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Abstract

The randomized midpoint method, proposed by [40], has emerged as an opti-
mal discretization procedure for simulating the continuous time underdamped
Langevin diffusion. In this paper, we analyze several probabilistic properties of
the randomized midpoint discretization method, considering both overdamped and
underdamped Langevin dynamics. We first characterize the stationary distribu-
tion of the discrete chain obtained with constant step-size discretization and show
that it is biased away from the target distribution. Notably, the step-size needs
to go to zero to obtain asymptotic unbiasedness. Next, we establish the asymp-
totic normality of numerical integration using the randomized midpoint method
and highlight the relative advantages and disadvantages over other discretizations.
Our results collectively provide several insights into the behavior of the random-
ized midpoint discretization method, including obtaining confidence intervals for
numerical integrations.

1 Introduction

We consider the problem of computing the following expectation

Eπ[ϕ(x)] where π(x) = 1
Zf
e−f(x), (1)

for a potential function f : Rd → R and a test function ϕ : Rd → R, when the normalization con-
stant Zf =

∫
e−f(x)dx is unknown. This problem frequently arises in statistics and machine learn-

ing with numerous applications to high-dimensional Bayesian inference [45, 24, 30, 10], numerical
integration [21, 19], volume computation [43], optimization and learning [37, 17, 32], graphical
models [20], and molecular dynamics [34, 22]. Markov chain Monte Carlo (MCMC) methods pro-
vide a powerful framework for computing the integral in (1), and have been successfully deployed
in various scientific fields [26].

In particular, MCMC algorithms that are based on diffusion processes have received a lot of at-
tention recently. The fundamental idea behind such algorithms is that a continuous-time diffu-
sion with its invariant measure as the target π is approximately simulated via a numerical sam-
pler. The intuition behind the success of these methods is that by appropriately selecting the
step-size parameter, the discrete approximation resulting from the numerical sampler tracks the
continuous-time diffusion. Thus, rapid convergence properties of the diffusion process (see, for ex-
ample, [38, 23, 14, 15, 27, 12]) is inherited by the discrete algorithm with an invariant measure that
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is close to that of the diffusion, which is the target π. While a variety of diffusion processes can
lead to a rich class of MCMC samplers, algorithms that are based on discretizing Langevin dynam-
ics have been the primary focus of research due to their simplicity, accuracy, and well-understood
theoretical guarantees in high-dimensional settings [6, 3, 4, 9, 42, 29, 3, 11, 13, 16].

Although motivated by the problem of computing the integral in (1), much of the theoretical focus
on analyzing sampling methods in the recent literature has been on providing guarantees for the
sampling problem itself (see [41] for an exception), i.e., the number of iterations needed to reach ε-
neighborhood of a d-dimensional target distribution in some probability metric. The choice of step-
size of the sampler is crucial to obtain such theoretical guarantees. While the problem of estimating
expectations such as in (1) is based on sampling from the target π itself, the theoretical guarantees
established for the sampling problem can provide very little to no information on computing the
expectation in (1) based on the sampler. The main reason for this is, the step-size choice of the
sampler required to obtain optimal theoretical guarantees for numerical integration of (1) turns out
to be different from that of sampling. Furthermore, if the ultimate task is to perform inference on
the quantity Eπ[ϕ(x)], confidence intervals are required. Thus, one needs central limit theorems
(CLT) to quantify the fluctuations of the estimator of the expectation in (1), depending on a specific
numerical integrator being used.

The randomized midpoint method, a numerical sampler proposed by [40], has emerged as an optimal
algorithm for sampling from strongly log-concave densities, achieving the information theoretical
lower bound for this problem in terms of both dimension and tolerance dependency [1]. In lieu of
this optimality result, one anticipates a superior performance from the randomized midpoint method
in other fundamental problems that relies on a MCMC sampler as the main computation tool, e.g. es-
timating expectations of the form (1). However, properties of this sampler for the purpose of numer-
ical integration, in particular its inferential properties, are not well-studied. In this paper, we explore
various probabilistic properties of the randomized midpoint discretization method, when used as a
numerical integrator. Towards that, we examine several results for the randomized midpoint method
considering both the overdamped and underdamped Langevin diffusions. Our first contribution is
the explicit characterization of the bias of the randomized midpoint numerical scheme, namely the
difference between its stationary distribution and the target distribution π. We show that asymptotic
unbiasedness, a desired property in general, can be achieved under a decreasing step-size sequence.
As our principal contribution, we establish the ergodicity of the randomized midpoint method and
prove a central limit theorem which can be leveraged for inference on the expectation (1). We com-
pute the bias and the variance of the asymptotic normal distribution for various step size choices,
and show that different step-size sequences are suitable for making inference in different settings.

Our Contributions. We summarize our contributions as follows:

1. We show the ergodicity of constant step-size (denoted as h) randomized midpoint discretization
of the overdamped and underdamped Langevin diffusions in Theorems 1 and 3, respectively.
For both cases, the stationary distribution πh of the resulting discretized Markov chain is unique
and is biased away from the target distribution π.

2. The choice of a constant step-size for the randomized midpoint discretization causes bias in
sampling. We characterize this bias explicitly in Propositions 2.2 and 3.1 for the overdamped
and underdamped Langevin diffusions, respectively. We show that Wasserstein-2 distance be-
tween πh and π is of order O(h0.5) and O(h1.5) respectively for the overdamped and under-
damped Langevin diffusions.

3. The established order of bias points toward using particular choices of decreasing step-size se-
quence for the sake of inference. Specifically, we prove a CLT for numerical integration using
the randomized midpoint discretization of the overdamped and underdamped Langevin diffu-
sions in Theorems 2 and 4 respectively, for various choices of decreasing step-size. Depending
on the specific choice of step-size sequence, the CLT is either unbiased or biased. When dis-
cretizing the overdamped Langevin diffusion with polynomially decreasing step-size choices,
the rate of unbiased CLT turns out to be O(n(1/3)−ε) for any ε > 0. But the optimal rate turns
out to beO(n1/3) for which one can only obtain a biased CLT. When discretizing underdamped
Langevin diffusions with polynomially decreasing step-size choices, we show that the optimal
rate can be improved to O(n5/8) under a certain condition, which is satisfied only by the class
of constant test functions.
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1.1 Notations and Preliminaries

We denote an `-th order symmetric tensor of dimension d by A ∈ Rd⊗`. For a given vector u ∈ Rd,
we use ‖u‖ to denote the Euclidean-norm of the vector. We define the `-th order rank-1 tensor
formed from u ∈ Rd as u⊗`. In addition, let A and B be two `-th order tensors, we define the
inner product between A and B as 〈A,B〉 =

∑d
j1=1 · · ·

∑d
j`=1Aj1j2...j` ·Bj1j2...jk . For a function

f : Rd → R,∇f ∈ Rd and D` ∈ Rd⊗` represents the gradient, and `-th order derivative tensor (for
` > 1). We let (Ω,F , P ) represent a probability space, and denote by B(Rd), the Borel σ-field of
Rd. We use d→ and

p→ to denote convergence in distribution and probability respectively. The set
of all twice continuously differentiable functions f : Rd → R is denoted as C2(Rd). We use Id to
represent the d× d identity matrix. Let x0, x1, . . . be a d-dimensional Markov chain. The transition
probability of the chain, at the k-th step is defined as P k(x,A) := P (xk ∈ A|x0 = x), for some
x ∈ Rd and represents the probability that the chain is in set A at time n given the starting point was
x ∈ Rd. We use Õ to hide log factors. Finally, for a sequence γk and positive integer `, we define
Γ

(`)
n :=

∑n
k=1 γ

`
k. We also make the following assumption on the potential function.

Assumption 1.1. The potential function f ∈ C2(Rd) satisfies the following properties. For some
0 < m ≤M <∞: (a) f has a M -Lipschitz gradient; that is, D2f �MId, and (b) f is m-strongly
convex; that is, mId � D2f . We also define the condition number as κ := M/m.

2 Results for the Overdamped Langevin Diffusion

The overdamped Langevin diffusion is described by the following stochastic differential equation:

dx(t) = −∇f(x(t))dt+
√

2dW (t), (2)
where W (t) is a d-dimensional Brownian motion. It is well-known that this diffusion has π(x) ∝
e−f(x) as its stationary distribution under mild regularity conditions. In general, simulating a
continuous-time diffusion such as (2) is impractical; thus, a numerical integration scheme is needed.

We now describe the randomized midpoint discretization of the above diffusion in (2), which we
denote as RLMC. Denoting the n-th iteration of the algorithm with xn, the integral formulation of
the diffusion with xn as the initial value would then be x∗n(t) = xn −

∫ t
0
∇f(x∗n(s))ds+

√
2W (t).

Let h > 0 be the choice of step size for the discretization and, let (αn) be an i.i.d. sequence
of random variables following uniform distribution on [0, 1], i.e. αn ∼ U [0, 1]. The fundamen-
tal idea behind the randomized midpoint technique is to use h∇f(x∗n(αn+1h)) to approximate the
integral

∫ h
0
∇f(x∗n(s))ds. Indeed, notice that E[h∇f(x∗n(αn+1h))] = h

∫ 1

0
∇f(x∗n(αh))dα =∫ h

0
∇f(x∗n(s))ds. RLMC proceeds by approximating x∗n(αn+1h) with the Euler discretization,

which ultimately yields an explicit numerical integration step. Although [40] considered this dis-
cretization only for the constant step-size choice and the underdamped Langevin diffusion (which
we discuss in Section 3), below we present a single iteration of the RLMC algorithm with the choice
of variable step-size γn+1 for the overdamped diffusion in (2):

xn+ 1
2

= xn − αn+1γn+1∇f(xn) +
√

2αn+1γn+1U
′
n+1,

xn+1 = xn − γn+1∇f(xn+ 1
2
) +

√
2γn+1Un+1,

(RLMC)

where (Un) and (U ′n) are sequences of i.i.d d-dimensional standard Gaussian vectors independent
of (αn) and the initial point x0. We briefly digress now to make the following remark. If instead of
αn ∼ U [0, 1], one uses αn = 1 for all n deterministically, then the iterates of (RLMC) algorithm is
reminiscent of the extra-gradient descent algorithm from the optimization literature [28], perturbed
by Gaussian noise in each step. Furthermore, its noteworthy that with the deterministic choice of
αn = 1, one cannot obtain the improved rates that the uniformly random αn provides. Lastly, the
filtration (Fn) is defined by Fn := σ(αk, Uk, U

′
k; 1 ≤ k ≤ n), the smallest σ-algebra generated by

the noise sequence and uniform random variables that are used in the first n iterations.

2.1 Wasserstein-2 Rates for Constant Step-size RLMC

Before, we state our main result, we investigate a few important characteristics of the (RLMC)
algorithm that are not explored yet. We start with its rate of convergence in Wasserstein-2 distance
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(see [44] for definition) for the (RLMC) algorithm. The proof of the proposition below essentially
follows from a similar idea of the more general result for the underdamped Langevin dynamics
in [40]. We include the result with its proof for the sake of completeness.
Proposition 2.1. Suppose f satisfies Assumption 1.1. Set x0 = arg minx f(x), γn := h =
O(ε2/3/κ1/3M) when κhM > 1, and γn := h = O(ε/M) when κhM ≤ 1 for some constant
C > 0. After running the (RLMC) algorithm for

K = Õ
(
κ4/3

ε2/3
+
κ

ε

)
steps,

we have W2(νK , π) ≤ ε
√
d/m, where νK is the probability distribution of xK .

When κ is of constant order, we see that W2 rate is of order Õ(1/ε). Notably, with the randomized
midpoint technique, we obtain this particular ε-dependency by discretizing just the overdamped
Langevin diffusion with only the Lipschitz gradient condition on the potential function f . Prior
works require Euler-discretization of higher-order Langevin diffusions to obtain a W2 rate of order
Õ(1/ε) [8, 35] or require higher-order smoothness assumption along with other specialized dis-
cretization methods [39, 25, 10, 8].

2.2 Analysis of the Markov Chain Generated by Constant Step-size RLMC

Using the randomized midpoint technique, we obtain an improved dependency on ε for the W2 rate
under weaker assumptions while discretizing the Langevin diffusion in (2). Although not explicit
from the proof of Proposition 2.1, the rate improvement is obtained by a careful balancing of bias
and variance through the choice of step-size parameter h. In this section, in Theorem 1, we first
show that the (RLMC) Markov chain is ergodic and has a unique stationary distribution, denoted
by πh. Due to the choice of constant step-size h, it is not hard to see that the stationary distribution
of the (RLMC) is different from the stationary distribution π of the Lanvegin diffusion in (2), i.e
πh 6= π. Hence, in Proposition 2.2, we characterize the Wasserstein-2 distance between π and πh.

Firstly, if f ∈ C2(Rd) and f has a Lipschitz gradient with parameter M , then we can immediately
see that the transition kernel of chain (xn), P (x, y) ∈ C(Rd×Rd) is positive everywhere. Therefore,
it’s easy to obtain that the chain (xn) is µLeb-irreducible and aperiodic. Given all this information,
we can give a sufficient condition to make sure that the chain has a unique invariant probability
measure, and it is ergodic.
Theorem 1. Let the potential function f satisfy part (a) of Assumption 1.1, and let γn := h be small
enough. Then the (RLMC) Markov chain (xn) has a unique stationary probability measure πh, and
for every x ∈ Rd, we have

sup
A∈B(Rd)

|Pn(x,A)− πh(A)| → 0 as n→∞.

We next address the question: how far is πh from π? This question can be typically answered by a
careful inspection on the proof of Proposition 2.1. However, for (RLMC), this is not the case, and
requires using a different technique. Towards that, we derive an upper bound of W2(π, πh) under
the same assumptions in the previous theorem and the additional assumption that f is also strongly
convex with parameter m.
Proposition 2.2. Let the potential function satisfy Assumption 1.1, and let γn := h ∈ (0, 2

m+M ) in
the (RLMC) algorithm. Then, we have

W2(π, πh) ≤ 3
√
dh

(1 + 2Mh)2

κ−1 −Mh/
√

3
. (3)

Remark 1. The above proposition shows that the order of the bias between the stationary distribu-
tion of the Langevin diffusion and that of the (RLMC) chain is of the order O(

√
h).

2.3 Wasserstein-2 rates and CLT with Decreasing Step-size

In this part, we consider the (RLMC) algorithm with a fast decreasing time step sequence (γn) and
establish a convergence rate in W2 distance as well as a CLT for the numerical integration (1).
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Proposition 2.3. Suppose f satisfies Assumption 1.1. Let x0 := arg minx f(x) and γn+1 ≤
m

m2+M2(33+n) . After running (RLMC) algorithm for K = O
(
κ1.5/ε

)
steps, we obtain

W2(νK , π) ≤ ε
√
d/m, where νK is the probability distribution of xK .

Remark 2. There are two aspects of this result. The first aspect is rather standard; there is no
logarithmic factor in 1/ε compared to the result in Proposition 2.1. Similar phenomenon has been
previously observed for the LMC algorithm [8]. The second aspect is that we never obtain the
O(1/ε2/3) term as in Proposition 2.1, with the constant step-size choice. This is not an artifact of
our analysis. This is due to the fact that with this choice of decreasing step-size, we reduce the bias
much more at the expense of slightly increased variance. However, as we demonstrate next, this
choice of decreasing step-size is crucial for obtaining an unbiased CLT for numerical integration.

As the main contribution of this section, we characterize the fluctuations of (RLMC) when it is
used for computing the integral

∫
Rd ϕdπ for a π-integrable function ϕ. Choosing the Langevin

diffusion in (2) with the stationary distribution π, we have by Theorem 1 that it is ergodic, and
limt→+∞

1
t

∫ t
0
ϕ(X(s))ds =

∫
Rd ϕdπ := π(ϕ), almost surely. Motivated by this, we first discretize

the diffusion using (RLMC) and then compute a discrete analogue of the average. The procedure
consists of two successive phases:

(a) Discretization: The (RLMC) algorithm is run with a step size sequence (γn) satisfying for all
n, γn > 0, limn→+∞ γn = 0, and limn→+∞ Γn = +∞, where Γn :=

∑n
k=1 γk.

(b) Averaging: Using the (RLMC) iterates (xn), construct a weighted empirical measure via the
same weight sequence γ := (γn): For every n ≥ 1 and every ω ∈ Ω, set

πγn(ω, dx) :=
γ1δx0(ω) + · · ·+ γk+1δxk(ω) + · · ·+ γnδxn−1(ω)

γ1 + · · ·+ γn
,

and use πγn(ω, ϕ) :=
∫
Rd ϕπ

γ
n(ω, dx)= 1

Γn

∑n
k=1 γkϕ(xk−1(ω)) to estimate the expectation (1).

For numerical purposes, for a fixed function ϕ, πγn(ω, ϕ) can be recursively computed as follows:

πγn+1(ω, ϕ) = πγn(ω, ϕ) + γ̃n+1 (ϕ(xn(ω))− πγn(ω, ϕ)) with γ̃n+1 :=
γn+1

Γn+1
.

We now provide the main result of this section, a central limit theorem for the algorithm (RLMC)
when it is used to compute integrals of the form in (1).
Theorem 2. Let π be such that its potential f satisfies Assumption 1.1. Consider a test function
ϕ : Rd → R of the form ϕ = Aφ for some function φ : Rd → R, where A denotes the generator
of the diffusion (2), i.e., Aφ := −〈∇f,∇φ〉 + ∆φ. Define γ̂n := 1√

Γn

∑n
k=1 γ

2
k and let γ̂∞ =

limn→∞ γ̂n. Then for all φ ∈ C4(Rd) with D2φ, D3φ being bounded, and D4φ being bounded and
Lipschitz, and supx∈Rd ‖∇φ(x)‖2/(1 + ‖x‖2) < +∞, we have the following central limit theorem
for the numerical integration computed via (RLMC):

(i) If γ̂∞ = 0, then
√

Γnπ
γ
n(ϕ)

d→ N (0, 2
∫
Rd ‖∇φ(x)‖2π(dx)),

(ii) If γ̂∞ ∈ (0,+∞), then
√

Γnπ
γ
n(ϕ)

d→ N (% γ̂∞, 2
∫
Rd ‖∇φ(x)‖2π(dx)),

(iii) If γ̂∞ = +∞, then
√

Γn
γ̂n

πγn(ϕ)
p→ %,

where the mean % is given as

% = ∫ ∫〈D3φ(x),∇f(x)⊗ u⊗ u〉µ(du)π(dx)− 1
2 ∫〈D

2f(x),∇φ(x)⊗∇f(x)〉π(dx)

+ 1
2 ∫ ∫〈D

3f(x),∇φ(x)⊗ u⊗ u〉µ(du)π(dx)− 1
2 ∫〈D

2φ(x),∇f(x)⊗∇f(x)〉π(dx)

− 1
6 ∫ ∫〈D

4φ(x), u⊗4〉µ(du)π(dx),

and µ is the distribution for a d-dimensional standard Gaussian measure.

Remark 3. First note that a CLT for the Euler discretization of Langevin diffusion follows from [21,
Thm. 10]. The rates of the CLT established in Theorem 2 are similar to that case, with only the bias
term ρ being different. Specifically, following the same computation in [21], we see that the optimal
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rate with polynomially decaying step-size choice γk = k−α, for some α > 0, is O(n1/3). But in
this case, the established CLT is biased. However, for any 0 < α < 1/3, we obtain an unbiased
CLT as well. Hence, although the (RLMC) chain provides rate improvements for sampling (with
respect to W2 distance), as demonstrated in [40] and in Proposition 2.1, it does not seem to provide
any improvements for CLT. In retrospect, this is expected as the rate improvements for sampling is
achieved by the choice of constant step-size for which it is not possible to establish even a nearly
unbiased CLT.

The class of test functions that the above CLT can cover is intimately related to the solution of the
Stein equation (or Poisson equation) ϕ = Aφ. Given ϕ, there is an explicit characterization of φ
that solves the Stein’s equation, and various properties of ϕ are translated to φ [18, 17].

