
Gosig: A Scalable and High-Performance Byzantine
Consensus for Consortium Blockchains
Peilun Li

Tsinghua University

lpl15@mails.tsinghua.edu.cn

Guosai Wang

Tsinghua University

wgsjack199213@yeah.net

Xiaoqi Chen

Princeton University

xiaoqic@cs.princeton.edu

Fan Long

University of Toronto

fanl@cs.toronto.edu

Wei Xu

Tsinghua University

wei.xu.0@gmail.com

Abstract
Existing Byzantine fault tolerance (BFT) protocols face signif-

icant challenges in safety, scalability, throughput, and latency.

We present a new BFT protocol, Gosig, for the consortium

blockchains. Gosig guarantees safety even in asynchronous

networks fully controlled by adversaries, by combining se-

cret leader selection with multi-round voting. We co-design

both the consensus protocol and the underlying gossip net-

work to optimize performance. In particular, we adopt trans-

mission pipelining to fully utilize the network bandwidth

while use aggregated signature gossip to reduce the num-

ber of messages. These optimizations help Gosig to achieve

unprecedented single-chain performance. On a public cloud

testbed spanning multiple data centers consisting of 280

nodes across 14 cities on five continents, Gosig achieves over

15,000 transactions per second with 15.8-second confirma-

tion time. When the system scales to 5,000 nodes, Gosig

can still achieve 3,000 transactions per second with about

23.9-second confirmation time.

CCS Concepts
• Security and privacy→Distributed systems security.

Keywords
Byzantine fault tolerance, Blockchain, Scalability

ACM Reference Format:
Peilun Li, Guosai Wang, Xiaoqi Chen, Fan Long, and Wei Xu. 2020.

Gosig: A Scalable and High-Performance Byzantine Consensus for

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SoCC ’20, October 19–21, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8137-6/20/10. . . $15.00

https://doi.org/10.1145/3419111.3421272

Consortium Blockchains. In ACM Symposium on Cloud Computing
(SoCC ’20), October 19–21, 2020, Virtual Event, USA. ACM, New York,

NY, USA, 15 pages. https://doi.org/10.1145/3419111.3421272

1 Introduction
The rise of cryptocurrencies, such as Bitcoin [42], increases

the awareness and adoption of the underlying blockchain
technology. Blockchain offers a distributed ledger that serial-
izes and records transactions. Blockchain provides attractive

properties such as full decentralization, offline-verifiability,

and most importantly, robust consensus at Internet scale.

Thus, Blockchain has become popular beyond cryptocurren-

cies, expanding into different areas such as payment services,

healthcare, and Internet-of-Things (IoT) [10, 51, 59].

While Nakamoto consensus is popular in applications of

Bitcoin, it has severe performance limitations that hinder

their further adoptions. For consortium blockchains deployed
on traditional cloud services, where the identity of each node

is known, it is more applicable to use Byzantine Fault Toler-

ant (BFT) protocols [13]. Recent work has shown that BFT

algorithms can achieve roughly two orders of magnitude

throughput improvement over Nakamoto consensus [23, 40].

However, traditional BFT protocols were initially designed

for building replicated state machines on a small set of com-

puters within a data center. Recent works [23–25, 33, 40, 57]

try to adopt existing BFT protocols on blockchains by chang-

ing the network assumptions or reducing the total message

sizes, but the following three significant challenges remain:

1. Targeted-single-point-failure is common in clouds
with only a handful of data centers. It is easy for the ad-

versaries to launch DDoS attacks targeting an honest node

and partition it from others. Thus, any protocol relying on

privileged publicly exposed nodes will lose liveness under

so-called adaptive attacks.
2. The limited bandwidth and the long latency. The

inter-data-center network has high latency and low band-

width compared with the network in a data center, so most

blockchain systems aggressively batch transactions into large

blocks to amortize the consensus overhead (both bandwidth

https://doi.org/10.1145/3419111.3421272
https://doi.org/10.1145/3419111.3421272

SoCC ’20, October 19–21, 2020, Virtual Event, USA Peilun Li, Guosai Wang, Xiaoqi Chen, Fan Long, and Wei Xu

and latency).While block broadcasting is often limited by net-

work bandwidth, metadata dissemination is latency bound.

Both are on the critical path, but the difference is often over-

looked in existing BFT protocols. Some of them broadcast

the block with a one-to-all pattern [13, 24, 36, 57], making

the source a bottleneck. Some others broadcast the block

with a simple gossip-like approach [25, 33], still leaving the

broadcasting delay dominating the entire consensus process.

3. Limited by the slowest nodes. Both the communi-

cation and computation overheads on a single node limit

the protocol scalability. And parties may use instances with

different capacities/costs. If there is any node that needs to

receive and process messages from all other nodes, it will

become the bottleneck and slow down the entire process.

PBFT and its variants rely on a leader to order the requests.

Since the cost to replace a leader with ViewChange is high
and following leaders can be known and attacked in advance,

they fail to solve challenges 1 and 3.

Most of the recent proposals, while solving challenge 3

relying on a small committee, fail to solve challenge 1. Al-

gorand [23] avoids adaptive attacks with a combination of

randomized committee election and a stateless BFT algo-

rithm. However, it requires the network to stay synchronous

periodically (a stronger assumption than PBFT) to recover

from soft forks to guarantee safety.

Other attempts to solve challenge 3 is to use threshold-

signature for message compression, like SBFT [24] or Hot-

Stuff [57]. They reduce the total message size significantly.

However, as the nodes need to wait until some collectors

receive signature shares from all nodes, the performance is

limited by their single-node capacity (challenge 3).

We present Gosig, a fast, scalable, and fully decentralized

BFT system that solves the three challenges by integrating

the protocol with the underlying gossip network.

Conceptually, Gosig operates in rounds, in each of which it

appends one block (w.h.p.) onto the blockchain. Each round

contains two stages, the block proposing stage and the sig-

nature collection stage. In the block proposing stage, Gosig

first randomly selects several proposers. Then each proposer

packs transactions into a new block and broadcasts the block

to all other nodes. In the signature collection stage, each node

chooses one block received in the first stage to vote, signs

its decision, and keeps relaying the aggregated signatures

signed by itself and received from the others. A node com-

mits a block if it has collected enough signatures showing

that no conflicting block can be committed.

Underlying the consensus protocol, Gosig uses a gossip

network to propagate all messages. The consensus protocol

ensures that messages in the same stage can be effectively

aggregated during gossiping.

In addition to the common techniques adopted, Gosig

adopts the following key: electing a random proposer for

every new block, pipelining all possible processes, and aggre-

gating all signatures on the fly using gossip-based broadcast.

Secure and cheap proposer replacement. To solve chal-

lenge 1, we change the proposers for every block. As a de-

terministically chosen proposer is vulnerable to adaptive

attacks, we choose to implement the proposer election with

a verifiable random function (VRF) [39] to make the selection

random and unpredictable.

Besides, we also need to eliminate the expensive View-
Change in standard PBFT. We exploit the fact that a proposer

proposes at most one block during its elected round, and

achieves zero-overhead proposer replacement by including

a small proof in every proposal to prove the new proposer’s

validity. The protocol proceeds in synchronous rounds, and

at most one block can be committed in a round.

Aggregated signature gossip. To address the single-node

capacity challenge, Gosig uses a novel aggregated signa-

ture gossip protocol to optimize the signature collection. It

combines multiple received signatures into one equivalent

aggregated signature [8] and relays the aggregated signature.

We extend the multi-signature data structure [8] to allow ar-

bitrary signing orders so that a set of aggregated signatures

can be aggregated again during gossiping.

The signature aggregation makes the signature message

size up to two orders of magnitude smaller and significantly

reduces the total data transfer during the signature collection

stage. More importantly, the reduction is achieved evenly

among all participates, preventing any single-node capacity

from becoming the bottleneck.

Transmission pipelining at all levels. We realize that af-

ter applying aggregated signature gossip, the vote exchang-

ing is latency-bound, so a significant portion of the network

bandwidth is under-utilized when everyone is waiting for

enough votes to progress. Time is also wasted when every-

one is waiting to hear a block proposal at the beginning of a

round. Gosig pipelines at both the gossip layer and the BFT

voting layer to maximize network utilization. We carefully

design them to not affect protocol correctness.

We evaluate Gosig on an Amazon EC2-based 280-instance

testbed that spans 14 cities on five continents.We can achieve

a throughput of 15,000 250-byte transactions per second

(tps) with an average transaction confirmation latency of

15.8 seconds, which is 8× the throughput and 1/10 of the

latency comparing to HoneyBadgerBFT [40], a state-of-the-

art protocol that offers the same level of safety guarantee.

Also, using 1,000 AWS EC2 VMs to emulate 5,000 full nodes

on a typical WAN bandwidth and latency, we show that

Gosig can confirm 3,000 250-byte transactions per second

with 23.9-second latency, achieving 3.6× throughput and 70%

latency reduction compared to Algorand. And Gosig can also

guarantee safety even under fully asynchronous network

Gosig SoCC ’20, October 19–21, 2020, Virtual Event, USA

(like traditional BFT). Our results demonstrate that the co-

design of the BFT consensus algorithm and the Peer-To-Peer

(P2P) network transmission layer can significantly boost the

performance of large-scale BFT-based blockchain systems.

