CSC2529 Computer Animation Project

Sketch-Based Animation Language

Eron Steger

Abstract

We present a visual language for the creationmpk 2D animations within a sketch-
based interface. Motions are represented by meiadins, which are drawn as arrows.
Events are used to synchronize disparate motioasking where along motion paths
multiple entities should be at the same time. Raisnimations is supported with the
notion of animation functions, which allow previduspecified motions to be played
back.

1 Introduction

The process of constructing an animation generatijyires many steps going from
design to completion. While there has been muatkwotools for implementing
animations [1], less work has gone into the impargeliminary stages.

When planning an animation, it is useful to stathva simple 2D drawing of the scene.
This sketch, through its images and annotations;rd#es how various objects move in
relation to one another. These annotations caredora variety of forms, such as lines
to describe where an object will go, to text désng what an object should be doing.
This design process is fluid, allowing the artesgjickly construct new animations on
the fly.

We present a system for prototyping animationsgiaisketch-based interface. Given an
annotated sketch as input, the system will genaemi@nimation. The make-up of the
sketch’s images and annotations can be consideteel & form of visual language, in

that they describe how the animation should loBke definition of this language is
important, as it must be both easy to understanth@user as well as recognizable by a
computer.

In this work, we will concentrate on high-level noots within a scene. That is, instead
of dealing with the specifics of how a charactelksawe concentrate more on the over
all movement of multiple characters and how thegriact. While the language doesn’t
concentrate on lower-level motions, it is flexileleough to deal with them.



2 Previous Work

Sketch based systems are a natural choice fordla¢éian of graphical media, with much
work focused on modeling. For example, the “Tedslystem allows for the creation of
models by interpreting sketches and gestures frenuser [3].

There has been some work on interpreting 3D pase fketches. In [2], a system is
presented that takes as input a set of 2D key fiskatehes and with some additional
user interaction, outputs a 3D animation.

Of particular interest for the sketching of aniroatare Motion Doodles ([5] and [6]).
Motion Doodles specify animations by sketching stgee of the desired motion. Such a
system could complement ours, providing additionalning to the shape of motion
paths drawn in our system.

3 System

Our system for generating animations from sketdagsbe thought of in similar terms to
that of a compiler:

a) Tokenizer: Identify lines, arrows, and other ksan the sketch.

b) Parser: Determine the structure of the skeMbtion paths are connected to each
other, and annotations such as events are logaredeirence to their location on
the sketch.

c) Animation generator: Generates the animatigrsdtiom the parsed data and
synchronizes them together.

Sketch=>» Tokenize=>» Parse® Animation Generato® Animation

While there are many interesting computer visiasbfgms that need to be handled for
the tokenizing step, we will concentrate mainly plagsing step and to some extent the
generator step.

Outside this strict compiler context, our implenaian has two key steps:

a) Parsing and generating animation clips
b) Synchronizing events

An animation clip is a motion that an entity with through, from start to finish. An
entity may have multiple animation clips associatetth it, each played at different
times.

Events specify times when two or more animatiopscinust be at specific point in their
playback. They implicitly specify when animatidlips start and end, providing a simple
mechanism for synchronizing the entire animation.



4 Language

The visual language is key to the system, astitagnain interface for the user to specify
animations.

A sketch is generally made up of the following caments:

Entities
Motions paths
Commands
Events

From these components, animation clips are gertteaie synchronized.

4.1 Animation Clips

As explained earlier, an animation clip represamtsovement an entity goes through,
from start to finish. The attributes of an aniroattlip are as follows:

- length: The amount of time the clip takes to play fromrsto finish.

- motion: The position the object is at any point withie time period it
represents. Many representations are possiblegthae consider this as
position at each frame

- events:A set of times relative to the animation clipé&frame. Related events
in different motion clips will need to be playedckaylobally at the same time.

The motions of an animation clips must be played a#ole. If you wish to have the
character go through motions that need to be sgnéted to more than one event, it may
be necessary to split up the clip into multipletparAn example of this would be a
baseball player catching two balls thrown at défartimes. One clip would represent
catching the first ball, while the other clip woulgpresent catching second.

