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Abstract

Automatic patch generation holds out the promise of automatically correcting software

defects without the need for developers to manually diagnose, understand, and correct

these defects. This dissertation presents two novel patch generation systems, Prophet

and Genesis, which learn from past successful human patches to enhance the patch
generation process. The core of Prophet and Genesis is a novel learning technique
that extracts universal properties of correct code and a novel inference technique that

generalizes universal patching strategies across different applications. The results show

that the learning and inference techniques enable Prophet and Genesis to operate with

rich and tractable search spaces that contain many useful patches and efficient search

algorithms that prioritize correct patches. By collectively leveraging development

efforts worldwide, Prophet and Genesis automatically generate correct patches for

real-world defects in large open-source C and Java applications with up to millions

lines of code.
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Chapter 1

Introduction

Software applications are integrated into every part of our society. There are more

software programs than ever before, e.g., the number of open source repositories

in GitHub reached 60 million at 2017, and this number continues to grow [16]. As

the dependence of our society on these programs also continues to grow, making

these programs reliable and secure becomes an increasingly important challenge for

our society and a daunting task for software developers. Automated techniques for

improving software reliability and security will be even more important than ever

before.

Software defects are pervasive in software systems and can cause undesirable user

experience, denial of service, or even security exploitation [89, 108]. Generating a

patch for a defect is a tedious, time-consuming, and often repetitive process. Human

developers have to diagnose the defect from the collected bug reports, understand its

root cause, craft the patch to correct the defect, and validate the patch with regression

tests and code reviews [108, 109]. Even for defects that cause security vulnerabilities,

it takes 28 days on average for maintainers to develop and distribute fixes [13]. Out

of the 1.7 million GitHub issues about Java runtime exceptions at the time of writing

this dissertation, more than half million issues are still open. This demonstrates that

we are running out of development resources to fix these issues and defects in time.

Automatic patch generation [30, 49, 55, 65, 73, 79, 80, 82, 104] holds out the promise

of automatically correcting software defects without the need for human developers
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to diagnose, understand, and correct these defects. This dissertation presents novel

patch generation techniques that learn from past successful human patches. The

techniques treat the large volume of existing programs not just a challenge but also

an opportunity. This opportunity enables the techniques to leverage past development

efforts to enhance the patch generation process. Specifically, this dissertation presents

the first technique that learns universal properties of correct code to recognize correct

patches. This dissertation also presents the first technique that learns universal

patching strategies across different applications to generate rich and tractable search

spaces of candidate patches.

1.1 Generate-and-Validate Systems

Automatic patch generation techniques can be broadly classified into three categories:

1) targeted techniques that repair specific classes of universal defects such as null

dereferences [61], out of bounds accesses [90], and infinite loops [28, 50], 2) synthesis-

based techniques that leverage formal specifications to produce patches that enable a

defective program to satisfy the specification [30, 79], and 3) generate-and-validate

techniques, which work with a test suite of inputs, generate a set of candidate patches,

then test the patched programs against the test suite to find a patch that validates [49,

55, 65, 73, 80, 82, 104]. This dissertation focuses on generate-and-validate techniques.

The standard generate-and-validate approach starts with a test suite of inputs,

at least one of which exposes a defect in the software [55, 82, 104]. The system

then generates a space of candidate patches and searches this space to find plausible

patches that produce correct outputs for all inputs in the test suite. The advantage

of generate-and-validate systems is that they can apply to general classes of defects

without the need of formal specifications, which are typically not available for large

real world applications.

Analysis of Previous Systems: To give a backdrop of previous generate-and-

validate systems, Chapter 2 in this dissertation systematically analyzes patch genera-

tion results from three previous systems, GenProg [55], AE [104], and RSRepair [82].
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The analysis substantially changed the field's understanding of the capabilities of

the three analyzed systems. The overwhelming majority of the reported patches

are incorrect and many of them are semantically equivalent to eliminating existing

functionalities in the original program. For the majority of the evaluated benchmark

defects, all generated patches of GenProg, AE, and RSRepair are incorrect, because

the search space of the systems contains no correct patch.

Plausible but Incorrect Patches: Our analysis reveals one important challenge

of generate-and-validate systems: plausible but incorrect patches caused by weak test

suites. Because the supplied test suites typically do not fully capture the desired

behavior of the program, the patch generation systems often accept plausible but

incorrect patches that produce correct results for all of the inputs in the test suite but

incorrect outputs for other inputs. These plausible but incorrect patches often have

significant negative effects such as eliminating desired functionality or introducing

security vulnerabilities.

Search Space Tradeoff: Our analysis, together with the evaluation of our own

generate-and-validate system in Chapter 5, reveals another important challenge

of generate-and-validate systems: the inherent trade-off between the coverage and

tractability of the candidate patch search space. For a patch generation system to

generate a correct patch for a defect, on one hand, the search space of the system has

to contain the correct patch. On the other hand, the search space has to be small

enough so that the patch generation system can efficiently explore the space to find

the correct patch. All previous patch generation systems rely on manually defined

code transform rules to generate candidate patches and these manual rules may have

suboptimal trade-offs - they may miss many correct patches or generate too many

candidate patches which cause the search space explosion.

1.2 Learning from Successful Human Patches

Our analysis results highlight the importance of exploiting additional information

other than test suites to improve the search space and the search algorithm in generate-
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and-validate systems. One way to obtain such information is from past successful

human patches (e.g., collected from open source repositories).

This dissertation presents learning and inference techniques that extract and exploit

useful information from a set of training human patches. These techniques enable

patch generation systems to leverage development efforts worldwide to automatically

fix defects. A key observation is that standard automatic patch generation systems

operate in a completely different way than human developers. A generate-and-validate

patch generation system exhaustively enumerates all candidate patches in its search

space with its superior computation power. Human developers often unconsciously

apply certain software engineering strategies to consider only those patches that exhibit

certain properties of successful code. The ultimate goal of my research is to build

advanced patch generation systems that combine the computation power of machines

with the sophisticated insights of human developers.

This dissertation also presents the design, implementation, and evaluation of

two novel patch generation systems, Prophet and Genesis, which implement the

new learning and inference techniques. Prophet and Genesis automatically learn

universal properties of successful human patches in a database and use the learned

information to prioritize potentially correct patches in their search space. Genesis

further automatically learns universal patching strategies from the human patches to

infer a productive search space of candidate patches instead of relying on manually

defined code transform rules. Our evaluation results show that Prophet and Genesis

automatically generate correct patches for real-world defects in large open-source C

and Java applications with up to millions lines of code.

1.3 Learning Universal Correctness Properties

Chapter 4 presents Prophet, the first generate-and-validate patch generation system

that learns from past successful human patches. Prophet works for C programs. It first

learns a probabilistic model of correct code from the training patches. The learned

model assigns a probability score to each candidate patch in the Prophet search space.
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Prophet then uses the model to rank candidate patches in order of likely correctness,

prioritizing potentially correct patches among many candidate patches in the search

space.

A key challenge for Prophet is to identify and learn universal properties of correct

code. Each patch inserts new code into the program. But correctness does not

depend only on the new code - it also depends on how that new code interacts

with the program into which it is inserted. Prophet therefore extracts not only

the characteristics of the patch itself, but also interactions between the patch and

surrounding code. Prophet appropriately abstracts away syntactic details such as

variable names to produce a set of application-independent features.

Experimental Results: Chapter 5 evaluates Prophet on 69 real world defects

drawn from eight large open source applications. Our results show that, on the same

benchmark set, Prophet outperforms previous generate-and-validate patch generation

systems, specifically GenProg [55] and AE [104]. Within its 12 hour time limit, Prophet

finds correct patches for 18 of these 19 defects. For 15 of these 19 defects, the first

patch to validate is correct. GenProg and AE find correct patches for 1 and 2 defects,

respectively.

The results also show that the learned patch search order is critical to the success

of Prophet. A baseline system that uses a random order to prioritize its search of the

same space of candidate patches, finds correct patches for only 14 of these 19 defects

(four less than Prophet). For only 7 of these 19 defects (eight less than Prophet), the

first patch to validate is correct. SPR, a patch generation system which uses a set

of of hand-coded heuristics to prioritize its search of the same space, finds correct

patches for 16 of these 19 defects (two less than Prophet). For 11 of these 19 defects

(four less than Prophet), the first patch to validate is correct.

By designing and evaluating Prophet, this dissertation therefore investigates the

following hypothesis:

Hypothesis. Correct patches across different applications share universal prop-

erties that can be learned from past successful human patches.
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Our results are consistent with this hypothesis - by learning and exploiting

universal properties of correct code, Prophet explores its search space more efficiently

and therefore generates more correct patches than previous systems. Notably, Prophet

learns universal properties of successful human patches from one set of applications

and applies the learned information to generate correct patches for defects in a different

application.

1.4 Learning Universal Patching Strategies

Chapter 6 presents Genesis, the first patch generation system that automatically learns

universal patching strategies from successful human patches to infer code transforms

and the search space. Genesis works for Java programs. Unlike all previous patch

generation systems, Genesis does not rely on any manually crafted transform. It

instead uses the automatically inferred transforms to generate candidate patches.

These patches embody a rich variety of different patching strategies developed by a

wide range of human developers, and not just the patch generation strategies encoded

in a set of manually crafted transforms from the developers of the patch generation

system.

Genesis captures the diverse patch generation strategies with its novel representa-

tion of code transforms, each of which is composed of two template abstract syntax trees

(AST) to capture the common code structures before and after applying the transform.

One template AST matches code in the original program; the other template AST

specifies the replacement code for the generated patch. Template ASTs contains

template variables, which match subtrees in the original or patched code. Template

variables enable the transforms to abstract away application specific details to capture

common patterns implemented by multiple patches drawn from different applications.

Many useful patches do not simply rearrange existing code and logic; they also

introduce new code and logic. Genesis transforms therefore implement partial pattern

matching in which the replacement template AST contains free template variables that

are not matched in the original code. Each of the free template variables is associated
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with a generator, which systematically generates new candidate code components for

the free variable. This new technique, which enables Genesis to synthesize new code

and logic in the candidate patches, is essential to enabling Genesis to generate correct

patches for previously unseen applications.

Genesis uses a novel generalization algorithm to obtain candidate code transforms

from sampled subsets of training human patches. Genesis then selects a subset of

candidate transforms as the final inferred search space. Genesis navigates the search

space design trade-off between the coverage and tractability by formulating and solving

an integer linear program (ILP). The solution of the ILP maximizes the number of

training patches covered by the selected transforms while acceptably bounding the

number of candidate patches that the selected transforms can generate.

Experimental Results: Chapter 7 presents the evaluation of Genesis. We use

Genesis to infer patch search spaces and generate patches for three classes of defects in

Java programs: null pointer (NP), out of bounds (OOB), and class cast (CC) defects.

Working with a training set that includes 483 NP patches, 199 0GB patches, and 287

CC patches drawn from 356 open source applications, Genesis infers a search space

generated by 108 transforms.

Our benchmark defects include 20 NP, 13 0GB, and 16 CC defects from 41 open

source applications. All of the benchmark applications are systematically collected

from github [16] and contain up to 235K lines of code. With the 108 inferred transforms,

Genesis generates correct patches for 21 out of the 49 defects (11 NP, 6 OB, and 4 CC

defects). We compare Genesis with PAR [49, 69], a previous patch generation system

for Java that works with manually defined patch templates. For the same benchmark

set, the PAR templates generate correct patches for 10 fewer defects (specifically, 7

NP and 4 OB defects).

