accuracy

samplers, deriving a sharper bound is beyond the scope of the current paper.

3.3 Illustrative examples

To illustrate our results, we now apply the proximal algorithms to sample from Cauchy densities and discuss
the complexity of both the ideal sampler (Algorithm 2) in which we can choose any α ∈ (0, 2) and the
implementable version with α = 1 (Algorithm 3). For the ideal sampler, we can choose α ≤ ν for any
degrees of freedom ν > 0, and apply Theorem 3.1 since πν satisfies a α-FPI (Wang and Wang, 2015).

Corollary 3.2. For any ν > 0, consider the generalized Cauchy target πν ∝ exp(−Vν) with Vν defined in (1).
For the stable proximal sampler with parameter α ∈ (0, 2) and α ≤ ν (i.e., Algorithm 2), suppose we set the
step-size η ∈ (0, 1) and draw the initial sample from the standard Gaussian density. Then, the number of it-
erations required by Algorithm 2 to produce an ε-accurate sample in χ2-divergence is O(CFPI(α)η

−1 log(d/ε)),
where CFPI(α) is the α-FPI parameter of πν .

For the implementable sampler, since the parameter α is fixed to be 1, whether a suitable FPI is satisfied
or not depends on the degrees of freedom ν. Specifically, when ν ≥ 1, 1-FPI is satisfied and Corollary 3.3
applies. When ν ∈ (0, 1), on the other hand, 1-FPI is not satisfied. To tackle this issue, we prove convergence
guarantees for the proximal sampler under a weak fractional Poincaré inequality; the next corollary, proved
in Appendix B.4, summarizes these results.

Corollary 3.3. For the Cauchy target πν ∝ exp(−Vν) where Vν is defined in (1), we consider Algorithm 2
with α = 1, a standard Gaussian initialization, and RαSO implemented by Algorithm 3.

(1) When ν ≥ 1, if we set the step-size η = Θ
(
d−

1
2 (d + ν)−4

)
, the expected number iterations required by

Algorithm 2 to output a sample which is ε-close in χ2-divergence to the target is of order O
(
CFPI(1)d

1
2 (d+

ν)4 log(d/ε)
)
, where CFPI(1) is the 1-FPI parameter of πν .

(2) When ν ∈ (0, 1), if we set the step-size η = Θ
(
d−

1
2 (d + ν)−

4
ν

)
, the expected number of iterations

required by Algorithm 2, to output a sample which is ε-close in χ2-divergence to the target is of order

Õ
(

max
{
c

1
ν d

1
2ν+ 4

ν2 , cd
1
2+

4
ν ε−

1
ν+1
})

, where c is the positive constant given in (16). Here, Õ hides the
polylog factors on d and 1/ε.

The stable proximal sampler (Algorithm 2) is a high accuracy sampler for the class of generalized Cauchy
targets, as long as α ≤ ν, meaning that it achieves log(1/ε) iteration complexity. The improvement from
poly(1/ε) to log(1/ε) separates the stable proximal sampler and the Gaussian proximal sampler in the
task of heavy-tailed sampling. When we use the rejection-sampling implementation with parameter α = 1
(Algorithm 3), iteration complexity goes through a phase transition as the tails get heavier. When the
generalized Cauchy density has a finite mean (ν > 1), we achieve a high-accuracy sampler with log(1/ε)
iteration complexity. However, without a finite mean (i.e., ν ∈ (0, 1)), the algorithm becomes a low-accuracy
sampler with poly(1/ε) complexity. Even in this low-accuracy regime, the implementable stable proximal
sampler outperforms the Gaussian one, as originally highlighted in Table 1. Last, we claim that the poly(1/ε)
complexity of Algorithms 2 and 3 is not due to a loose analysis, as we show poly(1/ε) lower bounds in the
following section.

3.4 Lower bounds for the stable proximal sampler

We now study lower bounds on the stable proximal sampler to sample from the class of target densities
satisfying Assumption 2.2, which includes the generalized Cauchy target. Recall that Assumption 2.2 implies
the FPI used in Theorem 3.1. The result below, proved in Appendix C, complements Theorem 3.1, showing
the impossibility of achieving log(1/ε) rates for a sufficiently large α.
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Theorem 3.2. Suppose πX ∝ exp(−V ) with V satisfying Assumption 2.2 and ν2(d+ν2)
d+ν1

< α ≤ 2 . Let xk

denote the kth iterate of Algorithm 2 with parameter α and step size η, and let ρXk := Law(xk). Then for

any τ ∈
( ν2(d+ν2)

d+ν1
, α
)
, and g(d, ν1, ν2, τ) = ν2/{τ(d + ν1)− ν2(d + ν2)}, we have

TV(πX , ρXk ) ≥ Cν1,ν2,αd
τ(d+ν1)g(d,ν1,ν2,τ)

2
(
E[(1 + |x0|2)

τ
2 ] + m(α)

τ k
τ
2 +1η

τ
α
)−(d+ν2)g(d,ν1,ν2,τ)

,

where Cν1,ν2,α is a constant depending only on ν1, ν2, α, and m
(α)
τ is the τ th absolute moment of the α-stable

random variable with density p
(α)
1 defined in (2).

Remark 3.3. The parameter τ in Theorem 3.2 can be chosen arbitrarily close to α. Specifically, if we

assume |X0| ≤ O(
√
d), then with the choice of τ = α−

( log(log d)
log d ∧ log log(η−1)

log(η−1)

)
, we have

TV(πX , ρXk ) ≥ Ω̃ν1,ν2,α

(
d
τ(d+ν1)g(d,ν1,ν2,α)

2
(
dα + m(α)

τ k
α
2 +1η

)−(d+ν2)g(d,ν1,ν2,α))
,

where Ω̃ hides polylog(d/η) factors.

The τ th absolute moment of the α-stable random variable depends on the choice of α and the dimension

d. It is hard to find an explicit formula of m
(α)
τ in general. An explicit formula is only available in some

special cases, such as α = 1, 2. Specializing Theorem 3.2 for the generalized Cauchy potential (i.e., ν1 = ν2)
we obtain the following explicit result.

Corollary 3.4. Let α ∈ (0, 2]. Suppose πν ∝ exp(−Vν) where Vν(x) is as in (1) for some ν ∈ (0, α). Let
(xk)k≥0 be the output of Algorithm 2 with parameter α and step-size η > 0, and ρXk := Law(xk) for all k ≥ 0.
Then for any τ ∈ (ν, α),

TV(ρXk , πν) ≥ Cν,αd
ντ

2(τ−ν)
(
E[(1 + |x0|2)

τ
2 ] + m(α)

τ k
τ
2+1η

τ
α
)−

ν
τ−ν .

where m
(α)
τ is the τ th absolute moment of the α-stable random variable with density p

(α)
1 as in (2).

For the rejection sampling implementation in Algorithm 3, α = 1 and m
(1)
τ = Θ(d

τ
2 ) for all τ < 1

(see Appendix B.1). Notice that to implement the RαSO in the Stable proximal sampler efficiently, we
need a sufficiently small step-size η. When the target potential satisfies Assumption 3.1, i.e. V is β-Hölder

continuous with parameter L, we require η = Θ(d−
1
2L− 1

β ) to ensure RαSO can be implemented with O(1)

queries. Therefore, if we choose η = Θ(d−
1
2L− 1

β ), the minimum number of iterations we need to get an
ε-error in TV is

Ων,τ

(

ε
−

2(τ−ν)
(2+τ)ν d

τ
2+τ L

2τ
β(2+τ)

)

.

For the generalized Cauchy potential with ν ∈ (0, 1), we have β = ν/4 and L = (d + ν)/ν, which leads to
the following corollary.

Corollary 3.5. Suppose πX
ν ∝ exp(−Vν) is the generalized Cauchy density with ν ∈ (0, 1). Let xk denote

the k-th iterate of the stable proximal sampler with α = 1 (Algorithm 3), and ρXk := Law(xk). If we choose

the step size η = Θ(L− 4
ν d−

1
2 ) where L = d+ν

ν is the ν/4-Hölder constant of Vν , and assume, for simplicity,

|x0| ≤ O(
√
d), then, TV(πX

ν , ρXN ) ≤ ε requires N ≥ Ων,τ

(
d

τ+8τ/ν
2+τ ε−

2(τ−ν)
ν(2+τ)

)
, for any τ ∈ (ν, 1). Further, by

choosing τ = max(ν, 1− log(log(d/ε))
log(d/ε) ), we obtain

N ≥ Ω̃ν

(

d
ν+8
3ν ε−

2(1−ν)
3ν

)

, in order for TV(πX
ν , ρXN ) ≤ ε.

The above result shows that when implementing the RαSO in Algorithm 2 with Algorithm 3, to sample
from generalized Cauchy targets with ν ∈ (0, 1), we can at best have an iteration complexity of order
poly(1/ε), matching the upper bounds in Corollary 3.3 up to certain factors.
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4 Overview of Proof Techniques
Lower bounds. We build on the techniques developed in Hairer (2010). Let µt denotes the law of LD
along its trajectory. To proceed, we need some G : Rd → R for which we can upper bound µt(G) :=

∫
Gdµt,

and some f : R
d → R that satisfies πX(G ≥ y) ≥ f(y) for all y ∈ R+. After finding the candidates G

and f , Lemma A.1 in Appendix A guarantees TV(πX , µt) ≥ supy∈R+
f(y)− µt(G)/y. This technique relies

on choosing G such that it has heavy tails under πX leading to a large f(y), while having light tails along
the trajectory, thus small µt(G). By picking G = exp(κV ) with κ ≥ 1, one can immediately observe that
πX(G) =∞, thus G indeed has heavy tails under πX .