This paper makes the following contributions:

• Gosig: We present the design and implementation

of Gosig, a BFT-based blockchain protocol. We show

that by jointly optimizing the consensus and gossip

protocols, we can achieve all the followings: 1) toler-

ance of adaptive attacks on the Internet, 2) full utiliza-

tion of network resources, 3) scalability of existing

blockchains (i.e., thousands of full nodes).

• Aggregated signature gossip: We present aggre-

gated signature gossip, a novel technique that reduces

the signature exchange traffic to 1/100 and significantly

alleviates the message explosion problem when Gosig

runs on thousands of full nodes.

• Transmission pipelining: We present transmission

pipelining, a novel technique that jointly considers

the communication patterns of BFT protocol and the

gossip network, and achieves 7.5x higher throughput

2 Related Work

Bitcoin and its variants. Standard permissionless blockchains

like Bitcoin [42], Ethereum [56] use proof of work (PoW) or

proof of stake (PoS) to agree on a consistent transaction

history to stop double-spending attacks. Combining with

incentive mechanisms, they can prevent Sybil attacks and

encourage people to join the public network to keep the

system safe. Other designs [17, 20] try to avoid chain forking

but retain the design of PoW or PoS. We assume consortium

blockchains [11, 48, 54] and use a BFT algorithm to achieve

consensus on transaction history. Our focus is on the perfor-

mance and safety of building a BFT-based blockchain system,

instead of the other economic aspects.

Byzantine fault tolerance. The most important feature of

a BFT protocol is safety. Unfortunately, many open source

BFT protocols are not safe [12]. There are two major ap-

proaches to design provable BFT agreement protocols. 1) Us-

ing multi-round voting: example systems include PBFT [13]

and its successors [14, 31, 36, 47]; 2) Using leader-less atomic

broadcast: HoneyBadgerBFT [40] and [16, 32]. To prevent

malicious leaders from affecting the system, Aardvark [15]

use performance metrics to trigger view changes and Spin-

ning [53], Tendermint [33] or others [5, 41] rotate leader roles

in a round robin manner. However, these methods are vul-

nerable to adaptive attacks because the leader role is known

to all in advance, and thus can be muted by attacks like DDoS

right before it becomes a leader. Gosig adopts similar vot-

ing mechanism like PBFT to get good performance without

failure and adopts a random proposer selection algorithm to

keep safety and liveness under adaptive attacks.

SBFT [24] and Hot-Stuff [57] accelerate signature broad-

casting with threshold signature, but the collectors or pro-

posers still need to receive full-size signatures from all nodes
before sending out the compressed signature, leaving them-

selves being the bottleneck. Hot-Stuff also avoids view-change

by adding an extra signature exchanging phase, while Gosig

chooses better normal-case performance over ‘responsive-

ness’ [57] in the worst case. ByzCoin [29] adopts CoSi [49] to

reduce the pressure on the leader, but the tree structure and

two-phase signing makes it vulnerable to adaptive attacks.

However, in Gosig, by aggregating signatures during gossip,

the signature size received by every node is reduced.

In order to scale the system, many systems adopt the “hy-

brid consensus” design [28, 29, 43, 44] that uses a Bitcoin-like

protocol to select a small quorum, and use another (hopefully

faster) BFT protocol to commit transactions. If adversaries

can instantly launch adaptive attacks on leaders, it is hard

for these protocols to maintain their liveness or “optimal

path”. Algorand [23] leverages secret leader election and

quorum member replacement methods to keep liveness but

sacrifices safety by allowing temporary forks under asyn-

chronous network. DFINITY [25] adopts verifiable random
function (VRF) like Algorand, but only ensures safety under

fully synchronous network. Stellar [37] allows participates

to specify their trusted institutions individually and thus has

a different trust model. In contrast, Gosig lets every node

participate in the consensus and therefore ensures provable

safety under asynchronous network.

OmniLedger [30] and RapidChain [58] choose a small

committee for each shard to improve scalability, which can

only be changed slowly (days) due to the reconfiguration

overhead, and thus are still vulnerable to adaptive attacks.

Overlay network and gossip. Most consensus protocols

use broadcast as a communication primitive. To improve the

reliability on the Internet, people often use application-layer

overlay networks. We adopt techniques like gossip from reli-

able multicast [7], probabilistic broadcast [22, 27] and other

peer-to-peer (P2P) networks [26, 52]. Existing P2P networks

may tolerate some Byzantine failures, but do not guarantee

convergence [35]. By combining network optimizations like

gossip with a robust protocol design, we can improve both

system resilience and performance.

3 Overview
Gosig maintains a blockchain. Each node relays transactions

to others and packs them into blocks in a specific order later.

All committed blocks are serialized as a blockchain, which
is replicated to all nodes. On the blockchain, one block ex-
tends another by including a hash of the previous block. A

SoCC ’20, October 19–21, 2020, Virtual Event, USA Peilun Li, Guosai Wang, Xiaoqi Chen, Fan Long, and Wei Xu

Bp1

p2

p3

p4

PR(B)

P(B)

TC(B)

B

B

B

Block commitmentBlock proposal
Stage I Stage II

Round r Round r+1Round r-1

Proposer Selection Proposer Selection

Figure 1: Overview of a Gosig round without pipelin-
ing (happy path only).

transaction is confirmed if and only if a block containing

the transaction is committed. Gosig, as a consensus protocol,
ensures that all blockchain replicas are the same.

3.1 System Model and Assumptions
Gosig has a standard systemmodel and security assumptions

commonly used in BFT protocols. These assumptions include:

1) Out of the N = 3f + 1 nodes in the system, at most f
nodes have Byzantine failure, and the remaining 2f +1work
correctly; 2) nodes can authenticate the identities of other

nodes through a trusted Public Key Infrastructure (PKI).

Note that Gosig has the following assumptions and guar-

antees: 1) we allow f faulty nodes to be corrupted by ad-

versaries adaptively; 2) we guarantee safety in an asynchro-

nous network and guarantee liveness in a partially synchro-
nous [21] network, where all messages can be delivered

within a known bound ∆ after an unknown Global Stabiliza-
tion Time (GST); and 3) The liveness property also requires

a loosely synchronous clock, which can be built with the

partial synchrony assumption in theory [46] and is also pro-

vided by Network Time Protocol (NTP) in practice. Even if

the clocks are arbitrarily deviated, the safety is not affected.

Gosig also provides the validity property that all commit-

ted transactions follow some application-level predefined

validation rules [33].

3.2 Gosig Protocol Overview
We provide an intuitive overview of Gosig in this section.

We divide the execution of Gosig into rounds with a fixed

time length. Each round consists of a proposer selection step

(no communications) and two subsequent stages with a fixed

length. Thus, all nodes know the current round number and

stage by referring to the local clock.

Figure 1 provides an overview of a typical round. At the

start of each round, some nodes secretly realize they are po-
tential proposers of this round with a cryptographic sortition

algorithm (Section 4.2.1). Thus, the adversary cannot target

the proposers better than randomly guessing.

At Stage I, each selected potential proposer packs non-

conflicting uncommitted transactions into a block proposal,

disseminates it with gossip, and then acts just like a normal

node afterward. The goal of Stage II is to reach an agreement

on some block proposal of this round by vote exchange. A

node “votes” for a block by adding its digital signature of the

block to a prepare message (“P message”) and gossiping it.

An honest node only votes for a single proposal per round.

Upon receiving at least 2f +1 signatures from P messages for

a block, the node tentatively commits on this block by stor-

ing the messages and the round in its local state, and starts

sending tentatively-commit messages (“TC message”) for it.

The node finally commits the block to its local blockchain

replica once it receives 2f +1TC messages. If it fails to finally

commit the block in the same round, the local state will be

used to decide whether to accept new proposals or decide

which block to propose in the further.

We then optimize the protocol at every stage by applying

the pipelining and aggregated signature propagation. See

Sections 5.1 and 5.2 for the details.

4 Gosig Protocol Design
In this section, we first describe the sequential Gosig protocol

(we call it the “vanilla protocol”). Then, in Sections 5.1 and 5.2,

we discuss important optimizations, transmission pipelining

and aggregated signature gossip, which enable Gosig to scale

to thousands of nodes.

4.1 Message and State Definition
Section 3.2 briefly introduces the protocol, and we formally

describe the notations in Table 1. We use a.b to denote the

field b of a structure a. For example, if c is a P certificate of

the form (H (B),h), c .B denotes the block that c votes for.
Besides the blockchain replica with the proof for block

commitment, each node also maintains a local state and

decides its next actions based on the state and external events

(receiving a certain message or selected as a proposer). The

local state is also defined in Table 1. Note that ctc .r is always
equal to rtc if some block is TCed.

When Gosig starts running, the local state of a node is ini-

tialized as si = ⟨ϵ, 0, ϵ⟩ where ϵ stands for a null value. When

a block is finally committed, this block will be appended to

the blockchain and the state will be reset.