3 Results for the Underdamped Langevin Diffusion

The underdamped Langevin diffusion is given by

d

[
x(t)
v(t)

]
=

[
v(t)

−(βv(t) + u∇f(x(t)))

]
dt+

√
2βu

[
0d
Id

]
dW (t), (4)

where β > 0 is the friction coefficient and u > 0 is the inverse mass. For simplicity, we will consider
β = 2 in the later text. Under mild conditions, it is well-known that the continuous-time Markov
process (x(t), v(t)) is positive recurrent, and its invariant distribution is given by ν(x, v) ∝ exp

{
−

f(x)− 1
2u ‖v‖

2 }
, x ∈ Rd, v ∈ Rd. This diffusion, with an additional Hamiltonian component, has

gathered a lot of attention recently due to its improved convergence properties [7, 5, 40, 27, 12] and
empirical performance [36, 2].

The randomized midpoint discretization of the underdamped Langevin diffusion (4) is given as:

xn+ 1
2

= xn + 1
2 (1−e−2αn+1γn+1 )vn − u

2

(
αn+1γn+1− 1

2 (1−e−2αn+1γn+1 )
)
∇f(xn) +

√
uσ

(1)
n+1U

(1)
n+1,

xn+1 = xn + 1
2 (1−e−2γn+1 )vn − u

2 γn+1(1−e−2(1−αn+1)γn+1 )∇f(xn+ 1
2
) +
√
uσ

(2)
n+1U

(2)
n+1,

vn+1 = vne−2γn+1 − uγn+1e
−2(1−αn+1)γn+1∇f(xn+ 1

2
) + 2

√
uσ

(3)
n+1U

(3)
n+1, (RULMC)

where (γn) is the sequence of time steps, σ(1)
n , σ(2)

n and σ(3)
n are positive with (σ

(1)
n )2 = αnγn +

1−e−4αnγn

4 −(1−e−2αnγn), (σ
(2)
n )2 = γn+ 1−e−4γn

4 −(1−e−2γn) and (σ
(3)
n )2 = 1−e−4γn

4 , and (αn)
is a sequence of identically distributed random variables following the distribution αn ∼ U [0, 1].
(U

(1)
n , U

(2)
n , U

(3)
n ) are independent centered Gaussian random vectors in R3d, also independent of

(αn) and initial point (x0, v0), having the following pairwise covariances:

cov(σ(1)
n U (1)

n , σ(2)
n U (2)

n ) =
(
αnγn −

(
e−αnγn + e−2γn sinh(αnγn)

)
sinh(αnγn)

)
Id×d,

cov(σ(2)
n U (2)

n , σ(3)
n U (3)

n ) =
(
e−2γn sinh(γn)2

)
Id×d,

cov(σ(1)
n U (1)

n , σ(3)
n U (3)

n ) =
(
e−2γn sinh(αnγn)2

)
Id×d.

The (RULMC) algorithm has emerged as an optimal sampling algorithm in the sense that it achieves
the information theoretical lower bound in both tolerance ε and dimension d for sampling from a
strongly log-concave densities [1, 40]. Therefore, it is interesting to examine if (RULMC) based
numerical integrator have any benefits in other MCMC-based tasks such as (1). Towards that, we
characterize the order of bias with a constant step-size choice for (RULMC) iterates as proposed
in [40]. Compared to the bias result in Proposition 2.2 for the (RLMC) discretization, we note that
order of bias is increased (i.e. smaller bias). Next, in Theorem 4 we provide a CLT for numerical
integration with (RULMC). Our results show that when it comes to computing expectations of
the form in (1) using (RULMC) and characterizing its fluctuations, the (RULMC) discretization
obtains rate improvements only for a class of constant test functions (as described in Remark 6).

3.1 Analysis of the Markov Chain generated by Constant Step-size RULMC

Recall that π(x) is the marginal density function of ν(x, v) with respect to x. Similarly νh(x, v)
be the stationary density function of the Markov chain generated by (RULMC) chain and πh(x)

6



be the marginal density function of νh(x, v), with respect to x. Furthermore, the filtration (Fn) is
defined as Fn := σ(αk, U

(i)
k ; 1 ≤ k ≤ n, i = 1, 2, 3). When f ∈ C2(Rd) and is gradient Lips-

chitz with parameter M , then we can immediately see that the transition kernel of chain (xn, vn):
P ((x, v), (x′, v′)) ∈ C(R2d × R2d) is positive everywhere. Therefore, it’s easy to obtain that the
chain (xn, vn) is µLeb-irreducible and aperiodic. Given all this information, we can give a sufficient
condition to make sure that the chain has a unique invariant probability measure and is ergodic.
Theorem 3. Let the potential function f satisfy part (a) of Assumption 1.1, and let γn := h be small
enough. Then if u ∈ (0, 4

2M−m ), the (RULMC) Markov chain (xn, vn) has a unique stationary
probability measure νh and for every (x, v) ∈ R2d, we have

sup
A∈B(R2d)

|Pn((x, v), A)− νh(A)| → 0 as n→∞.

We next derive an upper bound on the bias W2(π, πh) of (RULMC) algorithm, under the additional
strong convexity assumption on the potential function f .
Proposition 3.1. Suppose that f satisfies Assumption 1.1. If we run the (RULMC) algorithm with
u = 1/M and γn := h, for universal constants C1, C2 > 0, we have

W 2
2 (π, πh) ≤ C1h

3(κh3 + 1)d

1− h
4κ − C2h3κ(1 + κh3)

.

Remark 4. Note that we have W2(π, πh) → 0 as h → 0. Furthermore, as h → 0, W2(π, πh) <

O(h
3
2 ). Hence, the bias order is increased for the underdamped Langevin diffusion compared to the

overdamped case (cf. Proposition 2.2), providing a smaller bias for the same step-size.

3.2 Wasserstein-2 rates and CLT with Decreasing Step-size

We now provide the rate of convergence in Wasserstein-2 metric with decreasing step-size
for (RULMC). The specific choice for the decreasing step-size that we consider below, also is
satisfied for our CLT result in Remark 6.
Proposition 3.2. Suppose f satisfies Assumption 1.1. Fix u = 1/M . Let x0 := arg minx f(x)
and choose γn = 16κ

32κ
5
3 +(n−K1)+

, for a K1 ∈ (0,∞) (where (a)+ := max(0, a)). After running

(RULMC) for K = Õ
(
κ3/2/ε2/3

)
steps, we obtain W2(νK , π) ≤ ε

√
d/m, where νK is the

probability distribution of xK .
Remark 5. Similar to the result in Proposition 2.3, there are two aspects of this result. The first
aspect is again removing the logarithmic factor in 1/ε compared to the result in Theorem 3 in [40],
which is quite standard in the literature. The second aspect is that we never obtain the O(1/ε1/3)
part, as in Theorem 3 in [40] with the constant step-size choice.

Similar to the previous case, we now describe the numerical integration procedure using
the (RULMC) discretization. We denote the n-th iterate as (xn, vn). The time-step we use is
(γn) such that ∀n ∈ N∗, γn ≥ 0, limn γn = 0 and limn Γ

(1)
n = +∞, where Γ

(`)
n :=

∑n
i=1 γ

`
i .

Our averaging is a weighted empirical measure with Yn = (xn, vn) using the step size sequence
γ := (γn) as the weights. Let δx denote the Dirac mass at x. Then for every n ≥ 1, set

νγn(ω, dx) :=
γ1δY0(ω) + · · ·+ γk+1δYk(ω) + · · ·+ γnδYn−1(ω)

γ1 + · · ·+ γn

and we can use νγn(ω, ϕ) to approximate ν(ϕ) = Eν [ϕ′(Y )], where ϕ′ : R2d → R.

If we assume g : R2d → R such that Lg = ϕ′, we can establish the following theorem, in which we
state only the unbiased CLT result for simplicity.
Theorem 4. Let π be such that its potential function f satisfies Assumption 1.1. Assume u ∈
(0, 4

2M−m ). Consider a test function ϕ′ = Lg, for some function g : R2d → R, where
L = 2u∆v − 2〈v,∇v〉 − u〈∇f(x),∇v〉 + 〈v,∇x〉 denotes the generator of the diffusion (4).
Suppose the step-size (γk) is non-increasing, limn→+∞(1/

√
Γn)

∑n
k=1 γ

3/2
k = +∞. Then, if

limn→+∞(1/
√

Γn)
∑n
k=1 γ

2
k = 0, for every g ∈ C4(R2d) function with D2g bounded, D3g

7



bounded and Lipschitz and sup(x,v)∈R2d ‖∇g(x, v)‖/(1 + ‖x‖2 + ‖v‖2) < +∞, we have the fol-
lowing central limit theorem for the numerical integration computed using the (RULMC) iterates:√

Γnν
γ
n(Lg)

d→ N
(
0, 4u ∫ ‖∇vg(x, v)‖2ν(dx, dv)

)
.

The rate of convergence of the CLT in Theorem 4 follows exactly the same behavior in Theorem 2.
Hence, for the class of general test functions, Theorem 4 does not exhibit a rate improvement.
Towards that, we make the following remarks under a carefully constructed condition for the class
of test functions.

Remark 6. Let π be such that its potential function f satisfies Assumption 1.1. Assume u ∈
(0, 4

2M−m ). Consider a test function ϕ = Lg which could be written as Lg(v, φ(x)) = 〈v,∇φ(x)〉,
for some function φ : Rd → R, where L = 2u∆v − 2〈v,∇v〉 − u〈∇f(x),∇v〉 + 〈v,∇x〉 denotes
the generator of the diffusion (4). Suppose the time step-size (γk) is non-increasing, and satis-

fies limn→∞(γn−1 − γn)/γ4
n = 0 and limn→∞ Γ

(4)
n = +∞. Define γ̂n := Γ

(4)
n /
√

Γ
(3)
n and let

γ̂∞ = limn→∞ γ̂n. Then, for all φ ∈ C4(Rd) with D2φ, D3φ and D4φ bounded and Lipschitz and
sup(x,v)∈R2d ‖∇φ(x)‖2/(1 + ‖x‖2 + ‖v‖2) < +∞, we obtain the following central limit theorem
for numerical integration computed using the (RULMC) algorithm:

(i) If γ̂∞ = 0, we have Γn√
Γ
(3)
n

νγn(Lφ)
d→ N (0, 10

3 u
∫
Rd ‖∇φ(x)‖π(dx)),

(ii) If γ̂∞ ∈ (0,+∞), we have Γn
Γ
(4)
n

νγn(Lφ)
d→ N (ρ, 10

3 uγ̂
−2
∞
∫
Rd ‖∇φ(x)‖π(dx)),

(iii) If γ̂∞ = +∞, we have Γn
Γ
(4)
n

νγn(Lφ)
p→ ρ,

where,

ρ = 5u
12 ∫ ∫〈D

3φ(x),∇f(x)⊗ v ⊗ v〉ν(dx, dv) + u
24 ∫ ∫〈D

3f(x),∇φ(x)⊗ v ⊗ v〉ν(dx, dv)

+ 7u
12 ∫ ∫(D

2φD2f)(x)v⊗2ν(dx, dv)− u2

4 ∫〈D
2φ(x),∇f(x)⊗2〉π(dx)

− u2

24 ∫〈D
2f(x),∇φ(x)⊗∇f(x)〉π(dx).

Remark 7. For polynomial time steps γk := k−α, since we require that Γ
(4)
n → +∞ as n→ +∞,

we need 0 < α ≤ 1
4 . Using L’Hospitals rule, it is straightforward to check that the condition

limn→+∞
γn−1−γn

γ4
n

= 0 is satisfied when α ∈ (0, 1
4 ]. We then have the following order estimates:

Γn ∼
n1−α

1− α
,

√
Γ

(3)
n ∼

n
1
2−

3
2α

√
1− 3α

, Γ(4)
n ∼


n1−4α

1− 4α
, if α ∈ (0, 1

4 ),
√

lnn, if α = 1
4 .

Hence, as n→ +∞,

Γ
(4)
n√
Γ

(3)
n

→ γ̂∞ =


0 if α ∈ ( 1

5 ,
1
4 ],

√
10 if α = 1

5 ,

+∞ if α ∈ (0, 1
5 ).

If α ∈ ( 1
5 ,

1
4 ], the unbiased CLT holds at rate Γn/

√
Γ

(3)
n = O(n

1
2 (1+α)) ≤ O(n

5
8 ). The optimal rate

is achieved when α = 1
4 . If α = 1

5 , the biased CLT holds at rate Γn/
√

Γ
(3)
n = O(n3α) = O(n

3
5 ). If

α ∈ (0, 1
5 ), the rate of the convergence in probability is Γn/

√
Γ

(3)
n = O(n3α) < O(n

3
5 ). Therefore

the optimal convergence rate O(n
5
8 ) is obtained when an unbiased CLT holds. While the rate of

this CLT is better than that of Theorem 2, the test functions that satisfy this condition is severely
restricted.
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4 Discussion

In this work, we present several probablistic properties of the randomized midpoint discretization
technique, focussing our attention on the overdamped and underdamped Langevin diffusions. Our
results could be summarized as follows: To obtain optimal rates for sampling (in W2 distance), one
needs to have a constant choice of step-size. With such a constant step-size choice, the Markov
chain generated by the discretization process is biased. This suggests that a decreasing step-size
choice is required when using the randomized midpoint method for numerical integration. For
several decreasing choices of step-sizes, we establish CLTs and highlight the relative merits and
disadvantages of using randomized midpoint technique for numerical integration. In particular, our
results have interesting consequence for computing confidence interval for numerical integration.

Broader Impact

The paper predominantly concerns about theoretical results on numerical integration with MCMC
based samplers. The presented results are of interest to researchers in machine learning community
concerned with constructing confidence intervals for their numerical integration problems. Although
not the main focus of this paper, the results might have positive consequence for building robust
machine learning systems based on the obtained confidence intervals.
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5 Additional Notations

We also use the following notations for the proofs. Due to the ease of presentation, whenever it is
clear in the proof, we refer to the inner product between two compatible vectors 〈a, b〉 simply by a·b.
For any random variable X , ‖X‖L2 := E[‖X‖] where the expectation is taken over all randomness
of X .

6 Proofs for Section 2

We now define the following condition, which is a consequence of Assumption 1.1
Assumption 6.1. There exists a twice differentiable function V : Rd → [1,∞) such that:
(i) lim‖x‖→∞ V (x) = +∞, (ii) there exists α > 0 and β > 0: 〈∇V (x),∇f(x)〉 ≥ αV (x) − β
for every x, (iii) there exists cV > 0: ‖∇V (x)‖2 + ‖∇f(x)‖2 ≤ cV V (x) for every x, and (iv)∥∥D2V

∥∥
∞ := supx∈Rd ‖D2V ‖op <∞ (where ‖ · ‖op denotes the operator norm).

Lemma 1. Assumption 1.1 implies Assumption 6.1.

Proof. Since f ∈ C2(Rd) is strongly convex, lim|x|→+∞ f(x) = +∞ and f has a unique global
minimizer x∗ ∈ Rd. It’s easy to observe that∇f(x∗) = 0. We consider our V (x) = f(x)−f(x∗)+
1. Then it’s easy to see (i) is satisfied. (iv) is also satisfied because f is gradient Lipschitz. (iii) is
equivalent to that there exists a C > 0 such that

|∇f(x)|2

f(x)− f(x∗) + 1
≤ C for ∀x ∈ Rd

We Taylor expand the numerator and denominator:

|∇f(x)|2 =

d∑
i=1

(
fi(x

∗) +∇fi(ξ)T (x− x∗)
)2

≤
d∑

i,j=1

|fij(ξ)|2|x− x∗|2 =
∥∥D2f(ξ)

∥∥2

F
|x− x∗|2

≤ d2M2|x− x∗|2

f(x)− f(x∗) + 1 = ∇f(x∗)T (x− x∗) +
1

2
D2f(ξ)(x− x∗)⊗2 + 1

=
1

2
D2f(ξ)(x− x∗)⊗2 + 1

≥ m

2
|x− x∗|2

Then
|∇f(x)|2

f(x)− f(x∗) + 1
≤ 2d2M2

m
for ∀x ∈ Rd

(ii) is equivalent to that there exists α, β > 0 such that

|∇f(x)|2 ≥ α(f(x)− f(x∗) + 1)− β for ∀x ∈ Rd

According to the strongly convexity of f , we have

f(x∗)− f(x) ≥ ∇f(x)T (x∗ − x) +
m

2
|x∗ − x|2

=
m

2
|x∗ − x+

1

m
∇f(x)|2 − 1

2m
|∇f(x)|2

which then implies

|∇f(x)|2 ≥ 2m (f(x)− f(x∗) + 1)− 2m for ∀x ∈ Rd

(ii) is satisfied by choosing α = β = 2m > 0.

Remark 8. For the V (x) we choose in the proof, under assumption 1.1, we can verify that: V (x) =
O(|x|2) when |x| → +∞. We will use this fact later in the proof when we establish the CLT
statement.
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6.1 Proofs for section 2.1

Lemma 2. Let x(t) be the solution to Langevin dynamics SDE with initial condition x0 and y(t)
be the solution to Langevin dynamics SDE with initial condition y0. Then we have the following
estimates for Langevin dynamics when f satisfies Assumption 1.1 and Mh < 1

2 :

E[ sup
t∈[0,h]

‖∇f(x(t))‖2] ≤ 4 ‖∇f(x0)‖2 + 8M2dh

E[ sup
t∈[0,h]

‖x(t)− x0‖2] ≤ O(h2 ‖∇f(x0)‖2 +M2h3d+ 2dh)

E[‖x(t)− y(t)‖2] ≤ e−2mt ‖x0 − y0‖2

Proof. By triangle inequality we have

E[ sup
t∈[0,h]

‖∇f(x(t))‖2] ≤ 2 ‖∇f(x0))‖2 + 2M2E[ sup
t∈[0,h]

‖x(t)− x0‖2]

Furthermore, we have

E[ sup
t∈[0,h]

‖x(t)− x0‖2] = E[ sup
t∈[0,h]

∥∥∥∥−∫ t

0

∇f(x(s))ds+
√

2Wt

∥∥∥∥2

]

≤ h2E[ sup
t∈[0,h]

‖∇f(x(t))‖2] + 2dh

Combining the two inequalities andMh < 1
2 , we can obtain the first two estimates. The last estimate

could be easily obtained by energy method.