To control µt(G) along the trajectory, one can use the generator of LD to bound ∂tµt(G). Recall the
generator of LD, LLD(·) = ∆(·) − 〈∇V,∇·〉. Therefore, with a choice of G = exp(κV ), controlling ∂tµt(G)
requires bounding the first and second derivatives of V . To avoid making extra assumptions for V in the
analysis of LD, we instead construct G based on a surrogate potential Ṽ (x) = d+ν2

2 ln(1 + |x|2), which is
an upper bound to the potential V . We then estimate f based on this surrogate potential in Lemma A.2,
and control the growth of µt(G) in Lemma A.3. Combined with Lemma A.1, this leads to the proof of
Theorem 2.1, with the details provided in Appendix A.

For the Gaussian proximal sampler, bounding ρXk (G) requires controlling the expectation of G along the
forward and backward heat flow. For the particular choice of G = exp(κV ), we show in Lemma A.4 that the
growth of ρXk (G) can be controlled only by considering a forward heat flow with the corresponding generator
LHF = 1

2∆. Therefore, given additional estimates on the second derivatives of V , we bound the growth
of ρXk (G) in Lemma A.5. Once this bound is achieved, we can invoke Lemma A.1 to finish the proof of
Theorem 2.2.
Upper bounds. Our upper bound analysis builds on that by Chen et al. (2022) in the specific ways
discussed next. We consider the change in χ2 divergence when we apply the two operations to the law ρXk
to the iterates and the target πX : (i) evolving the two densities along the α-fractional heat flow for time
η and (ii) applying the RαSO to the resulting densities. For the step (i), it is required to show that the
solution along the fractional heat flow of the stable proximal sampler at any time, satisfies FPI. To show this,
(a) the convolution property of the FPI is proved in Lemma B.1, and (b) the FPI parameter for the stable
process follows from (Chafäı, 2004, Theorem 23). In Proposition B.2, it is then shown that the χ2 divergence
decays exponentially fast along the fractional heat flow under the assumption of FPI. The aforementioned
results enable us to prove the exponential decay of χ2 divergence along the fractional heat flow under FPI in
Proposition B.2. To deal with the step (ii) above, we use the data processing inequality; see Proposition B.2.
These two steps together, enable us to derive the stated upper bounds for the stable proximal sampler.

5 Discussion
We showed the limitations of Gaussian proximal samplers for high-accuracy heavy-tailed sampling, and pro-
posed and analyzed stable proximal samplers, establishing that they are indeed high-accuracy algorithms.
We now list a few important limitations and problems for future research: (i) It is important to develop
efficiently implementable versions of the stable proximal sampler for all values of α ∈ (0, 2), and charac-
terize their complexity in terms of problem parameters, (ii) Gaussian proximal samplers can be interpreted
as a proximal point method for approximating the entropic regularized Wasserstein gradient flow of the
KL objective (Chen et al., 2022). This leads to the question, can we provide a variational intepreration of
the stable proximal sampler? A potential approach is to leverage the results by Erbar (2014) on gradient
flow interpretation of jump processes corresponding to the fractional heat equation, (iii) It is possible to
use a non-standard Itô process in the proximal sampler (in place of the α-stable diffusion); see, for exam-
ple, Erdogdu et al. (2018); Li et al. (2019); He et al. (2024b). With this modification, it is interesting to
examine the rates under weighted Poincaré inequalities that also characterize heavy-tailed densities. There
are two difficulties to overcome here: (a) How to generate an exact non-standard Itô process? (b) How
to implement the corresponding Restricted non-standard Gaussian Oracle, which requires the zeroth order
information of the transition density of the Itô process? In certain cases, non-standard Itô diffusion can be
interpreted as a Brownian motion on an embedded sub-manifold; thus, the approach in Gopi et al. (2023)
might be useful.
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A Lower Bound Proofs for the Langevin Diffusion and the Gaus-

sian Proximal Sampler

While research on upper bounds of sampling algorithms’ complexity has advanced considerably, the explo-
ration of lower bounds is still nascent. Chewi et al. (2022b) explored the query complexity of sampling from
strongly log-concave distributions in one-dimensional settings. Li et al. (2022) established lower bounds for
LMC in sampling from strongly log-concave distributions. Chatterji et al. (2022) presented lower bounds
for sampling from strongly log-concave distributions with noisy gradients. Ge et al. (2020) focused on lower
bounds for estimating normalizing constants of log-concave densities. Contributions by Lee et al. (2021a)
and Wu et al. (2022a) provide lower bounds in the metropolized algorithm category, including Langevin
and Hamiltonian Monte Carlo, in strongly log-concave contexts. Finally, Chewi et al. (2022a) contributed
to lower bounds in Fisher information for non-log-concave sampling. In what follows, we take a different
approach and rely on the arguments developed in Hairer (2010).

We begin by stating the following result which drives our lower bound strategy.

Lemma A.1 ((Hairer, 2010, Theorem 5.1)). Suppose µ and ν are probability measures on R
d. Consider

some G : Rd → R+ and f : R+ → R+ satisfying µ(G ≥ y) ≥ f(y) for all y ∈ R+. Then,

TV(µ, ν) ≥ sup
y∈R+

f(y)−
∫
Gdν

y
.

In particular, suppose Id · f : R+ ∋ y 7→ yf(y) ∈ R+ is a bijection, then

TV(µ, ν) ≥ 1

2
f
(

(Id · f)−1
(
2m
))

,

for any m ≥
∫
Gdν.

Proof. By the definition of total variation and Markov’s inequality, for any y > 0

TV(µ, ν) ≥ µ(G ≥ y)− ν(G ≥ y) ≥ f(y)−
∫
Gdν

y
.

When Id · f is invertible, choosing y = (Id · f)−1(2m) implies yf(y) = 2m and yields the desired result.

To apply Lemma A.1 when the target density satisfies Assumption 2.1, we need to establish tail lower

bounds for this density, which we do so via the following lemma. In the following, let ωd := πd/2

Γ((d+2)/2) denote

the volume of the unit d-ball.

Lemma A.2. Suppose πX(x) ∝ exp(−V (x)) satisfies Assumption 2.1. Then, for all R > 0,

πX(|x| ≥ R) ≥ 2de−ν1/d

(d + ν1)Γ(ν1/2)
(d/2)ν1/2(1 + R−2)−(d+ν2)/2R−ν2 .

When focusing on dependence on R and d, we obtain,

πX(|x| ≥ R) ≥ Cν1d
ν1/2(1 + R−2)−(d+ν2)/2R−ν2 ,

where Cν1 = 21−ν1/2e−ν1

(1+ν1)Γ(ν1/2)
.

Proof. Without loss of generality assume V (0) = 0. Via Assumption 2.1, we have the estimates for V ,

V (x) =

∫ 1

t=0

〈x,∇V (tx)〉dt ≤ (d + ν)

∫ 1

t=0

t|x|2dt

1 + |tx|2 =
d + ν2

2
ln(1 + |x|2),

and similarly

V (x) ≥ d + ν1
2

ln(1 + |x|2).
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Consequently, using the spherical coordinates,

πX(|x| ≥ R) ≥ 1

Z

∫

|x|≥R

(1 + |x|2)−(d+ν2)/2dx

=
dωd

Z

∫

r≥R

(1 + r2)−(d+ν2)/2rd−1dr

≥ dωd(1 + R−2)−(d+ν2)/2

Z

∫

r≥R

r−ν2−1dr

=
dωd(1 + R−2)−(d+ν2)/2

Zd
R−ν2 .

Next, using the lower bound established on V and spherical coordinates, we obtain,

Z ≤
∫

Rd

(1 + |x|2)−(d+ν1)/2dx

= dωd

∫ ∞

0

(1 + r2)−(d+ν1)/2rd−1dr

=
1

2
dωd

∫ ∞

0

uν1/2−1(1− u)d/2−1du

=
1

2
dωdB(ν1/2, d/2)

=
dωdΓ(ν1/2)Γ(d/2)

2Γ((d + ν1)/2)
,

where B denotes the beta function. Plugging back into our tail lower bound, we obtain,

πX(|x| ≥ R) ≥ 2Γ((d + ν1)/2)

Γ(ν1/2)Γ(d/2)
(1 + R−2)−(d+ν2)/2R−ν2 .

Moreover, by (Mousavi-Hosseini et al., 2023, Lemma 32) we have

Γ((d + ν1)/2)

Γ(d/2)
=

d

d + ν1

Γ((d + ν1 + 2)/2)

Γ((d + 2)/2)
≥ 2de−ν1/d

d + ν1
(d/2)ν1/2,

which completes the proof.

Another element of Lemma A.1 is controlling the growth of E[G(Xt)] throughout the process. The
following lemma achieves such control under the Langevin diffusion.