4.2 Stage I: Block Proposal

4.2.1 Proposer Selection We use verifiable random function
(VRF) [39] to select a set of potential proposers. The idea is
from Algorand [23]. We use a simplified version because

we assume every node has the same weight, and the nodes

cannot change their private keys after the system launches.

The proposer selection protocol is described below.

Gosig SoCC ’20, October 19–21, 2020, Virtual Event, USA

Table 1: Notations used in the protocol description.

node pi the i-th (i ∈ {1, ...,N })) node among all N nodes.

PR message a proposal message of the form (H (B),h, c,pp), where H (B) is the hash of the proposed block B, h
is the height of B, c is the proposal certificate, and pp is the proposer proof.

P/TC message a prepare/tentative-commit message of the form (H (B),h), where H (B) is the hash of the voted

block B, h is the height of B.

PRri (B) a PR message proposing a block B, signed by pi in round r .

PrX (B)/TC
r
X (B) an aggregated P/TC message voting for a block B, signed by a set of nodes X in round r .

pi P/TCs B pi broadcasts a P/TC message about a block B.

P/TC certificate an aggregated P/TC message signed by at least 2f + 1 signers.

proposal certificate a P or TC certificate c . Depending on the certificate type, the proposal certificate round c .r is

defined as the round in the P certificate, or the round in the TC certificate plus one.

node local state si =
⟨Btc , rtc , ctc ⟩

a 3-tuple where Btc is the block itself, rtc is the round that Btc is TCed, and ctc is the P-certificate
used when Btc is TCed in round rtc . We use ϵ to represent a null value.

We define a publicly known random seed Qh
in Gosig as

Qh = H (SIGlh (Q
h−1)) (h > 0), (1)

where h is the height of a committed block B1
, H is a secure

hash function, lh is defined as the proposer who has proposed
the block B (the signer of the proposal certificate of B), and
SIGi (M) is the Boneh–Lynn–Shacham (BLS) signature [9]

of a messageM signed with pi ’s private key.
Based on Qh

, we define a node pi ’s proposer score Lr (i) at
round r as Lr (i) = H (SIGi (r ,Q

h)), where h is the blockchain

length at round r . If a node’s proposal score is less than a

proposer threshold, it becomes a potential proposer. At the
beginning of a round r , each node pi computes its Lr (i), and
knows if it is a potential proposer of the round. A potential

proposer can prove to other nodes about its proposer status

with the value SIGi (r ,Q
h), called the proposer proof. The

process requires no communication among nodes.

The cryptographic sortition algorithm has two properties:

1) the signature SIGi uses pi ’s private key, and thus cannot

be forged; 2) If the hash function H (·) is perfectly random,

the potential proposer selection is uniformly random. Thus,

there is no way for the adversary to know who is selected,

nor can it change any node’s chance of becoming a proposer.

The value of proposer threshold will only affect the perfor-

mance but not the security of our protocol. Since the ‘losing’

blocks will be dropped fast as described in Section 5.1, the

performance is not sensitive to the threshold as long as at

least one proposer exists in most rounds. We set the thresh-

old to 7/N where N is the total number of nodes, which is

sufficiently large to reduce the probability of no-proposer

rounds to less than 0.1%.

4.2.2 Block Proposals Each potential proposer pi decides
which block to propose and then generates a proposal mes-

sage. If pi hasTCed a block Btc , Btc will be proposed. Other-
wise, pi generates a new block following the blockchain.

1Q0
is a random number shared among all nodes.

To make a proposal valid, a potential proposer provides a

proposal certificate c for the proposed blockB. IfB is chosen as

the tentatively-committed block Btc , the proposal certificate
will be a P-certificate. Otherwise, if B is newly constructed,

the proposal certificate will be a TC-certificate that commits

the last block in the blockchain. This proposal certificate

round c .r , as defined in Table 1 will be used to persuade

other nodes who have TCed an earlier block to reset their

state and prepare B. The certificate is signed by at least 2f +1
nodes so can not be forged.

Finally, the potential proposer pi assembles a PR message

as defined in Table 1. Then pi signs the message with its

private key. Everyone can easily verify the validity of the

PR message by checking the included block, signatures and

certificates. When a node receives a proposal, it will check if

the height matched its local committed blockchain. If some

committed blocks are missing in a node, the node will only

vote until the missing blocks are recovered asynchronously

as described in Section 5.3.

During Stage I, PR message are broadcast to all nodes by

gossiping. At the end of Stage I (after a fixed time interval

T1), most nodes should have seen all block proposals in the

round, assuming everything goes well. Nevertheless, Stage

II is able to handle all complicated situations.

4.3 Stage II: Signature Collection
The objective of Stage II is to disseminate signed messages

of nodes’ votes for the block proposals. Same as Stage I, we

use gossip to propagate all messages.

Stage II protocol. Algorithm 1 outlines the expected be-

havior of an honest node pi in Stage II. We model each pi as
a finite state machine with local states listed at the beginning

of Algorithm 1. It performs actions based on its current local

state and the incoming messages.

Lines 1 to 6 describe the initialization procedure, in which

pi checks all block proposals it receives in Stage I and decide

SoCC ’20, October 19–21, 2020, Virtual Event, USA Peilun Li, Guosai Wang, Xiaoqi Chen, Fan Long, and Wei Xu

Algorithm 1 Stage II workflow for each node pi .

State Variables:
– si : pi ’s local state, i.e., ⟨Btc , rtc , ctc ⟩
– r : the current round number

– S : the set of valid proposals received in Stage I in round r

1: phase ← Init
2: B ← DecideBlock ▷ See Algorithm 2

3: if B , null then
4: SiдP ← Pri (B)
5: SiдTC ← null
6: phase ← Ped
7: for still in round r do
8: Keep gossiping the latest SiдP
9: if phase = TCed or Ced then
10: Keep gossiping the latest SiдTC

11: on receiving a valid PrX (B) message do
12: if phase = Ped and B = B then
13: Update SiдP by aggregating PrX (B)
14: if SiдP is (2f+1)-signed then
15: Update SiдTC by aggregating TCri (B)
16: phase ← TCed ▷ Start gossiping SiдTC
17: si ← ⟨B, r , SiдP⟩

18: on receiving a valid TCrX (B) message do
19: if phase , Init and B = B then
20: Update SiдTC by aggregating TCrX (B)
21: if phase , Ced and SiдTC is (2f+1)-signed then
22: si ← ⟨ϵ, 0, ϵ⟩
23: phase ← Ced
24: Commit B with certificate SiдTC

which block to prepare (by calling the function DecideBlock
in Algorithm 2). In general,pi prefers a block proposal whose
certificate round is larger, as it indicates a more recent block

(lines 2.8 to 2.14). Finally, pi chooses exactly one block B for

height h and Ps it (line 1.4).
After initialization, the state machine of pi starts to handle

incoming messages. Lines 11 to 24 in Algorithm 1 outlines

handler routines for these two different message types. Node

pi only processes messages about the same block that it has

Ped (line 1.12 and line 1.19), it can onlyTC the block B after it

collects at least 2f + 1 signatures from the P messages about

B, and it can only commit a block B after it collects at least

2f + 1 signatures from the TC messages about B (line 1.14

and 1.21). These 2f + 1 TC messages can be aggregated to a

commitment certificate as an offline proof that B is committed.

Note that the local states will be reset either when blocks

are committed or when all committed blocks are recovered.

These rules ensure the safety and liveness of Gosig.

Algorithm 2 Decide which block to prepare in Stage II.

1: function DecideBlock

2: if S = ϕ then ▷ Received no valid proposals

3: return null

4: z ← argminz∈S L
r (j)

5: if Btc = ϵ then
6: si ← ⟨ϵ, 0, ϵ⟩
7: return z.B
8: else
9: if z.c .r > rtc then
10: si ← ⟨ϵ, 0, ϵ⟩
11: return z.B
12: else if ∃z ∈ S s.t. z.B = Btc and z.c .r ≥ rtc then
13: si ← ⟨Btc , z.c .r , z⟩
14: return Btc

return null

4.4 Security Analysis
We prove that Gosig provides safety in fully asynchronous

networks. If we add a partial synchrony assumption (like

PBFT [13]), it also achieves liveness. Due to limited space,

we only list some key lemmas and proof sketches and leave

the complete proof in a technical report [45].

Lemma 1. If an honest node pi commits a block B at height
h in round r , no honest node will everTC another block at any
height h′ ≤ h in later rounds.

Proof sketch. When pi commits B, at least f + 1 honest

nodes have TCed B and set their Btc = B, rtc = r . Let this
set of honest nodes be HB . All nodes in HB have committed

some block at height h − 1 so they will not P any block at

height h′ < h after round r . Thus, a block at height h′ < h
cannot have 2f + 1 P-messages to build a P-certificate and
cannot be TCed. Now we only need to prove the case h′ = h.