Proof of Theorem 2.1. We denote xn = xn(0) to be the algorithm iterate points, yn to be the n-
th step of Langevin diffusion with y0 ∼ exp(−f(y)), x∗n+1 = xn(h) to be one step solution of
Langevin dynamics with initial values xn. When Mh < 1

2 , apply lemma 2 and we get:

E[ sup
t∈[0,h]

‖xn−1(αnh)− xn−1(t)‖2] ≤ O(h2 ‖∇f(xn−1)‖2L2 +M2h3d+ 2dh)

E[
∥∥∥∇f(xn− 1

2
)−∇f(xn−1(αnh))

∥∥∥2

] ≤M2E

∥∥∥∥∥
∫ αnh

0

∇f(xn−1(s))−∇f(xn−1(0))ds

∥∥∥∥∥
2

≤M4h2E[α2
n sup
t∈[0,αnh]

‖xn−1(t)− xn−1(0)‖2]

≤ O(M4h4 ‖∇f(xn−1)‖2L2 + dM4h3 + dM6h5)

Consider the distance between our iterates and the continuous process:

EαK [‖xK − yK‖2] = EαK [‖xK − x∗K + x∗K − yK‖
2
]

≤ ‖yK − x∗K‖
2

+ EαK [‖xK − x∗K‖
2
]− 2(yK − x∗K)T (EαKxK − x∗K)

≤ (1 + hm) ‖yK − x∗K‖
2

+
1

hm
‖EαKxK − x∗K‖

2
+ EαK [‖xK − x∗K‖

2
]

Taking expectations over {αk, Ul, U ′l ; 1 ≤ k ≤ K − 1, 1 ≤ l ≤ K}, applying lemma 2 again and
using induction, we have

‖xK − yK‖2L2 ≤ (1 + hm) ‖yK − x∗K‖
2
L2 +

1

hm
E ‖EαKxK − x∗K‖

2
+ ‖xK − x∗K‖

2
L2

≤ (1 + hm)e−2mh ‖xK−1 − yK−1‖2L2 +
1

hm
E ‖EαKxK − x∗K‖

2
+ ‖xK − x∗K‖

2
L2

≤ (1 + hm)e−2mKh ‖x0 − y0‖2L2 +

K∑
n=1

1

hm
E ‖Eαnxn − x∗n‖

2
+

K∑
n=1

‖xn − x∗n‖
2
L2

≤ e−mKh ‖x0 − y0‖2L2 +A+B

13



Next we bound part A and part B. For part A:

‖Eαnxn − x∗n‖
2

=

∥∥∥∥∥Eαn [h∇f(xn− 1
2
)]−

∫ h

0

∇f(xn−1(s))ds

∥∥∥∥∥
2

≤ 2E ‖h∇f(xn−1)− h∇f(xn−1(αnh))‖2 + 2

∥∥∥∥∥Eαn [h∇f(xn−1(αnh))]−
∫ h

0

∇f(xn−1(s))ds

∥∥∥∥∥
2

≤ 2h2Eαn
∥∥∥∇f(xn− 1

2
)−∇f(xn−1(αnh))

∥∥∥2

+ 0

Therefore

E ‖Eαnxn − x∗n‖
2 ≤ 2h2E[

∥∥∥∇f(xn− 1
2
)−∇f(xn−1(αnh))

∥∥∥2

]

≤ O(M4h6 ‖∇f(xn−1)‖2L2 + dM4h5)

For part B, use our previous estimates:

‖xn − x∗n‖
2
L2 =

∥∥∥∥∥h∇f(xn− 1
2
)−

∫ h

0

∇f(xn−1(s))ds

∥∥∥∥∥
2

L2

≤ 2
∥∥∥h∇f(xn− 1

2
)− h∇f(xn−1(αnh))

∥∥∥2

L2
+ 2

∥∥∥∥∥
∫ h

0

∇f(xn−1(s))−∇f(xn−1(αnh))ds

∥∥∥∥∥
2

L2

≤ 2h2
∥∥∥∇f(xn− 1

2
)−∇f(xn−1(αnh))

∥∥∥2

L2
+ 2M2h2E[ sup

t∈[0,h]

‖xn−1(αnh)− xn−1(t)‖2]

≤ O(M2h4 ‖∇f(xn−1)‖2L2 + dM2h3)

Plug the estimates on A and B into the inequality we have

‖xK − yK‖2L2 ≤ e−mKh ‖x0 − y0‖2L2 +O(m−1M4h5
K−1∑
n=0

‖∇f(xn)‖2L2 + dm−1M4Kh4)

+O(M2h4
K−1∑
n=0

‖∇f(xn)‖2L2 + dM2Kh3)

Next we need to estimate
∑K−1
n=0 ‖∇f(xn)‖2L2 . Since

f(xn(h)) = f(xn(0)) +

∫ h

0

df(xn(t))

= f(xn(0))−
∫ h

0

|∇f(xn(t))|2dt+
√

2

∫ h

0

∇f(xn(t))dW (t) +

∫ h

0

∆f(xn(t))dt

we have

E[f(xn+1(0))]− E[f(xn(h))] = E[f(xn+1(0))− f(xn(0))] + E[

∫ h

0

|∇f(xn(t))|2dt]− E[

∫ t

0

∆f(xn(t))dt]

When Mh < 1
4 ,

E[ inf
t∈[0,h]

‖∇f(x(t))‖2] ≥ 1

2
‖∇f(x(0))‖2L2 − E[ sup

t∈[0,h]

‖∇f(x(t))−∇f(x(0))‖2]

≥ 1

2
‖∇f(x(0))‖2L2 −M2E[ sup

t∈[0,h]

‖x(t)− x(0)‖2]

≥ 1

4
‖∇f(x(0))‖2L2 +O(dM2h)

|∆f(xn(t))| ≤ d
∥∥∇2f(xn(t))

∥∥ ≤Md
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Plug these two estimates into our previous identity and we obtain,

E[f(xn+1(0))− f(xn(h))] ≥ E[f(xn+1)− f(xn)] +
h

4
‖∇f(xn)‖2L2 − dMh+O(dM2h2)

Next we consider that

Eαn+1
[f(xn+1(0))] ≤ f(xn(h)) +∇f(xn(h))T (Eαn+1

[xn+1(0)]− xn(h)) +
M

2
Eαn+1

[‖xn+1(0)− xn(h)‖2]

≤ f(xn(h)) +Mh2 ‖∇f(xn(h))‖2L2 +M−1h−2
∥∥Eαn+1 [xn+1(0)]− xn(h)

∥∥2

+
M

2
Eαn+1

[‖xn+1(0)− xn(h)‖2]

where

Mh2E[‖∇f(xn(h))‖2] ≤ O(Mh4 ‖∇f(xn)‖2L2 + dMh3)

M−1h−2
∥∥Eαn+1

[xn+1(0)]− xn(h)
∥∥2 ≤ O(M3h4 ‖∇f(xn)‖2L2 + dM3h3)

M

2
E[‖xn+1 − xn(h)‖2] ≤ O(M3h4 ‖∇f(xn)‖2L2 + dM3h3)

Hence we have

E[f(xn+1(0))− f(xn(h))] ≤ O(M3h4 ‖∇f(xn)‖2L2 + dM3h3)

and

O(M3h4 ‖∇f(xn)‖2L2 + dM3h3) ≥ E[f(xn+1)− f(xn)] +
h

4
‖∇f(xn)‖2L2 +O(dM2h2)− dMh

sum up over k from 0 to K − 1:

O(M3h4
K−1∑
k=0

‖∇f(xn)‖2L2 + dM3Kh3) ≥ E[f(xK)− f(x0)] +
h

4

K−1∑
k=1

‖∇f(xn)‖2L2 +O(dM2Nh2)− dMKh

Picking x0 = argminf(x), we can ensure E[f(xK)− f(x0)] ≥ 0, when Mh < 1
2 , we have

h

8

K−1∑
k=0

‖∇f(xn)‖2L2 ≤ dKMh−O(dKM2h2) +O(dKM3h3)

=⇒
K−1∑
k=0

‖∇f(xn)‖2L2 ≤ O(dKM)

Therefore

‖xK − yK‖2L2 ≤ e−mKh ‖x0 − y0‖2L2 +O(m−1M5h5Kd+m−1M4h4Kd) +O(M3h4Kd+M2h3Kd)

≤ e−mKh ‖x0 − y0‖2L2 +O(κM3h4Kd) +O(M2h3Kd)

Therefore we have

W2(νK , π)2 ≤ e−mKh ‖x0 − y0‖2L2 +O(M3h4Kd) max{κ, 1

Mh
}

a) When κ > 1
Mh , by choosing h ∼ O( ε2/3

κ1/3M
), we can ensure W2(νK , π)2 ≤ ε2d/m after

K steps when K ∼ Õ(κ
4/3

ε2/3
).

b) When κ ≤ 1
Mh , by choosing h ∼ O( ε

M ), we can ensure W2(νK , π)2 ≤ ε2d/m after K
steps when K ∼ Õ(κε ).
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6.2 Proofs for Section 2.2

Proof of Theorem 1. Under the assumption 6.1, we can show that the following Lyapunov condition
is satisfied for small h.
(Lyapunov Condition): There exists a function V : Rd → [1,∞) such that:

0) lim|x|→∞ V (x) = +∞,

1) There exists α̂ ∈ (0, 1) and β̂ ≥ 0: E[V (xn+1)|Fn] ≤ α̂V (xn) + β̂.

Proof: To show that assumption 6.1 implies Lyapunov condition, we first do Taylor expansion of
V (xn+1) at xn:

V (xn+1) = V (xn)− h〈∇V (xn),∇f(xn)〉+ αn+1h
2〈D2f(xn);∇f(xn),∇V (xn)〉

−
√

2αn+1h
3
2 〈D2f(xn);∇V (xn), U ′n+1〉+

√
2h∇V (xn) · Un+1

+
1

2
D2V (θn)(−h∇f(xn) + αn+1h

2D2f(xn)∇f(xn)−
√

2αn+1h
3
2U ′n+1 +

√
2hUn+1)⊗2

where θn is a random point on the line segment joining xn and xn+1. Using the fact that f is
M -gradient Lipschitz, we have:

E[V (xn+1)|Fn] ≤ V (xn)− h〈∇V (xn),∇f(xn)〉+
1

4
Mh2(|∇f(xn)|2 + |∇V (xn)|2) + h

3
2Md+ h

3
2M |∇V (xn)|2

+ 2
∥∥D2V

∥∥
∞ (h2|∇f(xn)|2 +

1

3
M2h4|∇f(xn)|2 + h3d+ 2hd)

≤ (1− αh+
1

4
Mh2cV +Mh

3
2 cV + 2

∥∥D2V
∥∥
∞ h2cV +

2

3
cV
∥∥D2V

∥∥
∞M2h4cV )V (xn)

+ βh+ dMh
3
2 + 2d

∥∥D2V
∥∥
∞ h3 + 4d

∥∥D2V
∥∥
∞ h

≤ α̂V (xn) + β̂

for some α̂ ∈ (0, 1) and β̂ ≥ 0 when h is small.

Once we have the Lyapunov condition, we can define the stopping time τC = inf{n > 0 : xn ∈ C}
and show that supx∈C Ex[τC ] ≤ MC < ∞ for all small set C. Then uniqueness of station-
ary probability measure and ergodicity all follow by Theorem 1.3.1 in [33]. Next we prove that
supx∈C Ex[τC ] ≤MC <∞ given Lyapunov condition. To do so, note that we have

Ex[τC ] =

∞∑
k=1

kP(τC = k)

=
∑
k≥1

P(τC > k − 1)

Under Lyapunov condition, for any stopping time N , according to Lemma A.3 and Corollary A.4
in [31], we have

P(τC > k − 1) ≤ E[V (xn)1τC>k−1]

≤ κ[γk−1V (x0) + 1]

1− γ
≤ κγn−1[V (x0) + 1]

for some γ ∈ (α̂, 1) and constant κ. Therefore we have

Ex[τC ] ≤
∑
k≥1

κγn−1[V (x0) + 1]

=
κ[V (x) + 1]

1− γ
and

sup
x∈C

Ex[τC ] ≤ κ

1− γ
sup
x∈C

V (x) +
κ

1− γ
≤MC <∞

So as a conclusion, the statement of the theorem follows.
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Proof of Proposition 2.2. Consider that xn ∼ πh and x∗n ∼ π are two independent random vari-
ables. Define xn+1 to be the one step RLMC result starting from xn and x∗n(h) to be the solution of
Langevin dynamics with initial value x∗n. Therefore, xn+1 ∼ πh and x∗n(h) ∼ π are also indepen-
dent and ‖x∗n − xn‖L2 = ‖x∗n(h)− xn+1‖L2 . We can compute the diffenrence between xn+1 and
x∗n(h):

x∗n(h)− xn+1 = (x∗n − xn)−
∫ h

0

∇f(x∗n(s))ds+ h∇f(x∗n(αn+1h))− h(−∇f(xn+ 1
2
) +∇f(x∗n(αn+1h)))

It’s easy to see that Eαn+1
[
∫ h

0
∇f(x∗n(s))ds− h∇f(x∗n(αn+1h))] = 0. And we can rewrite the last

term as

h(−∇f(xn+ 1
2
) +∇f(x∗n(αn+1h))) = h(∇f(xn+ 1

2
+ x∗n − xn)−∇f(xn+ 1

2
))

+ h∇f(x∗n −
∫ αn+1h

0

∇f(x∗n(s))ds+
√

2Wαn+1h)

− h∇f(x∗n − αn+1h∇f(xn) +
√

2αn+1hU
′
n+1)

Take L2-norm on other randomness:

‖x∗n(h)− xn+1‖L2 ≤
∥∥∥(x∗n − xn)− h(∇f(xn+ 1

2
+ x∗n − xn)−∇f(xn+ 1

2
))
∥∥∥
L2

+h

∥∥∥∥∥∇f(x∗n −
∫ αn+1h

0

∇f(x∗n(s))ds+
√

2Wαn+1h)−∇f(x∗n − αn+1h∇f(xn) +
√

2αn+1hU
′
n+1)

∥∥∥∥∥
L2

+

∥∥∥∥∥
∫ h

0

∇f(x∗n(s))ds− h∇f(x∗n(αn+1h))

∥∥∥∥∥
L2

Since f is twice differentiable and f is also M -gradient Lipschitz and strongly convex with param-
eter m,

∥∥∥(x∗n − xn)− h(∇f(xn+ 1
2

+ x∗n − xn)−∇f(xn+ 1
2
))
∥∥∥
L2
≤ ρ ‖x∗n − xn‖L2

where ρ = max(1−mh,Mh− 1) = 1−mh.
For the second term:

h

∥∥∥∥∥∇f(x∗n −
∫ αn+1h

0

∇f(x∗n(s))ds+
√

2Wαn+1h)−∇f(x∗n − αn+1h∇f(xn) +
√

2αn+1hU
′
n+1)

∥∥∥∥∥
L2

≤Mh

∥∥∥∥∥
∫ αn+1h

0

∇f(x∗n(s))−∇f(xn)ds

∥∥∥∥∥
L2

≤
√

3

3
M2h2 ‖x∗n − xn‖L2 +

√
3

3
M2h2 sup

0<s<h
‖x∗n(s)− x∗n‖L2

≤
√

3

3
M2h2 ‖x∗n − xn‖L2 +

√
3

3
M2h2(4h2 ‖∇f(x∗n)‖2 + 8M2dh3 + 2dh)

1
2

≤
√

3

3
M2h2 ‖x∗n − xn‖L2 +

√
3

3
M2h2(2dh+ 4Mdh2 + 8M2dh3)

1
2
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For the third term:∥∥∥∥∥
∫ h

0

∇f(x∗n(s))ds− h∇f(x∗n(αn+1h))

∥∥∥∥∥
L2

= {EEαn+1
[(

∫ h

0

∇f(x∗n(s))ds− h∇f(x∗n(αn+1h)))2]} 1
2

= {E[h

∫ h

0

|∇f(x∗n(s))|2ds− (

∫ h

0

∇f(x∗n(s))ds)]} 1
2

= {E[h

∫ h

0

|∇f(x∗n(s))− 1

h

∫ h

0

∇f(x∗n(s′))ds′|2ds]}1/2

≤ {E[h

∫ h

0

1

h

∫ h

0

‖∇f(x∗n(s))−∇f(x∗n(s′))‖2 ds′ds]}1/2

≤ 2Mh{ sup
s∈(0,h)

‖x∗n(s)− x∗n‖
2}1/2

≤ 2Mh(4h2 ‖∇f(x∗n)‖2 + 8M2dh3 + 2dh)1/2

≤ 2Mh(2dh+ 4Mdh2 + 8M2dh3)
1
2

Combine all the bounds:

‖x∗n − xn‖L2 ≤

√
3

3 M
2h2(2dh+ 4Mdh2 + 8M2dh3)

1
2 + 2Mh(2dh+ 4Mdh2 + 8M2dh3)

1
2

mh−
√

3
3 M

2h2

The final statement follows by the fact that W2(π, πh) ≤ ‖xn − x∗n‖L2 .

6.3 Proofs for Section 2.3

Proof of Theorem 2.3. From previous analysis, if we keep track of the coefficients in all those
bounds and assume that Mγn ≤ 1

2 for all n, we have:

E[‖xn+1 − yn+1‖2] ≤ (1 +mγn+1)E[
∥∥yn+1 − x∗n+1

∥∥2
] +

1

mγn+1
E
∥∥Eαn+1xn+1 − x∗n+1

∥∥2
+ E

∥∥xn+1 − x∗n+1

∥∥2

≤ (1 +mγn+1)e−2mγn+1E ‖xn − yn‖2 +
1

mγn+1
E
∥∥Eαn+1

xn+1 − x∗n+1

∥∥2
+ E

∥∥xn+1 − x∗n+1

∥∥2

≤ (1 +mγn+1)e−2mγn+1E ‖xn − yn‖2 +
2γ2
n+1

mγn+1
E
∥∥∥∇f(xn+ 1

2
)−∇f(xn(αn+1γn+1))

∥∥∥2

+ 2γ2
n+1E

∥∥∥∇f(xn+ 1
2
)−∇f(xn(αn+1γn+1))

∥∥∥2

+ 2M2γ2
n+1E sup

t∈[0,γn+1]

‖xn(αn+1γn+1)− xn(t)‖2

≤ (1 +mγn+1)e−2mγn+1E ‖xn − yn‖2

+ 2γ4
n+1(1 +

1

mγn+1
)M4(

1

5
γ2
n+1 ‖∇f(xn)‖2L2 +

1

6
M2dγ3

n+1 +
2

3
dγn+1)

+ 4M2γ2
n+1

(
4γ2
n+1

1− 2M2γn+1
‖∇f(xn)‖2L2 +

8M2dγ3
n+1

1− 2M2γ2
n+1

+ 4dγn+1

)
≤ (1 +mγn+1)e−2mγn+1E ‖xn − yn‖2 + (33 + κ)M2γ4

n+1 ‖∇f(xn)‖2L2 + (33 + κ)M2dγ3
n+1

We can further bound ‖∇f(xn)‖2L2 :

‖∇f(xn)‖2L2 ≤ 2 ‖∇f(yn)‖2L2 + 2 ‖∇f(yn)−∇f(xn)‖2L2

≤ 2 ‖∇f(yn)‖2L2 + 2M2 ‖xn − yn‖2L2

≤ 2Md+ 2M2 ‖xn − yn‖2L2

Therefore we have the following iterative inequality:

E[‖xn+1 − yn+1‖2] ≤ (1 +mγn+1)e−2mγn+1E ‖xn − yn‖2 + 2(33 + κ)M2dγ3
n+1 + 2(33 + κ)M4γ4

n+1E ‖xn − yn‖
2

≤
[
1−mγn+1 + (

m2

2
+
M2(33 + κ)

2
)γ2
n+1

]
E ‖xn − yn‖2 + 2(33 + κ)M2dγ3

n+1
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Since (γn) is fast decreasing, we can assume that γn+1 ≤ m
m2+M2(33+κ) ≤

1
m+34M for large n, and

for those n we have

E[‖xn+1 − yn+1‖2] ≤ (1− 1

2
mγn+1)E ‖xn − yn‖2 + 2(33 + κ)M2dγ3

n+1

Our strategy of choosing (γn): for the first K1 steps, we choose constant step size h = 1
m+34M , K1

is the first time so that E[‖xK1
− yK1

‖2] ≤ 5κ(κ+ 33)M( d
1
2

m+34M )2. such K1 exists because

E[‖xK1 − yK1‖
2
] ≤ (1− m

2m+ 68M
)K1E[‖x0 − y0‖2] +

2M2(κ+ 33)d

(m+ 34M)3

2(m+ 34M)

m

= (1− m

2m+ 68M
)K1E[‖x0 − y0‖2] + 4κ(κ+ 33)M(

d
1
2

m+ 34M
)2

Claim: There exists λ > 0 such that if we choose γn+1 = 1
m+34M+λ(n−K1) for all n ≥ K1, we

can ensure that E[‖xk − yk‖2] ≤ 5κ(κ+ 33)M( d
1
2

m+34M+λ(n−K1) )2 for all n ≥ K1.
Proof of Claim: Simply use induction:

E[‖xn+1 − yn+1‖2] ≤ (1− 1

2
mγn+1)5κ(κ+ 33)Mdγ2

n+1 + 2M2(κ+ 33)dγ3
n+1

= 5κ(κ+ 33)Mdγ2
n+1(1− m

10
γn+1)

Our goal is to ensure 5κ(κ+ 33)Mdγ2
n+1(1− m

10γn+1) < 5κ(κ+ 33)M( d
1
2

m+34M+λ(n+1−K1) )2. It
boils down to discuss the following polynomial inequality relates to λ:

G(λ) = (K − 1

10
m(K + 1)2)λ2 + (X − 1

5
mX(K + 1))λ− 1

10
mX2 ≤ 0

where X = m + 34M and K = n − K1 > 0. It’s not hard to see that there’s always positive λ
satisfying the inequality.
At last to get small error, we require E ‖xn − yn‖2 ≤ dε2

m , i.e

5κ(κ+ 33)M
d

(m+ 34M + λ(n−K1))2
≤ dε2

m

Then we have
n ≥ K1 + λ−1m

1
2M

1
2κ

1
2 (κ+ 33)

1
2 /ε− λ−1(m+ 34M) ∼ O(κ

3
2 /ε)

6.3.1 Proof of Theorem 2

Before we prove Theorem 2, we need several intermediate results on the tightness of the (RLMC)
chain.
Lemma 3. Under assumption 6.1, for every continuous function ϕ satisfying ϕ(x) = o(V k(x)) for
some k ∈ N, limn π

γ
n(ϕ) = π(ϕ).