Lemma A.3. Suppose (Xt)t≥0 is the solution to the Langevin diffusion starting at X0 with the corresponding

potential V (x) satisfying Assumption 2.1. Let G(x) = exp(κṼ (x)) where Ṽ (x) = d+ν2
2 ln(1 + |x|2) and

κ ≥ 2
d+ν2

∨ 1. Then,

E[G(Xt)] ≤
(

E[G(X0)]
2

κ(d+ν2) + 4κ(d + ν2)t
) κ(d+ν2)

2

.

Proof. Recall the generator of the Langevin diffusion L(·) = ∆ · −〈∇V ,∇·〉. Then,

dE[G(Xt)]

dt
= E[LG(Xt)]

= κE
[(

κ|∇Ṽ |2 + ∆Ṽ − 〈∇Ṽ ,∇V 〉
)

G
]

≤ κE
[(

κ|∇Ṽ |2 + ∆Ṽ
)

G
]

(Assumption 2.1)

≤ 2κ2(d + ν2)2E

[
G(Xt)

1 + |Xt|2
]
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= 2κ2(d + ν2)2E

[

G(Xt)
1−

2
κ(d+ν2)

]

≤ 2κ2(d + ν2)2E[G(Xt)]
1−

2
κ(d+ν2) (Jensen′s Inequality).

Integrating the above inequality completes the proof.

With the above lemmas in hand, we are ready to present the proof of Theorem 2.1.

Proof of Theorem 2.1. To apply Lemma A.1 we choose G(x) = exp(κṼ (x)) where Ṽ (x) = d+ν2
2 ln(1 + |x|2)

with κ ≥ 1 ∨ 2
d+ν2

. By Lemma A.2 we have

πX(G(x) ≥ y) ≥ πX
(

|x| ≥ y
1

κ(d+ν2)

)

≥ Cν1d
ν1/2

(

1 + y
−2

κ(d+ν2)

)−(d+ν2)/2

y
−ν2

κ(d+ν2) .

Moreover, define

g(t) :=
(

g(0)
2

κ(d+ν2) + 4κ(d + ν2)t
) κ(d+ν2)

2

,

with g(0) := E[G(X0)]. Then by Lemma A.3 we have E[G(Xt)] ≤ g(t) and we can invoke Lemma A.1 to
obtain

TV(πX , µt) ≥ sup
y∈R+

Cν1d
ν1/2

(

1 + y
−2

κ(d+ν2)

)−(d+ν2)/2

y
−ν2

κ(d+ν2) − g(t)

y
.

≥ sup
y∈R+

Cν1d
ν1/2 exp

(

− (d + ν2)y
−2

κ(d+ν2)

2

)

y
−ν2

κ(d+ν2) − g(t ∨ 1)

y
,

where we used the fact that 1 + x ≤ ex for all x ∈ R and g(t) is non-decreasing in t. Choose

y∗ := C′
ν1,ν2

(
g(t ∨ 1)

dν1/2

) κ(d+ν2)

κ(d+ν2)−ν2

,

for a sufficiently large constant C′
ν1,ν2 ≥ 1. For simplicity, let

g̃(t) :=
g(t ∨ 1)

2
κ(d+ν2)

4κ(d + ν2)
,

and notice that

y∗ = C′
ν1,ν2d

κ(d+ν2)
2 ·

κ(d+ν2)−ν1
κ(d+ν2)−ν2 (4κ(1 + ν2/d)g̃(t))

κ2(d+ν2)2

2(κ(d+ν2)−ν2) . (3)

Using the fact that

y∗ ≥ (4κ)
κ2(d+ν2)2

2(κ(d+ν2)−ν2) d
κ(d+ν2)

2 ·
κ(d+ν2)−ν1
κ(d+ν2)−ν2 ,

we have

TV(πX , µt) ≥ Cν1 exp
(

− 1 + ν2/d

8κ
· d

ν1−ν2
κ(d+ν2)−ν2

)

dν1/2y∗
−ν2

κ(d+ν2) − g(t ∨ 1)

y∗

≥ C̃ν1,ν2d
ν1/2y∗

−ν2
κ(d+ν2) − g(t ∨ 1)

y∗
,

where C̃ν1,ν2 = Cν1e
−

1+ν2/d
8 . By plugging in the value of y∗ from (3), we obtain,

TV(πX , µt)

≥
{

C̃ν1,ν2C
′
ν1,ν2

−ν2
κ(d+ν2) − C′

ν1,ν2

−1
}{

d
ν1−ν2

2 (2κ(1 + ν2/d)g̃(t))
−ν2
2

}1+
ν2

κ(d+ν2)−ν2
.
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Thus for sufficiently large C′
ν1,ν2 , there exists C′′

ν1,ν2 such that

TV(πX , µt) ≥ C′′
ν1,ν2

{

d
ν1−ν2

2 (4κ(1 + ν/d)g̃(t)))
−ν2
2

}1+
ν2

κ(d+ν2)−ν2
.

Choosing κ according to the statement of the theorem completes the proof.

In order to prove a similar theorem for the Gaussian proximal sampler, we control the growth of E[G(xk)]
for the iterates of the proximal sampler via the following lemmas.

Lemma A.4. Suppose (xk, yk)k are the iterates of the Gaussian proximal sampler with step size η and target
density πX ∝ exp(−V ) for some V : Rd → R. Let G(x) = exp(κV (x)) with κ ≥ 1. Then, for every k ≥ 0,

E[G(xk+1)] ≤ E[G(xk +
√

2ηz)],

where z ∼ N (0, Id) is sampled independently from xk.

Proof. Recall that πX|Y (x|y) ∝ exp
(
− V (x) − |x−y|2

2η

)
. Therefore,

E[G(xk+1) | yk] = Cyk

∫ exp
(
(κ− 1)V (x) − |x−yk|

2

2η

)

(2πη)d/2
dx

= Cyk
E[G(yk +

√
ηz1)1−1/κ | yk],

where z1 ∼ N (0, Id). Furthermore,

Cyk
=

1

(2πη)d/2

∫

exp
(

− V (x)− |x− yk|2
2η

)

dx

= E[G(yk +
√
ηz1)−1/κ | yk].

Therefore,

E[G(xk+1) | yk]

=
E[G(yk +

√
ηz1)1−1/κ | yk]

E[G(yk +
√
ηz1)−1/κ | yk]

≤E[G(yk +
√
ηz1) | yk]1−1/κ

E[G(yk +
√
ηz1) | yk]1/κ (Jensen’s Inequality)

=E[G(yk +
√
ηz1) | yk].

Recall yk = xk +
√
ηz2 where z2 ∼ N (0, Id) is independent from xk. By the towering property of conditional

expectation,

E[G(xk+1)] ≤ E[G(xk +
√
ηz1 +

√
ηz2)]

= E[G(xk +
√

2ηz)],

where z ∼ N (0, Id) is independent from xk, which completes the proof.

In order to provide a more refined control over E[G(xk)], we need additional assumptions on V . In
particular, when considering the generalized Cauchy density, we arrive at the following lemma.

Lemma A.5. Suppose (xk, yk)k are the iterates of the Gaussian proximal sampler with step size η and target
density πX ∝ exp(−V ) satisfies

|∇V (x)| ≤ (d + ν2)|x|
1 + |x|2 and ∆V (x) ≤ (d + ν2)2

1 + |x|2 ,

for all x ∈ R
d. Let G(x) = exp(κV (x)) with κ ≥ 1 ∨ 2

d+ν2
. Then, for every k ≥ 0,

E[G(xk+1)]
2

κ(d+ν2) ≤ E[G(xk)]
2

κ(d+ν2) + 4κηk(d + ν2).
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Proof. From Lemma A.4, we have

E[G(xk+1)] ≤ E[G(xk +
√

2ηz)],

where z ∼ N (0, Id) is independent from xk. Consider the Brownian motion starting at xk, denoted by
Zt = Bt + xk where (Bt) is a standard Brownian motion in R

d. Notice that the generator for the process
dZt = dBt is L = 1

2∆. Therefore,

dE[G(Zt)]

dt
= E[LG(Zt)]

=
κ

2
E
[
G(Zt)

(
κ|∇V |2 + ∆V

)]

≤ κ(κ + 1)

2
E

[

G(Zt)
(d + ν2)2

1 + |Zt|2
]

≤ 2κ2(d + ν2)2E
[
G(Zt)

1−
2

κ(d+ν2)
]

≤ 2κ2(d + ν2)2E[G(Zt)]
1−

2
κ(d+ν2) (Jensen’s Inequality).

Integrating the above inequality yields

E[G(Zt)]
2

κ(d+ν2) ≤ E[G(Z0)]
2

κ(d+ν2) + 2κ(d + ν2)t.

The proof is complete by noticing that Z0 = xk and Zt = xk +
√

2ηz for t = 2η.

Proof of Theorem 2.2. Notice that the statements of Lemmas A.3 and A.5 are virtually the same by changing
t to 2kη. Using this fact, the rest of the proof follows exactly the same as the proof of Theorem 2.1.

B Proofs for the Stable Proximal Sampler

B.1 Preliminaries

In this section, we introduce additional preliminaries on the isotropic α-stable process, the fractional Poincaré-
type inequalities, the fractional Laplacian and the fractional heat flow.