To specify that a motion path is the start of a @wmation clip, aquareis placed at
the beginning of it.

In between such clips, one can assign an idle @ammavhich cycles through until
moving to the next clip. This idle animation igsfied by using the *’ on the last
motion of an animation clip.



4.2 Entities

Entities are the objects that will be animatedr éities that represent static objects
such balls, their drawing only specifies which abjill be moved.

4.2.1 Entity Handles

For more complex entities representing charactieesentity provides handles to control
the character. In the case of a character withne Istructure, these controls are inverse
kinematic (IK) handles. This allows one to contialentity as a set of individual parts.

om |

(@)

Figure 1

(a) Sample entities. The first two are simple shes, while the latter is a bone structure. (b) Eritly
IK-handles of bone structure highlighted. Can be aimated individually using motion paths.

4.3 Motion Paths

Motions paths are the core motion annotation fetdkes. A motion path is defined
using an arrow, describing the path along whiclertity will move. To extend an
animation further, motion paths can connect toptteious motion path.

@ ‘v\ O %/

(@) (b) (©)

Figure 2
(a) Single motion path (b) Motion paths with implcit ordering, first through loop then out
(c) Motion path with explicit ordering, with paths numbered to show order.
The square on the last motion path of (¢) means thanotion path represents a new animation clip.



When parsing motion paths, we start from the emtitg work outwards. From the entity,
we determine motion paths whose start positiotoisecto the entity. The first path
connecting to the entity describes the first pieiceotion in the animation clip to be
generated. Next, we search the end point of eaxttompath, for new motion paths,
assigning them to be the next part of the animatibms process continues recursively
until there are no more connection paths.

Pseudo code of the process described is as follows:

AssignMotionPath(object, pos)
For each unassigned motion path M:
If dist(M.start, pos) < THRESHOLD:
object.next = object.next {M}
M.prev = object
AssignMotionPath(M, M.pos)
End If
End For

Each motion path has a set of ‘next’ motions tatgough. In order to disambiguate this
situation when building our animation clips, we tiée order these motions. In most
cases, we implicitly determine an ordering by falilng motions whose ending position
is the same as their starting position. By follegvthese looping motions first, the path
the entity takes will be continuous. In some cdbissrestriction may not be enough,
such as when there is more than one loop. In tines@Ences, we require the ordering to
be explicitly labelled by drawing a circled numimext to the motion paths.

4.3.1 Paths for Non-Translational Motion

By default, a motion path defines the translatigpuition of an object. In some cases
this is adequate, but we would like the path tacdbs more.

One possible solution is that of Motion Doodles [H]stead of drawing a straight line
representing where the character should go, a dageglesenting how the characters feet
should step is drawn.

Another possible solution could incorporate arfiardl-life system into the animation.
The sketch itself could then describe a path thatharacter will follow as best it can,
dependant on many factors, from objects gettirthenway to other things catching its
attention.

Later in this report, we examine how we can incoa®physics into a sketch by having
the sketch represent a target position of a prapwt derivative (PD) controller.



4.4 Compound Motions

Compound motions allow us to treat a set of motisa single logical unit, in a similar
way as brackets ‘()" or braces ‘{ } would in aggramming language. By surrounding a
set of motions paths in a box, they are treatezhas

There are several syntactic rules for compoundaneti First, a motion path is
considered inside the box only if the entire ligevithin it. This allows lines to pass
through the area represented by the box withougbednsidered part of the compound
motion. Next, all paths inside the compound motiarst be for the same entity. Finally,
all paths inside the compound motion must be froenstame part of the animation. Thus,
a motion can't leave then re-enter a compound motio

Compound motions may nested. Thus a compound moépo be inside another
compound motion.