Proof of Lemma 3. The proof is divided into three steps:

1) For all p ≥ 1, there exists α̃ ∈ (0, 1) and β̃, n0 ∈ N such that E[V p(xn+1)|Fn] ≤ V p(xn) +

γn+1V
p−1(xn)(β̃ − α̃V (xn)) for all n ≥ n0.

When p = 1, the statement follows from assumption 6.1.
When p > 1, first we Taylor expand V p(xn+1) at xn:

V p(xn+1) = V p(xn) + pV p−1(xn)∇V (xn) · (xn+1 − xn) +
1

2
D2(V p)(ξn+1)(xn+1 − xn)⊗2

= V p(xn)− γn+1pV
p−1(xn)∇V (xn) · ∇f(xn+ 1

2
) +

√
2γn+1pV

p−1∇V (xn) · Un+1

+
1

2
D2(V p)(ξn+1)

(
−γn+1∇f(xn+ 1

2
) +

√
2γn+1Un+1

)⊗2

≤ V p(xn)− γn+1pV
p−1(xn)∇V (xn) · ∇f(xn+ 1

2
) +

√
2γn+1pV

p−1(xn)∇V (xn) · Un+1

+ pλpV
p−1(ξn+1)| − γn+1∇f(xn+ 1

2
) +

√
2γn+1Un+1|2
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where ξn+1 is a point on the line segment joining xn and xn+1 and λp :=
1
2λD2V+(p−1)(∇V⊗∇V )/V < +∞.

Due to ∇(
√
V ) = ∇V

2V and |∇V |2 ≤ cV V , we have
√
V is Lipschitz continuous and

the Lipschitz constant [
√
V ]1 = 1

4cV < +∞. Hence for a point ξn+1 on the line segment
between xn and xn+1,

V p−1(ξn+1) = (
√
V )2(p−1)(ξn+1) ≤

(√
V (xn) + [

√
V ]1|xn+1 − xn|

)2(p−1)

≤

V
p−1(xn) + [

√
V ]

2(p−1)
1 |xn+1 − xn|2(p−1), 2(p− 1) ≤ 1

V p−1(xn) + c
(
V (2p−3)/2(xn)|xn+1 − xn|+ |xn+1 − xn|2(p−1)

)
, 2(p− 1) > 1

We can further bound

|xn+1 − xn| = | − γn+1∇f(xn) +
√

2γn+1Un+1 − γn+1

(
∇f(xn+ 1

2
)−∇f(xn)

)
|

≤ γn+1|∇f(xn)|+
√

2γn+1|Un+1|+Mγn+1| − γ̃n+1∇f(xn) +
√

2αn+1γn+1U
′
n+1|

≤ γn+1(1 +Mαn+1γn+1)|∇f(xn)|+
√

2γn+1|Un+1|+
√

2Mγn+1α
1
2
n+1γ

1
2
n+1|U ′n+1|

≤ C
√
V (xn)γ

1
2
n+1(1 + |Un+1|+ |U ′n+1|)

Plug these results into the last term in the first inequality we obtained from Taylor expansion:

pλpV
p−1(ξn+1)|xn+1 − xn|2 ≤ pλpV p−1(xn)|xn+1 − xn|2

+ Cpλp

{
|xn+1 − xn|2p, 2p ≤ 3

V (2p−3)/2(xn)|xn+1 − xn|3 + |xn+1 − xn|2p, 2p > 3

≤ pλpV p−1(xn)|xn+1 − xn|2 + Cγ
p∧ 3

2
n+1V

p(xn)(1 + |Un+1|2p + |U ′n+1|2p)
We then take conditional expectation, there exists α > 0 and β ≥ 0 such that for all n ≥ n0:

E[V p(xn+1)|Fn] ≤ V p(xn)− pV p−1(xn)(αV (xn)− β)

− pγn+1V
p−1(xn)E[∇V (xn) ·

(
∇f(xn+ 1

2
)−∇f(xn)

)
|Fn]

+ 2pλpV
p−1(xn)E[γ2

n+1|∇f(xn+ 1
2
)|2 + 2γn+1|Un+1|2|Fn]

+ CV p(xn)(1 + E|Un+1|2p + E|U ′n+1|2p)γ
p∧ 3

2
n+1

≤ V p(xn)− pV p−1(xn)(αV (xn)− β) + 2pλpE|Un+1|2γn+1V
p−1(xn)

+ CV p(xn)(1 + E|Un+1|2p + E|U ′n+1|2p)γ
p∧ 3

2
n+1

+ cVMpγ2
n+1V

p(Xn) +
√

2cVMpγ
3
2
n+1E|U ′n+1|V p−1/2(xn)

+ cV pλpγ
2
n+1V

p−1(xn)E[V (xn+ 1
2
)|Fn]

From xn to xn+ 1
2

, it’s simply the Euler discretization with time step αn+1γn+1, we could use
the result in [21]: there exists a ᾱ > 0 and β̄ ∈ R such that for all n ≥ n0:

E[V (xn+ 1
2
)|Fn] ≤ V (xn)(1− ᾱγ̃n+1) + β̄γ̃n+1

Therefore we have
E[V xn+1 |Fn] ≤ (1−αpγn+1+o(γn+1))V p(xn)+γn+1V

p−1(xn)(pβ+2pλpE|Un+1|2+cVMpE|U ′n+1|2)

There exists α̂ > 0 and β̂ ∈ R such that for all n ≥ n0:

E[V p(xn+1)|Fn] ≤ V p(xn) + γn+1V
p−1(xn)

(
β̂ − α̂V (xn)

)
2) From step 1), we derive

sup
n≥n0

E[V p(xn)] ≤ (
β̂

α̂
)p ∨ E[V p(xn0)]

Hence supn E[V p(xn)] < +∞ for all p ≥ 1. Therefore supn π
γ
n(ω, V p) < +∞ P − a.s for

all p ≥ 1.
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3) Identification of the weak limit: To identify the limit, we essentially follow the same steps
in [21] and hence we omit the proof.
(a) (Echeverrrı́a-Weiss Theorem) Let E be a locally compact Polish space and A a linear

operator satisfying the positive maximum principle. Assume that its domain D(A) is an
algebra everywhere dense in (C0(E), ‖ ‖∞) containing a sequence (fn)n∈N satisfying

sup
n∈N

(‖fn‖∞ + ‖Lfn‖∞) < +∞, ∀x ∈ E, fn(x)→ 1 and Afn(x)→ 0.

If a distribution on (E,B(E)) satisfies
∫
E
Afdν = 0 for every f ∈ D(A), then there

exists a stationary solution for the martingale problem (A, ν) (this means that there exists
a stationary continuous-time homogeneous Markov process with infinitesimal generator A
and invariant distribution ν).

(b) The generator of the Langevin dynamics, A, satisfies the assumptions of the Echeverrrı́a-
Weiss theorem.

(c) Under assumption 6.1, for every bounded Lipschitz continuous function ϕ : Rd → R,
limn

1
Γn

∑n
k=1 E[ϕ(xk)− ϕ(xk−1)|Fk−1] = 0 P− a.s.

(d) Under assumption 6.1, for every twice continuously differentiable function ϕwith compact
support, limn

(
1

Γn

∑n
k=1 E[ϕ(xk)− ϕ(xk−1)|Fk−1]− πγn(Aϕ)

)
= 0 P− a.s.

a), b), c), d) together imply that the weak limit of the empirical distribution πγn is π, i.e the
stationary distribution of the Langevin dynamics.

Proof of Theorem 2. Since f satisfies assumption 1.1, we can show that the Langevin dynamics
satisfies assumption 6.1. Therefore lemma 3 is true. Then we may use the following method to
discuss the CLT of (RLMC).

xk − xk−1 = −γk
(
∇f(xk−1) +D2f(xk−1)(xk− 1

2
− xk−1) + r2(xk− 1

2
, xk−1)

)
+
√

2γkUk

= −γk∇f(xk−1) +
√

2γkUk − γkD2f(xk−1)(xk− 1
2
− xk−1)− γkr2(xk− 1

2
, xk−1)

= −γk∇f(xk−1) +
√

2γkUk + αkγ
2
kD

2f(xk−1)∇f(xk−1)−
√

2αkγ
3
2

k ∇
2f(xk−1)U ′k − γkr2(xk− 1

2
, xk−1)

where
r2(xk− 1

2
, xk−1) = ∇f(xk− 1

2
)−∇f(xk−1)−D2f(xk−1)(xk−1 − xk− 1

2
)

=
1

2
D3f(xk−1)(xk− 1

2
− xk−1)⊗2 +

1

6
D4f(xk−1)(xk− 1

2
− xk−1)⊗3 +O(γ2

k)

= αkγkD
3f(xk−1)U ′⊗2

k −
√

2α
3
2

k γ
3
2

k 〈D
3f(xk−1);∇f(xk−1), U ′k〉

+

√
2

3
α

3
2

kD
4f(xk−1)U ′⊗4

k +O(γ2
k)

Then
xk − xk−1 = −γk∇f(xk−1) +

√
2γkUk −

√
2αkγ

3
2

k ∇
2f(xk−1)U ′k

+ αkγ
2
kD

2f(xk−1)∇f(xk−1)− αkγ2
kD

3f(xk−1)U ′⊗2
k +O(γ

5
2

k )

We can decompose φ(xk):

φ(xk)− φ(xk−1) = ∇φ(xk−1)(xk − xk−1) +
1

2
D2φ(xk−1)(xk − xk−1)⊗2 +

1

6
D3φ(xk−1)(xk − xk−1)⊗3

+
1

24
D4φ(xk−1)(xk − xk−1)⊗4 +O(γ

5
2

k )

= ∇φ(xk−1)(
√

2γ
1
2

k Uk − γk∇f(xk−1)−
√

2αkγ
3
2

k D
2f(xk−1)U ′k

+ αkγ
2
kD

2f(xk−1)∇f(xk−1)− αkγ2
kD

3f(xk−1)U ′⊗2
k )

+
1

2
D2φ(xk−1)

(√
2γ

1
2

k Uk − γk∇f(xk−1)−
√

2αkγ
3
2

k D
2f(xk−1)U ′k

)⊗2

+
1

6
D3φ(xk−1)

(√
2γ

1
2

k Uk − γk∇f(xk−1)
)⊗3

+
1

24
D4φ(xk−1)(

√
2γ

1
2

k Uk)⊗4 +O(γ
5
2

k )
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If A is the generator of Langevin dynamics and summing up over k:
n∑
k=1

γkAφ(xk−1) = φ(xn)− φ(x0)−
√

2

n∑
k=1

γ
1
2

k ∇φ(xk−1)Uk −
n∑
k=1

γk
(
D2φ(xk−1)U⊗2

k − E[D2φ(xk−1)U⊗2
k |Fk−1]

)
+
√

2

n∑
k=1

γ
3
2

k 〈D
2φ(xk−1);∇f(xk−1), Uk〉 −

√
2

3

n∑
k=1

γ
3
2

k D
3φ(xk−1)U⊗3

k

+

n∑
k=1

√
2αkγ

3
2

k 〈D
2f(xk−1);∇φ(xk−1), U ′k〉+

n∑
k=1

γ2
k〈D3φ(xk−1);∇f(xk−1), U⊗2

k 〉

−
n∑
k=1

αkγ
2
k〈D2f(xk−1);∇φ(xk−1),∇f(xk−1)〉+

n∑
k=1

αkγ
2
k〈D3f(xk−1);∇φ(xk−1), U ′⊗2

k 〉

− 1

2

n∑
k=1

γ2
kD

2φ(xk−1)∇f(xk−1)⊗2 +

n∑
k=1

2α
1
2

k γ
2
k〈D2φ(xk−1);D2φ(xk−1)U ′k, Uk〉

− 1

6

n∑
k=1

γ2
kD

4φ(xk−1)U⊗4
k +

n∑
k=1

O(γ
5
2

k )

:= N (0)
n +N

( 1
2 )

n +N (1)
n +N

( 3
2 )

n +N (2)
n +N

( 5
2 )

n

In the fast decreasing time step situation(
∑n
k=1 γ

2
k/
√

Γn → 0), the CLT for (RLMC) is the same
as that of LMC. In the slowly decreasing time step situation, when

∑n
k=1 γ

2
k/
√

Γn → γ̂ ∈ (0,+∞]:

a) φ(xn)−φ(x0)

Γ
(2)
n

→ 0 because (xn) is tight and φ is continuous.

b) −
√

2
∑n
k=1 γ

1
2
k ∇φ(xk−1)Uk√
Γn

=⇒ N (0, 2
∫
Rd |∇φ(x)|2π(dx)). Therefore,

−
√

2
∑n
k=1 γ

1
2

k ∇φ(xk−1)Uk

Γ
(2)
n

=⇒

N (0, 2γ̂−2

∫
Rd
|∇φ(x)|2π(dx)), when γ̂ < +∞

0 , when γ̂ = +∞

c)
−

∑n
k=1 γk(D

2φ(xk−1)U⊗2
k −E[D2φ(xk−1)U⊗2

k |Fk−1])√
Γn

→ 0 in L2.

d)
√

2
∑n
k=1 γ

3
2
k 〈D

2φ(xk−1);∇f(xk−1),Uk〉√
Γn

→ 0 in L2.

−
√

2
3

∑n
k=1 γ

3
2
k D

3φ(xk−1)U⊗3
k√

Γn
→ 0 in probability because E[U⊗3

k ] = 0.∑n
k=1

√
2αkγ

3
2
k 〈D

2f(xk−1);∇φ(xk−1),U ′k〉√
Γn

→ 0 in L2.

Therefore N
( 3
2
)

n

Γ
(2)
n

→ 0 in probability.

e)
∑n
k=1 γ

2
k〈D

3φ(xk−1);∇f(xk−1),U⊗2
k 〉

Γ
(2)
n

→
∫
Rd
∫
Rd〈D

3φ(x);∇f(x), u⊗2〉µ(du)π(dx) in prob-
ability.
−

∑n
k=1 αkγ

2
k〈D

2f(xk−1);∇φ(xk−1),∇f(xk−1)〉
Γ
(2)
n

→ −1
2

∫
Rd〈D

2f(x);∇φ(x),∇f(x)〉π(dx) in
probability.∑n

k=1 αkγ
2
k〈D

3f(xk−1);∇φ(xk−1),U ′⊗2
k 〉

Γ
(2)
n

→ 1
2

∫
Rd
∫
R2〈D3f(x);∇φ(x), u⊗2〉µ′(du)π(dx) in

probability.
− 1

2

∑n
k=1 γ

2
kD

2φ(xk−1)∇f(xk−1)⊗2

Γ
(2)
n

→ − 1
2

∫
Rd D

2φ(x)∇f(x)⊗2π(dx) in probability.∑n
k=1 2α

1
2
k γ

2
k〈D

2φ(xk−1);D2φ(xk−1)U ′k,Uk〉
Γ
(2)
n

→ 0 in L2.
− 1

6

∑n
k=1 γ

2
kD

4φ(xk−1)U⊗4
k

Γ
(2)
n

→ − 1
6

∫
Rd
∫
Rd D

4φ(x)u⊗4µ(du)π(dx) in probability.
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Therefore
N

(2)
n

Γ
(2)
n

→ % in probability

where

% =

∫
Rd

∫
Rd
〈D3φ(x);∇f(x), u⊗2〉µ(du)π(dx)− 1

2

∫
Rd
〈D2f(x);∇φ(x),∇f(x)〉π(dx)

+
1

2

∫
Rd

∫
R2

〈D3f(x);∇φ(x), u⊗2〉µ(du)π(dx)− 1

2

∫
Rd
D2φ(x)∇f(x)⊗2π(dx)

− 1

6

∫
Rd

∫
Rd
D4φ(x)u⊗4µ(du)π(dx)

and µ is the distribution for a d-dimensional standard Gaussian random variable.

f) N
5
2
n

Γ
(2)
n

→ 0 in L1.

As a conclusion, we obtain the proof of part (1) of the theorem:∑n
k=1 γkAφ(xk−1)

Γ
(2)
n

→

N (%, 2γ̂−2

∫
Rd
|∇φ(x)|2π(dx)), when γ̂ < +∞

% , when γ̂ = +∞

For the fast decreasing step, i.e., part (2) of the theorem, the proof follows by the same arguments in
the corresponding part of Theorem 10 in [21] and hence we omit it.

7 Proofs for Section 3

In this section, we would denote the drift function that appears in 4 as b(x, v), i.e.

b(x, v) =

[
v

−2v − u∇f(x)

]
Assumption 7.1. There exists a twice differentiable function V : R2d → [1,∞) such that:
(0) lim‖(x,v)‖→∞ V (x, v) = +∞, (1) there exists α > 0 and β > 0: 〈∇V (x, v), b(x, v)〉 ≤
−αV (x, v) + β for every (x, v), (2) there exists cV > 0: ‖∇V (x, v)‖2 + ‖b(x, v)‖2 ≤ cV V (x, v)
for every (x, v), and (3)

∥∥D2V
∥∥
∞ := sup(x,v)∈R2d ‖D2V ‖op <∞.

Lemma 4. Assumption 1.1 implies Assumption 7.1 when u ∈ (0, 4
2M−m ).

Proof of Lemma 4. For simplicity, We choose V (x, v) = ‖x− x∗‖2 + ‖x− x∗ + v‖1 + 1 with
f(x∗) = min f(x). Now we check conditions 0), 1), 2), 3) in (LV,∞) are satisfied.

0) It’s onvious that lim|(x,v)|→+∞ V (x, v) = +∞ and V (x, v) ≥ 1 for all (x, v) ∈ Rd.
3) The Hessian of V we choose is

D2V (x, v) =

[
4Id 2Id
2Id 2Id

]
For arbitrary (x, v)T , (y, w)T ∈ R2d:∥∥D2V (x, v)(y, w)T

∥∥2
=

∥∥∥∥[4y + 2w
2y + 2w

]∥∥∥∥2

≤ 40
∥∥(y, w)T

∥∥2

Therefore
∥∥D2V

∥∥
∞ <∞.
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2) Take gradient of the V we choose:

∇V (x, v) =

[
2(x− x∗) + 2(x− x∗ + v)

2(x− x∗ + v)

]
Then for all (x, v) ∈ R2d,

|∇V (x, v)|2 + |b(x, v)|2 ≤ 2(4 ‖x− x∗‖2 + 4 ‖x− x∗ + v‖2) + 4 ‖x− x∗ + v‖2

+ ‖v‖2 + 2(4 ‖v‖2 + u2 ‖∇f(x)‖2)

≤ 8 ‖x− x∗‖2 + 12 ‖x− x∗ + v‖2 + 9 ‖v‖2 + 2u2M2 ‖x− x∗‖2

≤ max{26 + 2u2M2, 30}V (x, v)

1) Last we consider

〈∇V (x, v), b(x, v)〉 = 2(x− x∗) · v + 2(x− x∗ + v) · v − 4(x− x∗ + v) · v
− 2u(x− x∗ + v) · ∇f(x)

≤ −2 ‖v‖2 − 2u
[
f(x)− f(x∗ − v) +

m

2
‖x− x∗ + v‖2

]
≤ −2 ‖v‖2 − um ‖x− x∗ + v‖2 − 2u

(
f(x∗) +

m

2
‖x− x∗‖2

)
+ 2u

(
f(x∗) +

M

2
‖v‖2

)
= −um ‖x− x∗ + v‖2 − um ‖x− x∗‖2 − (2− uM) ‖v‖2

The second inequality follows from the fact that f is m-strongly convex.
When u ∈ (0, 2

M ], 〈∇V (x, v), b(x, v)〉 ≤ −umV (x, v) + um for all (x, v) ∈ R2d. Therefore
1) is satisfied.
When u > 2

M , we can use triangle inequality to further bound our result:

〈∇V (x, v), b(x, v)〉 ≤ −um ‖x− x∗ + v‖2 − um ‖x− x∗‖2 + (uM − 2) ‖v‖2

≤ [−um+ 2(uM − 2)](‖x− x∗ + v‖2 + ‖x− x∗‖2)

≤ −[4− u(2M −m)]V (x, v)− [4− u(2M −m)]

When u ∈ ( 2
M , 4

2M−m ), 1) is satisfied because 4− u(2M −m) > 0.
Therefore, 1) holds when u ∈ (0, 4

2M−m ).