The Lévy process is a stochastic process that is stochastically continuous with independent and stationary
increments. Due to the stochastic continuity, the Lévy processes have càdlàg trajectories, which allows jumps
in the paths. A Lévy process Yt is uniquely determined by a triple (b, A, ν) through the following Lévy-
Khinchine formula: for all t ≥ 0 and ξ ∈ R

d,

E
[
ei〈ξ,Yt〉

]
= exp

(

t
(
i〈b, ξ〉 − ξ⊺Aξ +

∫

Rd\{0}

(ei〈ξ,y〉 − 1− i〈ξ, y〉1{|y|≤1}(y))ν(dy)
)
)

, (4)

where b ∈ Rd is a drift vector. A ∈ R
d×d is the covariance matrix of the Brownian motion in the Lévy-Itô

decomposition(Applebaum, 2009, Thereom 2.4.16) and ν is the Lévy measure related to the jump parts in
the Lévy-Itô decomposition.

The rotationally invariant(isotropic) stable process is a special case for the Lev́y process when b = 0,
A = 0 and ν is the measure given by

ν(dy) = cd,α|y|−(d+α), cd,α = 2αΓ((d + α)/2)/(πd/2|Γ(−α/2)|). (5)

Based on the Lévy-Khinchine formula (4), if we initialize the process at x ∈ R
d, its characteristic function

is given by

Exe
i〈ξ,X

(α)
t −x〉 = e−t|ξ|α , x, ξ ∈ R

d, t ≥ 0. (6)

The index of stability α ∈ (0, 2] determines the tail-heaviness of the densities: the smaller is α, the heavier
is the tail. The parameter t in (6) measures the spread of Xt around the center. When α = 2, the stable

19



process pertains to the Brownian motion running with a time clock twice as fast as the standard one and
hence it has continuous paths. When α ∈ (0, 2), the stable process paths contain discontinuities, which are
often referred as jumps. At each fixed time, unlike the Brownian motion, the α-stable process density only
has a finite pth-moment for p < α, i.e.

E[|X(α)
1 |p] =

{
+∞ p ∈ [α,+∞), α ∈ (0, 2),

m(α)
p < +∞ p ∈ (0, α), α ∈ (0, 2).

When d = 1, the fractional absolute moment formula for m
(α)
p can be derived explicitly, see (Nolan, 2020,

Chapter 3.7). When d > 1, the explicit formula for m
(α)
p is only known in some special cases. For example,

when α = 1, m
(1)
p = Γ((d+p)/2)Γ((1−p)/2)

Γ(d/2)Γ(1/2) for all p < 1. Another good property of α-stable process is the self-

similarity. By examining the characteristic functions, it is easy to verify that the isotropic α-stable process

is self-similar with the Hurst index 1/α, i.e. X
(α)
at and a1/αX

(α)
t have the same distribution. Or equivalently,

p
(α)
t (x) = t−

d
α p

(α)
1 (t−

1
αx) for all x ∈ R

d and t > 0.
The fractional Laplacian operator in R

d of order α is denoted by −(−∆)α/2 for α ∈ (0, 2]. It was
introduced as a non-local generalization of the Laplacian operator to model various physical phenomenons.
In Kwaśnicki (2017), ten equivalent definitions of the fractional Laplacian operator are introduced. Here we
recall two of them:

(a) Distributional definition: For all Schwartz functions φ defined on R
d, we have

∫

Rd

−(−∆)α/2f(y)φ(y)dy =

∫

Rd

f(x)
(

−(−∆)α/2φ(x)
)

dx.

(b) Singular integral definition: For a limit in the space Lp(Rd), p ∈ [1,∞), we have

−(−∆)α/2f(x) = lim
r→0+

2αΓ(d+α
2 )

πd/2|Γ(−α
2 )|

∫

Rd\Br

f(x + z)− f(x)

|z|d+α
dz.

where Br is the unit ball with radius r centered at the origin.

The fractional Laplacian can be understood as the infinitesimal generator of the stable Lev́y process.

More explicitly, the semigroup defined by the transition probability p
(α)
t in (2) has the infinitesimal gen-

erator −(−∆)α/2, i.e. the density function p
(α)
t satisfies the following equation in the sense of distribu-

tion, Bogdan et al. (2008):

∂tp
(α)
t (x) = −(−∆)α/2p

(α)
t (x). (7)

(7) is usually referred as the α-fractional heat flow. When α = 2, −(−∆)α/2 is the Laplacian operator and
(7) becomes the heat flow.

Proposition B.1 (From FPI to PI). When ϑ→ 2−, the ϑ-FPI reduces to the classical Poincaré inequality
with Dirichlet form Eµ(φ) =

∫
|∇φ(x)|2dx for any smooth bounded φ : Rd → R

d.

Proof. It suffices to prove that E(ϑ)µ (φ) converges to Eµ(φ) as ϑ→ 2− for any smooth function φ. Recall the

definition of E(ϑ)µ (φ):

E(ϑ)µ (φ) := cd,ϑ

∫∫

{x 6=y}

(φ(x) − φ(y))2

|x− y|(d+ϑ)
dxµ(y)dy with cd,ϑ =

2ϑΓ((d + ϑ)/2)

πd/2|Γ(−ϑ/2)| ,

where cd,ϑ = O(2−ϑ) as ϑ→ 2−. Now we rewrite the inside integral in E(ϑ)µ (φ) and split the integral region
into a centered unit ball, denoted as B1, and its complement:

∫

x 6=y

(φ(x) − φ(y))2

|x− y|(d+ϑ)
dx =

∫

z 6=0

(φ(y + z)− φ(y))2

|z|(d+ϑ)
dz
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=

∫

B1

(φ(y + z)− φ(y))2

|z|(d+ϑ)
dz

︸ ︷︷ ︸

I1

+

∫

Rd\B1

(φ(y + z)− φ(y))2

|z|(d+ϑ)
dz

︸ ︷︷ ︸

I2

.

For I2, we have

I2 ≤ 4 ‖φ‖2∞
∫

Rd\B1

1

|z|d+ϑ
dz =

4 ‖φ‖2∞ dπ
d
2

Γ(d2 + 1)

∫ ∞

1

r−ϑ+1dr =
4 ‖φ‖2∞ dπ

d
2

ϑΓ(d2 + 1)
.

As a result, the term in E(ϑ)µ (φ) that is induced by I2 satisfies

cd,ϑ

∫

Rd

I2µ(y)dy ≤ cd,ϑ
4 ‖φ‖2∞ dπ

d
2

ϑΓ(d2 + 1)
→ 0 as ϑ→ 2−.

For I1, we have when ϑ > 1,

I1 −
∫

B1

|〈∇φ(y), z〉|2
|z|d+ϑ

dz

=

∫

B1

(
φ(y + z)− φ(y)− 〈∇φ(y), z〉

)(
φ(y + z)− φ(y) + 〈∇φ(y), z〉

)

|z|d+ϑ
dz

≤ ‖φ‖C2(Rd) ‖φ‖C1(Rd)

∫

B1

|z|−(d+ϑ−3)dz

= ‖φ‖C2(Rd) ‖φ‖C1(Rd)

dπ
d
2

Γ(d2 + 1)

∫ 1

0

rϑ−2dr

= ‖φ‖C2(Rd) ‖φ‖C1(Rd)

dπ
d
2

(ϑ− 1)Γ(d2 + 1)
,

where ‖φ‖Ci(Rd) := supx∈Rd |φ(i)(x)| for i = 1, 2. As a result, the term in E(ϑ)µ (φ) that is induced by I1
satisfies

cd,ϑ

∫

Rd

(
I2 −

∫

B1

|〈∇φ(y), z〉|2
|z|d+ϑ

dz
)
µ(y)dy ≤ cd,ϑ

‖φ‖C2(Rd) ‖φ‖C1(Rd) dπ
d
2

(ϑ− 1)Γ(d2 + 1)
→ 0 as ϑ→ 2−.

Therefore we have E(ϑ)µ (φ) → cd,ϑ
∫

Rd

∫

B1

|〈∇φ(y),z〉|2

|z|d+ϑ µ(y)dzdy as ϑ → 2−. Last, we prove the limit is

equivalent to 2Eµ(φ). For i 6= j, we have

∫

B1

∂iφ(y)∂jφ(y)zizjdz = −
∫

B1

∂iφ(y)∂jφ(y)z̃iz̃jdz̃,

where z̃k = zk for all k 6= j and z̃j = −zj. Therefore,
∫

B1
∂iφ(y)∂jφ(y)zizjdz = 0. As a result,

∫

B1

|〈∇φ(y), z〉|2
|z|d+ϑ

dz =

∫

B1

∑d
i=1(∂iφ(y))2z2i
|z|d+ϑ

dz

=

d∑

i=1

(∂iφ(y))2
1

d

∫

B1

|z|2
|z|d+ϑ

dz

= |∇φ(y)|2 π
d
2

(2 − ϑ)Γ(d2 + 1)
,

and the proof follows from cd,ϑ
π

d
2

(2−ϑ)Γ( d
2+1)

→ 2 as ϑ→ 2−.
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B.2 χ
2 convergence under FPI

In this section, we study the decaying property of χ2-divergence from ρXk to πX , where ρXk is the law of xk.