The main application for compound motions is comdsamvhich are described next.
*2

-

~—

Figure 3

Nested compound motions, cycled a set number of ten

4.5 Commands

Motion paths can have commands associated with,ttvainch change or add to their
motion. For our purposes commands are text-balsedgh there is no reason why
certain commands can’t be represented pictoriglyommand is associated with the
motion path or compound motion that it is closest t

Commands themselves could define a whole langueged of themselves. For our
purposes, we will consider only a simple commamgjleage. There are two major
categories of commands:

- Modifier commands
- Playback commands



Modifier commands modify the animation generatedh®/motion path. For example,
the command “run” could be associated with the, laral the line would represent a
running animation. The line itself can be consdethe ‘parameters’ to the command.

Basic modifiers include setting the velocity, sash'v = 10’. The effect of a modifier
continues to motions paths coming after the magpiath it was associated with.

Playback commands add to the animation generatéukebyotion path. A basic type of
playback command is the cycle commands, whichesifipd in the form * [number]'.
This command will cause the associated motion patompound motion to be played
back a set number of times. Another playback conts ‘wait [seconds]’, which
causes the animation generated by the motion patfait the specified number of
seconds after the motion has occurred.

4.5.1 Functions

While the above commands are hard coded, it isilles® extend the set of commands
by declaring function. A modifier function speeii a set of motions an entity should go
through while moving across a motion path. An eglenof this is a set of looping key
frames for walking. The entity continues to folltwe path while playing back this
animation. A playback function, on the other hashefjnes an animation that is played
back before continuing through along the motiorhpat

Functions are defined using compound boxes. Inkieleompound box, the motion is
defined by specifying an entity and a motion. Tduet that the box represents a function
is specified by tagging it with the text “functipmame]” at the top left, where [name]
specifies the name of the function.

Calling a function is simply requires specifyingthame of the function as a command.

function fig8

., 4
.DQ ‘ iggra *

Figure 4
Left: Playback function “fig8” defined. Right: Ani mation that moves across the first motion path,
then calls fig8 motion 4 times, then follows the send motion path.




5 Events

With many motion paths for different entities dramma sketch, a mechanism is needed
to synchronize the resulting animation. For exanplippose we have a baseball scene
with a hitter and pitcher. If we were to simphadr motion paths that cause the hitter to
swing the bat and the pitcher to throw the ba#réhis no way to guarantee that the swing
will occur when the ball comes with in range. Togerly synchronize such a situation,
we introduce the notion of event marks.

Event marks are drawn as circles along motion pathseas outside of compound
motions, and are tagged with either a name or aeuto specify which event they are.
Sets of event marks on different motion paths isgarea single event. When animation
clips are synchronized, the entities associatel thiem will be located at the event
marks at the same time.

‘ 1 1

Figure 5
Event requiring the red and blue balls to be at theenter of the animation at the same time,
appearing to bounce of each other.

5.1 Synchronization Algorithm

First, lets consider the simple case of two eveatikihfor the same event on two different
animation clips. Leteand e represent the time which those event marks reptese
relative to their clips. We need to solve for stemes s and g for the clips, such that the
events occur at the same time.

Thus,
SsSte=9+&

If we arbitrarily set § we can solve for,s This can easily be extended to three or more
event marks for the same event.



Now, to extend this to more events, first let ussider an acyclic graph made up of two
types of nodes, animation clips (rectangles) amhisy(circles). For each event, we
solve for the start time of the connecting aninratbps. We then recursively solve for
the event times of other events connecting to eaahnation clip, until finally all events

have been scheduled.
7\5
A/G

Figure 6: Event graph, with circles representing egnts and rectangles representing animation clips.
Arrows show the order the graph is traversed to sychronize events.

The pseudo-code to handle this is as follows:

Synchronize:
For each event e:
SynchronizeVisit(e, 0);

SynchorizeVisit(Event e, float eventTime)
If e has already been visited, return.
For each unscheduled clip ¢ synchronized by e:
Let e represent the time event e occurs relative tocclip
Schedule ¢ with start time:
S = eventTime - g
For each event f synchronizing clip ¢
Let f. represent the time event f occurs relative to clip
SynchronizeVisit(f, s+ f;)

5.2 Using events to determine relative clip lengths

The requirement that the graph be acyclic can laeed if we allow the amount of time a
clip takes to be modified. In the case of a twergs e and f across the same two
animation clips, we now have two points where tené must occur. If we let yand

m, be multipliers controlling the size of the aninoaticlips:

SSs+tme=s9+me and s+ mfi =5+ mf,

If we arbitrarily set sand m, we have 2 equations and 2 unknowasrgl m. Solving
for them allows us to synchronize the clips.