Remark 9. For the V (x, v) we choose in the proof, under assumption 1.1, we can verify that:
V (x, v) = O(|x|2 + |v|2) when |(x, v)| → +∞. We will use this fact later in the proof when we
establish the CLT statement.

7.1 Proofs for Section 3.1

Proof of Theorem 3. Under the assumption 7.1, we can show that the following Lyapunov condition
is satisfied for small h.
(Lyapunov Condition): There exists a function V : R2d → [1,∞) such that:

0) lim|(x,v)|→∞ V (x, v) = +∞,
1) There exists α̂ ∈ (0, 1) and β̂ ≥ 0: E[V (xn+1, vn+1)|Fn] ≤ α̂V (xn, vn) + β̂.

Proof: To show that assumption 7.1 implies Lyapunov condition, we first do Taylor expansion of
V (xn+1, vn+1) at (xn, vn):

V (xn+1, vn+1) = V (xn, vn) +∇V (xn, vn) · (xn+1 − xn, vn+1 − vn)T +
1

2
D2V (θn)[(xn+1 − xn, vn+1 − vn)T ]⊗2
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where θn is a random point on the line segment joining (xn, vn) and (xn+1, vn+1). Use the RULMC
algorithm and part (a) of Assumption 1.1:

E[V (xn+1, vn+1)|Fn] ≤ V (xn, vn) +∇V (xn, vn) ·

[
1−e−2h

2 vn − u
2 (h− 1−e−2h

2 )∇f(xn)

−2 1−e−2h

2 vn − u 1−e−2h

2 ∇f(xn)

]

−∇V (xn.vn) ·

[
u
2 (h− 1−e−2h

2 )E[∇f(xn+ 1
2
)−∇f(xn)|Fn]

u 1−e−2h

2 E[∇f(xn+ 1
2
)−∇f(xn)|Fn]

]

+
3M

2

[
5(

1− e−2h

2
)2|vn|2 + u2h2|∇f(xn)2|+ (σ

(2)
n+1

2
+ 4σ

(3)
n+1

2
)ud

]
+

3M

2
u2h2E[|∇f(xn+ 1

2
)|2 − |∇f(xn)|2|Fn]

where we can further estimate
E[∇f(xn+ 1

2
)−∇f(xn)|Fn] ≤ME[xn+ 1

2
− xn|Fn]

≤M 1

2h
(h− 1− e−2h

2
)|vn|+

√
udMσ

(1)
n+1

+
u

2
(
h

2
−
h− 1−e−2h

2

2h
)|∇f(xn)|

and there exists ξn such that |∇f(xn+ 1
2
)|2 − |∇f(xn)|2 = 2(xn+ 1

2
− xn)TD2f(ξn)∇f(ξn) and

ξn is on the line segment joining xn and xn+ 1
2

. Therefore |ξn − xn| ≤ |xn+ 1
2
− xn|. then we have

E[|∇f(xn+ 1
2
)|2 − |∇f(xn)|2|Fn] ≤ 2ME[|∇f(ξn)||xn+ 1

2
− xn||Fn]

≤ 2M |∇f(xn)|E[|xn+ 1
2
− xn||Fn] + 2M2E[|xn+ 1

2
− xn|2|Fn]

≤ |∇f(xn)|2 + 3M2E[|xn+ 1
2
− xn|2|Fn]

≤ |∇f(xn)|2 + 6M2(
h2

3
|vn|2 +

u2h4

20
|∇f(xn)|2 + udσ

(1)
n+1

2
)

When h is small, we can use polynomials of h to bound those exponential coefficients. We can
obtain that there exists C > 0:
E[V (xn+1, vn+1)|Fn] ≤ V (xn, vn) + h∇V (xn, vn) · b(xn, vn)T + Ch2(d+ |vn|2 + |∇f(xn)|2)

then assumption 7.1 imples that there exists α > 0, β > 0 such that
E[V (xn+1, vn+1)|Fn] ≤ (1− αh+ CcV h

2)V (xn, vn) + Ch2d+ β

When h is small, there exists α̂ = 1 − αh + CcV h
2 ∈ (0, 1) and β̂ = Ch2d + β > 0 such that

E[V (xn+1, vn+1)|Fn] ≤ α̂V (xn, vn) + β̂.

Once we have the Lyapunov condition, we can define the stopping time τC = inf{n > 0 :
(xn, vn) ∈ C} and show that sup(x,v)∈C E(x,v)[τC ] ≤ MC < ∞ for all small set C. Then
uniqueness of stationary probability measure and ergodicity all follow by Theorem 1.3.1 in [33].
Next we prove that sup(x,v)∈C E(x,v)[τC ] ≤ MC < ∞ given Lyapunov condition. To do so, note
that we have

E(x,v)[τC ] =

∞∑
n=1

nP(τC = n)

=
∑
n≥1

P(τC > n− 1)

Under Lyapunov condition, for any stopping time N , according to Lemma A.3 and Corollary A.4
in [31], we have

P(τC > n− 1) ≤ E[V (xn, vn)1τC>n−1]

≤ κ[γn−1V (x0, v0) + 1]

1− γ
≤ κγn−1[V (x0, v0) + 1]
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for some γ ∈ (α̂, 1) and constant κ. Therefore, we have

E(x,v)[τC ] ≤
∑
k≥1

κγn−1[V (x0, v0) + 1]

=
κ[V (x, v) + 1]

1− γ
and

sup
(x,v)∈C

E(x,v)[τC ] ≤ κ

1− γ
sup

(x,v)∈C
V (x, v) +

κ

1− γ
≤MC <∞

So as a conclusion, the statement of the theorem follows.

Before proving Proposition 3.1, we require some preliminary estimtes from [40], that we present
below. First, let (yn, wn) be the solution of Underdamped Langevin dynamics evaluated at t =∑n
k=1 γk with initial value (y0, w0). (xn, vn) is the nth iterates in the (RULMC) algorithm with

initial value (x0, v0). (x∗n(t), v∗n(t)) is the solution of Underdamped Langevin dynamics with initial
value (xn−1, vn−1) and (x∗n, v

∗
n) = (x∗n−1(γn), v∗n−1(γn)). Then, we have the following results

from Lemma 2 in [40]. When γn+1 <
1
2 and u = 1

M , we have:

E
∥∥Eαxn+1 − x∗n+1

∥∥2 ≤ 45(γ10
n+1E ‖vn‖

2
+M−2γ12

n+1E ‖∇f(xn)‖2 +M−1dγ11
n+1)

E
∥∥xn+1 − x∗n+1

∥∥2 ≤ 1800(γ6
n+1E ‖vn‖

2
+M−2γ4

n+1E ‖∇f(xn)‖2 +M−1dγ7
n+1)

E
∥∥Eαvn+1 − v∗n+1

∥∥2 ≤ 45(γ8
n+1E ‖vn‖

2
+M−2γ10

n+1E ‖∇f(xn)‖2 +M−1dγ9
n+1)

E
∥∥vn+1 − v∗n+1

∥∥2 ≤ 1300(γ4
n+1E ‖vn‖

2
+M−2γ4

n+1E ‖∇f(xn)‖2 +M−1dγ5
n+1)

Proof of Proposition 3.1 . Denote A2
n = E[‖xn − yn‖2 + ‖(xn + vn)− (yn + wn)‖2]. Using tri-

angle inequality we have

Eα[‖xn − yn‖2 + ‖(xn + vn)− (yn + wn)‖2] ≤ (1 +
h

2κ
)(‖x∗k − yn‖

2
+ ‖(x∗k + v∗k)− (yn + wn)‖2)

+
2κ

h
(‖Eα[xn]− x∗k‖

2
+ ‖Eα[xn + vn]− (x∗n + v∗n)‖2)

+ Eα ‖xn − x∗n‖
2

+ Eα ‖(xn + vn)− (x∗n + v∗n)‖2

Furthermore, we can take expectation on ω and use the contraction of Underdamped Langevin dy-
namics:

A2
n ≤ (1 +

h

2κ
)e−

h
κA2

n−1 +
2κ

h
(E ‖Eαxn − x∗n‖

2
+ E ‖Eα[xn + vn]− (x∗n + v∗n)‖2)

+ E ‖x∗n − xn‖
2

+ E ‖(xn + vn)− (x∗n + v∗n)‖2

≤ e− h
2κA2

n−1 +
2κ

h
(3E ‖Eαxn − x∗n‖

2
+ 2E ‖Eαvn − v∗n‖

2
)

+ 3E ‖xn − x∗n‖
2

+ 2E ‖vn − v∗n‖
2

When h < 1
2 , u = 1

M and m = 1:

A2
n ≤ e−

h
2κA2

n−1 + 8250
[
(κh7 + h4)E ‖vn−1‖2 + (κ−1h8 + κ−2h4)E ‖∇f(xn−1)‖2 + (κ−1h5 + h7)

]
Our next step is to bound E ‖vn−1‖2 and E ‖∇f(xn−1)‖2. First for Underdamped Langevin dy-
namics with f satisfying Assumption 1.1, it’s easy to compute that:

E ‖wn−1‖2 = d/M

E ‖∇f(yn−1)‖2 =
1∫

e−f(x)dx

∫
|∇f(x)|2e−f(x)dx

= − 1∫
e−f(x)dx

∫
(∇f(x))T∇e−f(x)dx

=
1∫

e−f(x)dx

∫
∆f(x)e−f(x)dx

≤ ‖∆f(x)‖∞ ≤Md
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Therefore, we have

E ‖vn−1‖2 ≤ 2d/M + 2E ‖vn−1 − wn−1‖2 ≤ 2d/M + 4A2
n−1

E ‖∇f(xn−1)‖2 ≤ 2Md+ 2M2E ‖xn−1 − yn−1‖2 ≤ 2Md+ 2M2A2
n−1

Plug the upper bounds into our previous result:

A2
n ≤ e−

h
2κA2

n−1 + 8250
[
(κh7 + h4)(2d/M + 4A2

n−1) + (κ−1h8 + κ−2h4)(2Md+ 2M2A2
n−1) + (κ−1h5 + h7)

]
≤
[
1− h

2κ
+

h2

8κ2
+ 49500(h4 + κh7)

]
A2
n−1 + 41250d(h7 + κ−1h4)

If we choose (xn−1, vn−1) ∼ π∗h(x, v) and (yn−1, wn−1) ∼ π∗(x, v) such that

A2
n−1 = min

X∼π∗h, Y∼π∗
E ‖X − Y ‖2

Then we have

W2(π, πh)2 ≤ A2
n−1 ≤

82500h3(κh3 + 1)d

1− h
4κ − 99000h3κ(1 + κh3)

We can see that W2(π, πh)→ 0 as h→ 0. Furthermore, as h→ 0, W2(π, πh) < O(h
3
2 ).

7.2 Proofs for Section 3.2

Proof of Theorem 3.2. Define A2
n = E[‖xn − yn‖2 + ‖(xn + vn)− (yn + wn)‖2]. From the proof

of proposition 3.1, we know that

A2
n ≤

[
1− γn

2κ
+

γ2
n

8κ2
+ 49500(γ4

n + κγ7
n)

]
A2
n−1 + 41250d(γ7

n + κ−1γ4
n)

When time step h is a constant, apply the inequality repeatedly to get

A2
n ≤

[
1− h

2κ
+

h2

8κ2
+ 49500(h4 + κh7)

]k
A2

0 +
82500h3(κh3 + 1)d

1− h
4κ − 99000h3κ(1 + κh3)

Denote νn to be the density function of xn, then W2(νn, π) ≤ An. By choosing γn = h ∼ O(ε
2
3 ),

we can guarantee that W2(νn, π) < ε
√

d
m for all n > K ∼ Õ(ε−

2
3 ).

When the time step γn is variant, the inequality we correspondingly have

A2
n ≤

[
1− γn

2κ
+

γ2
n

8κ2
+ 49500(γ4

n + κγ7
n)

]
A2
n−1 + 41250d(γ7

n + κ−1γ4
n)

When γn < 1, γ2
n

8κ2 < γn
8κ . When γn < ( 99000

8κ2 ) < 24κ−
2
3 , we have 49500(γ4

n + κγ7
n) < γn

8κ .
Similarly, when γn < 1, we have 41250d(γ7

n + κ−1γ4
n) < 82500dγ4

n. Therefore, when γn <

min{1/2, 24κ−
2
3 }, we have

A2
n < (1− γn

4κ
)A2

n−1 + 82500dγ4
n

If we choose γn = 16κ

32κ
5
3 +(n−K1)+

, where K1 is the smallest integer such that

A2
K1

< (1− 4

κ
5
3

)K1A2
0 + (82500)d

1

2κ
< 2

82500d

κ

Then we claim that for all n ≥ K1, we have

A2
n <

82500(16)4dκ4

(32κ
5
3 + n−K1)3
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The claim can be proved by induction: Assume that the claim hold for A2
n and denote b = 32κ

5
3 +

n−K1, then

A2
n+1 < (1− 4

1 + b
)
82500(16)4dκ4

b3
+

82500d(16)4κ4

(b+ 1)4

=
82500(16)4dκ4

(b+ 1)3

[
(b− 3)(b+ 1)2

b3
+

1

b+ 1

]
<

82500(16)4dκ4

(b+ 1)3

=
82500(16)4dκ4

(32κ
5
3 + n+ 1−K1)3

Therefore, under our choice of time step (γn), we can guarantee W2(νn, π) < ε
√

d
m for all n >

K ∼ O(ε−
2
3 ). Compared to the running time of constant step size RULMC, vanishing step size

help reduce the factor log( 1
ε ) in the guarantees.

Now we introduce the CLT statement for another sampling algorithm related to (RULMC) and give
a complete proof of the statement. The proof of Remark 6 can be done in the same way. In the
following theorem, we give a central limit result with specific choice of weights and time step-
size. The Euler-discretization of the underdamped Langevin diffusion (which we call as KLMC,
following [7]) is given by the following algorithm:

xn+1 = xn +
1− e−2γn+1

2
vn −

u

2
(γn+1 −

1− e−2γn+1

2
)∇f(xn) +

√
uσ

(1)
n+1U

(1)
n+1

vn+1 = vne
−2γn+1 − u1− e−2γn+1

2
∇f(xn) + 2

√
uσ

(2)
n+1U

(2)
n+1

(KLMC)

where {γn} are the time steps. σ(1)
n and σ(2)

n are positive with σ(1)
n

2
= γn+ 1−e−4γn

4 − (1−e−2γn),

σ
(2)
n

2
= 1−e−4γn

4 . {(U (1)
n , U

(2)
n )}n are independent Centered Gaussian random vectors in R2d with

(U
(1)
n , U

(2)
n ) ∼ N (0, σ2

nId) and σ2
n = 1+e−4γn−2e−2γn

4σ
(1)
n σ

(2)
n

. Numerical integration with the above
sampler follows the same steps as described in Section 3.2. We now provide the following CLT.
Theorem 5. Assume potential function f satisfies Assumption 1.1. Let {(xk, vk)} and
{(U (1)

k , U
(2)
k )} be the same as what we have in the (KLMC) algorithm and the time step-size {γk}

is non-increasing and limk(γk−1 − γk)/γ4
k = 0. If limn(1/

√
Γ

(3)
n )

∑n
k=1 γ

4
k = γ̂ ∈ (0,+∞]

and limn Γ
(4)
n = +∞, then for all φ ∈ C3 with D2φ, D3φ and D4φ bounded and Lipschitz and

sup(x,v)∈R2d |∇φ(x)|2/V (x, v) < +∞, we have

Γn

Γ
(4)
n

νγn(Lφ)→ N (ρ,
10

3
uγ̂−2

∫
Rd
|∇φ(x)|π(dx)) if γ̂ < +∞

Γn

Γ
(4)
n

νγn(Lφ)→ ρ if γ̂ = +∞,

where

ρ = u
6 ∫ ∫〈D

3φ(x);∇f(x), v⊗2〉ν(dx, dv) + u
24 ∫ ∫〈D

3f(x);∇φ(x), v⊗2〉ν(dx, dv)

+ u
12 ∫ ∫(D

2φD2f)(x)v⊗2ν(dx, dv)− 1
12 ∫ ∫ D

4φ(x)v⊗4ν(dx, dv)

− u2

24 ∫〈D
2f(x);∇φ(x),∇f(x)〉π(dx).

In the following context we’ll discuss the weak convergence of empirical measure νηn and build a
central limit theorem under certain assumptions.

1) (Lyapunov Conditions) The underdamped Langevin dynamics can be rewritten as

dYt = b(Yt)dt+ σ(Yt)dWt
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where Yt = [Xt, Vt]
T , b(y) = b(x, v) = [v,−2v − u∇f(x)]T , σ(y) = 2

√
u[0d, Id]

T for all
x, v ∈ Rd. {Wt} is a 2d-dimensional Brownian motion.
The Lyapunov condition is similar to the one that’s introduced in[21].

Assumption (LV,∞): There’s a C2 function V : R2d → [v∗,+∞) for some v∗ > 0
satisfying the following conditions:
a)
∥∥D2V

∥∥
∞ = sup(x,v)T∈R2d

∥∥D2V (x, v)
∥∥
op
< +∞ and lim|(x,v)|→+∞ V (x, v) = +∞;

b) |∇V (x, v)|2 + |b(x, v)|2 ≤ cV V (x, v) for all (x, v)T ∈ R2d and some cV > 0;
c) 〈∇V (x, v), b(x, v)〉 ≤ −αV (x, v) + β for some α > 0 and β ∈ R.

Assumption (LV,p): There’s a C2 function V : R2d → [v∗,+∞) for some v∗ > 0 satisfying
for some p ≥ 1:
a)
∥∥D2V

∥∥
∞ = sup(x,v)T∈R2d

∥∥D2V (x, v)
∥∥
op
< +∞ and lim|(x,v)|→+∞ V (x, v) = +∞;

b) |∇V (x, v)|2 + |b(x, v)|2 + Tr(σ(x, v)σ(x, v)T ) ≤ cV V (x, v) for all (x, v)T ∈ R2d and
some cV > 0;

c) 〈∇V (x, v), b(x, v)〉 + λpTr(σ(x, v)σ(x, v)T ) ≤ −αV (x, v) + β for some α > 0 and
β ∈ R, where λp = 1

2λD2V+(p−1)(∇V⊗∇V )/V .

Remark 10. 1) We can show that: (LV,p′) =⇒ (LV,p) if p′ ≥ p ≥ 1. Especially
(LV,∞) =⇒ (LV,p) for all p ≥ 1.

2) If we choose b and σ the same as those in the Underdamped Langevin dynamics, then
(LV,∞) is almost the same as assumption 7.1. We can instantly obtain that assumption 7.1
implies (LV,∞). Therefore, according to lemma 4, assumption 1.1 implies (LV,∞).

2) (Tightness Result) We now establish the almost sure tightness of the weighted empirical
measures. The filtration {Fn} we consider is Fn = σ(Y0, (U

(1)
1 , U

(2)
1 ), · · · , (U (1)

n , U
(2)
n )).