In the following analysis, we denote ρk = ρX,Y
k as the law of (xk, yk), ρYk the law of yk. We will analyze the

two steps in the stable proximal sampler separately.

Step 1. In the following proposition, we study the decay of χ2-divergence in step 1.

Proposition B.2. Assume that πX satisfies the α-FPI with parameter CFPI(α), then for each k ≥ 0,

χ2(ρYk |πY ) ≤ exp
(

−η
(
CFPI(α) + η

)−1
)

χ2(ρXk |πX).

Proof of Proposition B.2. For the simplicity of notations, we will write p(α) and p
(α)
t as p and pt respectively

in this proof. Since xk ∼ ρXk and yk|xk ∼ p(η;x, ·), we have

ρYk (y) =

∫

Rd

p(η;x, y)ρXk (x)dx =

∫

Rd

ρXk (x)pη(y − x)dx = ρXk ∗ pη(y).

Therefore, we can view ρYk as ρXk evolving along the following factional heat flow

∂tρ̃t = −(−∆)
α
2 ρ̃t.

That is if ρ̃0 = ρXk , then ρ̃η = ρYk . Similarly, since πY = πX ∗pη, if ρ̃0 = πX , then ρ̃η = πY . For any t ∈ [0, η],
define πX

t = πX ∗ pt and ρXt = ρXk ∗ pt. The derivative of φ-divergence from ρXt to πX
t can be calculated as

d

dt

∫

Rd

φ(
ρXt
πX
t

)πX
t dx

=

∫

Rd

∂tπ
X
t φ(

ρXt
πX
t

) + φ′(
ρXt
πX
t

)

(

∂tρ
X
t − ∂tπ

X
t
ρXt
πX
t

)

dx

=−

∫

Rd

φ(
ρXt
πX
t

)(−∆)
α
2 πX

t dx+

∫

Rd

φ′(
ρXt
πX
t

)

(

ρXt
πX
t

(−∆)
α
2 πX

t − (−∆)
α
2 ρXt

)

dx

=

∫

Rd

[

−
ρXt
πX
t

(−∆)
α
2 φ′(

ρXt
πX
t

) + (−∆)
α
2

(

ρXt
πX
t

φ′(
ρXt
πX
t

)

)

− (−∆)
α
2 φ(

ρXt
πX
t

)

]

πX
t dx,

where in the second identity we used the distributional definition of the fractional Laplacian. Next according to the
singular integral definition of fractional Laplacian, we have

−(−∆)
α
2 f(x) := cd,α lim

r→0+

∫

Rd\Br

f(x+ z)− f(x)

|z|d+α
dz, (8)

where Br = {x ∈ R
d : |x| ≤ r} and cd,α is given in (5). With (8), we have

d

dt

∫

Rd

φ(
ρXt
πX
t

)πX
t dx

= cd,α lim
r→0+

∫

Rd

∫

Rd\Br

φ(
ρXt (x+z)

πX
t (x+z)

)− φ(
ρXt (x)

πX
t (x)

)−
ρXt (x+z)

πX
t (x+z)

φ′(
ρXt (x+z)

πX
t (x+z)

) +
ρXt (x)

πX
t (x)

φ′(
ρXt (x+z)

πX
t (x+z)

)

|z|d+α
dzπX

t (x)dx.

When φ(r) = (r − 1)2,
∫

Rd φ(
ρXt
πX
t
)πX

t dx = χ2(ρXt |πX
t ) and we have

d

dt
χ2(ρXt |πX

t ) = −cd,α lim
r→0+

∫

Rd

∫

Rd\Br

(

ρXt (x+z)

πX
t (x+z)

−
ρXt (x)

πX
t (x)

)2

|z|d+α
dzπX

t dx := −EπX
t
(
ρXt
πX
t

).

According to (Chafäı, 2004, Theorem 23), pt satisfies α-FPI with parameter t for all t ∈ (0, η]. Since πX also
satisfies the α-FPI with parameter CFPI(α), Lemma B.1 implies that πX

t = πX ∗pt satisfies the α-FPI with parameter
CFPI(α) + η for all t ∈ (0, η]. Therefore we have

d

dt
χ2(ρXt |πX

t ) = −EπX
t
(
ρXt
πX
t

) ≤ −
(

CFPI(α) + η
)−1

χ2(ρXt |πX
t ).
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Last, according to Gronwall’s inequality we have

χ2(ρYk |πY ) = χ2(ρXη |πX
η ) ≤ exp

(

−η
(

CFPI(α) + η
)−1

)

χ2(ρXk |πX).

Step 2. In this step, we study the decay of χ2-divergence in step 2. building on the work by Chen et al.

(2022). According to the RαSO, we have ρXk+1(x) =
∫

Rd π
X|Y (x|y)ρYk (y)dy. Also notice that πX(x) =

∫

Rd π
X|Y (x|y)πY (y)dy. According to the data processing inequalities, χ2 divergence won’t increase after

step 2, i.e. χ2(ρXk+1|πX) ≤ χ2(ρYk |πY ).

Combining our results in Step 1 and Step 2, we prove Theorem 3.1.

Lemma B.1. Let µ1, µ2 be two probability densities satisfying the ϑ-FPI with parameters C1, C2 respectively.
Then µ1 ∗ µ2 satisfies the ϑ-FPI with parameter C1 + C2.

Proof of Lemma B.1. Let X,Y be two independent random variables such that X ∼ µ1 and Y ∼ µ2. Then
X + Y ∼ µ1 ∗ µ2. According to variance decomposition, we have for any function φ,

Varµ1∗µ2 (φ) = Var (φ(X + Y )) = E [Var (φ(X + Y )|Y )] + Var (E [φ(X + Y )|Y ]) .

Since X ∼ µ1 and µ1 satisfies the ϑ-FPI with parameter C1, we have

Var (φ(X + Y )|Y ) ≤ C1cd,α

∫∫

{z 6=0}

(φ(x + Y + z)− φ(x + Y ))
2

|z|(d+ϑ)
dzµ1(x)dx,

therefore we have

E [Var (φ(X + Y )|Y )]

≤C1cd,α

∫∫∫

{z 6=0}

(φ(x + y + z)− φ(x + y))
2

|z|(d+ϑ)
dzµ1(x)dxµ2(y)dy.

(9)

Since Y ∼ µ2 and µ2 satisfies the ϑ-FPI with parameter C2, we have

Var (E [φ(X + Y )|Y ])

≤C2cd,α

∫∫

{z 6=0}

(∫

φ(x+ y + z)µ1(x)dx−
∫

φ(x+ y)µ1(x)dx
)2

|z|(d+ϑ)
dzµ2(y)dy

≤C2cd,α

∫∫

{z 6=0}

∫

(φ(x+ y + z)− φ(x+ y))2

|z|(d+ϑ)
µ1(x)dxdzµ2(y)dy (10)

where the last inequality follows from Jensen’s inequality. Combining (9) and (10), we have

Varµ1∗µ2(φ) ≤ C1cd,α

∫∫∫

{z 6=0}

(φ(x+ y + z)− φ(x+ y))2

|z|(d+ϑ)
dzµ1(x)dxµ2(y)dy

+ C2cd,α

∫∫

{z 6=0}

∫

(φ(x+ y + z)− φ(x+ y))2

|z|(d+ϑ)
µ1(x)dxdzµ2(y)dy

≤ (C1 +C2) cd,α

∫∫∫

{z 6=0}

(φ(x+ y + z)− φ(x+ y))2

|z|(d+ϑ)
dzµ1(x)dxµ2(y)dy

= (C1 +C2) cd,α

∫∫

{z 6=0}

(φ(u+ z)− φ(u))2

|z|(d+ϑ)
dzµ1 ∗ µ2(u)du

= (C1 +C2) Eµ1∗µ2(φ),

where the second inequality follows from Fatou’s lemma.

23



B.3 Implementation of the Stable Proximal Sampler

In this section we discuss the implementation of the RαSO step in our stable proximal sampler. We intro-
duce an exact implementation of the RαSO step without optimizing the target potential and the proofs for
Corollary 3.1 and Proposition 3.1.

Rejection sampling without optimization. Suppose a uniform lower bound of the target potential
is known, i.e. there is a constant CLow such that infx∈Rd V (x) ≥ CLow > −∞, RαSO at each step can be

implemented exactly via a rejection sampler with proposals x̃k+1 following p
(α)
η (· − yk) and the acceptance

probability exp(−V (x̃k+1) + CLow). Then the expected number of rejections, N , satisfies

N =
(
∫

Rd

e−V (x)+CLowp(η;x, yk)dx
)−1

and logN = −CLow − log
(
∫

Rd

e−V (x)p(α)(η;x, yk)dx
)
.