We attribute these results to the ability of the automated Genesis inference

algorithms to navigate complex patch transform trade-offs at scale. Genesis works

with hundreds to over a thousand candidate transforms to obtain productive search

spaces generated by close to a hundred selected transforms - many more transforms

than any previous generate and validate system. For example, the Genesis combined
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search space for NP, OB, and CC defects contains 85 transforms. In contrast,

PAR contains only nine templates for these defects and Prophet contains only seven

transformation schemas. Deploying this many transforms enables Genesis to capture

a broad range of patching strategies, with the transforms selected to ensure the overall

tractability and coverage of the resulting patch search space.

By designing and evaluating Genesis, this dissertation therefore investigates the

following hypothesis:

Hypothesis. Correct patches across different applications share universal patch-

ing strategies that can be learned from past successful human patches.

Our results are consistent with this hypothesis - by learning and deploying universal

patching strategies, Genesis operates with more productive search spaces and therefore

generates significantly more correct patches than previous systems. Notably, Genesis

learns universal patching strategies of successful human patches from one set of

applications and applies the learned information to generate correct patches for defects

in a potentially different application.

1.5 Usage Scenario

Prophet and Genesis take a program that contains a defect and a set of test cases,

at least one of which exposes the defect. Prophet and Genesis produce a ranked list

of generated patches, all of which pass the supplied test cases. The ranking of the

generated patches is determined by the likelihood of the patch correctness in the

learned probabilistic model.

While the basic principles and the techniques behind Prophet and Genesis can be

applied broadly to a range of important software engineering problems, one motivating

scenario is as follows. Whenever a new bug report with a bug triggering input is

submitted to a developer, the developer converts the bug report into a new test case

to expose the defect. Then instead of manually crafting patches to fix the defect, the

developer applies Prophet or Genesis with the new test case together with existing

regression test cases to generate patches for the defect. The developer finally reviews
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the ranked list of the generated patches one by one following the order to select a

correct patch to apply.

Genesis has been adopted and productized by a large outsourcing and software

maintenance company. It is currently being demonstrated to customers, to an ap-

parently enthusiastic response, and is scheduled to go into production on customer

projects in early 2018. Genesis is particularly valuable in this context because the

company's business model involves maintaining large production software systems

developed by others. The company's engineers are therefore often unfamiliar with the

code and starting largely from scratch when attempting to fix a defect. The ability of

Genesis to automatically generate correct patches in this situation is therefore quite

valuable to this company and their customer base.

1.6 Contributions

This dissertation demonstrates that exploiting additional information learned from

human patches is a very promising direction to build powerful generate-and-validate

systems that can leverage past development efforts worldwide. This dissertation

presents the first results in this area and lays a foundation for further pursuing this

direction. Specifically, this dissertation makes the following contributions:

Analysis of Generate-and-validate Systems: This dissertation presents a sys-

tematic analysis of the patch generation results of generate-and-validate systems. 1

It shows that the overwhelming majority of the reported GenProg, RSREpair, and

AE patches are incorrect and many of them are equivalent to functionality deletions.

It identifies 1) the plausible but incorrect patches and 2) the search space design

trade-off between the coverage and tractability as two important challenges of generate-

and-validate systems. The analysis has changed the evaluation standard of the field.

Since the publication of the analysis results [85], it has become a standard practice

'Note that the manual analysis of the majority of the generated patches of GenProg, RSRepair,
and AE is performed by Zichao Qi and Sara Achour under the supervision of the author of this
dissertation.
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to evaluate not just the plausibility but also the correctness of patches produced by

generate-and-validate systems [53, 58, 59, 64, 65, 101, 106].

Learning Universal Correctness Properties: This dissertation presents a novel

approach for learning universal properties of correct code. This approach uses a

parameterized discriminative probabilistic model to assign a correctness probability

to candidate patches. This correctness probability captures not only properties of

the new code present in the candidate patches, but also properties that capture how

this new code interacts with the surrounding code into which it is inserted. It also

presents an algorithm that learns the model parameters via a training set of successful

human patches collected from open-source project repositories.

Learning Universal Patching Strategies: This dissertation presents a novel

approach for learning universal patching strategies of successful human patches to

infer code transforms and search spaces. It presents novel transforms with template

ASTs, template variables, and generators. It also presents a novel patch generalization

algorithm that, given a set of training patches, automatically derives such a transform.

It further presents a novel search space inference algorithm that formulates the search

space design trade-off between the coverage and tractability as solving an integer

linear program.

Prophet and Genesis Implementation: This dissertation presents Prophet, the

first patch generation system that learns universal properties of correct code, and

Genesis, the first patch generation system that learns both universal properties of

correct code and universal patching strategies of successful human patches. Our

experimental results show that Prophet and Genesis significantly outperform previous

patch generation systems for programs in C and Java, respectively. The results are

consistent with our hypotheses - both systems exploit learned information from human

patches to enhance their ability to generate correct patches.
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1.7 Roadmap

The rest of this dissertation is organized as follows. Chapter 2 presents our systematic

analysis of previous generate-and-validate systems. If you are interested in the status

of previous generate-and-validate techniques and the background of this research,

you can read Chapter 2. Chapter 3 presents a general framework for generate-and-

validate systems including Prophet and Genesis. It is an important chapter to read

for understanding the high-level architecture of Prophet and Genesis.

If you are interested in Prophet, you can read Chapter 4 and Chapter 5. Chapter 4

presents the design of Prophet including the algorithm for learning universal properties.

Chapter 5 presents our evaluation of Prophet. If you are interested in Genesis, you can

read Chapter 6 and Chapter 7. Chapter 6 presents the design of Genesis including the

algorithm for learning universal patching strategies. Chapter 7 presents our evaluation

of Genesis. Chapter 8 discusses future directions and realistic expectations. Chapter 9

presents related work and we finally conclude at Chapter 10.
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Chapter 2

Analysis of Patch Plausibility and

Correctness

Generate-and-validate patch generation systems operate with a test suite of inputs,

at least one of which exposes a defect in the software. The systems apply program

modifications to generate a space of candidate patches, then search the generated

patch space to find plausible patches - i.e., patches that produce correct outputs

for all inputs in the test suite. To give a backdrop of previous generate-and-validate

patch generation techniques and to set the context for the research presented in this

dissertation, in this chapter, we analyze GenProg [55], RSRepair [82], and AE [104]

systems.

Sources. The previous version of this research presented in this chapter appeared

in [85] and [83]. The majority of the manual analysis of the GenProg, AE, and

RSRepair generated patches was performed by Zichao Qi and Sara Anchour under

the supervision of the author of this dissertation.

2.1 Research Questions

The reported results for these systems are impressive: GenProg is reported to fix 55

of 105 considered bugs [55], RSRepair is reported to fix all 24 of 24 considered bugs

33



(these bugs are a subset of the 55 bugs that GenProg is reported to fix) [82], and AE

is reported to fix 54 of the same 105 considered bugs [104].1

To better understand the capabilities and potential of these systems, we performed

an analysis of the patches that these systems produce. Enabled by the availability of the

generated patches and the relevant patch generation and validation infrastructure [1,

5, 7, 8, 10, 12], our analysis was driven by the following research questions:

RQ1: Do the reported GenProg, RSRepair, and AE patches produce correct

outputs for the inputs in the test suite used to validate the patch?

Plausibility Analysis and Weak Proxies: The basic principle behind generate-

and-validate systems is to only accept plausible patches that produce correct outputs

for all inputs in the test suite used to validate the patches. Despite this principle, our

analysis shows that because of errors in the patch validation infrastructure, many of

the reported patches are, in fact, not plausible - they do not produce correct outputs

even for the inputs in the test suite used to validate the patch.

For 37 of the 55 defects that GenProg is reported to repair [55], none of the

reported patches produce correct outputs for the inputs in the test suite. For 14 of

the 24 defects that RSRepair is reported to repair [82], none of the reported patches

that we analyze produce correct outputs for the inputs in the test suite. And for 27

of the 54 defects reported in the AE result tar file [1], none of the reported patches

produces correct outputs.

Further investigation indicates that weak proxies are the source of the error. A

weak proxy is an acceptance test that does not check that the patched program

produces correct output. It instead checks for a weaker property that may (or may

not) indicate correct execution. Specifically, some of the acceptance tests check only if

the patched program produces an exit code of 0. If so, they accept the patch (whether

the output is correct or not). To cite two specific examples, both GenProg and AE

will accept a patch that completely replaces the main program of either php or libtiff

with return 0 as fixing any bug in these two applications. Specifically, both GenProg

'Our analysis of the commit logs and applications indicates that 36 of these bugs correspond to
deliberate functionality changes, not actual bugs. That is, for 36 of these bugs, there is no actual bug
to fix. To simplify the presentation of this chapter, however, we refer to all of the 105 bugs as defects.
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and AE will accept the following program as a correct implementation of both php

and libtiff:

int main() { return 0; }

Because of weak proxies, all of these systems violate the underlying basic principle

of generate-and-validate patch generation. The result is that the majority of the

patches accepted by these systems do not generate correct outputs even for the inputs

in the validation test suite. See Section 2.3.

Correctness Analysis: Despite multiple publications that analyze the reported

patches and the methods used to generate them [39, 41, 54, 55, 57, 69, 81, 82, 104],

we were able to find no systematic patch correctness analysis. We therefore analyzed

the remaining plausible patches to determine if they eliminated the defect or not.

RQ2: Are any of the reported GenProg, RSRepair, and AE patches correct?

The overwhelming majority of the patches are not correct. Specifically, GenProg

produced a correct patch for only 2 of the 105 considered defects. 2 Similarly, RSRepair

produced a correct patch for only 2 of the 24 considered defects. AE produced a

correct patch for only 3 of the 105 considered defects. For each of the incorrect patches,

we have a test case that exposes the defect in the patch [84]. Because of weak proxies,

many of these test cases were already present in the existing test suites. For the

remaining plausible but incorrect patches, we developed new test cases that exposed

the defects. See Section 2.4.

Stronger Test Suites: One hypothesis is that stronger test suites with additional

inputs that provide better coverage would enable these systems to generate more

correct patches:

RQ3: Do stronger test suites enable GenProg to produce more correct patches?

To investigate this question, we reran all of the GenProg runs that generated

incorrect patches. We used corrected test scripts and enhanced test suites that

2 We note that the paper discusses only two patches: one of the correct patches for one of these
two defects and a patch that is obtained with the aid of user annotations [55].
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contained defect-exposing test cases for all of these patches. These reexecutions

produced no patches at all. We next discuss two potential explanations for this result.

A necessary prerequisite for the success of any search-based patch generation

algorithm is a search space that contains successful patches. One potential explanation

is that the GenProg, RSRepair, and AE search spaces do not contain correct patches for

these defects. This explanation is consistent with our evaluation results in Section 5.5.2

for Prophet, whose search space contains correct patches for 20 of the 105 defects in

the GenProg benchmark set. Only 3 of these correct patches are within the GenProg

search space.

Another potential explanation is that these systems do not use a search algorithm

that can explore the search space efficiently enough. GenProg's genetic search algorithm

uses the number of passed test cases as the fitness function. For most of the defects

in the benchmark set, there is only one negative test case, which exposes the defect.

Therefore even the unpatched program passes all but one of the test cases. With

this fitness function, the difference between the fitness of the unpatched code and the

fitness of a plausible patch that passes all test cases is only one. There is therefore no

smooth gradient for the genetic search to traverse to find a solution. In this situation,

genetic search can easily devolve into random search. Indeed, RSRepair (which uses

random search) is reported to find patches more quickly and with less trials than

GenProg [82]. See Section 2.5.

Functionality Deletion: As we analyzed patch correctness, it became clear that

(despite some surface syntactic complexity), the overwhelming majority of the plausible

patches were semantically quite simple. Specifically, they were equivalent to a single

functionality deletion modification, either the deletion of a single line or block of code

or the insertion of a single return or exit statement.