-9-



6. Physics

There are times where a drawn path may not pradappropriate path for the object to
follow. For example, when drawing ball bouncin@tbie floor, the sketched motion will
naturally touch the floor. Since the motion pgtkdafies the location of the center of the
ball, when the path touches the ground the bottbtheoball will pass through the
ground.

The approach we take to solve this problem is tdrobthe entity in a physical
simulation using a proportional derivative (PD) ttoller. The motion path describes the
target location at any point of time, pulling thgext towards that location.

In order to control the force of the PD controlle augment the motion path so that its
thickness describes how much the controller affgwtentity. A very thick line results
in a strong controller, whereas a dashed line sgmts the controller putting no force on
the entity. Dashed lines would be used where the/ml lines would not adequately
describe the motion, such as during collision i ground or other objects, while
darker lines would be used to force the object anspecific path.

I - |

Figure 7: Motion controlled by PD controller. Controller’s has no effect along dashed lines.

7. Prototype

We have constructed a prototype to parse a subfie tanguage described in this
report. The prototype is constructed using the &&Y [1] as both MEL scripts and
Maya plug-ins.

The following features are supported:

- Entities
- Motion paths (however direction specified intdlyyanot using arrow heads)
- Compound motions
- The following commands:
o Cycles (* [number])
o Playback functions
- Events, where the event graph contains no cycles
- PD-controlled motion (by manually setting PD colier field as an entity)

-10 -



The following features are not supported:

- Entity handles (they are only supported in thessethat you can consider a
handle as a separate entity)
- Implicit and explicit ordering of motion paths
- Idle animations in-between animation clips
- The following commands:
0 wait, setting velocity
o Modifier functions
o Keyframes

8. Results

Using this prototype, we created several animatiorisst the strengths and weaknesses
of our language.

We will consider results from the following scenes:
1. Two paddles playing a round of Ping-Pong.
2. A bat, controlled with an IK-handle to makewtisg, hitting a ball
3. Ball bouncing on floor

In most cases motion paths worked well for speegyranslational movement. There is
of course a clear meaning as to what the line sgoits in terms of the animation. We
also found that motion paths worked well for coliing rotation, when assigned to an
IK-handle of a bat for the second animation. Is ttase, however, it can be somewhat
difficult to determine the exact location of the bébng the motion since the drawn
rotation isn’t necessarily an exact circle.

In terms of the organization, we found that it wig#ficult to keep sketches for fairly long
animations from becoming cluttered. In the PingrdPscene, it took many bunched up
motion paths to represent a volley. A possibletsah in this case would be to allow
functions that control multiple entities. This wo@llow us to represent a volley from
one side to the other then back as a function.

We found that all cases, the event system workdd Wtevas easy to determine
appropriate spots to place events to get the desasults. In the Ping-Pong animation,
the events were clearly labelled and it was easgéowhere it would be appropriate to
split animation clips for the paddle movement.

For the scene of the ball bouncing on the floortegted it with the PD-controller and
without. Without the PD-controller, the ball gabsough the ground and doesn’t appear
to bounce very realistically. With PD-controlledimation, we found we could allow the
ball to bounce realistically by lowering the effettthe controller just before the ball
bounced. Unfortunately, the transition betweendébtrolled and uncontrolled
animation is somewhat noticeable.

-11 -



Figure 8: Ping-pong scene

Figure 9: Bat hitting a ball

-12 -



Figure 10: Ball bouncing scene. Tested both withral without PD controller

Figure 11: A scene utilizing all features of the ptotype, including compounds, functions, and cycles

-13 -



Figure 12: A Rube-Goldberg Style Machine for baskedall

9. Future Work
There is room for improvement to the language hiagtbeen presented here.

The prototype itself could be extended to allowrfarre generalized types of motion
paths, such as Motion Doodles [5]. This is esplgdiaie in the case of motion that
occurs mainly in one dimension, such as walkinging the extra dimension to describe
the style of walk not only makes the system maeeiffile but also provides an appealing
visual depiction.