Assume another block at height h isTCed at round r ′ > r .
It is Ped by 2f + 1 nodes, so some node in HB must have Ped
it. According to Algorithm 2, a node with Btc , ϵ will only
change its Btc state and P another block at height h if the

block’s proposal certificate c ′ has c ′.r > r . Let us consider
the first round that a proposal certificate c ′ with c ′.r > r is
constructed for block B′, B′ , B. At round c ′.r , all nodes in
HB have not changed their Btc to another block at height

h, they can only be in two cases: 1) have committed a block

at height h, 2) still tentatively committed to block B with

Btc = B. In either case, they will not prepare block B′ in
round c ′.r . Thus, without the votes from HB , B

′
cannot get

enough P-messages to construct a valid P-certificate in this

round, and then cannot be TCed or get a TC-certificate in
this round. This contradicts the assumption that a proposal

certificate for B′ , B is constructed in this round.

Now we have proved that no proposal certificate exists to

persuade the nodes in HB to prepare another block at height

Gosig SoCC ’20, October 19–21, 2020, Virtual Event, USA

h after round r . This means no other block at height h can

have a P-certificate, and thus no node will ever TC another

block at any height h′ ≤ h after round r . □
Lemma 1 shows that after a block is committed, no other

block at the same height can be committed. Thus, we achieve

safety. The following lemma proves that liveness cannot be

blocked forever if we add a partial synchrony assumption.

Lemma 2. After Global Stabilization Time (GST), the prob-
ability to commit a block in a round is at least 1/N .

Proof sketch. AfterGST , if the proposer with the least pro-

posal score is honest and its proposal certificate rtc is no less
than that of the other 2f honest nodes, its proposed block

will be committed in this round. The probability that the

honest node which enters a new round with the largest rtc
has the least proposal score is 1/N . The selection is random

and cannot be predicted by the adversaries, and the rtc used
as the proposal certificate round will not be affected by other

nodes after entering a new round. Thus, the probability of

committing a block in a round is at least 1/N . □
Note that this lemma is for the worse case where only

one node has the certificate with the largest round and only

2f + 1 nodes are alive. After a successful round we should

be able to make progress in every synchronous round later.

5 Key Performance Optimizations

5.1 Transmission Pipelining: Challenge 2
Solution

Gosig adopts transmission pipelining to optimize the commu-

nication patterns of the vanilla BFT protocol, and utilizes the

network resources with higher efficiency. It allows indepen-

dent block and message exchanges running asynchronously

whenever possible. The goal is to minimize the waiting time

of any node and utilize all idle bandwidths so that we can

solve challenge 2.

Pipeline-friendly block structure. Gosig divides each

block into the following three components: 1) the header
including all metadata used in the protocol, such as the cre-

dentials and the proposal certificate, 2) the body containing

an ordered list of transaction hashes, and 3) raw transactions

in the block. The intuition behind this design is that the

BFT protocol needs different kinds of information at differ-

ent stages. Adopting this block structure enables Gosig to

pipeline different stages of the protocol as much as possible

and thus independently optimize the latency-sensitive meta-

data and bandwidth-bounded data transfers. It also enables

Gosig to fully exploit independence among computation and

data transfer by gossiping raw transactions and voting mes-

sages asynchronously.

Gosig further divides the body into several segments, al-
lowing the nodes to start sending out data before receiving

an entire block body, much like how BitTorrent transfers

files. Different from BitTorrent, the proposer who generates

the block signs each individual segment before gossiping

them to different peers. Note that the proposer’s signature at

each segment is crucial because otherwise, the adversaries

can generate lots of garbage segments to congest the entire

network.

Pipeline between stages. The gossip network of Gosig first
propagates the header of a block before propagating the body

and its raw transactions. This enables the two stages, Stage I

for block propagation and Stage II for signature propagation,

to overlap with each other. Recall that the Stage I end time is

actually a timeout when we can assume that all nodes have

received the block with the least proposer score, so they can

decide which block to P . In fact, a node only needs the block

header to make the decision in Algorithm 2 (line 4). Thus, it

is safe to propagate the headers first and move into Stage II

as soon as all nodes have received the headers. As the header

is typically small (about 41 KB for 10, 000 participates, or 21
KB if we apply the compression discussed in Section 5.2),

this optimization greatly shortens the Stage I time. Also,

as nodes see the headers earlier, they can early decide the

proposer with the least score without wasting bandwidths

to propagate “losing” blocks from other proposers further.

Asynchronous raw transaction propagation. The gos-

sip network of Gosig then propagates the body of a block

with transaction hashes only. For the body, we adopt the idea

of compact blocks from Bitcoin-core [1, 2]. We only include

6-byte short hashes instead of full 32-byte SHA256 hashes

unless there is a collision. Therefore the body is also much

smaller than all raw transactions combined.

Gosig gossips raw transactions asynchronously. When a

node receives a transaction not previously seen, it passes the

transaction to some random nodes (3 by default). If a node

may see the hash-only block body before it receives the raw

transactions, it retrieves missing transactions from random

others before the node processes (i.e., tentatively commits)

the block. To ask for these transactions, the node sends the 3-

byte indices into the block instead of the 6-byte short hashes.

As we can differentially encode [2] these indices, the average

request size can be as small as 1 byte per missing transaction.

We still require nodes to receive the block body, gather all

corresponding raw transactions, and validate them before

they update their local states and send out the TC messages

in Stage II (line 1.14 to 1.17 in Algorithm 1).

Pipeline between rounds. In the vanilla protocol, a round

r starts only when Stage II of the previous round r − 1 ends,
and potential proposers wait till the round starts to propose

a block. We realize that as soon as a node commits a block

in round r − 1 (i.e., see a message with enough signatures),

the node can safely start round r by proposing a new block

SoCC ’20, October 19–21, 2020, Virtual Event, USA Peilun Li, Guosai Wang, Xiaoqi Chen, Fan Long, and Wei Xu

for round r if it is a potential proposer. Nodes who are still

in round r − 1 will buffer these received blocks temporarily

and process them either when they commit in round r − 1
or when the starting time of round r comes.

Even if a node has entered round r before round r − 1

ends, the node will keep doing its tasks for Stage II of round

r − 1, such as forwarding/signing P messages, until the end

of the round. In this way, we can preserve the high signature

propagation rate for round r − 1.

Security analysis of pipelining. We now show that the

pipelining design does not affect our consensus protocol. The

TC-messages are only sent after validating the entire block,

so all committed blocks are still valid.

A Ped block may become invalid for two reasons: 1) the

block is reconstructed with the body but does not pass valid-

ity check, 2) the block is never fully reconstructed. In either

case, the vanilla protocol will be able to commit a valid alter-

native block for the round, but the pipelined version commits

none - as nodes early stopped propagating other candidates.

This behavior is acceptable as the block can fail at the valida-

tion stage only if it is generated by a malicious proposer, who

can stall the round anyways (by sending an empty block),

i.e., we do not increase the power of an attacker.

Consider the following rounds. If a block is Ped but not

TCed, as Algorithm 2 indicates, the node state will only

be affected by having Btc reset. No information about this

invalid block will persist. Thus, the next round will start as

if a valid block is Ped but not TCed. Now both safety and

liveness of our protocol still hold, and pipelining does not

give the adversaries any extra power.

5.2 Arbitrary-order Aggregated Signature
Gossip: Challenge 3 Solution

Gosig uses aggregated signature gossip to optimize the sig-

nature transmission in Stage II of the vanilla BFT protocol,

which reduces the data transfer for every node to avoid

overloading any single node. Note that each node needs to

collect votes or signatures from 2/3 of all other nodes. If

naively implementing Stage II, the number of signature mes-

sages would grow super-linearly as the number of nodes.

To address this scalability challenge, Gosig uses the tech-

niques in [8, 9] to aggregate multiple received signatures

into a compactmulti-signature during gossiping. Specifically,
Gosig collects signatures along with the gossip process by

including all signatures a node has seen in the P message. In

this way, on receiving a P message, a node can learn about

multiple new signatures that it can union with those it has

seen previously. This enables Gosig to forward one com-

pact multi-signature instead of many individual signatures

to save network resources. Also, accumulating signatures

in messages instead of on nodes is more resilient to node

failures. Since every node can send and receive less data, we

can alleviate the single-node capacity problem expressed in

challenge 3.

Now we describe how the signature aggregation works.

The cryptographic signature of a node pi involves a hash

function H , a generator G, a private key xi , and a public

key Vi = Gxi
. A node holding the private key xi can sign

a message M by computing Si = H (M)xi , and others can

verify it by checking whether e(G, Si) is equal to e(Vi ,H (M))
with a given bilinear map e . To track which signatures we

have received, we append an integer array n of size N to the

signature, and by signing a message M , a node computes

Si = H (M)xi , and increments the i-th element of nSi . The
combination (Si ,nSi) is the signature for aggregation.

Aggregating signatures is simply multiplying the BLS sig-

nature and adding up the array n. Thus, the aggregated signa-
ture (aka multi-signature) is S = H (M)

∑
i xi ·nS [i]. Let (S1,nS1)

and (S2,nS2) be two multi-signatures, we can combine them

by computing (S1∗S2,nS1+nS2). The array n tracks who have

signed the message. Everyone can verify the multi-signature

by checking whether e(G, S) = e(
∏

i V
nS [i]
i ,H (M)).