Without loss of generality, we assume x∗ = 0, which always hold if we translate the potential V by V (0).
Then we have

logN ≤ −CLow +

∫

Rd

(
V (x)− V (0)

)
p(α)(η;x, yk)dx

≤ −CLow + L

∫

Rd

∣
∣x + yk

∣
∣
β
p(α)η (x)dx

≤ −CLow + LEX∼πX [|X |β ] + Lηβd
β
2 + LEX∼πX [|X |2β]

1
2χ2(ρX0 |πX)

1
2 +

Γ(d+1
2 )Γ(1−β

2 )L

Γ(d+1−β
2 )π

1
2

ηβ ,

where the second inequality follows from Assumption 3.1 and the last inequality follows from the proof of

Corollary 3.1. With the above estimation, we can pick η = Θ(C
1
β

Lowd
− 1

2L− 1
β ) and the expected number of

rejections satisfies logN = O(CLow + LM) with M = EπX [|X |β] + χ2(ρX0 |πX)EπX [|X |2β]
1
2 .

Proof of Corollary 3.1. The expected number of iterations conditioned on yk in the rejection sampling is

N =

(∫

Rd

e−V (x)+V (x∗)p(α)(η;x, yk)dx

)−1

and logN = −V (x∗)− log
(
∫

Rd

e−V (x)p(α)(η;x, yk)dx
)

≤
∫

Rd

(
V (x) − V (x∗)

)
p(α)(η;x, yk)dx

=

∫

Rd

(
V (x + yk)− V (x∗)

)
p(α)η (x)dx.

WLOG, assume x∗ = 0. Since V satisfies Assumption 3, we have

logN ≤ L

∫

Rd

∣
∣x + yk

∣
∣
β
p(α)η (x)dx =

LΓ(d+1
2 )

π
d+1
2

η

∫

Rd

∣
∣x + yk

∣
∣
β
(
∣
∣x
∣
∣
2

+ η2)−
d+1
2 dx

≤ L|yk|β +
LΓ(d+1

2 )

π
d+1
2

η

∫

Rd

∣
∣x
∣
∣
β
(
∣
∣x
∣
∣
2

+ η2)−
d+1
2 dx

≤ L|yk|β +
LΓ(d+1

2 )

π
d+1
2

η

∫

Rd

(
∣
∣x
∣
∣
2

+ η2)−
d+1−β

2 dx

= L|yk|β +
Γ(d+1

2 )Γ(1−β
2 )L

Γ(d+1−β
2 )π

1
2

ηβ .

Therefore, when η = Θ(d−
1
2L− 1

β ), the expected number of rejections N is of order E[exp(L|yk|β]. Since πX

satisfies a 1-FPI with parameter CFPI(1), according to Chafäı (2004), pt satisfies the 1-FPI with parameter
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η for any t ∈ (0, η). Last it follows from Theorem 9 that for any η > 0, to achieve a ε-accuracy in χ2

divergence, we need to perform the stable proximal sampler K steps with

K ≥
(
CFPI(1)η

−1 + 1
)

log

(
χ2(ρX0 |πX)

ε

)

= O
(
CFPI(1)d

1
2L

1
β log

(χ2(ρX0 |πX)

ε

))
.

Proof of Proposition 3.1. For all k ≥ 0, we have

TV(ρ̃Xk+1, ρ
X
k+1) = TV

(
∫

ρ̃
X|Y
k+1 (·|y)ρ̃Yk (y)dy,

∫

ρ
X|Y
k+1 (·|y)ρYk (y)dy

)

≤ TV
(
∫

ρ̃
X|Y
k+1 (·|y)ρ̃Yk (y)dy,

∫

ρ
X|Y
k+1 (·|y)ρ̃Yk (y)dy

)

+ TV
(
∫

ρ
X|Y
k+1 (·|y)ρ̃Yk (y)dy,

∫

ρ
X|Y
k+1 (·|y)ρYk (y)dy

)

≤ Eρ̃Y
k

[TV(ρ̃
X|Y
k+1 (·, y)], ρ

X|Y
k+1 (·|y)) + TV(ρ̃Yk , ρ

Y
k )

≤ εTV + TV(ρ̃Xk , ρXk ),

where the last two inequalities follow from the data processing inequality. Therefore, TV(ρ̃Xk , ρXk ) ≤ kεTV +
TV(ρ̃X0 , ρX0 ) for all k ≥ 1.

Next, the iteration complexity of Algorithm 2 with an inexact RαSO can be obtained from Proposition
3.1. Since ρ̃X0 = ρX0 , according to Pinsker’s inequality, we have

TV(ρ̃Xk , πX) ≤ TV(ρ̃Xk , ρXk ) + TV(ρXk , πX) ≤ TV(ρ̃Xk , ρXk ) +
√

χ2(ρXk |πX)/2

≤ kεTV +
√

exp(−kη(CFPI(α) + η)−1)χ2(ρ̃X0 |πX)/2.

For any ε > 0 and any K satisfies

K ≥ (CFPI(α)η
−1 + 1) ln

(
2χ2(ρ̃X0 |πX)/ε2

)
,

if the RαSO can be implemented inexactly with εTV ≤ ε
2K , the density of the K

th
iterate of Algorithm 2 is

ε-close to the target in the total variation distance, i.e. TV(ρ̃KX , πX) ≤ ε.

B.4 Convergence under Weak Fractional Poincaré Inequality

Our main result for Algorithm 2 in Theorem 3.1 is proved under the assumption the target satisfying α-FPI.
Furthermore, for the rejection-sampling based implementation of the RαSO in Algorithm 3, the parameter
α is set to be 1. In order to use Theorem 3.1 for the case of generalized Cauchy targets, one has to check
if the α-FPI is satisfied or not, which depends on the degrees of freedom parameter ν of the generalized
Cauchy desity. Specifically, when ν ≥ 1, 1-FPI is satisfied and we hence have Corollary 3.3, part (i) based
on Theorem 3.1. When ν ∈ (0, 1), 1-FPI is not satisfied and hence Theorem 3.1 no longer applies.

To tackle this issue, we now introduce a generalization of Theorem 3.1 to the case when the target satisfies
a weak version of Fractioanl Poincaré inequality (wFPI) and provide convergence guarantees for the stable
proximal sampler in χ2-divergence.

Definition B.1 (weak Fractional Poincaré Inequality). For ϑ ∈ (0, 2), a probability density µ satisfies a
ϑ-weak fractional Poincaré inequality if there exists a decreasing function βwFPI(ϑ) : R+ → R+ such that for

any φ : Rd→ R in the domain of E(ϑ)µ with µ(φ) = 0, we have

µ(φ2) ≤ βwFPI(ϑ)(r)E(ϑ)µ (φ) + r ‖φ‖2∞ , ∀r > 0, (wFPI)

where E(ϑ)µ is a non-local Dirichlet form associated with µ defined as

E(ϑ)µ (φ) := cd,ϑ

∫∫

{x 6=y}

(φ(x) − φ(y))2

|x− y|(d+ϑ)
dxµ(y)dy with cd,ϑ =

2ϑΓ((d + ϑ)/2)

πd/2|Γ(−ϑ/2)| .
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The wFPI is satisfied by any probability density that is locally bounded, and is hence extremely general.
Setting the parameter r = 0, wFPI reduces to FPI with CFPI(ϑ) = βwFPI(ϑ)(0).

Theorem B.1. Assume that πX satisfies the α-wFPI with parameter βWFPI(α)(r) for some α ∈ (0, 2). Then

for any step size η > 0 and initial condition ρX0 such that R∞(ρX0 |πX) < ∞, the kth iterate of the stable
proximal sampler with parameter α (Algorithm 2) satisfies

χ2(ρXk |πX) ≤ exp
(
− (βWFPI(α)(r) + η)−1kη

)
χ2(ρX0 |πX)

+ 4r
(
1− exp

(
− (βWFPI(α)(r) + η)−1(k + 1)η

))
exp

(
2R∞(ρX0 |πX)

)
.

The proof of Theorem B.1 follows the same two-step analysis as it is introduced in the beginning of
Section B.2. The convergence property corresponding to Step 1 is stated in the following Proposition.

Proposition B.3. Assume that πX satisfies the α-wFPI with parameter βWFPI(α) for some α ∈ (0, 2), then
for each k ≥ 0, r > 0,

χ2(ρYk |πY ) ≤ exp
(
− (βWFPI(α)(r) + η)−1η

)
χ2(ρXk |πX)

+ 4r
(
1− exp

(
− (βWFPI(α)(r) + η)−1η

)
exp

(
2R∞(ρXk |πX)

)
.

(11)

Proof of Proposition B.3. In the stable proximal sampler with parameter α, we have ρYk = ρXk ∗ p
(α)
η and

πY = πX ∗ p(α)η . Therefore we can view ρYk and πY as ρXk and πX evolving along the fractional heat flow by

time η respectively. For any t ∈ [0, η], define πX
t = πX ∗ p(α)t and ρXt = ρXk ∗ p

(α)
t . We have

d

dt
χ2(ρXt |πX

t ) = −EπX
t

(
ρXt
πX
t

) = −EπX
t

(
ρXt
πX
t

− 1).

According to (Chafäı, 2004, Theorem 23), p
(α)
t satisfies α-FPI with parameter η for all t ∈ (0, η]. According

to Lemma B.2, πX
t satisfies the α-wFPI with βWFPI(α)(r) + η. Therefore we get

d

dt
χ2(ρXt |πX

t ) ≤
(
βWFPI(α)(r) + η

)−1
χ2(ρXt |πX

t ) + r
(
βWFPI(α)(r) + η

)−1 ∥
∥ρXt /πX

t − 1
∥
∥
2

∞

≤
(
βWFPI(α)(r) + η

)−1
χ2(ρXt |πX

t ) + 4r
(
βWFPI(α)(r) + η

)−1
exp

(
2R∞(ρXk |πX)

)
,

where the last inequality follows from the definition of Renyi-divergence and the data processing inequality.
Last, (11) follows from Gronwall’s inequality.