RQ4: How many of the plausible reported GenProg, RSRepair, and AE patches

are equivalent to a single functionality deletion modification?

Our analysis indicates that 104 of the 110 plausible GenProg patches, 37 of the 44

plausible RSRepair patches, and 22 of the 27 plausible AE patches are equivalent to a

single modification that deletes functionality.
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Our analysis also indicates that (in contrast to previously reported results [56]) some

of the plausible patches had significant negative effects, including the introduction

of new integer and buffer overflow security vulnerabilities and the elimination of

standard desirable functionality. These negative effects highlight some of the risks

associated with the combination of functionality deletion and generate-and-validate

patch generation. See Section 2.6 for the details of our analysis.

Despite their potential for negative effects, functionality deletion patches can

be useful in helping developers locate and better understand defects. For obtaining

functionality deletion patches for this purpose, we advocate using a system that focuses

solely on functionality deletion (as opposed to a system that aspires to create correct

patches). Such an approach has at least two advantages. First, it is substantially

simpler than approaches that attempt to generate more complex repairs. The search

space can therefore be smaller, simpler, and searched more efficiently. Second, focusing

solely on functionality deletion can produce simpler, more transparent patches for

developers who want to use the patches to help them locate and better understand

defects.

Original GenProg: There are two versions of GenProg. The previous analysis results

are for the new version of GenProg published in 2012 [55]. The original GenProg

system is published in 2009 [40, 103]. Our analysis of the original GenProg system

yields similar results. Out of 11 defects evaluated in the two original GenProg papers,

the generated patches for 9 defects are incorrect (in some cases because of the use of

weak proxies, in other cases because of weak test suites). The patches for 9 of the 11

defects simply delete functionality (removing statements, adding return statements, or

adding exit statements). The only two defects for which the original GenProg system

generates correct patches are small motivating examples (less than 30 lines of code).

See Section 2.7 for the details of our analysis.

ManyBugs Benchmark Set: GenProg, AE, and RSRepair (under the name TR-

PRepair) have recently been evaluated on a larger set of benchmark defects [54]. Our

analysis shows that the ManyBugs test infrastructure still suffers from errors present

in the GenProg [55] and AE [104] systems. These errors again stem from the use of
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weak proxies in the testing infrastructure. The reported ManyBugs results therefore

exhibit similar errors as the earlier GenProg [55] and AE [104] results.

Kali: Inspired by the observation that the patches for the vast majority of the

defects that GenProg, RSRepair, and AE were able to address consisted (semantically)

of a single functionality deletion modification, we implemented a new system, the Kali

automatic patch generation system, that focuses only on removing functionality. Kali

generates patches that either 1) delete a single line or block of code, 2) replace an if

condition with true or false (forcing the then or else branch to always execute), or

3) insert a single return statement into a function body. Kali accepts a patch if it

generates correct outputs on all inputs in the validation test suite. Our hypothesis

was that by focusing directly on functionality removal, we would be able to obtain a

simpler system that was at least as effective in practice.

RQ5: How effective is Kali in comparison with existing generate-and-validate

patch generation systems?

Although we do not advocate using Kali for automatic patch generation, our results

show that Kali is more effective than GenProg, RSRepair, and AE. Specifically, Kali

finds correct patches for at least as many defects (3 for Kali vs. 3 for AE and 2 for

GenProg and RSRepair) and plausible patches for at least as many defects (27 for

Kali vs. 18 for GenProg, 10 for RSRepair, and 27 for AE). And Kali works with a

simpler and more focused search space. All of our results including the test cases and

the semantic analysis of each plausible but incorrect patch are available at [84].

2.2 Overview of Analyzed Systems

GenProg: GenProg combines three basic modifications, specifically delete, insert,

and replace, into larger patches, then uses genetic programming to search the resulting

patch space. We work with the GenProg system used to perform a "systematic study

of automated program repair" that "includes two orders of magnitude more" source

code, test cases, and defects than previous studies [55]. As of the time of writing

this dissertation, the relevant GenProg paper is referenced on the GenProg web site
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as the recommended starting point for researchers interested in learning more about

GenProg [6]. The GenProg patch evaluation infrastructure works with the following

kinds of components [5, 7, 8]:

" Test Cases: Individual tests that exercise functionality in the patched appli-

cation. Examples include php scripts (which are then evaluated by a patched

version of php), bash scripts that invoke patched versions of the libtiff tools on

specific images, and perl scripts that generate HTTP requests (which are then

processed by a patched version of lighttpd).

" Test Scripts: Scripts that run the application on a set of test cases and report

either success (if the application passes all of the test cases) or failure (if the

application does not pass at least one test case).

" Test Harnesses: Scripts or programs that evaluate candidate patches by

running the relevant test script or scripts on the patched application, then

reporting the results (success or failure) back to GenProg.

It is our understanding that the test cases and test scripts were adopted from the

existing software development efforts for each of the benchmark GenProg applications

and implemented by the developers of these projects for the purpose of testing code

written by human developers working on these applications. The test harnesses were

implemented by the GenProg developers as part of the GenProg project.

A downloadable virtual machine [8], all of the patches reported in the relevant

GenProg paper (these include patches from 10 GenProg executions for each defect) [7],

source code for each application, test cases, test scripts, and the GenProg test harness

for each application [5] are all publicly available. Together, these components make it

possible to apply each patch and run the test scripts or even the patched version of

each application on the provided test cases. It is also possible to run GenProg itself.

RSRepair: The goal of the RSRepair project was to compare the effectiveness of

genetic programming with random search [82]. To this end, the RSRepair system built

on the GenProg system, using the same testing and patch evaluation infrastructure

but changing the search algorithm from genetic search to random search. RSRepair
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was evaluated on 24 of the 55 defects that GenProg was reported to repair [55, 82].

The reported patches are publicly available [12]. For each defect, the RSRepair paper

reports patches from 100 runs. We analyze the first 5 patches from these 100 runs.

AE: AE is an extension to GenProg that uses a patch equivalence analysis to avoid

repeated testing of patches that are syntactically different but equivalent (according

to an approximate patch equivalence test) [104]. AE focuses on patches that only

perform one edit and exhaustively enumerates all such patches. The AE experiments

were "designed for direct comparison with previous GenProg results" [55, 104] and

evaluate AE on the same set of 105 defects. The paper reports one patch per repaired

defect, with the patches publicly available [1]. AE is based on GenProg and we were

able to leverage the developer test scripts available in the GenProg distribution to

compile and execute the reported AE patches.

2.3 Plausibility Analysis

The basic principle behind the GenProg, RSRepair, and AE systems is to generate

patches that produce correct results for all of the inputs in the test suite used to

validate the patches. We next present our analysis results for the first research question:

RQ1: Do the reported GenProg, RSRepair, and AE patches produce correct

results for the inputs in the test suite used to validate the patch?

To investigate this question, we downloaded the reported patches and validation

test suites [1, 5, 7, 8, 12]. We then applied the patches, recompiled the patched

applications, ran the patched applications on the inputs in the validation test suites,

and compared the outputs with the correct outputs. Our results show that the answer

to RQ1 is that the majority of the reported GenProg, RSRepair, and AE patches do

not produce correct outputs for the inputs in the validation test suite:

o GenProg: Of the reported 414 GenProg patches, only 110 are plausible - the

remaining 304 generate incorrect results for at least one input in the test suite

used to validate the patch. This leaves 18 defects with at least one plausible

patch.
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" RSRepair: Of the analyzed 120 AE patches, only 44 are plausible - the

remaining 76 generate incorrect results for at least one input in the test suite

used to validate the patch. This leaves 10 defects with at least one plausible

patch.

" AE: Of the reported 54 AE patches, only 27 are plausible - the remaining 27

generate incorrect results for at least one input in the test suite. This leaves 27

defects with at least one plausible patch.

Test Harness Issues: The GenProg 2012 paper reports that GenProg found suc-

cessful patches for 28 of 44 defects in php [55]. The results tarball contains a total

of 196 patches for these 28 defects. Only 29 of these patches (for 5 of the 44 defects,

specifically defects php-bug-307931-307934, php-bug-309892-309910, php-bug-309986-

310009, php-bug-310011-310050, and php-bug-310673-310681) are plausible. GenProg

accepts the remaining 167 patches because of integration issues between the GenProg

test harness and the developer test script.

For php, the developer test script is also written in php. The GenProg test harness

executes this developer test script using the version of php with the current GenProg

patch under evaluation applied, not the standard version of php. The current patch

under evaluation can therefore influence the behavior of the developer test script (and

not just the behavior of the test cases).

The GenProg test harness does not check that the php patches cause the developer

test scripts to produce the correct result. It instead checks only that the higher order

8 bits of the exit code from the developer test script are 0. This can happen if 1) the

test script itself crashes with a segmentation fault (because of an error in the patched

version of php that the test case exercises), 2) the current patch under evaluation

causes the test script (which is written in php) to exit with exit code 0 even though

one of the test cases fails, or 3) all of the test cases pass. Of the 167 accepted patches,

138 are implausible - only 29 pass all of the test cases.

We next present relevant test infrastructure code. The GenProg test harness is

written in C. The following lines determine if the test harness accepts a patch. Line
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8564 runs the test case and shifts off the lower 8 bits of the exit code. Line 8566

accepts the patch if the remaining upper 8 bits of the exit code are zero.

php-run-test. c:

8559 sprintf(buffer,

"./sapi/cli/php .. /php-helper.php -p ./sapi/cli/php -q %s", name);

8564 int res = system(buffer) >> 8

8565

8566 if (res == 0) { /* accept patch */

8567 printf("PASS: %s\n", name);

8568 return 0;

8569 } else {

8570 printf("FAIL: %s\n", name);

8571 return 1;

8572 }

Note that the buffer contains the shell command to run a test, where name

variable contains the test case name, . /sapi/cli/php is the patched version of the

php interpreter. This patched version is used both to run the php test file for the test

case and the php-helper .php script that runs the test case.

Test Script Issues: The GenProg libtiff test scripts do not check that the test cases

produce the correct output. They instead use a weak proxy that checks only that

the exercised libtiff tools return exit code 0 (it is our understanding that the libtiff

developers, not the GenProg developers, developed these test scripts). The test scripts

may therefore accept patches that do not produce the correct output. There is a libtiff

test script for each test case; 73 of the 78 libtiff test scripts check only the exit code.

This issue causes GenProg to accept 137 implausible libtiff patches (out of a total of

155 libtiff patches). libtiff and php together account for 322 of the total 414 patches

that the GenProg paper reports [55].

One of the gmp test scripts does not check that all of the output components are

correct (despite this issue, both gmp patches are plausible).
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AE: The reported AE patches exhibit plausibility problems that are consistent with

the use of weak proxies in the GenProg testing infrastructure. Specifically, only 5

of the 17 reported libtiff patches and 7 of the reported 22 php patches are plausible.

Upon further examination of the AE infrastructure, AE eliminated one of the sources

of error in the php test harness. Specifically, the AE php test harness no longer

shifts off the lower 8 bits of the exit code. (">> 8" is removed in line 8564 of the

php-run-test . c file). The other php and libtiff weak proxy errors remain in place.

RSRepair: RSRepair uses the same testing infrastructure as GenProg [82]. Presum-

ably because of weak proxy problems inherited from the GenProg testing infrastructure,

the reported RSRepair patches exhibit similar plausibility problems. Only 5 of the 75

RSRepair libtiff patches are plausible. All of these 5 patches repair the same defect,

specifically libtiff-bug-d13be72c-ccadf48a. The RSRepair paper reports patches for

only 1 php defect, specifically php-bug-309892-309910, the 1 php defect for which all

three systems are able to generate a correct patch.