Note that the original signature aggregation algorithm [8]

only allows collecting signatures in a particular order. We

modify it by appending an integer array of size N to the

signature to record how many times a node’s signature is

aggregated. This means we can aggregate multi-signatures

in an arbitrary order [49], avoiding the risk of adaptive at-

tack. [49] mentions the idea of appending arrays, but did not

implement it, and thus vulnerable to adaptive attacks.

Although the multi-signature still has sizeO(N) asymptot-

ically, a 4-byte integer is more than enough for each element

of the appended array. It only takes 40,256 bytes with 10,000

nodes using a 2048-bit signature, 0.64% of the size without

aggregation. Also, as it is an integer array, Gosig compresses

it effectively: 1) Gosig uses variable length integer encoding

to reduce the size of many elements to 2 bytes; 2) when there

are not many signers (most of the array elements are zeros),

Gosig exploits the sparsity and encode it into a map; and 3)

Gosig can further adapt integer array compression [34].

Continuous gossipingwith LIFOprocessing stack. With

the signature aggregation techniques, the gossip network

now faces an interesting trade-off between forwarding a sig-

nature message immediately or waiting for more incoming

signatures to exploit signature aggregation opportunities.

In our implementation, each node continuously sends P/TC
messages to random neighbors in Stage II under a limit of

concurrent connections. The limit helps to avoid forwarding

signatures too aggressively and losing the aggregation op-

portunities. The default limit is 5 and Section 6.4 provides a

detailed evaluation of the setting.

Gosig SoCC ’20, October 19–21, 2020, Virtual Event, USA

If signatures arrive too fast to be processed in time, the

node puts these messages into a last-in-first-out (LIFO) stack.
Gosig chooses LIFO stack instead of a FIFO queue because it

is likely that later arriving messages contain more signatures.

5.3 Handling Special Cases

Participants join / leave. We support any non-interactive

proof authorizing a node to join or leave, be it a signature

from a trusted authority or a multi-signature from a group.

To join / leave the group, a node submits a special transaction

containing the proof. Existing nodes will update their own

participant list on committing the transaction.

Handling temporary failures. If a node recovers from a

crash or data loss, it should retrieve lost blocks and proofs.

It can only continue participating after it recovers the entire

history. Since any voting of a block can only be processed

after committing the previous block, all honest nodes will

see the same membership when counting the votes.

If a node detects an obvious communication problem (con-

nection failure, timeout, etc.) with a peer, it will “blacklist”

the peer (i.e. stop sending to it) for a period To (typically

a half of the round time). On subsequent failures with the

same peer, it will additively increase To , until it receives a
message from that peer, or successfully retries. This backoff

mechanism effectively limits the wasted attempts to connect

to failed nodes.

6 Evaluation
We evaluate the performance of Gosig using a combination of

a real-world testbed, emulations, and simulations.We present

both the overall performance and the effects of various pa-

rameters and optimizations. We also evaluate the effective-

ness in solving the poor network condition and single-node

capacity challenges using large-scale simulations.

6.1 Evaluation Setup

Gosig prototype implementation. We implement the

Gosig prototype in Java. We use pbc [38] library for cryp-

tographic computation (with JPBC [19] wrapper and with

preprocessing enabled) and use grpc-java [3] for network

communication. As for signature parameters, we choose the

default a-type parameter provided by JPBC [18], and use it to

generate 1024-bit BLS signature. The entire system contains

about 5,500 lines of Java code excluding comments.

We use three testbeds for different applications and scales,

including a real 280-node inter-datacenter WAN, a 5K-node

WAN emulator, and a 10K-node large-scale WAN simulator.

Workload. Each transaction submitted to Gosig is a simple

key-value set operation. The transaction is padded to 250

bytes, a typical Bitcoin transaction size (and used in [40]).

The transaction execution does not involve signature veri-

fication or disk IO operations, so our evaluation can focus

on the performance of the consensus protocol. These trans-

actions are submitted to the server running on the same

EC2 instance. Note that the latency is measured end-to-end,

between the moment a transaction is generated and the mo-

ment the block packing it is confirmed, while most other

works [29, 30, 40] only take into account the confirmation

latency of a block, not individual transactions. Theoretically,

the expected transaction commit latency is about 1.5× of the

block confirmation latency, because all transactions gener-
ated in a round are likely to be packed and committed in the

next round.

Real 280-node inter-datacenterWAN testbed. We build

a multi-region cloud testbed using 280 t2.large instances

(2 cores, 8 GB memory) evenly distributed on Amazon EC2’s

14 regions on 5 continents. We experimentally measure the

network condition. Within one region, we observe <1ms

latency and about 500 Mbps bandwidth, and latencies across

regions are up to hundreds of milliseconds with the band-

width varying from 15 Mbps to 250 Mbps. We believe this is

a good representation of a multi-region cloud.

A 5K-node emulation. To evaluate the scalability of Gosig,
we emulate a WAN with 5,000 nodes using 1,000 EC2 in-

stances. The setup is similar to Algorand [23].We run 5 nodes

per EC2 m4.2xlarge instance. We limit the network band-

width of each node to 20 Mbps. We insert artificial latency

on the sender side to emulate the network delay, according

to the measurements among 20 cities across the world [55].

To evaluate more nodes on each EC2 instance, we use

sleep to replace the signature verification - the CPU heavy

operation. We set the sleep time to the verification time we

measured on m4.2xlarge instances2.

A 10K-node simulation. Considering the cost, we use sim-

ulations to analyze Gosig on the public Internet. We focus

on the core of the protocol - the signature collection pro-

cess. We use the same network latency configuration and

signature verification time as our emulation, set the network

bandwidth limit to 2Mbps
3
, and set the packet loss rate to

1% (higher than many Internet links).

6.2 Real 280-node Testbed Performance
We first present the performance comparison with Hyper-

ledger Fabric [6], a well-known consortium blockchain sys-

tem for production, on a small cluster. The comparison will

show that with our setup, running a full-stack blockchain

2
The verification time consists of an 11 ms constant overhead for computing

bilinear map functions and another 0.008k ms for k signers with appended

array elements less than 2
16
.

3
The bandwidth limit fits our results in Section 6.3 by subtracting the

bandwidth for transaction and block propagation.

SoCC ’20, October 19–21, 2020, Virtual Event, USA Peilun Li, Guosai Wang, Xiaoqi Chen, Fan Long, and Wei Xu

Table 2: Performance comparison of Gosig and Fabric

System

Latency (s) Throughput (tps)

5 nodes 20 nodes 5 nodes 20 nodes

Fabric 4.44 4.84 198 187

Gosig 7.70 7.72 23500 21000

system cannot effectively evaluate the consensus protocol.

We then present the overall performance of Gosig on the

280-node testbed and then provide detailed analysis of con-

figuration parameters and the effects of the optimizations.

6.2.1 Comparison with Hyperledger Fabric We use up to 20

nodes of 5 regions from 5 different continents to run the

experiment. On each node, we deploy both a peer and an

orderer with the official docker image of version 2.2.0. The

transactions submitted toHyperledger Fabric are EmptyContract

in Hyperledger Caliper [4], which is just a no-op. The trans-

actions are evenly generated by all nodes, and they are sub-

mitted and endorsed by the peer deployed on the same node.

The workload is similar to the one used in Gosig as they try

to be as simple as possible. Fabric has not officially supported

any Byzantine fault tolerant algorithms, so we choose Raft

(etcdraft) as the consensus module. One round of Gosig is

5 seconds, and the batch timeout of Fabric is 1 second.

Table 2 shows the achieved throughput and latency. The

throughput of Fabric is less than 1% of Gosig with our 2-

core hosts because all CPU resources are occupied by the

verification of the certificates and signatures of transactions.

However, these transaction-related verifications are actually

at the application level and are not a part of the consensus

protocol that we want to evaluate. Besides, this overhead

can be reduced by a more powerful machine because they

can be processed in perfect parallelism, and this solution

is independent of the consensus module. Thus, in all the

following evaluations, wewill only run experiments onGosig

with dummy transactions to show the performance of the

consensus protocol.

6.2.2 Overall performance For the default experiments on

the testbed, we set round time T = 10 sec (5 sec for each

stage), and max_block_size = 60MB. Note that we can sup-

port large block size because we use segments to pipeline

block transfer and verification. With an average transaction

size of 250 bytes, we can include up to 240,000 transactions

per block. As we only include the block header in the propos-

als, the PR messages are much smaller than max_block_size.

We leave the discussion of configuration choices to Sec 6.2.3.

We run experiments on 70, 140 and 280 instances (i.e., 5, 10,

20 instances per data center). We run each for 1,200 sec using

different workload varying from 4,000 to 20,000 transactions

per second (tps). Figure 2(b) and 2(a) plot the throughput and

average commit latency, respectively. We have the following

observations:

0 5000 10000 15000 20000
Workload (tx/s)

0

10

20

30

40

50

La
te

n
cy

 (
s)

N=280, max_block_size=40MB

N=280, f=70

N=280

N=140

N=70

(a) Latency with varying workload.