Proof of Theorem B.1. According to Proposition B.3, the χ2 decaying property in step 1 of the algorithm is
as follows,

χ2(ρYk |πY ) ≤ exp
(
− (βWFPI(α)(r) + η)−1η

)
χ2(ρXk |πX)

+ 4r
(
1− exp

(
− (βWFPI(α)(r) + η)−1η

)
exp

(
2R∞(ρXk |πX)

)
.

In step 2, we have ρXk+1 = ρYk ∗ πX|Y and πX = πY ∗ πX|Y . Therefore according to the data processing
inequality, we get

χ2(ρXk+1|πX) ≤ χ2(ρYk |πY )

≤ exp
(
− (βwFPI(ϑ)(r) + η)−1η

)
χ2(ρXk |πX)

+ 4r
(
1− exp

(
− (βWFPI(α)(r) + η)−1η

)
exp

(
2R∞(ρXk |πX)

)

≤ exp
(
− k(βWFPI(α)(r) + η)−1η

)
χ2(ρX0 |πX)

+ +4r
(
1− exp

(
− (βWFPI(α)(r) + η)−1(k + 1)η

))
exp

(
2R∞(ρX0 |πX)

)
,

where the last inequality follows from the data processing inequality. Last, apply the above iterative relation
k times and we prove (11).
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Lemma B.2. Let µ1 be a probability density on R
d satisfying the ϑ-wFPI with parameter βwFPI(ϑ)(r). Let

µ2 be a probability density on R
d satisfying the ϑ-FPI with parameter CFPI(ϑ). Then µ1 ∗µ2 satisfies ϑ-wFPI

with parameter βwFPI(ϑ)(r) + CFPI(ϑ).

Proof of Lemma B.2. Let X,Y be two independent random variables such that X ∼ µ2 and Y ∼ µ1.
According to variance decomposition, we have for any function φ such that µ1 ∗ µ2(φ) = 0,

Varµ1∗µ2 (φ) = Var (φ(X + Y )) = E [Var (φ(X + Y )|Y )] + Var (E [φ(X + Y )|Y ]) .

Since X ∼ µ2 and µ2 satisfies the ϑ-FPI with parameter CFPI(ϑ), we have

E[Var (φ(X + Y )|Y )] (12)

≤CFPI(ϑ)cd,α

∫∫∫

{z 6=0}

(φ(x + y + z)− φ(x + y))
2

|z|(d+ϑ)
dzµ2(x)dxµ1(y)dy. (13)

Since Y ∼ µ1 and µ1 satisfies the ϑ-wFPI with parameter βwFPI(ϑ), following the proof of Lemma B.1, we
have

Var (E [φ(X + Y )|Y ])

≤βwFPI(ϑ)cd,α

∫∫

{z 6=0}

∫

(φ(x+ y + z)− φ(x+ y))2

|z|(d+ϑ)
µ2(x)dxdzµ1(y)dy

+ r

∥

∥

∥

∥

∫

φ(x+ ·)µ2(x)dx−

∫∫

φ(x+ y)µ2(x)dxµ1(y)dy

∥

∥

∥

∥

2

∞

≤βwFPI(ϑ)cd,α

∫∫

{z 6=0}

∫

(φ(x+ y + z)− φ(x+ y))2

|z|(d+ϑ)
µ2(x)dxdzµ1(y)dy + r ‖φ‖2∞ ,

(14)

where the last inequality follows from the fact that µ1 ∗ µ2(φ) = 0 and the convexity ‖·‖∞. Combining (12) and
(14), we have

Varµ1∗µ2(φ)

≤CFPI(ϑ)cd,α

∫∫∫

{z 6=0}

(φ(x+ y + z)− φ(x+ y))2

|z|(d+ϑ)
dzµ2(x)dxµ1(y)dy

+ βwFPI(ϑ)(r)cd,α

∫∫

{z 6=0}

∫

(φ(x+ y + z)− φ(x+ y))2

|z|(d+ϑ)
µ2(x)dxdzµ1(y)dy + r ‖φ‖2∞

=
(

βwFPI(ϑ)(r) + CFPI(ϑ)

)

cd,α

∫∫

{z 6=0}

(φ(u+ z)− φ(u))2

|z|(d+ϑ)
dzµ1 ∗ µ2(u)du+ r ‖φ‖2∞

=
(

βwFPI(ϑ)(r) + CFPI(ϑ)

)

Eµ1∗µ2(φ) + r ‖φ‖2∞ .

Lemma B.2 is hence proved.

B.5 Proofs for the Generalized Cauchy Examples

In this section, we provide proofs for the two corollaries in Section 3.2.

Proof of Corollary 3.2. According to (Wang and Wang, 2015, Corollary 1.2), πν satisfies α-FPI with param-
eter CFPI(ϑ) for any α ≤ min(2, ν). Therefore it follows from Theorem 3.1 that

χ2(ρXk |πν) ≤ exp
(

−kη
(
CFPI(α) + η

)−1
)

χ2(ρX0 |πν). (15)

According to (Mousavi-Hosseini et al., 2023, Corollary 22), when ρX0 = N (0, Id) and d ≥ 2, R∞(ρX0 |πν) ≤
ln(2ν/2Γ(ν/2)) + ln(d+ν

2e ) which implies χ2(ρX0 |πν) = Θ(d). Therefore Corollary 3.2 follows from (15) and
η ∈ (0, 1).
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Proof of Corollary 3.3. We prove the two part in the Corollary separately:

(i) When ν ≥ 1, according to (Wang and Wang, 2015, Corollary 1.2) πν satisfies the 1-FPI with param-
eter CFPI(1). Corollary 3.1 applies with L = 4(d+ ν) and β = 1/4 and the iteration complexity of Algorithm

2 is of order O
(
CFPI(1)d

1
2 (d + ν)4 ln(χ2(ρX0 |πν)/ε)

)
.

(ii) When ν ∈ (0, 1), according to (Wang and Wang, 2015, Corollary 1.2), there exists a positive constant
c such that πν satisfies the 1-wFPI with parameter

βWFPI(1)(r) = c(1 + r−(1−ν)/ν). (16)

Theorem B.1 implies that

χ2(ρXk |πν) ≤ exp
(

−
kη

η + c(1 + r−(1−ν)/ν)

)

χ2(ρX0 |πν)

+ r
(

1− exp
(

−
(k + 1)η

η + c(1 + r−(1−ν)/ν)

))

exp
(

2R∞(ρX0 |πX)
)

≤ exp
(

−
kη

η + c(1 + r−(1−ν)/ν)

)

χ2(ρX0 |πν)

+
(k + 1)ηr

η + c(1 + r−(1−ν)/ν)
exp

(

2R∞(ρX0 |πX)
)

.

For any ε > 0 and k ≥ 1, pick r =
exp

(

−2νR∞(ρX0 |πν )
)

cνεν

(k+1)νην , we have χ2(ρXk |πν) ≤ ε if

k ≥
[

1 + c
1
ν η− 1

ν + 21/νcη−1ε−(1−ν)/ν exp
(2(1− ν)R∞(ρX0 |πν)

ν

)]

ln1/ν(
2χ2(ρX0 |πν)

ε
).

Corollary 3.1 applies with L = (d + ν)/ν and β = ν/4. Therefore, by choosing η = Θ(d−
1
2 (d + ν)−

4
ν ), the iteration

complexity in Algorithm 2 is of order

O

(

max
{

c
1
ν d

1
2ν

+ 4
ν2 , cd

1
2
+ 4

ν ε−
1−ν
ν exp

(2(1− ν)R∞(ρX0 |πν)

ν

)}

ln
1
ν (

2χ2(ρX0 |πν)

ε
)

)

.

C Proofs for the Lower Bounds on the Stable Proximal Sampler

In this section we introduce the proofs for the lower bounds for the stable proximal sampler with parameter
α when the target is the generalized Cauchy density with degrees of freedom strictly smaller than α. The
lower bound is proved following the idea introduced in Section 2.

Lemma C.1. Suppose (xk, yk)k are the iterates of the stable proximal sampler with parameter α, step size
η and target density πX ∝ exp(−V ) for some V : Rd → R. Let G(x) = exp(κV (x)) with κ ∈ (0, 1). Then,
for every k ≥ 0,

E[G(xk+1)] ≤ E[G(xk + 2
1
α η

1
α zk)],

where zk, with density p
(α)
1 , is sampled independently from xk.