ManyBugs: The ManyBugs testing infrastructure exhibits similar errors as the AE

test infrastructure [10, 54]. Specifically, the php test harness still uses the patched

version of php to run the test cases and the libtiff test scripts check only for exit

code 0, not for the correct output. The ManyBugs paper therefore (Figure 4) reports

accepted patches that produce incorrect outputs for inputs in the validation test suite.

And the ManyBugs php and libtiff testing infrastructure still accepts the following

program as a correct implementation of both php and libtiff:

int maino { return 0; }

Like the AE testing infrastructure (but unlike the earlier GenProg testing infras-

tructure [55]), the ManyBugs testing infrastructure does not shift off the lower 8 bits of

the program exit code. Because of the elimination of this error, the ManyBugs paper

reports fewer implausible GenProg patches than the earlier ICSE 2012 paper [55].

Specifically, for the same set of 44 php defects present in both the GenProg 2012 [55]

and ManyBugs [54] benchmark sets, the reported number of cases for which GenProg
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generates plausible patches has dropped from 28 in the ICSE 2012 paper [55] to 20 in

the ManyBugs paper [54].

2.4 Correctness Analysis

We analyze each plausible patch in context to determine if it correctly repairs the

defect. We next present our analysis results for the second research question:

RQ2: Are any of the reported GenProg, RSRepair, and AE patches correct?

Patch Correctness Results: Our analysis indicates that only 5 of the 414 GenProg

patches (3 for python-bug-69783-69784 and 2 for php-bug-309892-309910) are correct.

This leaves GenProg with correct patches for 2 out of 105 defects. Only 4 of the 120

RSRepair patches (2 for python-bug-69783-69784 and 2 for php-bug-309892-309910)

are correct. This leaves RSRepair with correct patches for 2 out of 24 defects. Only 3

of the 54 AE patches (1 for php-bug-309111-309159, 1 for php-bug-309892-309910,

and 1 for python-bug-69783-69784) are correct. This leaves AE with correct patches

for 3 out of 54 defects.

For each plausible but incorrect patch that GenProg or AE generate, and each

plausible but incorrect RSRepair patch that we analyze, we developed a new test case

that exposes the defect in the incorrect patch [84].

Patch Correctness Clarity: We acknowledge that, in general, determining whether

a specific patch corrects a specific defect can be difficult (or in some cases not even

well defined). We emphasize that this is not the case for the patches and defects

that we consider here. The correct behavior for all of the defects is clear, as is patch

correctness and incorrectness.

Developer Patch Comparison: For each defect, the GenProg benchmark suite

identifies a corrected version of the application that does not have the defect. In

most cases the corrected version is a later version produced by a developer writing

an explicit developer patch to repair the error. In other cases the corrected version

simply applies a deliberate functionality change - there was no defect in the original
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1 -if (y < 1000) {
2 - tmp___0 = PyDictGetItemString(moddict,
3 - "accept2dyear");

4 - accept = tmp..0;

5 - if ((unsigned int)accept
6 - (unsigned int )((void *)0)) {
7 - tmp___1 = PyObject_IsTrue(accept);
8 - acceptval = tmp...1;
9 - if (acceptval == -1) {
10 - return (0);

11 - }else {}
12 - if (acceptval) {
13 - if (0 <= y){
14 - if (y < 69){
15 - y += 2000;
16 - }else {
17 - goto _L;

18 - }
19 - }else {
20 - L: /* CIL Label */
21 - if (69 <= y) {
22 - if (y < 100){
23 - y += 1900;
24 - }else {
25 - PyErrSetString(

26 - PyExcValueError,
27 - "year out of range");
28 - return (0);

29 - }
30 - }else {
31 - PyErrSetString(

32 - PyExcValueError,

33 - "year out of range");
34 - return (0);

35 - }
36 - }
37 - tmp_2 =
38 - PyErrWarnEx(

39 - PyExcDeprecationWarning,
40 -"Century info guessed for a 2-digit year.",
41 - 1);

42 - if (tmp_..2 != 0) {
43 - return (0);

44 - } else { }
45 - } else {}
46 - } else {
47 - return (0);

48 - }
49 -} else {}
50 p->tm-year = y - 1900;

51 (p->tm-mon) --;
52 p->tmwday = (p->tm-wday + 1) % 7;

Figure 2-1: GenProg Patch for python-bug-69783-69784. Delete Lines 1-49.
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1 -if (y < 1000) {
2 - PyObject *accept = PyDictGetItemString(
3 - moddict, "accept2dyear");

4 - if (accept != NULL) {
5 - int acceptval=PyObjectIsTrue(accept);

6 - if (acceptval == -1)

7 - return 0;
8 - if (acceptval) {
9 - if (O <= y && y < 69 )

10 - y += 2000;

11 - else if (69 <= y && y < 100)

12 - y += 1900;

13 - else {
14 - PyErrSetString(PyExcValueError,

15 - "year out of range");

16 - return 0;
17 - }
18 - if (PyErrWarnEx(

19 - PyExcDeprecationWarning,

20 -"Century info guessed for a 2-digit year.",

21 - 1) != 0)
22 - return 0;
23 - }
24 - }
25 - else

26 - return 0;
27 -}
28 p->tmyear = y - 1900;

29 p->tmmon--;

30 p->tm-wday = (p->tmwday + 1) % 7;

Figure 2-2: Developer Patch for python-bug-69783-69784. Delete Lines 1-27.
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version of the application. In yet other cases the identified correct version is an earlier

version of the application. In these cases, it is possible to derive an implicit developer

patch that reverts the application back to the earlier version.

Our analysis indicates that the developer patches are, in general, consistent with

our correctness analysis. Specifically, 1) if our analysis indicates that the reported

GenProg, RSRepair, or AE patch is correct, then the patch has the same semantics as

the developer patch, 2) if our analysis indicates that the reported GenProg, RSRepair,

or AE patch is not correct, then the patch has different semantics than the developer

patch, and 3) if we developed a new test case to invalidate generated plausible but

incorrect patches for a defect, the corresponding developer patched version of the

application produces correct output for the new input.

python-bug-69783-69784: Note that python-bug-69783-69784 is in fact not a

bug. It instead corresponds to a deliberate functionality change. The removed code

implemented python support for two-year dates. This functionality was deliberately

removed by the developer in revision 69784. Because the original code correctly

implemented the two-digit date functionality, there is no defect to patch - this bug

corresponds to a deliberate functionality change instead of a defect. Figure 2-1 presents

the GenProg patch for python-bug-69783-69784. Figure 2-2 presents the developer

patch. Both of the patches remove an if statement (lines 1-25 in Figure 2-2, lines 1-52

in Figure 2-1). Because GenProg generates preprocessed code, the GenProg patch is

larger than but semantically equivalent to the developer patch. AE and RSRepair

also generate correct patches that are semantically equivalent to this GenProg patch.

php-bug-309892-309910: Figure 2-3 presents the GenProg patch for php-bug-

309892-309910. Figure 2-4 presents the developer patch. Both of the patches remove

an obsolete check implemented by the deleted if statement (lines 14-18 in Figure 2-3

and lines 7-9 in Figure 2-4). AE and RSRepair generate semantically equivalent

patches.

php-bug-309111-309159: Figure 2-5 presents the AE patch for php-bug-309111-

309159. Figure 2-6 presents the developer patch. php-309111-309159 is an url parsing

defect - the PHP function parse url() may incorrectly parse urls that contain
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1 if (offset >= (long )sl-len) {
2 php-errordocref0(

3 (char const*)((void *)0),

4 1 << 1L,
5 "The start position cannot exceed "+

6 "initial string length");

7 while (1) {
8 __z _-1 = returnvalue;
9 __z __1->value.lval = OL;

10 __z___1->type = (unsigned char)3;

11 break;

12 }
13 return;

14 }else {}

15 -if (len > (long )sllen - offset) {
16 - len = (long )sl_len - offset;
17 -} else { }
18 if (len) {
19 tmp._1 = len;

20 } else {

21 if ((long )s2_len >
22 (long)sljen - offset) {
23 tmp __0 = (long )s2_len;

24 }else {

25 tmp __0 = (long )sl_len - offset;
26 }
27 tmp___- 1 = tmp -_0;
28 }
29 cmpjlen = (unsigned int )tmp_..1;

Figure 2-3: GenProg Patch for php-bug-309892-309910. Delete Lines 15-17.

1 if (offset >= silen) {
2 phperror_docref (NULL TSRMLS_CC,

3 EWARNING,
4 "The start position cannot " +
5 "exceed initial string length");

6 RETURNFALSE;

7 }
8 -if (len > silen - offset) {
9 - len = silen - offset;

10 -}

11 cmp_len = (uint) (len ? len : MAX(
12 s2_len, (silen - offset)));

Figure 2-4: Developer Patch for php-bug-309892-309910. Delete Lines 8-10.
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1 if (pp) {
2 if ((unsigned int)pp < (unsigned int)p) {
3 + ...

4 p = pp;
5 + ...

6 + if (__genprog-mutant == 25) {
7 + if (p - s) {
8 + tmp___24 = _estrndup(s,
9 + (unsigned int )(p - s));
10 + ret->path = (char *)tmp _24;
11 + php-replacecontrolcharsex(

12 + ret->path, p - s);
13 + }else{}

14 + }
15 + ...
16 goto label-parse;

17 }else{}

18 }else {}

19 if (p - s){
20 tmp__21 = _estrndup(s,
21 (unsigned int )(p - s));
22 ret->path = (char *)tmp __21;
23 php-replace-controlchars-ex(ret->path,

24 p -s);

25 }else {}

Figure 2-5: AE Patch for php-bug-309111-309159. Insert lines 5-15.
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1 if (pp && pp < p) {
2 + if (pp - s) {
3 + ret->path = estrndup(s, (pp-s));

4 + php-replace controlcharsex(ret->path,

5 + (pp - s));

6 + }

7 p = pp;
8 goto label-parse;

9 }
10 if (p - s){
11 ret->path = estrndup(s, (p-s));

12 php-replace-controlchars ex(ret->path,

13 (p - S));
14 }

Figure 2-6: Developer Patch for php-bug-309111-309159. Insert lines 2-6.

question marks. The AE patch (with _ _genprog_mutant equal to 25) copies the

if statement (lines 23-29 of Figure 2-5) to the location after the assignment p = pp.

Therefore p is equal to pp when the copied block executes. In this context, the copied

block is semantically equivalent to the block that the developer patch adds before

the assignment statement. In the AE patch, the code involving __genprogmutant

works with the AE test infrastructure to compile multiple generated patches into the

same file for later dynamic selection by the AE test infrastructure.

2.5 GenProg Reexecutions

We next present our analysis results for the third research question:

RQ3: Do stronger test suites enable GenProg to produce more correct patches?

To determine whether GenProg [551 is able to generate correct patches if we correct

the issues in the patch evaluation infrastructure and provide GenProg with stronger

test suites, we perform the following GenProg reexecutions:

Corrected Patch Evaluation Infrastructure: We first corrected the GenProg

patch evaluation infrastructure issues (see Section 2.3). Specifically, we modified the

php test harness to ensure that the harness correctly runs the test script and correctly

reports the results back to GenProg. We strengthened the 73 libtiff test scripts to,
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as appropriate, compare various metadata components and/or the generated image

output with the correct output. We modified the gmp test scripts to check all output

components.

Augmented Test Suites: We augmented the GenProg test suites to include the

new test cases (see Section 2.4) that expose the defects in the plausible but incorrect

GenProg patches.

GenProg Reexecution: For each combination of defect and random seed for

which GenProg generated an incorrect patch, we reexecuted GenProg with that same

combination. These reexecutions used the corrected patch evaluation infrastructure

and the augmented test suites.