0 5000 10000 15000 20000
Workload (tx/s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

T
h
ro

u
g
h
p
u
t

(t
x
/s

) N=280, max_block_size=40MB

N=280, f=70

N=280

N=140

N=70

(b) Throughput with varying workload

Figure 2: Performance under default configurations.

1) Without overloading the system, the average trans-

action commit latency is about 15.8 s, consistent with our

theoretically expected latency of 1.5× round time (T = 10 s).

2) With 70 nodes, we can sustain a 17,000 tps. With 280

nodes, we can still support 15,000 tps, which clearly demon-

strates the performance that Gosig can achieve. Comparing

to the reported numbers in HoneyBadgerBFT [40] (using a

similar EC2 testbed, but fewer geo-locations), we reach 8×

the throughput and reduce the latency by 90% with more

nodes and more regions.

3) When the system gets overloaded, the throughput ac-

tually drops. This is because the 10-second round time is

not enough to propagate all blocks to everyone, causing in-

complete rounds and thus reducing the effective throughput.

To prevent such situation, we limit the max_block_size as

an admission control mechanism. In fact, the dashed line

in Figure 2(b) shows that when limiting max_block_size

to 40MB (i.e., 160K transaction per block), we can sustain

the maximum throughput even when overloaded. Of course,

overloading still causes the latency to go up, the same for all

queuing systems.

4) Gosig tolerates failures quite well with small overhead.

As Figure 2(a) and 2(b) shows, 70 faulty nodes (not respond-

ing) among 280 total nodes show little influence on the

throughput or latency without overloading. The only im-

pact of these failures is decreasing the maximal throughput

by about 20%, from 15,000 tps to 12,000 tps.

6.2.3 Configuration Parameter Choices Gosig offers several

parameters to accommodate different system conditions. The

Gosig SoCC ’20, October 19–21, 2020, Virtual Event, USA

most important ones include the round time T , maximum

block size max_block_size, and the number of segments per

block. We experimentally evaluate their impacts on the same

280-node testbed.

Max block size. As we have discussed earlier, the param-

eter max_block_size serves as an admission control mech-

anism to avoid overloading the system. With N nodes, the

max_block_size is proportional to three parameters [17, 50]:

1)
1

logN , 2) round timeT , and 3) the network bandwidth. That

means, to increase the number of nodes from 100 to 10,000,

we need to either decrease the max_block_size by half or

double the round time T given a fixed bandwidth.

Keeping the number of nodes N = 280 and round time

T = 10s, we vary max_block_size from 20MB to 50MB,

corresponding to 8K to 20K tps. In each round, we generate

workload that saturates the max_block_size. Figure 3 plots

the results. The dashed line in Figure 3 shows the ideal case

where the system has infinite capacity.

The actual throughput is around 16,000 tps, as we pre-

sented earlier. We can see that for a max_block_size smaller

than 40MB, the actual throughput of the system increases

with the max_block_size and roughly follows the ideal line.

At around 16,000 tps, the system saturates. If the max_block_size

is significantly larger than the system’s capacity, the through-

put decreases because some rounds will end before the blocks

can be fully propagated.

Round timeT . The round timeT directly impacts the com-

mit latency. The expected transaction commit latency with-

out overloading is 1.5T if we can commit all transactions

generated in one round in the next. The latency significantly

increases than this value, which indicates system overload-

ing. We want to evaluate the influence of T settings. Note

that max_block_size/T (i.e., the data committed per round)

is limited by the network bandwidth. Thus, for eachT choice

between 5 and 20 sec, we experimentally determine the corre-

sponding optimal max_block_size that allows the maximum

throughput. We equally split T between the two stages. We

require T to be at least 3 sec to tolerate the clock synchro-

nization error ∆ and message propagation delay.

Figure 4 plots both the throughput and latency under

different T settings. In the figure, 1) we verify that we are

able to keep the latency close to the expected latency of

1.5T ; and 2) we observe that choosing a smallT significantly

reduces the maximum throughput. This is because whenT is

small, the corresponding max_block_size has to stay small,

meaning we are propagating many small blocks in very short

rounds. In this case, the network setup overhead becomes

non-negligible, further reducing the bandwidth we can use

to transfer useful data; 3) settingT to 10 sec already supports

the max throughput (16,000 tps) in a 280-node system, much

faster than all existing solutions to our knowledge.

20MB 30MB 40MB 50MB

max block size

0

5000

10000

15000

20000

T
h
ro

u
g
h
p
u
t

(t
x
/s

)

Throughput

10

15

20

25

30

35

40

La
te

n
cy

 (
s)

Latency

Figure 3: Performance effects of max_block_size

0 5 10 15 20 25

Round time (s)

0

5000

10000

15000

20000

T
h
ro

u
g
h
p
u
t

(t
x
/s

)

Throughput

0

10

20

30

40

50

La
te

n
cy

 (
s)

Latency

Figure 4: Performance effects of round time

5 10 15 20 25 30 35 40

Segments Size (MB)

0

5000

10000

15000

20000

T
h
ro

u
g
h
p
u
t

(t
x
/s

)

Optimal Throughput

Figure 5: Performance effects of block segments

2000
3500 3500

8000

15000

0
2000
4000
6000
8000

10000
12000
14000
16000

None Stages Rounds Segment All

Th
ro

ug
hp

ut
 (t

x/
s)

Optimization Policy
Figure 6: Throughput of different optimizations.

Number of segments per block. Figure 5 shows the through-
put improvement by transferring blocks in segments. Us-

ing 13.3 MB segments in 40 MB block, we can achieve the

throughput about 15,000 tps. This is because, with segments,

the nodes who are close to the round proposer can start gos-

siping out the block body earlier, and thus accelerate block

body propagation. Also, since nodes can retrieve missing

transactions without receiving the entire block body, raw

transactions also propagate faster. We also observe that we

only need a small number of segments per block to saturate

network bandwidth in our testbed.

SoCC ’20, October 19–21, 2020, Virtual Event, USA Peilun Li, Guosai Wang, Xiaoqi Chen, Fan Long, and Wei Xu

1.97
2.17

1.93

1.43 1.43
1.63

1.87 1.80

1.36 1.36

1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40

None Stages Rounds Segment AllNe
tw

or
k

Ut
ili

za
tio

n

Optimization Policy

Top 1 Top 3

Figure 7: Uplink network utilization of the top hot-
spot nodes, normalized by dividing the mean.

6.2.4 Benefits of Pipelining We evaluate how each optimiza-

tion in Secion 5.1 improves performance. We keep the stan-

dard optimizations, like short hash, and measure the perfor-

mance by selectively disabling other optimizations. For all

experiments, we keep round time T = 10s and experimen-

tally determine the optimal max_block_size.

Figure 6 shows that the vanilla implementation with all

pipelining disabled can only achieve 2,000 tps. Pipelining

between round or stages can both increase the throughput

by about 75% to 3,500, because it allows block propagation to

overlap with signature propagation, increasing the network

utilization of all nodes in Stage II. Using 5 segments per

block, we improve the throughput from 2,000 tps to 8,000 tps.

Adding all the improvements together, the throughput can

reach 15,000 tps, or 7.5 × better than the vanilla protocol.

Load balancing across nodes. The performance improve-

ments mainly come from reduced waiting time, which is the

result of a much more balanced network utilization among

the nodes. Figure 7 plots the relative network traffic at the

top 1 and top 3 busiest nodes to the average traffic across all

nodes. We can see that using segments is the most effective

in reducing hot spots. This is because more nodes can start

propagating before receiving the full block, reducing the

waiting for the first block.

6.3 5K-node Emulation

Overall performance. We evaluate the scalability of Gosig

with the 5K-node emulation. We set the round time to 15 sec

(evenly split between two stages) and the max_block_size

to 12 MB. We set the workload to 3000 tps, sufficient to

provide the optimal throughput. Under this configuration,

we can confirm 2700 MB data per hour, with only 23.9 sec

transaction commit latency.

The emulation shows that Gosig achieves both higher

throughput (about 3.6×) and shorter confirmation time (70%

less) compared with the result presented by Algorand [23],

which commits 750 MB data per hour with about 50 sec

for each round (or 75 sec transaction commit latency if the

0 5 10 15 20 25
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Block Header

Block Body

Raw TX

2f+1 P

2f+1 TC

Figure 8: CDF for each stage time with 5k nodes.

10 15 20 25 30 35 40
Network Bandwidth (Mbps)

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

T
h
ro

u
g
h
p
u
t

(t
x
/s

)

Optimal Throughput

Figure 9: Maximum throughput supported by limited
network bandwidth from 10Mbps to 40Mbps.

workload is generated uniformly)
4
. Moreover, Gosig runs

consensus among all 5,000 nodes, while Algorand only uses

a committee of 2,000 nodes.