The language could also be extended for non-rigitlan. This would allow one to
create deformable entities, which could be deformedrious ways depending on the
annotations used.

We currently deal with 2D motion, but the systernldde extended to deal with 3D
motion. Such a system shouldn’t be too difficaltépresent if the sketching interface is
on the computer, but it may prove difficult to irapient a system for interpreting
sketches done offline on paper. Possible impleatiems could require the user to
provide sketches from different views to constthia set of possible animations.

-14 -



10. Conclusion

The sketching language presented provides a pnognisethod for specifying
animations. The use of motion paths, events, anthtands are straightforward, making
up a simple enough language that should be edsgno and powerful enough for many
animation needs.

The current system is a bit lacking in terms ofdeas, however there is room for

additions to the language to support more comphéxations.

References

1. Alias|Wavefront, “Maya 5.0", Silicon Graphic€)@3.

2. J. Davis, M. Agrawala, E. Chuang, Z Pogo® Salesin, “A sketching interface
for articulated figure animation,” ACM SIGGRAPH 280

3. T. lIgarashi, S. Matsuoka, H. Tanaka, “Teddy:k&t8hing Interface for 3D
Freefrom Design,” ACM SIGGRAPH 1999.

4. K. Marriott, B. Meyer, “On the Classification ¥isual Languages by Grammar
Hierarchies,” Journal of Visual Languages and CainguL997.

5. M. Thorne, “Motion Doodles: A Sketch-based Ifaee for Character
Animation,” M.Sc. Thesis, Dept. Comp. Sci., Univgref British Columbia,
2003.

6. M. Thorne, D. Burke, M. van de Panne, “Motionddtes: An Interface for
Sketching Character Motion,” To Appear In ACM SIG&RH 2004.

-15 -



Appendix - Prototype Language Grammar

The following is a partial listening of the redwsts for the visual language as a
Constraint Multiset Grammar (CMG) [4]. It descsidde syntax to convert from drawn
symbols into components of our language. The mooéconverting from these into
animation clips is semantic and not syntactic, g not described here.

We write the reductions for motion paths and conmaisun reference to their previous
motions. The ‘next’ motions for these can be imiglf determined from these.

Motions Paths

Motion Path from an entity:

M:motion < A:arrow,
where exists E:entity (
A.start close_to E.pos

) and {
M.start = A.start
M.end = A.end
M.prev = e

}

Motion path from a previous motion
path:

M:motion €<A:arrow,
where exists prevM:motion (
A.start close_to prevM.end
compound(M) == compound(A)
) and {
M.start = A.start
M.end = A.end
M.prev = prevM

-16 -

Compounds

Motion path entering a compound box:

C:compound, M:Motion € B:box,
where exists prevM:motion, A:arrow (

) and {

A.start close_to prevM.end
Ais_inB

M.start = A.start

M.end = A.end

M.prev=C

C.dimensions = B.dimensions
C.startMotion = M;

Motion path exiting a compound box:

M:motion <A:arrow,
where exists prevM:motion, C:compound (

) and {

prevM is_in C
A.start close_to prevM.end
Alis_inC

M.start = A.start
M.end = A.end
M.prev=C



Commands
Command connected to motion path:

CMD:Command < T.text,
where exists M:motion (
M close_to T.bottom_left
) and {
CMD.affect =M
}

Command connected to compound:

CMD:Command < T.text,
where exists C:compound (
C.top_left close_to T.bottom_left
C.top < T.bottom
C.left < T.left
) and {
CMD.affect =C
}

Events
Connecting event to motion path

E:Event < Circ:Circle

where exists M:motion (
Circis_ onM

) and {
E.time = arc_length(M.start, E.pos)
E.motion =M

New-Motion Mark
Connecting a new-motion mark to a path

NM:NewMotionMark < S:Square
where exists M:motion (
S.pos close_to M.start
) and {
NM.motion =M
}

-17 -