Results: These reexecutions produced 13 new patches (for defects libtiff-bug-

5b02179-3dfb33b and lighttpd-bug-2661-2662). Our analysis indicates that the new

patches that GenProg generated for these two defects are plausible but incorrect. We

therefore developed two new test cases that exposed the defects in these new incorrect

patches. We included these new test cases in the test suites and reexecuted GenProg

again. With these test suites, the GenProg reexecutions produced no patches at all.

The new test cases are available [84].

2.6 Semantic Patch Analysis

For each plausible patch, we manually analyzed the patch in context to determine if it

is semantically equivalent to either 1) the deletion of a single statement or block of

code, or 2) the insertion of a single return or exit statement. This analysis enables us

to answer the fourth research question:

RQ4: Are the reported GenProg, RSRepair, and AE patches equivalent to a

single modification that simply deletes functionality?

Our analysis indicates that the overwhelming majority of the reported plausible

patches are equivalent to a single functionality deletion modification. Specifically, 104

of the 110 plausible GenProg patches, 37 of the plausible 44 RSRepair patches, and 22

of the plausible 27 AE patches are equivalent to a single deletion or return insertion
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modification. Note that even though AE contains analyses that attempt to determine

if two patches are equivalent, the analyses are based on relatively shallow criteria

(syntactic equality, dead code elimination, and equivalent sequences of independent

instructions) that do not necessarily recognize the functionality deletion equivalence

of syntactically complex sequences of instructions. Indeed, the AE paper, despite its

focus on semantic patch equivalence, provides no indication that the overwhelming

majority of the reported patches are semantically equivalent to a single functionality

deletion modification [104].

2.6.1 Weak Test Suites

During our analysis, we obtained a deeper understanding of why so many plausible

patches simply delete functionality. A common scenario is that one of the test cases

exercises a defect in functionality that is otherwise unexercised. The patch simply

deletes functionality that the test case exercises. This deletion then impairs or even

completely removes the functionality.

These results highlight the fact that weak test suites - i.e., test suites that provide

relatively limited coverage - may be appropriate for human developers (who operate

with a broader understanding of the application and are motivated to produce correct

patches) but (in the absence of additional techniques designed to enhance their ability

to produce correct patches) not for automatic patch generation systems that aspire to

produce correct patches.

2.6.2 Case Studies

We next present several case studies of patches for specific bugs.

libtiff-bug-086036id-1ba75257: Revision number 0860361d of libtiff incorrectly

implements an integer overflow check at TIFFFetchData( in tif dirread.c. Figure 2-7

presents the source code snippet and the developer patch for this defect. Figure 2-8

presents the GenProg and AE patches for this error. The check at line 9 in Figure 2-7

is incorrect and classifies many benign tiff images as bad images. The developer patch
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1 static tsize t
2 TIFFFetchData(TIFF* tif,
3 TIFFDirEntry* dir, char* cp) {
4 int w = TIFFDataWidth(
5 (TIFFDataType) dir->tdir-type);
6 tsizet cc = dir->tdircount * w;
7 /* Check for overflow. */
8 if (!dir->tdircount 11 !w 11
9 - (tsizet)dir->tdircount / w != cc)
10 + cc / w != (tsizet)dir->tdircount)
11 goto bad;
12 ...
13 }

Figure 2-7: Developer Patch for libtiff-bug-0860361d-1ba75257. Modify Lines 9-10.

1 static tsize_t
2 TIFFFetchData(TIFF* tif,
3 TIFFDirEntry* dir, char* cp) {
4 int w = TIFFDataWidth(
5 (TIFFDataType) dir->tdir-type);
6 tsizet cc = dir->tdircount * w;
7 /* Check for overflow. */

8 - if (!dir->tdircount 11 !w
9 - (tsize-t)dir->tdir-count / w != cc)

10 - goto bad;

11 ..

12 }

Figure 2-8: GenProg and AE Patches for libtiff-bug-0860361d-1ba75257. Delete Lines
8-10.
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Figure 2-9:

1 static int statbuffromarray(zval *array,
2 php-streamstatbuf *ssb) {
3 zval **elem;

4 #define ENTRY_ EX(name, name2)

5 if (SUCCESS == zendhashfind(array,
6 #name, sizeof(#name), (void**)&eiem)) { \
7 + SEPARATE_ZVAL(elem);

8 convert_tolong(*elem);
9 ssb->sb.st_##name2 = Z_LVALPP(elem); }

10 #define ENTRY(name) ENTRYEX(name,name)

11

12 ENTRY(dev);

13 ENTRY(...);

14

15 }

Developer Patch for php-bug-307931-307934. Insert Line 7.

fixes the overflow check (see lines 9-10 in Figure 2-7). All plausible GenProg and AE

patches remove either the integer overflow check or even the entire branch condition

completely (see lines 8-10 in Figure 2-8), i.e., the patches effectively reintroduce the

integer overflow vulnerability (CVE-2006-2025). The patches pass all of the test cases

in the validation test suite because the test suite does not contain an overflow triggering

image. We obtained an existing proof-of-concept tiff image for CVE-2006-2025. This

image exposes the vulnerability that the GenProg and AE patches reintroduce. The

reported GenProg and AE patches in the ManyBugs paper suffer from the same

problem, reintroduce the same vulnerability, and are exposed by the same image

reported in CVE-2006-2025 [10].

php-bug-307931-307934: The PHP interpreter 5.3.5 has a defect (Bug #53903)

in its implementation of the fstat() function (userspace.c:852). PHP allows PHP

programs to define streamWrapper classes to customize the behavior of many I/O

stream functions including fstato. When a PHP program registers a streamWrapper

class to an opened stream, fstat() should invoke the corresponding function in the

streamWrapper class. However, the implementation of fstat() contains an error when it

collects the results returned from the invoked streamWrapper function. Specifically, it

does not correctly separate the underlying data structures for the result values during

a conversion operation, so that multiple PHP values incorrectly share a single data
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1 static int php-userstreamop-stat(

2 php-stream *stream,

3 phpstreamstatbuf *ssb) {

4 ...

5 callresult = calluser functionex(NULL,

6 &us->object, &funcname,

7 &retval, 0, NULL, 0, NULL);

8 if (callresult == SUCCESS &&

9 retval != NULL &&

10 ZTYPEP(retval) == ISARRAY) {
11 - if (0 == statbuffromarray(

12 - retval, ssb))

13 ret = 0;
14 }else{...}

15 ...

16 }

Figure 2-10: GenProg and AE Patches for php-bug-307931-307934. Delete Lines

11-12.

structure in the memory. This incorrect sharing eventually corrupts the PHP internal

data structures. The result is that PHP fails to correctly execute the remaining PHP

statements following the fstat() invocation.

Figure 2-9 presents the developer patch for this defect. The developer changes

the function statbuf _fromarray(), which converts the results in the array buffer

(returned by the streamWrapper routine), to an ssb struct. At line 7, the developer

modifies the macro so that whenever it copies a PHP value into an ssb struct field, it

correctly separates the copied value.

Figure 2-10 presents example GenProg and AE patches for this defect. Instead of

fixing the defect in the conversion operation, all plausible GenProg and AE patches

perform functionality elimination. The patches either completely delete the dispacher

code that invokes the streamWrapper routine or delete the invocation of the error

triggering conversion operation (see lines 11-12 in Figure 2-10). The patches effectively

turn fstatO to a no-op on a stream with a registered streamWrapper class. Such

functionality elimination patches pass all of the test cases in the valdation PHP

test suite because the test suite does not contain a test case that checks the normal

functionality of fstat() with streamWrapper classes. We crafted a test case that checks

this normal behavior. On this test case, all plausible GenProg and AE patches produce
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different outputs than the later developer patch. We also ran the crafted test case

on the GenProg and AE patches reported in the ManyBugs paper. The ManyBugs

patches also produce different outputs than the developer patch.

php-bug-310673-310681: The PHP interpreter version 5.3.6 has a de-

fect (BUG #54623) in its I/O stream resource management code. At

phpstreamfrompersistent id( in streams.c:117, it uses a global linked list (i.e.

regularlist) to store all allocated resources. But the implementation fails to maintain

the invariant that each resource can appear in the list only once. Multiple occurences

of the same resource in the list cause a segmentation fault when the PHP interpreter

deallocates resources from this list.

Figure 2-11 presents the developer patch for this defect. The patch uses a while

loop (see lines 16-27 in Figure 2-11) to check whether the resource has already been

loaded into the global linked list. If so, the patch does not add the resource into the

list (see lines 35-38 in Figure 2-11).

Figure 2-12 presents example GenProg and AE patches. Instead of fixing the

code to maintain the invariant, all plausible GenProg and AE patches delete the

assignment statement that stores allocated resource ids into the list (see line 11-13 in

Figure 2-12). The patches introduce memory leaks because they effectively turn the

memory deallocation operations that operate on the list into no-ops. The patches pass

all of the test cases in the validation test suite because no test case checks the memory

deallocation component. We crafted a test case that allocates and deallocates four

million I/O sockets. In our environment, this test case causes all plausible GenProg

and AE patches run out of memory. The later developer patch executes this test

case correctly in the same environment. We also ran the crafted test case on the AE

patch reported in the ManyBugs paper (the ManyBugs paper reports no plausible

GenProg patch for this defect). The test case still causes the patched PHP to run out

of memory.

gzip-bug-3fe0ca-39a362: gzip version 1.3 fails to terminate when extracting a

carefully crafted, malformed archive (huft-segv.tgz) that uses a dynamic Huffman

encoding scheme. The program hangs because not enough invalid codes are allocated
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1 int php streamfrom-persistent_id(

2 const char *persistent_id,

3 phpstream **stream) {
4 ...
5 if (zendhashfind(&EG(persistent list),

6 (char*)persistent-id, ... ) == SUCCESS){

7 ...
8 if (stream) {
9 + ...
10 + ulong index = -1;

11 + /* see if this persistent resource
12 + * already has been Loaded to the
13 + * regular list;*/

14 + zendhashinternalpointer-resetex(

15 + &regularjlist, &pos);

16 + while (zend-hash-getcurrentdata_ex(

17 + &regularlist,

18 + &regentry, &pos) == 0) {
19 + if (regentry->ptr == le->ptr) {
20 + zendhash-getcurrent-key-ex(

21 + &regularlist, NULL, NULL,
22 + &index, 0, &pos);
23 + break;

24 + }
25 + zend hash move forward-ex(
26 + &regular_list,&pos);

27 + }
28 *stream = (phpstream*)le->ptr;

29 + if (index == -1) {
30 + /* not found in regular list */
31 le->refcount++;

32 (*stream)->rsrc id =

33 ZENDREGISTERRESOURCE(NULL,

34 *stream, lepstream);

35 + }else {
36 + regentry->refcount++;

37 + (*stream)->rsrcid = index;
38 + }
39 }
40 return PHPSTREAMPERSISTENTSUCCESS;

41 ... }
42 return PHPSTREAMPERSISTENTNOTEXIST;

43 }

Figure 2-11: Developer Patch for php-bug-310673-310681. Insert Lines 9-30 and Lines
35-38.
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1 int phpstream_frompersistent_id(

2 const char *persistent_id,

3 phpstream **stream) {
4 ...

5 if (zendhashfind(&EG(persistentlist),

6 (char*)persistentjid, ... ) == SUCCESS) {
7 ...
8 if (stream) {
9 *stream = (phpstream*)le->ptr;
10 le->refcount++;

11 - (*stream)->rsrc id

12 - ZENDREGISTERRESOURCE(NULL,

13 - *stream, lepstream);

14 }
15 return PHPSTREAMPERSISTENTSUCCESS;

16 ... }

17 return PHPSTREAMPERSISTENTNOTEXIST;

18 }

Figure 2-12: GenProg and AE Patches for php-bug-310673-310681. Delete Lines
11-13.