Each round is fully utilized. The good performance par-

tially comes from the fact that transmission pipelining can

overlap the waiting time of different messages and utilize

the synchronous rounds in an asynchronous way. Figure 8

illustrates the timeline how a block propagates in a round r .
It plots the percentage of nodes who have received the block

header (from the winning block), the entire block body, all

raw transactions in this block, and enough (2f + 1) P/TC

signatures, respectively. The solid vertical line separates dif-

ferent rounds, and the dashed vertical line separates stages

within a round. We start plotting at the beginning of Stage

II of round r − 1.
The potential proposers of round r start to propose blocks

(and send the headers) when they commit a block in round r−
1, about 2.5 sec before round r starts as we pipeline between
rounds. Starting a round early provides us the flexibility to

adjust the workload among different rounds, to better handle

both workload variations and performance disturbances.

It takes only about 2 s for all nodes to receive the header

of the proposed block, thanks to its small size. The round

r officially starts at time 7.5 sec, but this start time is not

important in normal cases, because all nodes have already

committed round r − 1 and entered round r before this time.

When the Stage II of round r begins (at 15s), a small fraction

of nodes has not received all the transactions of the proposer

block. They can send their P votes now since they have

4
Algorand runs 50K users to get the metric. For 5K users, Algorand only

shows the throughput of about 200 MB per hour with 18-second rounds.

Gosig SoCC ’20, October 19–21, 2020, Virtual Event, USA

received the header, but they have to receive these missing

transactions in Stage II before sending out their TC votes.

This pipelining between stages allows Stage II to start early

and makes the stage splitting configuration less sensitive.

Network bandwidth is fully utilized. To show that Gosig

can also utilize the bandwidth well, we change the network

bandwidth limit from 10Mbps to 40Mbps, and Figure 9 shows

the maximum throughput. We see that the throughput is al-

most proportional to the network bandwidth (1500 tps for

10Mbps and 5900 tps for 40Mbps). We analyze the log and

notice the actual bandwidth utilization for raw transaction

transmission (including both gossip and missing transac-

tion retrieval) is 8.25 Mbps, 16.68 Mbps, 25.01 Mbps, 32.70

Mbps for 10, 20, 30, 40 Mbps bandwidth respectively. Over

80% bandwidth is devoted to ‘useful’ payload transmission,

meaning our protocol introduces little overhead and utilizes

the bandwidth well.

6.4 10K-node Simulation
Our 10K-node simulation focuses on the completion time of

Stage II, the core and most complicated part of Gosig.

Under the same configurations as in the emulator, we show

the time required to complete stage II with 100 to 10,000

nodes, i.e., all honest nodes receive a TC signed by more

than 2/3 nodes. Figure 10 shows the results using different

combinations of failure modes and optimizations. There are

several observations:

1) (Simulator calibration) We first reproduce the 5K-node

emulation result. The star in Figure 10 shows time take to

complete Stage II in the 5K-node emulation. We find that

the time matches the simulator very well: 3.55 sec in the

emulation and 3.70 sec in the simulation. It shows that the

simulator does reflect the actual performance.

2) Gosig scales well. Even with 10,000 nodes, Stage II only

takes 6.68 sec. Multi-signature plays an important role with

a large number of nodes. Without multi-signature
5
, it takes

4× more time to finish Stage II.

3) With 10,000 nodes and 1/3 of them not responding,

Stage II completion time slows down from 6.68 sec to 11.31

sec. The robustness comes from the gossip mechanism and

the order-independent signature aggregation.

Aggregated signature gossip solves the single node ca-
pacity challenge. Figure 10 also provides a comparison

between threshold signatures and aggregated signature gos-

sip. Threshold signatures [24, 57] behaves well at the scale

of hundreds. However, when the scale exceeds 1,000, the

latency increases rapidly, and with 10k nodes, it gets over

20 sec. The performance drops because the message size

processed by the collector grows linear with the group size,

making this single node slow down the whole system. In

5
We use 1024-bit RSA signature that offers the same security level.

102 103 104

Total number of nodes (log scale)

0

5

10

15

20

25

30

T
im

e
 f

o
r

S
ta

g
e
 I
I
(s

)

Default connection limit (5)

Threshold signature w/ collectors

Default limit w/o multi-signature

Connection limit = 3

Connection limit = 20

Default limit with 1/3 failures

Default limit on WAN emulation

Figure 10: Completion time simulation for Stage II

contract, aggregated signature gossip compresses the data

sent and received by every node and significantly boosts the

performance of Stage II. When Gosig runs with 10k nodes,

Stage II takes only 6.68 sec to complete.

Our results also show that a small gossip connection limit,

i.e., the number of outbound connections, can fit most envi-

ronments. A large limit (e.g., 20 in Figure 10) will saturate

the network and miss signature aggregation opportunities.

Although a small limit may not fully utilize the network with

fewer nodes, the cost is not significant compared with time

already spent on block propagation.

7 Conclusion and Future Work
While BFT protocols are a promising tool to build consortium

blockchains, they face significant challenges when adopted

into cloud services on the public Internet. We present a new

BFT protocol, Gosig, for consortium blockchains. In Gosig,

proposers for every new block are randomly and secretly

elected to prevent adaptive attacks. We jointly optimize the

BFT protocol layer and the gossip layer, pipelining all com-

munications to maximize the network utilization wherever

possible. Using aggregated signature gossip, we can pack the

partial voting results into a short message, allowing every

single node to transfer fewer data. These optimizations help

Gosig to support a single consensus group with thousands

or even more nodes, and achieve several times higher perfor-

mance in a wide area network while maintaining the same

level of safety as traditional BFT (e.g., tolerate asynchronous

network and adaptive attacks).

As future work, we would like to design an incentive

mechanism to encourage players to follow the protocol, e.g.,

does its best to forward messages. Also, Gosig is both a com-

plete system and a building block for advanced blockchains.

For example, we would like to provide a sharding/off-chain

design using Gosig as consensus protocols for each shard.

Acknowledgments
This work is supported in part by the National Natural Sci-

ence Foundation of China (NSFC) Grant 61532001 and the

Zhongguancun Haihua Institute for Frontier Information

Technology and Nanjing Turing AI Institute.

SoCC ’20, October 19–21, 2020, Virtual Event, USA Peilun Li, Guosai Wang, Xiaoqi Chen, Fan Long, and Wei Xu

References

[1] 2016. Bitcoin Core. https://bitcoincore.org/.

[2] 2016. Bitcoin Core BIP 152. https://github.com/bitcoin/bips/blob/

master/bip-0152.mediawiki.

[3] 2017. grpc-java. https://github.com/grpc/grpc-java.

[4] 2020. Hyperledger Caliper. https://github.com/hyperledger/caliper.

[5] Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-

Philippe Martin, and Carl Porth. 2005. BAR fault tolerance for cooper-

ative services. In ACM SIGOPS operating systems review, Vol. 39. ACM,

45–58.

[6] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-

stantinos Christidis, Angelo De Caro, David Enyeart, Christopher

Ferris, Gennady Laventman, Yacov Manevich, et al. 2018. Hyperledger

fabric: a distributed operating system for permissioned blockchains.

In Proceedings of the thirteenth EuroSys conference. 1–15.
[7] Kenneth P Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai

Budiu, and Yaron Minsky. 1999. Bimodal multicast. ACM Transactions
on Computer Systems (TOCS) 17, 2 (1999), 41–88.

[8] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. 2003. Ag-

gregate and verifiably encrypted signatures from bilinear maps. In In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 416–432.

[9] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short signatures

from the Weil pairing. In International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 514–532.

[10] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan,

Joshua A Kroll, and Edward W Felten. 2015. Research perspectives on

bitcoin and second-generation cryptocurrencies. In IEEE Symposium
on Security and Privacy. IEEE.

[11] Christian Cachin. 2016. Architecture of the Hyperledger blockchain

fabric. In Workshop on Distributed Cryptocurrencies and Consensus
Ledgers.

[12] Christian Cachin and Marko Vukolić. 2017. Blockchains Consensus

Protocols in the Wild. arXiv preprint arXiv:1707.01873 (2017).
[13] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault

tolerance. In OSDI, Vol. 99. 173–186.
[14] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo

Alvisi, Mike Dahlin, and Taylor Riche. 2009. Upright cluster services. In

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. ACM, 277–290.

[15] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and

Mirco Marchetti. 2009. Making Byzantine Fault Tolerant Systems

Tolerate Byzantine Faults. In NSDI, Vol. 9. 153–168.
[16] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. 1995.

Atomic broadcast: From simple message diffusion to Byzantine agree-

ment. Information and Computation 118, 1 (1995), 158–179.

[17] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels,

Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün

Sirer, et al. 2016. On scaling decentralized blockchains. In International
Conference on Financial Cryptography and Data Security. Springer,
106–125.

[18] Angelo De Caro and Vincenzo Iovino. 2011. JPBC Benchmark. http:

//gas.dia.unisa.it/projects/jpbc/benchmark.html.