Proof of Lemma C.1. Recall that πX|Y (x|y) ∝ πX(x)p(α)(η;x, y). We have

E[G(xk+1)] = E
[
E[G(xk+1)|yk]

]
= E

[
Z−1
yk

∫

G(x)πX(x)p(α)η (x − yk)dx
]

= E
[
Z−1
yk

E[G(yk + η
1
α zk)πX(yk + η

1
α zk)|yk]

]
,
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where Zyk
=
∫
πX(x)p

(α)
η (x − yk)dx = E[πX(yk + η

1
α zk)|yk] and zk is the α-stable random vector with

density p
(α)
1 , which is independent to yk, xk. Let T : R+ → R be T (r) = r−κ. Since κ ∈ (0, 1), T is convex

and r 7→ rT (r) is concave. According to the fact that G(x) = T (πX)(x) and Jensen’s inequality, we have

E[G(xk+1)] = E

[
E
[
(πXT (πX))(yk + η

1
α zk)|yk

]

E
[
πX(yk + η

1
α zk)|yk]

]

≤ E
[
T
(
E[πX(yk + η

1
α zk)|yk]

)]
.

Since T is convex, apply Jensen’s inequality again and we get

E[G(xk+1)] ≤ E[G(yk + η
1
α zk)] = E

[
E[G(xk + η

1
α z′k + η

1
α zk)|xk]

]

= E[G(xk + 2
1
α η

1
α z̄k)|xk],

where z′k is the α-stable random vector with density p
(α)
1 , which is independent to xk, zk and the last identity

follows from the self-similarity of α-stable process with z̄k ∼ p
(α)
1 which is independent to xk.

Lemma C.2. Suppose (xk, yk)k are the iterates of the stable proximal sampler with parameter α, step size
η and target density πX ∝ exp(−V ) satisfies

|∇V (x)| ≤ (d + ν2)|x|
1 + |x|2 and ∆V (x) ≤ (d + ν2)2

1 + |x|2 ,

for some ν2 ∈ (0, α) and for all x ∈ R
d. Let G(x) = exp(κV (x)) with

κ ∈ (ν2(d + ν2)−1, α(d + ν2)−1).

Then, for every k ≥ 0 and for all r > 0,

E[G(xk+1)] ≤ (1 + r)
κ(d+ν2)

2 E[G(xk)] + 2
κ(d+ν2)

α η
κ(d+ν2)

α (1 + r−1)
κ(d+ν2)

2 m
(α)
κ(d+ν2)

, (17)

where m
(α)
κ(d+ν2)

= E[|zk|κ(d+ν2)] with zk being an α-stable random vector with density p
(α)
1 . Moreover, for

every N ≥ 0,

E[G(xN )] . E[G(x0)] + m
(α)
κ(d+ν2)

N
κ(d+ν2)

2 +1η
κ(d+ν2)

α , (18)

where . is hiding a uniform positive constant factor.

Proof of Lemma C.2. Without loss of generality assume V (0) = 0. Then, we have that,

V (x) =

∫ 1

0

〈x,∇V (tx)〉dt ≤ (d + ν2)

∫ 1

0

t|x|
1 + |tx|2 dt =

d + ν2
2

ln(1 + |x|2).

Therefore G(x) = exp(κV (x)) ≤ (1 + |x|2)κ(d+ν2)/2, Since κ ∈ (ν2(d + ν2)−1, α(d + ν2)−1), G(x) =

O(|x|κ(d+ν2)) when |x| ≫ 1 and E[G(xk + 2
1
α η

1
α zk)] in Lemma C.1 is finite. We have

E[G(xk + 2
1
α η

1
α zk)]

≤E[(1 + |xk + 2
1
α η

1
α zk|2)

κ(d+ν2)

2 ]

≤E[(1 + (1 + r)|xk|2 + 4
1
α η

2
α (1 + r−1)|zk|2)

κ(d+ν2)
2 ]

≤(1 + r)
κ(d+ν2)

2 E[G(xk)] + 2
κ(d+ν2)

α η
κ(d+ν2)

α (1 + r−1)
κ(d+ν2)

2 E[|zk|κ(d+ν2)]

≤(1 + r)
κ(d+ν2)

2 E[G(xk)] + 2
κ(d+ν2)

α η
κ(d+ν2)

α (1 + r−1)
κ(d+ν2)

2 m
(α)
κ(d+ν2)

,
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where the first inequality follows from the Young’s inequality and m
(α)
κ(d+ν2)

= E[|zk|κ(d+ν2)] with zk being

an α-stable random vector with density p
(α)
1 . (17) follows from Lemma C.1. Furthermore, by induction we

have

E[G(xN)] ≤ (1 + r)κ(d+ν2)N/2
E[G(x0)]

+
(1 + r)κ(d+ν2)N/2 − 1

(1 + r)κ(d+ν2)/2 − 1
2

κ(d+ν2)
α η

κ(d+ν2)
α (1 + r−1)

κ(d+ν2)
2 m

(α)
κ(d+ν2)

.

Pick r = 2
κ(d+ν2)N

and (18) is proved.

Proof of Theorem 3.2. To apply Lemma A.1, we choose G(x) = exp(κV (x)) with κ ∈ (ν2(d + ν2)−1, α(d +
ν2)−1) ⊂ (0, 1). Without loss of generality assume V (0) = 0. Via Assumption 2.1, we have the estimates for
V ,

V (x) =

∫ 1

0

〈x,∇V (tx)〉dt ≥ (d + ν1)

∫ 1

0

t|x|
1 + |tx|2 dt =

d + ν1
2

ln(1 + |x|2).

By Lemma A.2 we have

πX(G(x) ≥ y) ≥ πX
(

|x| ≥ y
1

κ(d+ν1)

)

≥ Cν1d
ν1
2

(

1 + y
−2

κ(d+ν1)

)−
d+ν2

2

y
−ν2

κ(d+ν1) .

We then invoke Lemma A.1 and Lemma C.2 to obtain

TV(ρXN , πX)

& sup
y≥1

Cν1d
ν1
2

(

1 + y
−2

κ(d+ν1)

)−
d+ν2

2

y
−ν2

κ(d+ν1) −
E[G(x0)] + m

(α)
κ(d+ν2)

N
κ(d+ν2)

2 +1η
κ(d+ν2)

α

y
.

The fact that κ ∈ (ν2(d+ ν1)−1, α(d+ ν2)−1) ensures that the supremum on the right side is always positive.
In particular, picking y such that

y
1−

ν2
κ(d+ν1) = Θ

(

C−1
ν1 d−

ν2
2

(
E[G(x0)] + m

(α)
κ(d+ν2)

N
κ(d+ν2)

2 +1η
κ(d+ν2)

α

))

,

we obtain that

TV(ρXN , πX)

&C
κ(d+ν1)

κ(d+ν1)−ν2
ν1 d

κ(d+ν1)ν2
2κ(d+ν1)−2ν2

(
E[G(x0)] + m

(α)
κ(d+ν2)

N
κ(d+ν2)

2 +1η
κ(d+ν2)

α

)−
ν2

κ(d+ν1)−ν2 ,

where & is hiding a uniform positive constant factor. Therefore, for any α ∈ (ν2(d+ν2)
d+ν1

, 2] and δ ∈ (0, α −
ν2(d+ν2)

d+ν1
), we can choose κ = α−δ

d+ν2
∈ ( ν2

d+ν1
, α
d+ν2

) and get that

TV(ρXN , πX)

≥Cν1,ν2,δd
ν2(α−δ)(d+ν1)

2(α−δ)(d+ν1)−2ν2(d+ν2)
(
E[G(x0)] + m

(α)
α−δN

α−δ
2 +1η

α−δ
α

)−
ν2(d+ν2)

(α−δ)(d+ν1)−ν2(d+ν2) .

Theorem 3.2 then follows by taking τ = α− δ.

C.1 Further Discussions on Lower bounds of the stable proximal sampler

To derive a lower bound for the stable proximal sampler with parameter α, it is worth mentioning that there
is an extra difficulty applying our method when ν ≥ α. Recall that when ν ∈ (0, α), πν has heavier tail than
ρXk does. Therefore, when we apply

TV(ρXk , πν) ≥ |πν(G ≥ y)− ρXk (G ≥ y)|, (19)

to study the lower bound, it suffices to derive a lower bound on πν(G ≥ y), and an upper bound on ρXk (G ≥ y)
which is smaller than the lower bound on πν(G ≥ y). Deriving these bounds is not too hard: the lower
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bound can be obtained by looking at an explicit integral against πν directly and the upper bound is derived
based on the fractional absolute moment accumulation of the isotropic α-stable random variables along the
stable proximal sampler.

However, when ν ≥ α, we expect that ρXk has heavier tail than πν . Therefore, to apply (19), we need to
find an upper bound on πν(G ≥ y), and a lower bound on ρXk (G ≥ y) which is smaller than the upper bound
on πν(G ≥ y). Notice that ρXk (G ≥ y) is a quantity varying along the trajectory of the stable proximal
sampler. Deriving a lower bound along the trajectory is essentially more challenging than deriving an upper
bound.

In order to derive a satisfying lower bound in this case, it hence remains to characterize the stable
proximal sampler as an approximation of an appropriate gradient flow, just as that the Brownian-driven
proximal sampler can be interpret as the entropy-regularized JKO scheme in Chen et al. (2022); see also
Section 5. To understand this kind of gradient flow approximations itself is an interesting future work as
it may help us to understand and characterize the class of MCMC samplers that utilize heavy-tail samples
to approximate lighter-tail target densities, which is non-standard compared to commonly used MCMC
samplers such as ULA, MALA, etc.
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