Lemma 5. (a) If (LV,1) holds, then for every a ≥ 1
2 ,

|V a(Yn+1)− V a(Yn)| ≤ ca
√
γn+1V

a(Yn)(1 + |U (1)
n+1|2a + |U (2)

n+1|2a)

(b) If (LV,p) holds for some p ≥ 1, then there exists real numbers α̃ > 0 and β̃ and n0 ∈ N
such that

E[V p(Yn+1)|Fn] ≤ V (Yn) + γn+1V
p−1(Yn)(β̃ − α̃V (Yn)), ∀ n ≥ n0

and furthermore
sup
n∈N

E[V p(Yn)] < +∞

Proof of Lemma 5. (a) Using mean value theorem and (LV,1):

|V a(Yn+1)− V a(Yn)| = a|V a−1(ξn+1)〈∇V (ξn+1), Yn+1 − Yn〉|

≤ CV a− 1
2 (ξn+1)|Yn+1 − Yn|

From (LV,1)-b) we get that∇
√
V is bounded, i.e

√
V is Lipschitz with parameter [

√
V ]1. Hence

V a−
1
2 (ξn+1) ≤ (

√
V (Yn) + [

√
V ]1|Yn+1 − Yn|)2a−1

≤ 22a−1
(
V a−

1
2 (Yn) + [

√
V ]2a−1

1 |Yn+1 − Yn|2a−1
)

Meanwhile,

|Yn+1 − Yn|2 = |

[
1−e−2γn+1

2 vn − u
2 (γn+1 − 1−e−2γn+1

2 )∇f(xn) +
√
uσ

(1)
n+1U

(1)
n+1

−2 1−e−2γn+1

2 vn − u 1−e−2γn+1

2 ∇f(xn) + 2
√
uσ

(2)
n+1U

(2)
n+1

]
|2

≤ 15(
1− e−2γn+1

2
)2|v2

n|+ [
3u2

4
(γn+1 −

1− e−2γn+1

2
)2 + 3u2(

1− e−2γn+1

2
)2]|∇f(xn)|2

+ 3uσ
(1)
n+1

2
|U (1)
n+1|2 + 12uσ

(2)
n+1

2
|U (2)
n+1|2
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Since γn → 0 as ν → ∞ and 1−e−2γn

2 ∼ O(γn), γn − 1−e−2γn

2 ∼ O(γ2
n), σ(1)

n ∼ O(γ
3
2
n ) and

σ
(2)
n ∼ O(γ

1
2
n ), there exist C1, C2, C3 > 0 such that

|Yn+1 − Yn|2 ≤ C1

[
γ2
n+1(|vn|2 + |∇f(xn)|2) + γn+1(|U (1)

n+1|2 + |U (2)
n+1|2)

]
≤ C2

[
γ2
n+1V (Yn) + γn+1(|U (1)

n+1|2 + |U (2)
n+1|2 + 1)

]
=⇒ |Yn+1 − Yn| ≤ C3

√
γn+1

√
V (Yn)(|U (1)

n+1|+ |U
(2)
n+1|+ 1)

Combining our estimations, since a ≥ 1/2. we get

|V a(Yn+1)− V a(Yn)| ≤ C22a−1
(
V a−

1
2 (Yn) + [

√
V ]2a−1

1 |Yn+1 − Yn|2a−1
)
|Yn+1 − Yn|

≤ c′a
(√

γn+1V
a(Yn)(|U (1)

n+1|+ |U
(2)
n+1|+ 1) + γan+1V

a(Yn)(|U (1)
n+1|+ |U

(2)
n+1|+ 1)2a

)
≤ ca
√
γn+1V

a(Yn)(|U (1)
n+1|2a + |U (2)

n+1|2a + 1)

(b) We Taylor expand V p(Yn+1) at Yn:

V p(Yn+1) = V p(Yn) + pV p−1(Yn)〈∇V (Yn), Yn+1 − Yn〉+
1

2
D2(V p)(ξn+1)(Yn+1 − Yn)⊗2

Since D2(V p) = pV p−1D2V + p(p− 1)V p−1∇V∇V T , by the definition of λp:

D2(V p)(ξn+1)(Yn+1 − Yn)⊗2 ≤ 2pλpV
p−1(ξn+1)|Yn+1 − Yn|2

Therefore

V p(Yn+1) ≤ V p(Yn) + pV p−1(Yn)〈∇V (Yn), Yn+1 − Yn〉+ pλpV
p−1(ξn+1)|Yn+1 − Yn|

When p = 1, take conditional expectation on Fn:

E[V (Yn+1)|Fn] ≤ V (Yn) +
1− e−2γn+1

2
〈∇V (xn, vn), b(xn, vn)〉

− u

2
(γn+1 −

1− e−2γn+1

2
)∇xV (xn, vn) · ∇f(xn)

+ λ1(
1− e−2γn+1

2
)2[5|vn|2 + u2|∇f(xn)|2 + 4u∇f(xn) · vn]

− u

2

1− e−2γn+1

2
(γn+1 −

1− e−2γn+1

2
)∇f(xn) · vn

+
u2

4
(γn+1 −

1− e−2γn+1

2
)2|∇f(xn)|2 + u(σ

(1)
n+1

2
+ 4σ

(2)
n+1

2
)d

There exists n0 ∈ N such that for all n ≥ n0

1− e−2γn+1

2
〈∇V (xn, vn), b(xn, vn)〉 ≤ γn+1(−αV (Yn) + β), for some α > 0, β ∈ R;

− u

2
(γn+1 −

1− e−2γn+1

2
)∇xV (xn, vn) · ∇f(xn) ≤ Cγ2

n+1(|∇V (Yn)|2 + |b(Yn)|2) ≤ Cγ2
n+1V (Yn);

λ1(
1− e−2γn+1

2
)2[5|vn|2 + u2|∇f(xn)|2 + 4u∇f(xn) · vn] ≤ Cγ2

n+1|b(Yn)|2 ≤ Cγ2
n+1V (Yn);

− u

2

1− e−2γn+1

2
(γn+1 −

1− e−2γn+1

2
)∇f(xn) · vn ≤ Cγ3

n+1|b(Yn)|2 ≤ Cγ3
n+1V (Yn);

u2

4
(γn+1 −

1− e−2γn+1

2
)2|∇f(xn)|2 ≤ Cγ4

n+1|b(Yn)|2 ≤ Cγ4
n+1V (Yn);

u(σ
(1)
n+1

2
+ 4σ

(2)
n+1

2
)d ≤ Cγn+1.

Therefore, for all n ≥ n0, there exist α̃ > 0, β̃ ∈ R such that

E[V (Yn+1)|Fn] ≤ V (Yn)(1− αγn+1 + C(2γ2
n+1 + γ3

n+1 + γ4
n+1)) + γn+1(β + C)
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≤ V (Yn)(1− α̃γn+1) + β̃γn+1

and 1− α̃γn+1 > 0. This leads to

E[V (Yn+1)] ≤ E[V (Yn)](1− α̃γn+1) + β̃γn+1

We could use induction to prove:

sup
n≥n0

E[V (Yn)] ≤ β̃

α̃
∨ E[V (Yn0)]

Assume now p > 1. Due to (LV,p)-b), we derive that
√
V is Lipschitz with parameter [

√
V ]1.

Consequently,

V p−1(ξn+1) =
√
V

2(p−1)
(ξn+1) ≤

(√
V (Yn) + [

√
V ]1|Yn+1 − Yn|

)2(p−1)

≤

V
p−1(Yn) + ([

√
V ]1|Yn+1 − Yn|)2(p−1) if 2(p− 1) ≤ 1,

V p−1(Yn) + C
(
V (2p−3)/2(Yn)|Yn+1 − Yn|+ |Yn+1 − Yn|2(p−1)

)
if 2(p− 1) > 1.

Using the fact we’ve proved in part a):

|Yn+1 − Yn|2 ≤ C2

[
γ2
n+1V (Yn) + γn+1(|U (1)

n+1|2 + |U (2)
n+1|2 + 1)

]
We derive

V p−1(ξn+1)|Yn+1 − Yn|2 ≤ V p−1(Yn)|Yn+1 − Yn|2 + Cγ
p∧ 3

2
n+1V

p(Yn)(1 + |U (1)
n+1|2p + |U (2)

n+1|2p)

Then we take conditional expectation:

E[V p(Yn+1)|Fn] ≤ V p(Yn) + pV p−1 1− e−2γn+1

2
〈∇V (xn, vn), b(xn, vn)〉

− pV p−1(Yn)
u

2
(γn+1 −

1− e−2γn+1

2
)∇xV (xn, vn) · ∇f(xn)

+ CV p−1(Yn)
[
γ2
n+1V (Yn) + γn+1(|U (1)

n+1|2 + |U (2)
n+1|2 + 1)

]
+ Cγ

p∧ 3
2

n+1V
p(Yn)(1 + |U (1)

n+1|2p + |U (2)
n+1|2p)

There exists n0 ∈ N such that for all n ≥ n0

1− e−2γn+1

2
〈∇V (xn, vn), b(xn, vn)〉 ≤ γn+1(−αV (Yn) + β), for some α > 0, β ∈ R;

− u

2
(γn+1 −

1− e−2γn+1

2
)∇xV (xn, vn) · ∇f(xn) ≤ Cγ2

n+1(|∇V (Yn)|2 + |b(Yn)|2) ≤ Cγ2
n+1V (Yn).

Since γp∧
3
2

n , γ2
n ∼ o(γn), there exists α̃ > 0, β̃ ∈ R, such that for all n ≥ n0:

E[V p(Yn)|Fn] ≤ V p(Yn) + γn+1V
p−1(Yn)(β̃ − α̃V (Yn))

Same as the proof for p = 1, we can show

sup
n∈N

E[V p(Yn)] < +∞

Theorem 6. Let p ∈ [0,+∞). Assume (LV,p), If there exists s ∈ (0, 1] such that∑
n≥1

1

Hn
(∆

ηn
γn

)+ < +∞ and
∑
n≥1

(
ηn

Hn
√
γn

)1+s < +∞

then
P(dω)− a.s sup

n∈N
νηn(ω, V p/(1+s)) < +∞
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Based on Lemma 5, the proof of Theorem 6 immediately follows, by using the same steps in
the proof of Theorem 4 in [21]. Hence we don’t replicate the proof here.

3) (Identification of the limit)
Theorem 7 (Echeverrrı́a-Weiss Theorem). Let E be a locally compact Polish space and L a
linear operator satisfying the positive maximum principle. Assume that its domain D(A) is an
algebra everywhere dense in (C0(E), ‖ ‖∞) containing a sequence (fn)n∈N satisfying

sup
n∈N

(‖fn‖∞ + ‖Lfn‖∞) < +∞, ∀x ∈ E, fn(x)→ 1 and Lfn(x)→ 0.

If a distribution on (E,B(E)) satisfies
∫
E
Lfdν = 0 for every f ∈ D(A), then there exists a

stationary solution for the martingale problem (L, ν) (this means that there exists a stationary
continuous-time homogeneous Markov process with infinitesimal generator L and invariant
distribution ν).
Lemma 6. If the potential function f is Gradient Lipschitz and strongly convex, then the gen-
erator of kinetic, L, satisfies the assumptions of the Echeverrrı́a-Weiss theorem.

Proof of lemma 6. First it’s well-known that the infinitesimal generator of a Fellerian semi-
group satisfies the maximum principle. We can choose our fn(y) = φ(y/n) for any y ∈ R2d

where φ is C2 with compact support and φ(0) = 1. It’s easy to check that ∀y ∈ R2d, fn(y)→ 0
and Lfn(y)→ 0. It’s also straightforward that supn∈N ‖fn‖∞ < +∞. The last thing to check
is supn∈N ‖Lfn‖∞ < +∞. Since L can also be written as b(x, v) · [∇x, ∇v]T + 2u∆v and
we’ve shown that under our assumptions on f , (LV,∞) is satisfied, we have the Lyapunov func-
tion V (y) = O(|y|2) and |b(x, v)| ≤ C(1 + |(x, v)|). Therefore we get supn∈N ‖Lfn‖∞ <
+∞.

Theorem 8. Assume that f is gradient Lipschitz and strongly convex. Assume also

lim
n

1

Hn

n∑
k=1

|∆ηn
γn
| = 0 and

∑
n≥1

(
ηn√
γnHn

)2 < +∞

Let a ≥ 1
2 . Assume supn ν

η
n(V a) < +∞ P − a.s. If a < 1, assume also that

∑
n≥1 ηnγn/Hn <

+∞. Then P−a.s, every limiting distribution ν∞(ω, dx) of the sequence (νηn(ω, dx)) is an invariant
distribution of the underdamped Langevin dynamics introduced in the previous section.

The proof of theorem 8 follows immediately from Theorem 7, lemma 6, lemma 7 and lemma 8.
Lemma 7. Under the assumptions in theorem 8, then for every bounded Lipschitz continuous func-
tion g : R2d → R,

P− a.s lim
n

1

Hn

n∑
k=1

ηk
γk

E[g(Yk)− g(Yk−1)|Fk−1] = 0

Proof of lemma 7. Setting η0/γ0 = 0 gives

1

Hn

n∑
k=1

E[g(Yk)− g(Yk−1)|Fk−1] =
1

Hn

n∑
k=1

ηk
γk

(g(Yk)− g(Yk−1))− 1

Hn

n∑
k=1

ηk
γk

(g(Yk)− E[g(Yk)|Fk−1]) .

As g is bounded, it follows by lemma 3-b) in[21] that

P− a.s lim
n

1

Hn

n∑
k=1

(g(Yk)− g(Yk−1)) = 0.

Then
1

Hn

n∑
k=1

ηk
γk

(g(Yk)− E[g(Yk)|Fk−1])

will converge to 0 once the martingale

Mg
n :=

n∑
k=1

ηk
γkHk

(g(Yk)− E[g(Yk)|Fk−1])
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converge a.s in R.

E〈Mg
n〉∞ =

∑
n≥1

(
ηn

γnHn
)2 ‖g(Yn)− E[g(Yn)|Fn−1]‖22 ≤

∑
n≥1

(
ηn

γnHn
)2 ‖g(Yn)− g(Yn−1)‖22

≤ [f ]21
∑
n≥1

(
ηn

γnHn
)2 ‖Yn − Yn−1‖22

Since (LV,1) holds under our assumptions on f and by lemma 2-b)

‖Yn − Yn−1‖22 ≤ C
′E[γ2

nV (Yn−1) + (2d+ 1)γn] ≤ Cγn
Therefore

E〈Mg
n〉∞ ≤ C

∑
n≥1

(
ηn√
γnHn

)2 < +∞

Lemma 8. Under the assumptions in theorem 8, then for every g ∈ C2(R2d) with compact support,

lim
n

(
1

Hn

n∑
k=1

ηk
γk

E[g(Yk)− g(Yk−1)|Fk−1]− νηn(Lg)

)
= 0 a.s

Proof of lemma 8. SettingR2(y1, y2) := g(y2)−g(y1)−〈∇g(y1), y2−y1〉− 1
2D

2g(y1)(y2−y1)⊗2,
we obtain for every k ∈ N,

g(Yk)− g(Yk−1) = 〈∇g(Yk−1), Yk − Yk−1〉+
1

2
D2g(Yk−1)(Yk − Yk−1)⊗2 +R2(Yk−1, Yk)

= ∇xg(xk−1, vk−1) · [ 1− e
−2γk

2
vk−1 −

u

2
(γk −

1− e−2γk

2
)∇f(xk−1) +

√
uσ

(1)
k U

(1)
k ]

+∇vg(xk−1, vk−1) · [−2
1− e−2γk

2
vk−1 − u

1− e−2γk

2
∇f(xk−1) + 2

√
uσ

(2)
k U

(2)
k ]

+
1

2
D2
xg(xk−1, vk−1)[

1− e−2γk

2
vk−1 −

u

2
(γk −

1− e−2γk

2
)∇f(xk−1) +

√
uσ

(1)
k U

(1)
k ]⊗2

+
1

2
D2
vg(xk−1, vk−1)[−2

1− e−2γk

2
vk−1 − u

1− e−2γk

2
∇f(xk−1) + 2

√
uσ

(2)
k U

(2)
k ]⊗2

+ 〈Dxvg(xk−1, vk−1);
1− e−2γk

2
vk−1 −

u

2
(γk −

1− e−2γk

2
)∇f(xk−1) +

√
uσ

(1)
k U

(1)
k ,

− 2
1− e−2γk

2
vk−1 − u

1− e−2γk

2
∇f(xk−1) + 2

√
uσ

(2)
k U

(2)
k 〉

+R2(Yk−1, Yk)

= γkLg(Yk−1)− (γk −
1− e−2γk

2
)∇xg(Yk−1) · vk−1 −

u

2
(γk −

1− e−2γk

2
)∇xg(Yk−1) · ∇f(xk−1)

+ 2(γk −
1− e−2γk

2
)∇vg(Yk−1) · vk−1 + u(γk −

1− e−2γk

2
)∇vg(Yk−1) · ∇f(xk−1)

+
√
uσ

(1)
k ∇g(Yk−1) · U (1)

k + 2
√
uσ

(2)
k ∇g(Yk−1) · U (2)

k

+
1

2
(
1− e−2γk

2
)2D2

xg(Yk−1)v⊗2
k−1 +

u2

8
(γk −

1− e−2γk

2
)2D2

xg(Yk−1)∇f(xk−1)⊗2

+
u

2
σ

(1)
k

2
D2
xg(Yk−1)U

(1)
k

⊗2
− u

2

1− e−2γk

2
(γk −

1− e−2γk

2
)〈D2

xg(Yk−1); vk−1,∇f(xk−1)〉

+
√
u

1− e−2γk

2
σ

(1)
k 〈D

2
xg(Yk−1); vk−1, U

(1)
k 〉

− u3/2

2
(γk −

1− e−2γk

2
)σ

(1)
k 〈D

2
xg(Yk−1);∇f(xk−1), U

(1)
k 〉

+ 2(
1− e−2γk

2
)2D2

vg(Yk−1)v⊗2
k−1 +

u2

2
(
1− e−2γk

2
)2D2

vg(Yk−1)∇f(xk−1)⊗2
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+ 2u
(
σ

(2)
k

2
D2
vg(Yk−1)U

(2)
k

⊗2
− γkE[D2

vg(Yk−1)U
(2)
k

⊗2
|Fk−1]

)
+ 2u(

1− e−2γk

2
)2〈D2

vg(Yk−1); vk−1,∇f(xk−1)〉 − 4
√
u

1− e−2γk

2
σ

(2)
k 〈D

2
vg(Yk−1); vk−1, U

(2)
k 〉

− 2u3/2 1− e−2γk

2
σ

(2)
k 〈D

2
vg(Yk−1);∇f(xk−1), U

(2)
k 〉+R2(Yk−1, Yk)

Take conditional expectation:

E[g(Yk)− g(Yk−1)|Fk−1]− γkLg(Yk−1) = −(γk −
1− e−2γk

2
)∇xg(Yk−1) · vk−1

− u

2
(γk −

1− e−2γk

2
)∇xg(Yk−1) · ∇f(xk−1)

+ 2(γk −
1− e−2γk

2
)∇vg(Yk−1) · vk−1

+ u(γk −
1− e−2γk

2
)∇vg(Yk−1) · ∇f(xk−1)

+
1

2
(
1− e−2γk

2
)2D2

xg(Yk−1)v⊗2
k−1

+
u2

8
(γk −

1− e−2γk

2
)2D2

xg(Yk−1)∇f(xk−1)⊗2

+
u

2
σ

(1)
k

2
∆xg(Yk−1)

− u

2

1− e−2γk

2
(γk −

1− e−2γk

2
)〈D2

xg(Yk−1); vk−1,∇f(xk−1)〉

+ 2(
1− e−2γk

2
)2D2

vg(Yk−1)v⊗2
k−1 +

u2

2
(
1− e−2γk

2
)2D2

vg(Yk−1)∇f(xk−1)⊗2

+ 2u
(
σ

(2)
k

2
− γk

)
∆vg(Yk−1)

+ 2u(
1− e−2γk

2
)2〈D2

vg(Yk−1); vk−1,∇f(xk−1)〉

+ E[R2(Yk−1, Yk)|Fk−1]

Observe that for all the terms, except for R2(Yk−1, Yk), on the right hand side of the equation,
their coefficients are of order O(γ2

k) or o(γ2
k). Furthermore, ∇g and D2g are bounded because g

is C2 and compact supported. Since (LV,∞) is satisfied under our assumptions, supn∈N E[|vn|2 +
|∇f(xn)|2] < C supn∈N E[V (Yn))] < +∞. Therefore, we obtain that as n→ 0,

1

Hn

n∑
k=1

ηk
γk

E[g(Yk)− g(Yk−1)|Fk−1]− ηkLg(Yk−1)− ηk
γk

E[R2(Yk−1, Yk)|Fk−1]→ 0

because 1
Hn

∑n
k=1 ηkγk → 0 as n→ 0.