1 int huft_build(b, n, s, d, e, t, m){
2 ...
3 memset((voidp)(c),O,(sizeof(c)));

4 p=b; i=n;

5 do {

6 c[*p]++; p++;

7 } while (--i);

8 if (c[O] == n)

9 {
10 - q=(struct huft *)malloc(2*sizeof(*q));
11 + q=(struct huft *)malloc(3*sizeof(*q));

12 if (!q)

13 return 3;

14 - hufts+=2
15 + hufts+=3;

16 q[o].v.t=(struct huft *)((void*)O);

17 q[1].e=99; q[1].b=1;
18 /*invalid code number*/

19 + q[2].e=99; q[2].b=1;

20 *t=q + 1; *m=1;

21 return 0;
22 }
23 ...
24 }

Figure 2-13: Developer Patch for gzip-bug-3fe0ca-39a362. Modify Lines 10-11, Lines
14-15, and Line 19.
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1 int huft-build(b, n, s, d, e, t, m) {
2 ...
3 + int tmp._8;
4 memset((voidp)(c),O,(sizeof(c)));

5 p=b; i=n;

6 do {

7 c[*p]++; p++;

8 } while (--i);

9 if (c[O] == n)

10 {
11 q=(struct huft*)malloc(2*sizeof(*q));

12 if (q)
13 return 3;
14 + else
15 + return tmp__8;

16 hufts+=2

17 q[0].v.t=(struct huft *)((void*)0);

18 q[1].e=99; q[1].b=1;

19 *t=q + 1; *m=1;

20 return 0;

21 }
22 ...
23 }

Figure 2-14: GenProg Patch for gzip-bug-3fe0ca-39a362. Insert Line 3 and Lines
14-15.
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in the Huffman table data structure, triggering an infinite loop in the inflate codes()

routine in inflate.c.

Figure 2-13 presents the developer patch for this defect. The developer patch

for this bug allocates an additional invalid code to the Huffman table, allowing the

program to exit gracefully with an 'invalid compressed data -format violated'

Figure 2-14 presents a representative AE or genprog patch for this defect. The AE

patch and all but one of the genprog patches circumvents the infinite loop only when

the MALLOCPERTURB environment variable is set. When MALLOCPERTURB

is set, all allocated memory is initialized to the non-zero value contained in MAL-

LOCPERTURB (in the gzip test suite, this value is set to 67). The goal is to break

any behavior that depends on uninitialized memory being set to zero. In production,

MALLOCPERTURB is unset and newly allocated memory is initialized to zero in

glibc. When run in production, all but one of the genprog patches enter an infinite loop

(specifically on the huft-segv.tgz test case) - they rely on MALLOCPERTURB

being set to a nonzero value to generate correct results for the test cases in the test

suite. The one remaining genprog patch does not enter an infinite loop, produces

correct outputs for the inputs in the test suite, but fails to implement basic gzip

functionality such as extracting normal archives containing more than zero characters.

When used to extract an archive containing the text "AB," for example, the patched

version of gzip produces non-printable characters. This patch is accepted because of

a weak test gzip test suite that does not contain test cases that test common case

functionality.

gzip-bug-ald3d4-f17cbd: gzip version 1.8 fails to interpret the '-' argument as

stdin if it is not the first argument on the command line.

Figure 2-15 presents the developer patch for this defect. The developer patch for

this defect initializes the ifd variable to the file descriptor pointing to stdin, ensuring

the program doesn't terminate early if it's reading from standard input.

Figure 2-16 presents the AE patch for this defect. The AE patch initializes the ifd

variable to the istat file descriptor, which points to one of the input files. If the archive
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1 static void treat stdino{
2 ...
3 clear bufso;

4 tostdout = 1;

5 part-nb = 0;
6 + ifd = fileno(stdin);
7 if (decompress) {
8 method = getmethod(ifd);
9 if (method < 0) {

10 doexit(exitcode);

11 }
12 }

13 if (list) {

14 dolist(ifd, method);

15 return;

16 }
17 ...
18 }

Figure 2-15: Developer Patch for gzip-bug-ald3d4-fl7cbd. Insert Line 6.

1 static void treatstdinQ{

2 ...

3 clear bufs(;

4 tostdout = 1;
5 partnb = 0;
6 if (decompress) {

7 method = get-method(ifd);

8 if (method < 0) {
9 do-exit(exitcode);

10 }
11 }

12 if (list) {

13 dolist(ifd, method);

14 return;

15 }
16 ...

17 + ifd = open_input_file(iname, & istat);
18 }

Figure 2-16: AE Patch for gzip-bug-ald3d4-fl7cbd. Insert Line 17.
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supplied via stdin is different from the input archive, the repaired gzip program uses

the input archive for both sources. For example, given the following set of commands:

echo "hello" I gzip > inputl.gz

echo "world" I gzip > input2.gz

gzip -dc inputl.gz - < input2.gz

The expected output is helloworld but the output produced by the repaired program

is hellohello. The gzip test suite contains a test case that is designed to detect an

incorrect implementation of the '-' argument. The generated patch passes this test

case because, in this gzip test case, the first and second input files are the same.

2.6.3 Impact of Functionality Deletion Patches

Our analysis of the patches also indicated that (in contrast to previously reported

results [56]) the combination of test suites with limited coverage and support for

functionality deletion can promote the generation of patches with negative effects

such as the introduction of security vulnerabilities and the elimination of standard

functionality.

Check Elimination: Several defects are caused by incorrectly coded checks. The

test suite contains a test case that causes the check to fire incorrectly, but there is

no test case that relies on the check to fire correctly. The generated patches simply

remove the check. The consequences vary depending on the nature of the check. For

example:

" Integer Overflow: libtiff-bug-0860361d-1ba75257 incorrectly implements an

integer overflow check. The generated patches remove the check, in effect

reintroducing a security vulnerability from a previous version of libtiff (CVE-

2006-2025) that a remote attacker can exploit to execute arbitrary injected

code [3].

" Buffer Overflow: Defect fbc-bug-5458-5459 corresponds to an overly conserva-

tive check that prevents a buffer overflow. The generated patches remove the

check, enabling the buffer overflow.
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Standard Feature Elimination: Defects php-bug-307931-307934, gzip-bug-3fe0ca-

39a362, lighttpd-bug-1913-1914, lighttpd-bug-2330-2331 correspond to incorrectly

handled cases in standard functionality. The test suite contains a test case that

exposes the incorrectly handled case, but no test case that exercises the standard

functionality. The patches impair or remove the functionality, leaving the program

unable to process standard use cases (such as decompressing non-zero files or initializing

associative array elements to integer values).

Undefined Accesses: Patches often remove initialization code. While the resulting

undefined accesses may happen to return values that enable the patch to pass the test

cases, the patches can be fragile - different environments can produce values that

cause the patch to fail (e.g., the AE patch for fbc-bug-5458-5459).

Deallocation Elimination: The patches for wireshark-bug-37112-37111, php-bug-

310673-310681, and php-bug-310011-310050 eliminate memory management errors by

removing relevant memory deallocations. While this typically introduces a memory

leak, it can also enhance survival by postponing the failure until the program runs out

of memory (which may never happen). We note that human developers often work

around difficult memory management defects by similarly removing deallocations.

Survival Enhancement: One potential benefit of even incorrect patches is that they

may enhance the survival of the application even if they do not produce completely

correct execution. This was the goal of several previous systems (which often produce

correct execution even though that was not the goal) [25, 28, 35, 50, 61, 71, 74, 80, 90].

Defect lighttpd-bug-1794-1795 terminates the program if it encounters an unknown

configuration file setting. The generated patches enhance survival by removing the

check and enabling lighttpd to boot even with such configuration files. We note

that removing the check is similar to the standard practice of disabling assertions in

production use.

Relatively Minor Defects: We note that some of the defects can be viewed as

relatively minor. For example, python-bug-69223-69224 causes the unpatched version

of python to produce a SelectError message instead of a ValueError message - i.e.,

the correct behavior is to produce an error message, the defect is that python produces
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the wrong error message. Three of the wireshark defects (wireshark-bug-37172-37171,

wireshark-bug-37172-37173, wireshark-bug-37284-37285) were caused by a developer

checking in a version of wireshark with a debug macro flag set. The relevant defect

is that these versions generate debugging information to the screen and to a log file.

The correct behavior omits this debugging information.

2.7 Original GenProg Patches

We also analyzed the reported patches from the original GenProg system [40, 103].

Out of the 11 defects evaluated in the two papers, the corresponding patches for 9

defects are plausible but incorrect. 9 of the 11 patches simply eliminate functionality

(by removing statements or adding a return or exit statements). We next discuss the

reported patch for each application in turn.

" uniq: The patch is semantically equivalent to removing the statement *buf++

= c at uniq.c:74. The effect is that the patched application will ignore the user

input file and operate as if the file were empty. Because of the use of a weak

proxy, this patch is not plausible. The test scripts check the exit code of the

program, not whether the output is correct.

" look-u: The patch is semantically equivalent to removing the condition argv[1]

== "-" from the while loop at look.c:63. The effect is that look will treat the

first command line argument (-d, -f, -t) as the name of the input file. Unless a

file with such a name exists, look will then immediately exit without processing

the intended input file.

" look-s: The patch is semantically equivalent to replacing the statement mid

(top+bot)/2 at look.c:87 with exit(0). The effect is that look will always exit

immediately without printing any output (if the input file exists, if not, look

will print an error message before it exits).

The patch is plausible because the use of a weak test suite - the correct output

for the positive and negative test cases is always no output. If the correct
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output for any of the test cases had been non-empty, this patch would have been

implausible.

" units: The units program asks the user to input a sequence of pairs of units (for

example, the pair meter and feet) and prints out the conversion factor between

the two units in the pair. The patch is semantically equivalent to adding init()

after units.c:279. The unpatched version of the program does not check for an

overflow of the user input buffer. A long user input will therefore overflow the

buffer.

The GenProg patch does not eliminate the buffer overflow. It instead clears the

unit table whenever the program reads an unrecognized unit (whether the unit

overflows the user input buffer or not). Any subsequent attempt to look up the

conversion for any pair of units will fail. It is also possible for the buffer overflow

to crash the patched program.

* deroff: When deroff reads a backslash construct (for example, \L), it should

read the next character (for example, ") as a delimiter. It should then skip any

text until it reaches another occurrence of the delimiter or the end of the line.

The patch is semantically equivalent to removing the statement bdelim=c (au-

tomatically, generated as part of a macro expansion) at deroff.c:524. The effect

is that the patched program does not process the delimiter correctly - when it

encounters a delimiter, it skips all of the remaining text on the line, including

any text after the next occurrence of the delimiter.

" nullhttpd: The patch is semantically equivalent to removing the call to str-

cmp(..., "POST") at httpdcomb.c:4092-4099. The effect is that all POST

requests generate an HTML bad request error reply.

" indent: The patch is semantically equivalent to adding a return after in-

dent.c:926. The GenProg 2009 paper states that "Our repair removes handling

of C comments that are not C++ comments." Our experiments with the patched

version indicate that the patched version correctly handles at least some C
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comments that are not C++ comments (we never observed a C comment that it

handled incorrectly). In many cases, however, the patched version simply exits

after reading a { character, truncating the input file after the {.

" flex: The patch is semantically equivalent to removing the call to strcpy() at

flexcomb.c:13784. This call transfers the token (stored in yytext) into the

variable nmdef. Removing the call to strcpy() causes flex to incorrectly operate

with an uninitialied nmdef. This variable holds one of the parsed tokens to

process. The effect is that flex fails to parse the input file and incorrectly

produces error messages that indicate that flex encountered an unrecognized

rule.