[19] Angelo De Caro and Vincenzo Iovino. 2011. jPBC: Java pairing based

cryptography. In Proceedings of the 16th IEEE Symposium on Computers
and Communications, ISCC 2011. IEEE, Kerkyra, Corfu, Greece, June
28 - July 1, 850–855. http://gas.dia.unisa.it/projects/jpbc/

[20] Christian Decker, Jochen Seidel, and Roger Wattenhofer. 2016. Bit-

coin meets strong consistency. In Proceedings of the 17th International
Conference on Distributed Computing and Networking. ACM, 13.

[21] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus

in the presence of partial synchrony. Journal of the ACM (JACM) 35, 2
(1988), 288–323.

[22] P Th Eugster, Rachid Guerraoui, Sidath B Handurukande, Petr

Kouznetsov, and A-M Kermarrec. 2003. Lightweight probabilistic

broadcast. ACM Transactions on Computer Systems (TOCS) 21, 4 (2003),
341–374.

[23] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nick-

olai Zeldovich. 2017. Algorand: Scaling Byzantine agreements for

cryptocurrencies. SOSP 2017.

[24] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi,

Benny Pinkas, Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir,

and Alin Tomescu. 2019. SBFT: a scalable and decentralized trust

infrastructure. In 2019 49th Annual IEEE/IFIP international conference
on dependable systems and networks (DSN). IEEE, 568–580.

[25] Timo Hanke, Mahnush Movahedi, and Dominic Williams. 2018. DFIN-

ITY Technology Overview Series, Consensus System. arXiv preprint
arXiv:1805.04548 (2018).

[26] Richard Karp, Christian Schindelhauer, Scott Shenker, and Berthold

Vocking. 2000. Randomized rumor spreading. In Foundations of Com-
puter Science, 2000. Proceedings. 41st Annual Symposium on. IEEE, 565–
574.

[27] A-M Kermarrec, Laurent Massoulié, and Ayalvadi J. Ganesh. 2003.

Probabilistic reliable dissemination in large-scale systems. IEEE Trans-
actions on Parallel and Distributed systems 14, 3 (2003), 248–258.

[28] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman

Oliynykov. 2017. Ouroboros: A provably secure proof-of-stake

blockchain protocol. In Annual International Cryptology Conference.
Springer, 357–388.

[29] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail

Khoffi, Linus Gasser, and Bryan Ford. 2016. Enhancing bitcoin secu-

rity and performance with strong consistency via collective signing.

In 25th USENIX Security Symposium (USENIX Security 16). USENIX
Association, 279–296.

[30] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas

Gailly, Ewa Syta, and Bryan Ford. 2018. Omniledger: A secure, scale-

out, decentralized ledger via sharding. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 583–598.

[31] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and

Edmund Wong. 2007. Zyzzyva: Speculative Byzantine fault tolerance.

In ACM SIGOPS Operating Systems Review, Vol. 41. ACM, 45–58.

[32] Klaus Kursawe and Victor Shoup. 2005. Optimistic asynchronous

atomic broadcast. In International Colloquium on Automata, Languages,
and Programming. Springer, 204–215.

[33] Jae Kwon. 2014. Tendermint: Consensus without mining. Draft v. 0.6,
fall (2014).

[34] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers

per second through vectorization. Software: Practice and Experience
45, 1 (2015), 1–29.

[35] Harry C. Li, Allen Clement, Edmund L. Wong, Jeff Napper, Indrajit Roy,

Lorenzo Alvisi, and Michael Dahlin. 2006. BAR Gossip. In Proceedings
of the 7th Symposium on Operating Systems Design and Implementation
(Seattle, Washington) (OSDI ’06). USENIX Association, Berkeley, CA,

USA, 191–204. http://dl.acm.org/citation.cfm?id=1298455.1298474

[36] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and

Marko Vukolić. 2016. {XFT}: Practical fault tolerance beyond crashes.

In 12th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 16). 485–500.

[37] Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nico-

las Barry, Eli Gafni, Jonathan Jove, Rafał Malinowsky, and Jed McCaleb.

2019. Fast and secure global payments with Stellar. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. 80–96.

https://bitcoincore.org/
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/grpc/grpc-java
https://github.com/hyperledger/caliper
http://gas.dia.unisa.it/projects/jpbc/benchmark.html
http://gas.dia.unisa.it/projects/jpbc/benchmark.html
http://gas.dia.unisa.it/projects/jpbc/
http://dl.acm.org/citation.cfm?id=1298455.1298474

Gosig SoCC ’20, October 19–21, 2020, Virtual Event, USA

[38] Ben Lynn. 2007. On the implementation of pairing-based cryptography.

The Department of Computer Science and the Committee on Graduate
Studies of Stanford University (2007).

[39] Silvio Micali, Michael Rabin, and Salil Vadhan. 1999. Verifiable ran-

dom functions. In Foundations of Computer Science, 1999. 40th Annual
Symposium on. IEEE, 120–130.

[40] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016.

The honey badger of BFT protocols. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. ACM,

31–42.

[41] ZarkoMilosevic, Martin Biely, and André Schiper. 2013. Bounded delay

in Byzantine-tolerant state machine replication. In Reliable Distributed
Systems (SRDS), 2013 IEEE 32nd International Symposium on. IEEE,
61–70.

[42] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash sys-

tem.

[43] Rafael Pass and Elaine Shi. 2017. Hybrid consensus: Efficient consensus

in the permissionless model. In LIPIcs-Leibniz International Proceed-
ings in Informatics, Vol. 91. Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik.

[44] Rafael Pass and Elaine Shi. 2018. Thunderella: Blockchains with opti-

mistic instant confirmation. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 3–33.

[45] Li Peilun, Wang Guosai, Chen Xiaoqi, and Xu Wei. 2018. Gosig: Scal-

able Byzantine Consensus on Adversarial Wide Area Network for

Blockchains. arXiv:1802.01315 (2018).
[46] Barbara Simons. 1990. An overview of clock synchronization. In

Fault-Tolerant Distributed Computing. Springer, 84–96.
[47] Chrysoula Stathakopoulou, Tudor David, and Marko Vukolić. 2019.

Mir-bft: High-throughput BFT for blockchains. arXiv preprint
arXiv:1906.05552 (2019).

[48] Tim Swanson. 2015. Consensus-as-a-service: a brief report on the emer-

gence of permissioned, distributed ledger systems. Report, available
online, Apr (2015).

[49] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp

Jovanovic, Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford.

2016. Keeping authorities “honest or bust" with decentralized witness

cosigning. In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE,
526–545.

[50] Douglas B. Terry, Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes

Irish, John Larson, Scott Shenker, Howard E. Sturgis, and Daniel C.

Swinehart. 1988. Epidemic Algorithms for Replicated Database Main-

tenance. Acm Sigops Operating Systems Review 22, 1 (1988), 8–32.

[51] Florian Tschorsch and Björn Scheuermann. 2016. Bitcoin and beyond:

A technical survey on decentralized digital currencies. IEEE Commu-
nications Surveys & Tutorials 18, 3 (2016), 2084–2123.

[52] Vidhyashankar Venkataraman, Kaouru Yoshida, and Paul Francis. 2006.

Chunkyspread: Heterogeneous unstructured tree-based peer-to-peer

multicast. In Network Protocols, 2006. ICNP’06. Proceedings of the 2006
14th IEEE International Conference on. IEEE, 2–11.

[53] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and

Lau Cheuk Lung. 2009. Spin one’s wheels? Byzantine fault tolerance

with a spinning primary. In Reliable Distributed Systems, 2009. SRDS’09.
28th IEEE International Symposium on. IEEE, 135–144.

[54] Marko Vukolić. 2015. The quest for scalable blockchain fabric: Proof-of-

work vs. BFT replication. In International Workshop on Open Problems
in Network Security. Springer, 112–125.

[55] WonderNetwork. Apr. 2018. Global ping statistics: Ping times between

WonderNetwork servers. https://wondernetwork.com/pings.

[56] Gavin Wood. 2014. Ethereum: A secure decentralised generalised

transaction ledger. Ethereum Project Yellow Paper 151 (2014).

[57] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and

Ittai Abraham. 2019. Hotstuff: Bft consensus with linearity and respon-

siveness. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing. 347–356.

[58] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018.

Rapidchain: Scaling blockchain via full sharding. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 931–948.

[59] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, and Huaimin Wang. 2017.

Blockchain challenges and opportunities: A survey. International
Journal of Web and Grid Services (2017).

https://wondernetwork.com/pings

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	3.1 System Model and Assumptions
	3.2 Gosig Protocol Overview

	4 Gosig Protocol Design
	4.1 Message and State Definition
	4.2 Stage I: Block Proposal
	4.3 Stage II: Signature Collection
	4.4 Security Analysis

	5 Key Performance Optimizations
	5.1 Transmission Pipelining: Challenge 2 Solution
	5.2 Arbitrary-order Aggregated Signature Gossip: Challenge 3 Solution
	5.3 Handling Special Cases

	6 Evaluation
	6.1 Evaluation Setup
	6.2 Real 280-node Testbed Performance
	6.3 5K-node Emulation
	6.4 10K-node Simulation

	7 Conclusion and Future Work
	Acknowledgments
	References