Now we deal with E[R2(Yk−1, Yk)|Fk−1]. For any x, y ∈ R2d, define

r2(x, y) :=
1

2
sup
t∈(0,1)

∥∥D2g(x+ t(y − x))−D2g(x)
∥∥

It’s easy to see that r2 is a bounded continuous function on Rd × Rd, r2(x, x) = 0 and

|R2(x, y)| ≤ r2(x, y)|x− y|2

Therefore we obtain
ηk
γk
|E[R2(Yk−1, Yk)|Fk−1]| ≤ C

(
ηkγk ‖r2‖∞ V (Yk−1) + (2d+ 1)ηkE[r2(Yk−1, Yk)(|U (1)

k |
2 + |U (2)

k |
2)|Fk−1]

)
If a ≥ 1, P− a.s

1

Hn

n∑
k=1

Cηkγk ‖r2‖∞ V (Yk−1) ≤ C ′ 1

Hn

n∑
k=1

ηkγkV (Yk−1)→ 0 as sup
n∈N

νηn(V ) < +∞ and γn → 0
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If a ∈ [1/2, 1), the same limit follows from the Kronecker lemma mentioned in[21] and∑
n≥1 ηnγn/Hn < +∞.

Meanwhile,

J(γ, x, v) =

∫
Rd×Rd

r2((x, v), (x′, v′))(|r1|2 + |r2|2)µ(dr1, dr2)

where

(x′, v′) = (x+
1− e−2γ

2
v − u

2
(γ − 1− e−2γ

2
)∇f(x) +

√
uσ(1)r1, e

−2γv − u1− e−2γ

2
∇f(x) + 2

√
uσ(2)r2)

σ(1) =

(
γ +

1− e−4γ

4
− (1− e−2γ)

)1/2

, σ(2) =

(
1− e−4γ

4

)1/2

and (U (1), U (2)) ∼ µ = N (0,
1 + e−4γ − 2e−2γ

4σ(1)σ(2)
I2d)

We can see that J is a bounded continuous function on R+ × Rd × Rd and J(0, x, v) = 0. Since
lim|y|→∞ V (y) = +∞. We can also write

(2d+ 1)ηkE[r2(Yk−1, Yk)(|U (1)
k |

2 + |U (2)
k |

2)|Fk−1] = ηkV
a((xk−1, vk−1))θ((xk−1, vk−1))J(γk, xk−1, vk−1)

where lim|(xk−1,vk−1)|→∞ θ((xk−1, vk−1)) = 0 It remains to show that

P− a.s lim
n

1

Hn

n∑
k=1

ηkV
a((xk−1, vk−1))θ((xk−1, vk−1))J(γk, xk−1, vk−1) = 0

For a fixed number A > 0, J is uniformly continuous on [0, supn γn]× B̄2d(0, A), then

J(γk, xk−1, vk−1)1|(xk−1,vk−1)|≤A → 0 P− a.s.

And V a((xk−1, vk−1))θ((xk−1, vk−1)) is bounded on B̄2d(0, A). Therefore

P−a, s lim
n

1

Hn

n∑
k=1

ηkV
a((xk−1, vk−1))θ((xk−1, vk−1))J(γk, xk−1, vk−1)1|(xk−1,vk−1)|≤A = 0

On the other hand side

lim sup
n

1

Hn

n∑
k=1

ηkV
a((xk−1, vk−1))θ((xk−1, vk−1))J(γk, xk−1, vk−1)1|(xk−1,vk−1)|>A

≤ sup
|(x,v)|>A

|θ(x, v)| ‖J‖∞ sup
n
νηn(V a)→ 0 as A→ +∞

So taking A→ +∞ completes the proof.

Theorem 9. Let p ∈ [1,+∞). Assume (LV,p). Let s ∈ (0, 1]. Assume that

∑
n≥1

1

Hn

(
∆
ηn
γn

)
+

< +∞. lim
n

1

Hn

n∑
k=1

|∆ηk
γk
| = 0 and

∑
n≥1

(
ηn

Hn
√
γn

)1+s

< +∞

(a) Then
P− a.s sup

n∈N
νηn(ω, V p/(1+s)) < +∞.

(b) When p ≤ 1 + s, assume also
∑
n≥1 ηnγn/Hn < +∞. Then with probability 1, any weak limit

of the sequence (νηm) is an invariant distribution of the underdamped Langevin dynamics.

Theorem 9 follows directly from theorem 6 and theorem 8.
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Proof of Theorem 5. First we try to decompose
∑n
k=1 γkLφ(xk−1) using Taylor expansion.

φ(xk) = φ(xk−1) +∇φ(xk−1) · (xk − xk−1) +
1

2
D2φ(xk−1)(xk − xk−1)⊗2 +R

(k)
2

where R(k)
2 = φ(xk) − φ(xk−1) − ∇φ(xk−1) · (xk − xk−1) − 1

2D
2φ(xk−1)(xk − xk−1)⊗2. We

can plug our discretization into the equation and obtain:

φ(xk)− φ(xk−1) = γkLφ(xk−1)− (γk −
1− e−2γk

2
)vk−1 · ∇φ(xk−1)

− u

2
(γk −

1− e−2γk

2
)∇f(xk−1) · ∇φ(xk−1) +

√
uσ

(1)
k ∇φ(xk−1) · U (1)

k

+
1

2
(
1− e−2γk

2
)2D2φ(xk−1)v⊗2

k−1 +
u

2
σ

(1)
k

2
D2φ(xk−1)U

(1)
k

⊗2

+
u2

8
(γk −

1− e−2γk

2
)2D2φ(xk−1)∇f(xk−1)⊗2

− u

2

1− e−2γk

2
(γk −

1− e−2γk

2
)〈D2φ(xk−1); vk−1,∇f(xk−1)〉

+
√
uσ

(1)
k

1− e−2γk

2
〈D2φ(xk−1); vk−1, U

(1)
k 〉

− u3/2

2
σ

(1)
k (γk −

1− e−2γk

2
)〈D2φ(xk−1);∇f(xk−1), U

(1)
k 〉

+R
(k)
2

where

R
(k)
2 =

1

6
(
1− e−2γk

2
)3D3φ(xk−1)v⊗3

k−1 −
u

4
(
1− e−2γk

2
)2(γk −

1− e−2γk

2
)〈D3φ(xk−1); v⊗2

k−1,∇f(xk−1)〉

+

√
u

2
σ

(1)
k (

1− e−2γk

2
)2〈D3φ(xk−1); v⊗2

k−1, U
(1)
k 〉+

u

2
σ

(1)
k

2 1− e−2γk

2
〈D3φ(xk−1); vk−1, U

(1)
k

⊗2
〉

+
1

24
(
1− e−2γk

2
)4D4φ(xk−1)v⊗4

k−1 + r(k)

Since f is gradient Lipschitz and strongly convex, we’ve shown (LV,∞) holds. Using (LV,∞) the
fact that D4φ is bounded and Lipschitz, we can show there exists a constant C > 0 such that

|rk| ≤ Cγ9/2
k V 2(xk−1, vk−1)

Apply theorem 6 for p = 4 and s = 1, we have supn ν
γ
n(V 2) < +∞ P− a.s. Therefore

1

Γ
(4)
n

n∑
k=1

r(k) → 0 in L1

In the following proof, we will use o(γ4
k) to denote the sum of those terms bk such that

1

Γ
(4)
n

∑n
k=1 bk → 0 P − a.s. According to our decomposition, we can pull out polynomials of

γk from factors 1−e−2γk

2 , γk − 1−e−2γk

2 and σ(1)
k so that the terms left could be included in o(γ4

k).
Then we obtain

n∑
k=1

γkLφ(xk−1) =

n∑
k=1

{
[φ(xk)− φ(xk−1)] + (γ2

k −
2

3
γ3
k +

1

3
γ4
k)vk−1 · ∇φ(xk−1)

+
u

2
(γ2
k −

2

3
γ3
k +

1

3
γ4
k)∇f(xk−1) · ∇φ(xk−1)

− 2
√

3u

3
γ

3
2

k ∇φ(xk−1) · U (1)
k

− 1

2
(γ2
k − 2γ3

k +
7

3
γ4
k)D2φ(xk−1)v⊗2

k−1
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− u2

8
γ4
kD

2φ(xk−1)∇f(xk−1)⊗2

− u

2
(
4

3
γ3
k − 2γ4

k)D2φ(xk−1)U
(1)
k

⊗2

+
u

2
(γ3
k −

5

3
γ4
k)〈D2φ(xk−1); vk−1,∇f(xk−1)〉

− 1

6
(γ3
k − 3γ4

k)D3φ(xk−1)v⊗3
k−1

+
u

4
γ4
k〈D3φ(xk−1); v⊗2

k−1,∇f(xk−1)〉

− 2u

3
γ4
k〈D3φ(xk−1); vk−1, U

(1)
k

⊗2
〉

− 1

24
γ4
kD

4φ(xk−1)v⊗4
k−1 + o(γ4

k)

}
:= Z(0)

n + Z(2)
n + Z(3)

n + Z(4)
n +Nn + rn

where

Z(0)
n = φ(xn)− φ(x0)

Z(2)
n =

n∑
k=1

γ2
k

[
vk−1 · ∇φ(xk−1) +

u

2
∇f(xk−1) · ∇φ(xk−1)− 1

2
D2φ(xk−1)v⊗2

k−1

]

:=

n∑
k=1

γ2
kz

(2)
k−1

Z(3)
n =

n∑
k=1

γ3
k

[
−2

3
vk−1 · ∇φ(xk−1)− u

3
∇f(xk−1) · ∇φ(xk−1) +D2φ(xk−1)v2

k−1

−2u

3
D2φ(xk−1)U

(1)
k

⊗2
+
u

2
〈D2φ(xk−1); vk−1,∇f(xk−1)〉 − 1

6
D3φ(xk−1)v⊗3

k−1

]
:= −

n∑
k=1

γ3
kz

(3)
k−1

Z(4)
n =

n∑
k=1

γ4
k

[
1

3
vk−1 · ∇φ(xk−1) +

u

6
∇f(xk−1) · ∇φ(xk−1)− 7

6
D2φ(xk−1)v⊗2

k−1

−u
2

8
D2φ(xk−1)∇f(xk−1)⊗2 + uD2φ(xk−1)U

(1)
k

⊗2
− 5u

6
〈D2φ(xk−1); vk−1,∇f(xk−1)〉

+
1

2
D3φ(xk−1)v⊗3

k−1 + +
u

4
〈D3φ(xk−1); v⊗2

k−1,∇f(xk−1)〉 − 2u

3
〈D3φ(xk−1); vk−1, U

(1)
k

⊗2

− 1

24
D4φ(xk−1)v⊗4

k−1

]
:=

n∑
k=1

γ4
kz

(4)
k−1

Nn =

n∑
k=1

2
√

3u

3
γ

3
2

k ∇φ(xk−1) · U (1)
k

rn =

n∑
k=1

o(γ4
k)

First, it’s easy to see that rn/Γ
(4)
n → 0 P − a.s as n → +∞. Apply lemma 5 and we obtain

supn E[V (xn, vn)] < +∞. Therefore we can further obtain the tightness of sequence {xn} and it
follows from the continuity of φ that {φ(xn)} is also tight. According to the tightness, Z(0)

n /Γ
(4)
n →

0 P− a.s. For Z(4)
n , under our assumptions on φ and f , we can show that

lim
|(xn,vn)|→+∞

z(4)
n /V 4(xn, vn) = 0
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Therefor apply theorem 9 with p = 8, s = 1 and we obtain:

P− a.s Z(4)
n /Γ(4)

n →
u

4

∫
R2d

〈D3φ(x);∇f(x), v⊗2〉ν(dx, dv)− u2

8

∫
Rd
D2φ(x)∇f(x)⊗2π(dx)

− 1

24

∫
R2d

D4φ(x)v⊗4ν(dx, dv)

To consider the limit of Z(i)
n /Γ

(4)
n for i = 2, 3, We first Taylor expand Lφ(xk−1) at xk−2:

Lφ(xk−1) = vk−2 · ∇φ(xk−2) + 〈D2φ(xk−2); vk−2, xk−1 − xk−2〉+∇φ(xk−2) · (vk−1 − vk−2)

+
1

2
〈D3φ(xk−2); vk−2, (xk−1 − xk−2)⊗2〉+ 〈D2φ(xk−2); vk−1 − vk−2, xk−1 − xk−2〉

+
1

6
〈D4φ(xk−2); vk−2, (xk−1 − xk−2)⊗3〉

+
1

2
〈D3φ(xk−2); vk−1 − vk−2, (xk−1 − xk−2)⊗2〉

+ o(γ3
k)

Plug the discretization into the Taylor expansions and preserve the ”large” terms, then we obtain:

Lφ(xk−1) = Lφ(xk−2) + (γk−1 − γ2
k−1 +

2

3
γ3
k−1)D2φ(xk−2)v⊗2

k−2

− u

2
(γ2
k−1 −

2

3
γ3
k−1)〈D2φ(xk−2); vk−2,∇f(xk−2)〉

+
2
√

3u

3
γ

3
2

k−1〈D
2φ(xk−2); vk−2, U

(1)
k−1〉

− (2γk−1 − 2γ2
k−1 +

4

3
γ3
k−1)vk−2 · ∇φ(xk−2)

− u(γk−1 − γ2
k−1 +

2

3
γ3
k−1)∇f(xk−2) · ∇φ(xk−2)

+ 2
√
uγ

1
2

k−1∇φ(xk−2) · U (2)
k−1

+
1

2
(γ2
k−1 − 2γ3

k−1)D3φ(xk−2)v⊗3
k−2

+
2u

3
γ3
k−1〈D3φ(xk−2); vk−2, U

(1)
k−1

⊗2
〉

+
√
uγ

5
2

k−1〈D
3φ(xk−2); v⊗2

k−2, U
(1)
k−1〉

− u

2
γ3
k−1〈D3φ(xk−2); v⊗2

k−2,∇f(xk−2)〉

− 2(γ2
k−2 − 2γ3

k−1)D2φ(xk−2)v⊗2
k−2

− u(γ2
k−1 − 2γ3

k−1)〈D2φ(xk−2); vk−2,∇f(xk−2)〉

+ 2
√
uγ

3
2

k−1〈D
2φ(xk−2); vk−2, U

(2)
k−1〉

+ uγ3
k−1〈D2φ(xk−2); vk−2,∇f(xk−2)〉

+
u2

2
γ3
k−1D

2φ(xk−2)∇f(xk−2)⊗2

− u 3
2 γ

5
2

k−1〈D
2φ(xk−2);∇f(xk−2), U

(2)
k−1〉

− 2
√
uγ

5
2

k−1〈D
2φ(xk−2); vk−2, U

(1)
k−1〉

− u 3
2 γ

5
2

k−1〈D
2φ(xk−2);∇f(xk−2), U

(1)
k−1〉

+ 〈D2φ(xk−2);
√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(2)
k−1〉+ o(γ3

k−1)
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Apply theorem 9 with p = 4, s = 1 to the terms of order o(V 2(xk−2, vk−2)) in the decomposition.
We obtain

lim
n

∑n
k=2 γkLφ(xk−1)

Γ
(4)
n

= lim
n

1

Γ
(4)
n

[
n∑
k=2

γkLφ(xk−2) +

n∑
k=2

γk(γk−1 − 3γ2
k−1)D2φ(xk−2)v⊗2

k−2

−
n∑
k=2

3u

2
γkγ

2
k−1〈D2φ(xk−2);∇f(xk−2), vk−2〉

−
n∑
k=2

γk(2γk−1 − 2γ2
k−1)∇φ(xk−2) · vk−2

−
n∑
k=2

uγk(γk−1 − γ2
k−1)∇f(xk−2) · ∇φ(xk−2)

+

n∑
k=2

1

2
γkγ

2
k−1D

3φ(xk−2)v⊗3
k−2

+

n∑
k=2

2
√
uγkγ

1
2

k−1∇φ(xk−2) · U (2)
k−1

+

n∑
k=2

γk〈D2φ(xk−2);
√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(2)
k−1〉

]

+ 4u

∫
Rd

∆φ(x)π(dx)− u

2

∫
R2d

〈D3φ(x); v⊗2,∇f(x)〉ν(dx, dv)

+
u2

2

∫
Rd
D2φ(x)∇f(x)⊗2π(dx)

Since γk−1 − γk = o(γ4
k), we can substitute all the γk on the right hand side with γk−1

and it won’t change the limits. For the last term inside the square bracket, notice that
V ar(

√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(2)
k−1) = u

2 (1 + e−4γk−1 − 2e−2γk−1)Id ∼ u(2γ2
k−1 − 4γ3

k−1)Id.
Therefore

lim
n

1

Γ
(4)
n

n∑
k=2

γk〈D2φ(xk−2);
√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(2)
k−1〉 = lim

n

1

Γ
(4)
n

n∑
k=2

2uγ3
k−1∆φ(xk−2)

− 4u

∫
Rd

∆φ(x)π(dx)

We can rewrite the equation as

lim
n

∑n
k=2 γkLφ(xk−1)

Γ
(4)
n

= lim
n

1

Γ
(4)
n

n∑
k=2

γkLφ(xk−2) + lim
n

1

Γ
(4)
n

n∑
k=2

2
√
uγ

3
2

k−1∇φ(xk−2) · U (2)
k−1

+ lim
n

1

Γ
(4)
n

n∑
k=2

γ2
k−1[D2φ(xk−2)v⊗2

k−2 − 2∇φ(xk−2) · vk−2 − u∇f(xk−2) · ∇φ(xk−2)]

+ lim
n

1

Γ
(4)
n

n∑
k=2

γ3
k−1[−3Dφ(xk−2)v⊗2

k−2 −
3u

2
〈D2φ(xk−2);∇f(xk−2), vk−2〉

+ 2∇φ(xk−2) · vk−2 + u∇f(xk−2) · ∇φ(xk−2) +
1

2
D3φ(xk−2)v⊗3

k−2 + 2u∆φ(xk−2)]

− u

2

∫
R2d

〈D3φ(x); v⊗2,∇f(x)〉ν(dx, dv) +
u2

2

∫
Rd
D2φ(x)∇f(x)⊗2π(dx)

= lim
n

1

Γ
(4)
n

n∑
k=2

γkLφ(xk−2) + lim
n

1

Γ
(4)
n

n∑
k=2

2
√
uγ

3
2

k−1∇φ(xk−2) · U (2)
k−1

+ lim
n

1

Γ
(4)
n

(−2Z(2)
n − 3Z(3)

n )
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− u

2

∫
R2d

〈D3φ(x); v⊗2,∇f(x)〉ν(dx, dv) +
u2

2

∫
Rd
D2φ(x)∇f(x)⊗2π(dx)

We can instantly get that

lim
n

1

Γ
(4)
n

(2Z
(n)
2 + 3Z(3)

n ) = lim
n

1

Γ
(4)
n

n∑
k=2

2
√
uγ

3
2

k−1∇φ(xk−2) · U (2)
k−1

+
u2

2

∫
Rd
D2φ(x)∇f(x)⊗2π(dx)

− u

2

∫
R2d

〈D3φ(x);∇f(x), v⊗2〉ν(dx, dv)

Similarly, apply Taylor expansion to z(2)
k−1 at xk−2, we achieve:

∇f(xk−1) · ∇φ(xk−1) = ∇f(xk−2) · ∇φ(xk−2) + 〈D2f(xk−2);∇φ(xk−2), xk−1 − xk−2〉
+ 〈D2φ(xk−2);∇f(xk−2), xk−1 − xk−2〉

+
1

2
D3(∇f · ∇φ)(xk−2)(xk−1 − xk−2)⊗2 + o(γ2

k)

1

2
D2φ(xk−1)v⊗2

k−1 =
1

2
D2φ(xk−2)v⊗2

k−2 +
1

2
〈D3φ(xk−1); v⊗2

k−2, xk−1 − xk−2〉

+ 〈D2φ(xk−2); vk−2, vk−1 − vk−2〉+
1

2
D2φ(xk−2)(vk−1 − vk−2)⊗2

+
1

4
(
1− e−2γk−1

2
)2D4φ(xk−2)v⊗4

k−2

+
1

2
〈D3φ(xk−2); vk−2, xk−1 − xk−2, vk−1 − vk−2〉

+
1

6
〈D3φ(xk−2);xk−1 − xk−2, (vk−1 − vk−2)⊗2〉+ o(γ2

k)

Simplifying the coefficients lead us to

∇f(xk−1) · ∇φ(xk−1) = ∇f(xk−2) · ∇φ(xk−2) + (γk−1 − γ2
k−1)〈D2f(xk−2);∇φ(xk−2), vk−2〉