" atris: The commments in the atris source code indicate that it is graphical

tetris game. atris has the ability to load in user options stored in the .atrisrc in

the user's home directory. A call to sprintf() at atrix__comb.c:5879 initializes the

string buffer that specifies the filename of this .atrisrc file. If the home directory

is longer than 2048 characters this sprintf() call will overflow the buffer.

The patch is semantically equivalent to removing the call to sprintf() at

atrixcomb.c:5879. The result is that the program passes an uninitialized

filename to the procedure that reads the .atrisrc file.

The remaining 2 programs, for which GenProg generates correct patches, are used as

motivating examples in the ICSE 2009 and GECCO 2009 papers [40, 103]. These two

programs contain less than 30 lines of code.

We note that many of the test scripts use weak proxies. Specifically, all uniq,

look-u, and look-s test cases do not compare the output of the patched program to

the correct output. They instead check only that the patched program produces the

correct exit code. Similarly, the deroff and indent negative test case test scripts only

check the exit code.
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Defect GenProg RSRepair AE Kali
Result Search Space Search Time Type

fbc-5458-5459 Plausible - Plausiblet Plausible 737 2.4m SLt
gmp-14166-14167 Plausible Plausiblet Plausible Plausible 1169 19.5m DP

gzip-3fe0ca-39a362 Plausible Plausible Plausiblet Plausible 1241 28.2m SF (119)*
gzip-ald3d4-fl7cbd No Patch - Plausible No Patch

libtiff-0860361d-1ba75257 Plausiblet Implausible Plausiblet Plausible 1525 16.7m SL*
libtiff-5b02179-3dfb33b Plausiblet Implausible Plausiblet Plausible 1476 4.1m DP

libtiff-90d136e4-4c66680f Implausible Implausible Plausiblet Plausible 1591 45.0m SLt
libtiff-dl3be72c-ccadf48a Plausiblet Plausiblet Plausiblet Plausible 1699 42.9m SL*
libtiff-ee2ce5b7-b5691a5a Implausible Implausible Plausiblet Plausible 1590 45.1m SF(10)*

lighttpd-1794-1795 Plausible - Plausiblet Plausible 1569 5.9m
lighttpd-1806-1807 Plausible] Plausiblet Plausiblet Plausible 1530 55.5m SF(21)t
lighttpd-1913-1914 Plausiblet Plausiblej No Patch Plausible 1579 158.7m SL*
lighttpd-2330-2331 Plausiblet Plausiblet Plausiblet Plausible 1640 36.8m SF(19)t
lighttpd-2661-2662 Plausible] Plausiblet Plausiblet Plausible 1692 59.7m DP
php-307931-307934 Plausible$ - Plausible$ Plausible 880 9.2m DP
php-308525-308529 No Patch - Plausiblet Plausible 1152 234.Om SLt
php-309111-309159 No Patch - Correct No Patch
php-309892-309910 Correctt Correctt Correctt Correct 1498 20.2m C
php-309986-310009 Plausible - Plausiblet Plausible 1125 10.4m SF(27)*
php-310011-310050 Plausible - Plausiblet Plausible 971 12.9m SL*
php-310370-310389 No Patch - No Patch Plausible 1096 12.0m DP
php-310673-310681 Plausible - Plausible$ Plausible 1295 89.00m SL*
php-311346-311348 No Patch - No Patch Correct 941 14.7m C
python-69223-69224 No Patch - Plausible No Patch
python-69783-69784 Correct$ Correctt Correct$ Correct 1435 16.1m C
python-70098-70101 No Patch - Plausible Plausible 1233 6.8m SL*

wireshark-37112-37111 Plausible$ Plausible Plausiblet Plausible 1412 19.6m SLt
wireshark-37172-37171 No Patch - Plausiblet Plausible 1459 10.9m SLt
wireshark-37172-37173 No Patch - Plausiblet Plausible 1459 10.9m SLt
wireshark-37284-37285 No Patch - Plausiblet Plausible 1482 11.5m SLt

Table 2.1: Kali Experimental Results



2.8 Kali

Inspired by the fact that many patches generated by GenProg, AE, and RSRepair are

semantically equivalent to eliminating functionalities, we build a new patch generation

system, Kali. The basic idea behind Kali is to search a simple patch space that consists

solely of patches that remove functionality. There are two potential goals: 1) if the

correct patch simply removes functionality, find the patch, 2) if the correct patch

does not simply remove functionality, generate a patch that modifies the functionality

containing the defect. If the latter case occurs, the generated patch may nevertheless

help developers to diagnose the defect.

For an existing statement, Kali deploys the following kinds of patches:

" Redirect Branch: If the existing statement is a branch statement, set the

condition to true or false. The effect is that the then or else branch always

executes.

" Insert Return: Insert a return before the existing statement. If the function

returns a pointer, the inserted return statement returns NULL. If the function

returns an integer, Kali generates two patches: one that returns 0 and another

that returns -1.

" Remove Statement: Remove the existing statement. If the statement is a

compound statement, Kali will remove all substatements inside it as well.

Statement Ordering: Each Kali patch targets a statement. Kali uses instrumented

executions to collect information and order the executed statements as follows. Given

a statement s and a test case i, r(s, i) is the recorded execution counter that identifies

the last execution of the statement s when the application runs with test case i. In

particular, if the statement s is not executed at all when the application runs with

the test case i, then r(s, i) = 0. Neg is the set of negative test cases (for which the

unpatched application produces incorrect output) and Pos is the set of positive test

cases (for which the unpatched application produces correct output). Kali computes
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three scores a(s), b(s), c(s) for each statement s:

a(s)=I{i I r(s, i) 0,iENeg}

b(s) {i r(s, i) = 0, i E Pos}

c(s) = EiENegr(s, i)

A statement s, has higher priority than a statement S2 if prior(si, S2) = 1, where

prior is defined as:

1 a(si) > a(s 2 )

1 a(si) = a(s2 ), b(si) > b(s 2)

prior(s1 ,s2) = a(si) = a(s 2), b(si) = b(s 2 ),
1

c(si) > c(s 2)

0 otherwise

Intuitively, Kali prioritizes statements 1) that are executed with more negative

test cases, 2) that are executed with less positive test cases, and 3) that are executed

later during the executions with negative test cases. The Kali search space includes

the top 500 ranked statements regardless of the file in which they appear.

Search: Kali deterministically searches the patch space in tiers: first all patches that

change an if condition, then all patches that insert a return, then all patches that

remove a statement. Within each tier, Kali applies the patch to the statements in

the priority order identified above. It accepts a patch if the patch produces correct

outputs for all of the inputs in the validation test suite.

2.8.1 Kali Evaluation Methodology

We evaluate Kali on all of the 105 defects in the GenProg set of benchmark defects [5].

We also use the validation test suites from this benchmark set. Our patch evaluation

infrastructure is derived from the GenProg patch evaluation infrastructure [5]. For each

defect, Kali runs its automatic patch generation and search algorithm to generate a

sequence of candidate patches. For each candidate patch, Kali applies the patch to the

69



application, recompiles the application, and uses the patch evaluation infrastructure

to run the patched application on the inputs in the patch validation test suite. To

check if the patch corrects the known incorrect behavior from the test suite, Kali first

runs the negative test cases. To check if the patch preserves known correct behavior

from the test suite, Kali next runs the positive test cases. If all of the test cases

produce the correct output, Kali accepts the patch. Otherwise it stops the evaluation

of the candidate patch at the first incorrect test case and moves on to evaluate the

next patch.

Kali evaluates the php patches using the modified php test harness described

in Section 2.3. It evaluates the gmp patches using a modified gmp test script that

checks that all output components are correct. It evaluates the libtiff patches with

augmented test scripts that compare various elements of the libtiff output image

files from the patched executions with the corresponding elements from the correct

image files. Other components of the image files change nondeterministically without

affecting the correctness. The libtiff test scripts therefore do not fully check for correct

outputs. After Kali obtains patches that pass the modified libtiff test scripts, we

manuafly evaluate the outputs to filter all Kali patches that do not produce correct

outputs for all of the inputs in the validation test suite. This manual evaluation rejects

7 libtiff patches, leaving only 5 plausible patches. Effective image comparison software

would enable Kali to fully automate the libtiff patch evaluation.

We perform all of our Kali experiments (except for the fbc defects) on Amazon

EC2 Intel Xeon 2.6GHz Machines running Ubuntu-64bit 14.04. The fbc application

only runs in 32-bit environment, so we use a virtual machine with Intel Core 2.7GHz

running Ubuntu-32bit 14.04 for fbc.

2.8.2 Experimental Results

Figure 2.1 presents the experimental results from our analysis of these patches. The

figure contains a row for each defect for which at least one system (GenProg, RSRepair,

AE, or Kali) generates a plausible patch. The second to fifth columns present the

results of GenProg, RSRepair, AE, and Kali on each defect. "Correct" indicates that
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the system generates at least one correct patch for the defect. "Plausible" indicates

that the system generates at least one plausible patch but no correct patches for the

defect. "Implausible" indicates that all patches generated by the system for the defect

are not plausible. "No Patch" indicates that the system does not generate any patch

for the defect. "-" indicates that the RSRepair researchers chose not to include the

defect in their study [82]. "t" indicates that at least one of analyzed patches is not

equivalent to a single functionality elimination modification.

Our results show that for the defects in the GenProg benchmark set, Kali generates

correct patches for at least as many defects (3 for Kali vs. 3 for AE and 2 for GenProg

and RSRepair) and plausible patches for at least as many defects (27 for Kali vs. 18

for GenProg, 10 for RSRepair, and 27 for AE).

Search Space and Time Results: The sixth column of Figure 2.1 presents the

size of the search space for each defect (which is always less than 1700 patches). The

seventh column presents the search times. Kali typically finds the patches in tens of

minutes. If the search space does not contain a plausible patch, Kali typically searches

the entire space in several hours and always less than seven hours.

It is not possible to directly compare the reported performance numbers for

GenProg, RSRepair, and AE [55, 82, 104] with the numbers in Figure 2.1. First, the

reported aggregate results for these prior systems include large numbers of implausible

patches. The reported results for individual defects ([82], Table 2) report too few test

case executions to validate plausible patches for the validation test suite (specifically,

the reported number of test case executions is less than the number of test cases in

the test suite). Second, these prior systems reduce the search space by requiring the

developer to identify a target source code file to attempt to patch (Kali, of course,

works with the entire application). Nevertheless, the search space sizes for these prior

systems appear to be in the tens of thousands ([104], Table I) as opposed to hundreds

for Kali. These numbers are consistent with the simpler Kali search space induced by

the simpler set of Kali functionality deletion modifications.

Patch Classification: The last column of Figure 2.1 presents our classification of

the Kali patches. "C" indicates that the Kali patch is correct. There are three defects

71



for which Kali generates a correct patch. For two of the defects (php-bug-309111-

309159, python-bug-69783-69784) both the Kali and developer patch simply delete

an if statement. For php-bug-311346-311348, the Kali patch is a then redirect patch.

The developer patch changes the else branch, but when the condition is true, the then

branch and modified else branch have the same semantics.

"SL" indicates that the Kali and corresponding developer patches modify the

same line of code. "'" indicates that the developer patch modified only the function

that the Kali patch modified. "t" indicates that the developer patch modified other

code outside the function. In many cases the Kali patch cleanly identifies the exact

functionality and location that the developer patch modifies. Examples include

changing the same if condition (fbc-bug-5458-5459, libtiff-bug-d13be72c-ccadf48a),

changing the condition of an if statement when the developer patch modifies the then

and/or else clause of that same if statement (python-bug-70098-70101, libtiff-bug-

086036id-1ba75257, wireshark-bug-37112-37111), deleting code that the developer

patch encloses in an if statement (lighttpd-bug-1913-1914, php-bug-310673-310681,

and deleting the same code (php-bug-308525-308529, libtiff-bug-0860361d-1ba75257,

libtiff-bug-90d136e4-4c66680f, wireshark-bug-37172-37171, wireshark-bug-37172-37173,

wireshark-bug-37284-37285) as the developer patch. Many of the patches correspond

quite closely to the developer patch and move the application in the same direction.