− u

2
γ2
k−1〈D2f(xk−2);∇φ(xk−2),∇f(xk−2)〉

+
2
√

3u

3
γ

3
2

k−1〈D
2f(xk−2);∇φ(xk−2), U

(1)
k−1〉

+ (γk−1 − γ2
k−1)〈D2φ(xk−2);∇f(xk−2), vk−2〉

− u

2
γ2
k−1D

2φ(xk−2)∇f(xk−2)⊗2 +
√
uγ

3
2

k−1〈D
2φ(xk−2);∇f(xk−2), U

(1)
k−1〉

+
1

2
γ2
k−1(D3f∇φ+ 2D2φD2f +D3φ∇f)(xk−2)v⊗2

k−2 + o(γ2
k−1)

1

2
D2φ(xk−1)v⊗2

k−1 =
1

2
D2φ(xk−2)v⊗2

k−2 +
1

2
(γk−1 − γ2

k−1)D3φ(xk−2)v⊗3
k−2

− u

4
γ2
k−1〈D3φ(xk−2); v⊗2

k−2,∇f(xk−2)〉+

√
u

2
γ

3
2

k−1〈D
3φ(xk−2); v⊗2

k−2, U
(1)
k−1〉

− 2(γk−1 − γ2
k−1)D2φ(xk−2)v⊗2

k−2 − u(γk−1 − γ2
k−1)〈D2φ(xk−2);∇f(xk−2), vk−2〉

+ 2
√
uγ

1
2

k−1〈D
2φ(xk−2); vk−2, U

(2)
k−1〉+ 2γ2

k−1D
2φ(xk−2)v⊗2

k−2

+
u2

2
γ2
k−1D

2φ(xk−2)∇f(xk−2)⊗2 + 2u(γk−1 − 2γ2
k−1)D2φ(xk−2)U

(2)
k−1

⊗2

+ 2uγ2
k−1〈D2φ(xk−2);∇f(xk−2), vk−2〉 − 4

√
uγ

3
2

k−1〈D
2φ(xk−2); vk−2, U

(2)
k−1〉
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− 2u
3
2 γ

3
2

k−1〈D
2φ(xk−2);∇f(xk−2), U

(2)
k−1〉+

1

4
γ2
k−1D

4φ(xk−2)v⊗4
k−2

− γ2
k−1D

3φ(xk−2)v⊗3
k−2 −

u

2
γ2
k−1〈D3φ(xk−2); v⊗2

k−2,∇f(xk−2)〉

+
1

2
〈D3φ(xk−2); vk−2,

√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(12
k−1〉

+
2u

3
γ2
k−1〈D3φ(xk−1); vk−2;U

(2)
k−1

⊗2
〉+ o(γ2

k)

Take the limits and we obtain:

lim
n

∑n
k=2 γ

2
k∇f(xk−1) · ∇φ(xk−1)

Γ
(4)
n

= lim
n

1

Γ
(4)
n

[
n∑
k=2

γ2
k−1∇f(xk−2) · ∇φ(xk−2)

+

n∑
k=2

γ3
k−1〈D2f(xk−2);∇φ(xk−2), vk−2〉

+

n∑
k=2

γ3
k−1〈D2φ(xk−2);∇f(xk−2), vk−2〉

]

− u

2

∫
Rd
〈D2f(x);∇φ(x),∇f(x)〉π(dx)

− u

2

∫
Rd
D2φ(x)∇f(x)⊗2π(dx)

+
1

2

∫
Rd

(
D3f(x)∇φ(x) + 2D2f(x)D2φ(x) +D3φ(x)∇f(x)

)
v⊗2ν(dx, dv)

lim
n

1

2

∑n
k=2 γ

2
kD

2φ(xk−1)v⊗2
k−1

Γ
(4)
n

= lim
n

{
1

Γ
(4)
n

n∑
k=2

1

2
γ2
k−1D

2φ(xk−2)v⊗2
k−2

+
1

Γ
(4)
n

n∑
k=2

γ3
k−1

[
1

2
D3φ(xk−2)v⊗3

k−2 − 2D2φ(xk−2)v⊗2
k−2

−u〈D2φ(xk−2);∇f(xk−2), vk−2〉+ 2uD2φ(xk−2)U
(2)
k−1

⊗2]}
− 3u

4

∫
R2d

〈D3φ(x);∇f(x), v⊗2〉ν(dx, dv) +
1

4

∫
R2d

D4φ(x)v⊗4π(dx)

+
u2

2

∫
Rd
D2φ(x)∇f(x)⊗2π(dx)

Claim:

a) limn
1

Γ
(4)
n

∑n
k=1 γ

2
k∇φ(xk−1) · vk−1 = 0.

b) limn
1

Γ
(4)
n

∑n
k=1 γ

3
k(u2∇φ(xk−1) · ∇f(xk−1)− 1

2D
2φ(xk−1)v⊗2

k−1) = 0.

c) limn
1

Γ
(4)
n

∑n
k=1 γ

3
k∇φ(xk−1) · vk−1 = 0.

We’ll prove the Claim at the end of our proof. We can use the Claim and our expansion of Z(2)
n to

find the following relation:

lim
n

1

Γ
(4)
n

Z(2)
n = lim

n

1

Γ
(4)
n

n∑
k=2

γ2
k∇φ(xk−1) · vk−1

+ lim
n

1

Γ
(4)
n

n∑
k=2

γ2
k

[
u

2
∇f(xk−1) · ∇φ(xk−1)− 1

2
D2φ(xk−1)v⊗2

k−1

]
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= lim
n

1

Γ
(4)
n

n∑
k=2

γ2
k−1

[
u

2
∇f(xk−2) · ∇φ(xk−2)− 1

2
D2φ(xk−2)v⊗2

k−2

]

+ lim
n

1

Γ
(4)
n

n∑
k=2

γ3
k−1

[
u

2
〈D2f(xk−2);∇φ(xk−2), vk−2〉+

3u

2
〈D2φ(xk−2);∇f(xk−2), vk−2〉

−1

2
D3φ(xk−2)v⊗3

k−2 + 2D2φ(xk−2)v⊗2
k−2 − 2u∆φ(xk−2)

]
− u2

4

∫
Rd
〈D2f(x);∇φ(x),∇f(x)〉π(dx)− u2

4

∫
Rd
D2φ(x)∇f(x)⊗2π(dx)

+
u

4

∫
Rd

(
D3f(x)∇φ(x) + 2D2f(x)D2φ(x) +D3φ(x)∇f(x)

)
v⊗2ν(dx, dv)

+
3u

4

∫
R2d

〈D3φ(x);∇f(x), v⊗2〉ν(dx, dv)− 1

4

∫
R2d

D4φ(x)v⊗4π(dx)

− u2

2

∫
Rd
D2φ(x)∇f(x)⊗2π(dx)

= lim
n

1

Γ
(4)
n

[Z(2)
n + 3Z(3)

n ]− u2

4

∫
Rd
〈D2f(x);∇φ(x),∇f(x)〉π(dx)

− 3u2

4

∫
Rd
D2φ(x)∇f(x)⊗2π(dx)− 1

4

∫
R2d

D4φ(x)v⊗4π(dx)

+
u

4

∫
Rd

(
D3f(x)∇φ(x) + 2D2f(x)D2φ(x) + 4D3φ(x)∇f(x)

)
v⊗2ν(dx, dv)

The last identity follows from Claim-a),b) and the fact that
limn

1

Γ
(4)
n

∑n
k=1 γ

3
k〈D2f(xk−1);∇φ(xk−1), vk−1〉 = 0. To prove

limn
1

Γ
(4)
n

∑n
k=1 γ

3
k〈D2f(xk−1);∇φ(xk−1), vk−1〉 = 0, we can assume ψ is a new test function

satisfying ∇ψ(x) = D2f(x)∇φ(x). Then the statement follows from Claim-c). This could be
done because ψ satisfies the all assumptions on φ stated in the theorem. Therefore we obtain

lim
n

1

Γ
(4)
n

Z(3)
n =

u2

12

∫
Rd
〈D2f(x);∇φ(x),∇f(x)〉π(dx) +

u2

4

∫
Rd
D2φ(x)∇f(x)⊗2π(dx)

− u

12

∫
Rd

(
D3f(x)∇φ(x) + 2D2f(x)D2φ(x) + 4D3φ(x)∇f(x)

)
v⊗2ν(dx, dv)

+
1

12

∫
R2d

D4φ(x)v⊗4π(dx)

Combine with our previous results on 2Z
(2)
n + 3Z

(3)
n and we obtain

lim
n

1

Γ
(4)
n

[Z(2)
n + Z(3)

n ] = lim
n

1

Γ
(4)
n

n∑
k=1

√
uγ

3
2

k ∇φ(xk−1) · U (2)
k +

u2

8

∫
Rd
D2φ(x)∇f(x)⊗2π(dx)

− u

12

∫
R2d

〈D3φ(x);∇f(x), v⊗2〉ν(dx, dv) +
u

24

∫
R2d

〈D3f(x);∇φ(x), v⊗2〉ν(dx, dv)

+
u

12

∫
R2d

(D2fD2φ)(x)v⊗2ν(dx, dv)− u2

24

∫
Rd
〈D2f(x);∇φ(x),∇f(x)〉π(dx)

− 1

24

∫
R2d

D4φ(x)v⊗4π(dx)

Then we plug this result in our original decomposition:

lim
n

1

Γ
(4)
n

n∑
k=1

γkLφ(xk−1) = lim
n

1

Γ
(4)
n

n∑
k=1

γ
3
2

k

2
√

3

3
∇φ(xk−1) · (

√
uU

(1)
k )
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+ lim
n

1

Γ
(4)
n

n∑
k=1

√
uγ

3
2

k ∇φ(xk−1) · U (2)
k +

u2

8

∫
Rd
D2φ(x)∇f(x)⊗2π(dx)

− u

12

∫
R2d

〈D3φ(x);∇f(x), v⊗2〉ν(dx, dv) +
u

24

∫
R2d

〈D3f(x);∇φ(x), v⊗2〉ν(dx, dv)

+
u

12

∫
R2d

(D2fD2φ)(x)v⊗2ν(dx, dv)− u2

24

∫
Rd
〈D2f(x);∇φ(x),∇f(x)〉π(dx)

− 1

24

∫
R2d

D4φ(x)v⊗4π(dx) +
u

4

∫
R2d

〈D3φ(x);∇f(x), v⊗2〉ν(dx, dv)

− u2

8

∫
Rd
D2φ(x)∇f(x)⊗2π(dx)− 1

24

∫
R2d

D4φ(x)v⊗4ν(dx, dv)

= lim
n

1

Γ
(4)
n

n∑
k=1

γ
3
2

k ∇φ(xk−1) · (2
√

3

3

√
uU

(1)
k +

1

2
2
√
uU

(2)
k )

+
u

6

∫
R2d

〈D3φ(x);∇f(x), v⊗2〉ν(dx, dv) +
u

24

∫
R2d

〈D3f(x);∇φ(x), v⊗2〉ν(dx, dv)

+
u

12

∫
R2d

(D2φD2f)(x)v⊗2ν(dx, dv)− 1

12

∫
R2d

D4φ(x)v⊗4ν(dx, dv)

− u2

24

∫
Rd
〈D2f(x);∇φ(x),∇f(x)〉π(dx)

It remains to determine the normal limit. Since (U
(1)
k , U

(2)
k ) is Gaussian in R2d with mean zero

and covariance matrix 1+e−4γk−2e−2γk

4σ
(1)
k σ

(2)
k

Id, we can find the distribution of Uk := ( 2
√

3
3

√
uU

(1)
k +

1
22
√
uU

(2)
k ). {Uk} are independent 2d-Gaussian Random vectors with Uk ∼ N (0,Σk), where

Σk = E[(
2
√

3

3

√
uU

(1)
k +

1

2
2
√
uU

(2)
k )T (

2
√

3

3

√
uU

(1)
k +

1

2
2
√
uU

(2)
k )]

=
4u

3
Id +

4u
√

3

3

1 + e−4γk − 2e−2γk

4σ
(1)
k σ

(2)
k

Id + uId

∼ 10

3
uId +O(γk)Id

Apply our weak convergence result and CLT for arrays of square-integrable martingale increments,
we have that when 0 < γ̂ < +∞:

1

Γ
(4)
n

n∑
k=1

γ
3
2

k ∇φ(xk−1) · Uk =⇒ N (0, σ2)

where

σ2 = lim
n

1

Γ
(4)
n

2

n∑
k=1

γ3
k|∇φ(xk−1)|2(

10

3
u+O(γk)) =

10

3
uγ̂−2

∫
Rd
|∇φ(x)|2π(dx)

In conclusion, when γ̂ ∈ (0,+∞):

Γn

Γ
(4)
n

νγn(Lφ) =⇒ N (ρ,
10

3
uγ̂−2

∫
Rd
|∇φ(x)|2π(dx))

where

ρ =
u

6

∫
R2d

〈D3φ(x);∇f(x), v⊗2〉ν(dx, dv) +
u

24

∫
R2d

〈D3f(x);∇φ(x), v⊗2〉ν(dx, dv)

+
u

12

∫
R2d

(D2φD2f)(x)v⊗2ν(dx, dv)− 1

12

∫
R2d

D4φ(x)v⊗4ν(dx, dv)
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− u2

24

∫
Rd
〈D2f(x);∇φ(x),∇f(x)〉π(dx)

When γ̂ = 0,
Γn√
Γ

(3)
n

νγn(Lφ) =⇒ N (0,
10

3
u

∫
Rd
|∇φ(x)|2π(dx))

When γ̂ = +∞,

1

Γ
(4)
n

n∑
k=1

γ
3
2

k ∇φ(xk−1) · (2
√

3

3

√
uU

(1)
k +

1

2
2
√
uU

(2)
k )→ 0 in probability

Therefore when γ̂ = +∞,
Γn

Γ
(4)
n

νγn(Lφ)→ ρ in probability

Proof of the claim: First we’ll show that 1

Γ
(3)
n

∑n
k=1 γ

2
kLφ(xk−1) → 0. We can use our decompo-

sition of Lφ(xk−1) and obtain:
n∑
k=1

γ2
kLφ(xk−1) =

n∑
k=1

{
γk (φ(xk)− φ(xk−1)) + γ3

kvk−1 · ∇φ(xk−1)

+
u

2
γ3
k∇f(xk−1) · ∇φ(xk−1)− 1

2
γ3
kD

2φ(xk−1)v⊗2
k−1

}

Since γk−1 − γk ∼ o(γ4
k) and {φ(xn)} is tight, 1

Γ
(3)
n

∑n
k=1 γk (φ(xk)− φ(xk−1)) → 0. Then we

can apply theorem 9 with p = 6, s = 1 and obtain

1

Γ
(3)
n

n∑
k=1

γ2
kLφ(xk−1)→

∫
R2d

v · ∇φ(x)ν(dx, dv) +
u

2

∫
Rd
∇φ(x) · ∇f(x)π(dx)

− 1

2

∫
R2d

D2φ(x)v⊗2ν(dx, dv)

= 0

The last identity follows from integration by parts and Fubini theorem. In the same way, we can also
prove 1

Γ
(4)
n

∑n
k=1 γ

3
kLφ(xk−1)→ 0.

Next, we’ll show limn
1

Γ
(3)
n

∑n
k=1 γ

2
k(u2∇φ(xk−1) ·∇f(xk−1)− 1

2D
2φ(xk−1)v⊗2

k−1) = 0, we’ll use

the same trick as we did in the proof of theorem 5. We Taylor expand Lφ(xk−1) at (xk−2, vk−2):

γ2
kLφ(xk−1) = γ2

kLφ(xk−2) + γ2
k(γk−1 − γ2

k−1)D2φ(xk−2)v⊗2
k−2

− u

2
γ2
kγ

2
k−1〈D2φ(xk−2); vk−2,∇f(xk−2)〉

− γ2
k(2γk−1 − 2γ2

k−1)vk−2 · ∇φ(xk−2)

− uγ2
k(γk−1 − γ2

k−1)∇f(xk−2) · ∇φ(xk−2)

+
1

2
γ2
kγ

2
k−1D

3φ(xk−2)v⊗3
k−2 − 2γ2

kγ
2
k−2D

2φ(xk−2)v⊗2
k−2

− uγ2
kγ

2
k−1〈D2φ(xk−2); vk−2,∇f(xk−2)〉

+ γ2
k〈D2φ(xk−2);

√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(2)
k−1〉+ o(γ3

k−1)

Since γk−1 − γk = o(γ4
k), we can change γk on the left hand side to γk−1 when we take limits with

scale Γ
(4)
n . Apply theorem 9 with p = 8, s = 1 to terms with order o(γ3

k)-coefficients.

lim
n

1

Γ
(4)
n

n∑
k=2

γ2
kLφ(xk−1) = lim

n

1

Γ
(4)
n

n∑
k=2

γ2
k−1Lφ(xk−2)− 2 lim

n

1

Γ
(4)
n

n∑
k=2

γ3
k−1Lφ(xk−2)
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− 2 lim
n

1

Γ
(4)
n

n∑
k=2

γ3
k−1(

u

2
∇φ(xk−2) · ∇f(xk−2)− 1

2
D2φ(xk−2)v⊗2

k−2)

− 3

∫
R2d

D2φ(x)v⊗2ν(dx, dv) + u

∫
Rd
∇φ(x) · ∇f(x)π(dx)

+ lim
n

1

Γ
(4)
n

n∑
k=2

γ2
k−1〈D2φ(xk−2);

√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(2)
k−1〉

Since we proved 1

Γ
(4)
n

∑n
k=1 γ

3
kLφ(xk−1)→ 0 and from Theorem 5, we’ve shown that

lim
n

1

Γ
(4)
n

n∑
k=2

γ2
k−1〈D2φ(xk−2);

√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(2)
k−1〉 = 2u

∫
Rd

∆φ(x)π(dx)

We obtain

lim
n

1

Γ
(4)
n

n∑
k=2

γ2
k−1(

u

2
∇φ(xk−2) · ∇f(xk−2)− 1

2
D2φ(xk−2)v⊗2

k−2)

=
1

2

[
lim
n

1

Γ
(4)
n

n∑
k=2

γ2
kLφ(xk−1)− lim

n

1

Γ
(4)
n

n∑
k=2

γ2
k−1Lφ(xk−2)

]
= 0

Therefore, limn
1

Γ
(4)
n

∑n
k=1 γ

3
k(u2∇φ(xk−1) · ∇f(xk−1)− 1

2D
2φ(xk−1)v⊗2

k−1) = 0.
To prove the Claim, we need to use the decomposition again:

n∑
k=1

γ2
kLφ(xk−1) =

n∑
k=1

{
γk[φ(xk)− φ(xk−1)] + (γ3

k −
2

3
γ4
k)vk−1 · ∇φ(xk−1)

+
u

2
(γ3
k −

2

3
γ4
k)∇f(xk−1) · ∇φ(xk−1)

− 1

2
(γ3
k − 2γ4

k)D2φ(xk−1)v⊗2
k−1

− 2u

3
γ4
kD

2φ(xk−1)U
(1)
k

⊗2

+
u

2
γ4
k〈D2φ(xk−1); vk−1,∇f(xk−1)〉

−1

6
γ4
kD

3φ(xk−1)v⊗3
k−1 + o(γ4

k)

}

Since {φ(xn)} is tight and γk−1−γk = o(γ4
k), we have 1

Γ
(4)
n

∑n
k=1 γk(φ(xk)−φ(xk−1))→ 0. For

the terms with coefficients of order γ3
k , we can apply theorem 9 with p = 8, s = 1. Then we obtain:

lim
n

1

Γ
(4)
n

n∑
k=1

γ2
kLφ(xk−1) = lim

n

1

Γ
(4)
n

n∑
k=1

γ3
k(Lφ(xk−1) +

u

2
∇φ(xk−1) · ∇f(xk−1)− 1

2
D2φ(xk−1)v⊗2

k−1)

− u

3

∫
Rd
∇φ(x) · ∇f(x)π(dx) +

∫
R2d

D2φ(x)v⊗2ν(dx, dv)

− 2u

3

∫
Rd

∫
Rd
D2φ(x)z⊗2µ(dz)π(dx)

= lim
n

1

Γ
(4)
n

n∑
k=1

γ3
k(Lφ(xk−1) +

u

2
∇φ(xk−1) · ∇f(xk−1)− 1

2
D2φ(xk−1)v⊗2

k−1)

= 0

The second identity follows from integration by parts and Fubini theorem. The last identity follows
from the two statements we just proved.
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