"SF" indicates that the Kali and corresponding developer patches modify the same

function. The number in parentheses is the distance in lines of code between the

Kali patch and developer modifications. The Kali and developer patches typically

modify common functionality and variables. Examples include reference counting (php-

bug-309986-310009), caching (lighttpd-bug-1806-1807), and file encoding mechanism

functionality (lighttpd-bug-2330-2331).

"DP" indicates that the Kali and developer patches modify different functions, but

there is some dependence that connects the Kali and developer patches. Examples

include changing the return value of a function invoked by code that the developer

patch modifies (gmp-bug-14166-14167), deleting a call to a function that the developer

patch modifies (php-bug-307931-307934), modifying memory management code for
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1 -if (y < 1000) {
2 +if (y < 1000 && !1) {
3 PyObject *accept = PyDictGetItemString(

4 moddict, "accept2dyear");

5 if (accept != NULL) {
6 int acceptval=PyObjectIsTrue(accept);

7 if (acceptval == -1)
8 return 0;

9 if (acceptval) {
10 if (0 <= y && y < 6 9 )

11 y += 2000;

12 else if ( 6 9 <= y && y < 100)
13 y += 1900;
14 else {
15 PyErrSetString(PyExcValueError,

16 "year out of range");
17 return 0;

18 }
19 if (PyErrWarnEx(

20 PyExcDeprecationWarning,

21 "Century info guessed for a 2-digit year.",

22 1) != 0)

23 return 0;

24 }
25 }
26 else

27 return 0;

28 }
29 p->tmyear = y - 1900;

30 p->tmmon--;
31 p->tmwday = (p->tm-wday + 1) % 7;

Figure 2-17: Kali Patch for python-bug-69783-69784. Modify Lines 1-2.

the same data structure (php-bug-310370-310389), and accessing the same value, with

either the Kali or the developer patch changing the value (lighttpd-bug-2661-2662,

libtiff-bug-5b02179-3dfb33b).

The Kali patch for lighttpd-bug-1794-1795 (like the GenProg and AE patches) is

an outlier - it deletes error handling code automatically generated by the yacc parser

generator. The developer patch changes the yacc code to handle new configuration

parameters. We do not see any of the automatically generated patches as providing

useful information about the defect.
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1 if (offset >= silen) {
2 php-errordocref (NULL TSRMLS_CC,
3 EWARNING,
4 "The start position cannot " +

5 "exceed initial string length");
6 RETURNFALSE;

7 }
8 -if (len > silen - offset) {
9 +if (len > silen - offset && !1)

10 len = si len - offset;
11 }
12 cmp-len = (uint) (len ? len : MAX(
13 s2_len, (silen - offset)));

Figure 2-18: Kali Patch for php-bug-309892-309910. Modify Lines 1-2.

1 -if (ctx->buf.len) {
2 +if ((ctx->buf.len) 11 1) {
3 smart-str-appendl(&ctx->result,
4 ctx->buf.c, ctx->buf.len);
5 smart-strappendl(&ctx->result,
6 output, outputlen);
7 *handled-output = ctx->result.c;
8 *handled outputlen =
9 ctx->buf.len + output_len;
10 ctx->result.c = NULL;
11 ctx->result.len = 0;
12 smart_str_free(&ctx->buf);
13 } else {
14 *handled-output = NULL;
15 }

Figure 2-19: Kali Patch for php-bug-311346-311348. Modify lines 8-9.

python-bug-69783-69784: Figure 2-17 presents the Kali patch for python-bug-

69783-69784. Like the GenProg, RSRepair, and AE patches, the patch for this defect

deletes the if statement that implements two-digit years. Note that unlike these

previous systems, which generate preprocessed code, Kali operates directly on and

therefore preserves the structure of the original source code. To implement the deletion,

Kali conjoins false (i.e., !1) to the condition of the if statement.

php-bug-309892-309910: Figure 2-18 presents the Kali patch for php-bug-309892-

309910. Like the GenProg, RSRepair, and AE patches, this patch deletes the if

statement that implements the obsolete check.
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1 if (ctx->buf.len) {
2 smart str.appendl(&ctx->result,

3 ctx->buf.c, ctx->buf.len);

4 smart str appendl(&ctx->result,

5 output, outputlen);

6 *handled-output = ctx->result.c;
7 *handled output_len =
8 ctx->buf.len + output-len;
9 ctx->result.c = NULL;
10 ctx->result.len = 0;
11 smartstrfree(&ctx->buf);

12 }else {

13 - *handled-output = NULL;
14 + *handled-output = estrndup(output,

15 + *handledoutputjlen = output_len);

16 }

Figure 2-20: Developer Patch for plip-bug-311346-311348. Modify Lines 1-2.

php-bug-311346-311348: Figure 2-19 presents the Kali patch for php-bug-311346-

311348. This code concatenates two strings, ctx->buf.c and output. The original code

incorrectly set the result handled-output to NULL when the first string is empty.

The Kali patch, in effect, deletes the else branch of the if statement on line 1 so that

handledoutput is correctly set when ctx->buf.c is empty and output is not empty.

Figure 2-20 presents the developer patch. The developer patches the else branch to

correctly set handledoutput when ctx->buf.c is empty. The two patches have the

same semantics.

2.9 Discussion

Our analysis substantially changed our understanding of the capabilities of the analyzed

automatic patch generation systems. The majority of the reported GenProg, RSRepair,

and AE patches in the relevant papers are not plausible. The overwhelming majority

of these patches are incorrect and many of them are semantically equivalent to

functionality deletion. In fact, Kali, a patch generation system that only deletes

statements, can generate as many correct and plausible patches as GenProg, RSRepair,

and AE do.
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The results presented in this chapter highlight several important design considera-

tions for generate-and-validate patch generation systems. First, such systems should

not use weak proxies (such as the exit code of the program) - they should instead

actually check that the patched program produces acceptable output. Second, the

search space and search algorithm are critical - a successful system should use 1) a

search space that contains successful patches and 2) a search algorithm that can search

the space efficiently enough to find successful patches in an acceptable amount of time.

Third, simply producing correct results on a validation test suite is (at least with

current test suites) far from enough to ensure acceptable patches. Especially when the

test suite does not contain test cases that protect desired functionality, unsuccessful

patches can easily generate correct outputs.

Given this backdrop, what can one realistically expect from automatic patch

generation systems moving forward? Currently available evidence indicates that

improvements will require both 1) the use of richer search spaces with more correct

patches and 2) the use of more effective search algorithms that can search the space

more efficiently.

Perhaps most importantly, our results highlight important differences between

machine-generated and human-generated patches. Even the plausible GenProg, AE,

and RSRepair patches are overwhelming incorrect and simply remove functionality.

The human-generated patches for the same defects, in contrast, are typically correct and

usually modify or introduce new program logic. This result indicates that information

other than simply passing a validation test suite is (at least with current test suites)

important for producing correct patches.

Learning From Successful Patches: One way to obtain additional information

is to learn from successful human patches. The remaining of this thesis will present

techniques to learn universal properties and patching strategies of successful human

patches. Chapter 4 presents Prophet, the first patch generation system that learns

from human patches. Prophet analyzes a large database of revision changes extracted

from open source project repositories to automatically learn features of successful

patches. It then uses these features to recognize and prioritize correct patches within a
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larger space of candidate patches. On the GenProg benchmark set, Prophet generates

correct patches for 18 defects (16 more than GenProg and 15 more than AE).

Chapter 6 presents Genesis, the first patch generation system that automatically

infers productive code transforms and search spaces from human patches. Genesis

operates on Java programs. On a systematically collected benchmark set of 49 errors,

Genesis generates correct patches for 24 out of the 49 errors, while PAR, the previous

state-of-the-art patch generation system for Java, generates correct patches for 11 out

of the 49.

Automatic Code Transfer: Another way to obtain correct code is to obtain it

from another application. Working with an input that exposes a potential security

vulnerability, CodePhage searches an application database to automatically locate and

transfer code that eliminates the vulnerability [94]. CodePhage successfully repaired

10 defects in 7 recipient applications via code transfer from 5 donor applications.

Learned Invariants: Successful executions are yet another source of useful informa-

tion. Learning data structure consistency specifications from successful executions

can enable successful data structure repair [34]. ClearView [80] observes successful

executions to dynamically learn and enforce invariants that characterize successful ex-

ecutions. ClearView automatically generates successful patches that eliminate security

vulnerabilities in 9 of 10 evaluated defects [80].

Targeted Patch Generation: Another source of information is to identify a specific

set of defects and apply techniques that target that set of defects. Researchers have

successfully targeted out of bounds accesses [25, 71, 90], null pointer dereferences [35,

61], divide by zero errors [61], memory leaks [43, 74], infinite loops [28, 50, 52], and

integer and buffer overflows [95]. For the defects in scope, a targeted technique tends

to generate patches with better quality than a search-based technique. For example,

RCV [61], a recovery tool for divide-by-zero and null-dereference defects, successfully

enables applications to recover from the majority of the systematically collected

18 CVE defects so that they exhibit identical behavior as the developer-patched

application.
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Specifications: Specifications, when available, can enable patch generation systems to

produce patches that are guaranteed to be correct. AutoFix-E produces semantically

sound candidate bug patches with the aid of a design-by-contract programming

language (Eiffel) [79]. CodeHint uses partial specifications to automatically synthesize

code fragments with the specified behavior [42]. Data structure repair techniques

detect the inconsistency between a data structure state and a set of specified model

constraints and enforce the violated constraints to repair the data structure state [32].
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Chapter 3

A General Framework for

Generate-and-Validate Systems

This chapter presents a general framework for generate-and-validate patch generation

systems. This general framework covers all of the four patch generation systems

described in this dissertation, Kali, SPR, Prophet and Genesis. Kali (see Section 2.8)

is a patch generation system that only eliminates functionality. We develop Kali only

for comparison with GenProg, AE, and RSRepair and do not advocate using Kali for

patch generation tasks. SPR (see Section 4.2) is a patch generation system we built

for C that forms the foundation for Prophet. Prophet (see Chapter 4 and Chapter 5)

is a novel patch generation system which automatically learns from past successful

human patches to prioritize the search of potentially correct patches. Genesis (see

Chapter 6 and Chapter 7) is a novel patch generation system for Java. Like Prophet,

Genesis learns from past successful human patches to prioritize correct patches. In

addition, Genesis also automatically infers code transforms from the human patches

to generate its patch generation search space.

Figure 3-1 presents the high level patch generation workflow. This workflow covers

all four of the patch generation systems. In general, given a program that contains a

defect and a set of test cases, at least one of which exposes the defect, a generate-and-

validate system generates patches for the program with the following four steps: "run
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Figure 3-1: The Patch Generation Workflow of Generate-and-Validate Systems

defect localization", "apply transforms", "rank candidate patches", and "validate with

test cases" as shown in Figure 3-1.

3.1 Run Defect Localiation

Defect localization is a standard technique designed to pinpoint the root cause of a

software defect [47, 70, 78, 105]. It was originally designed to help human developers

and has a wide range of applications on different software engineering tasks [47, 70,

78, 1051. Here we use it to direct the attention of the generate-and-validate system to

suspicious program locations such as lines and statements. The generate-and-validate

system first runs a defect localization algorithm on the program with the supplied
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test cases. The algorithm analyzes the execution traces of the program to produce a

ranked list of suspicious program locations that are relevant to the root cause of the

defect. Note that the defect localization is typically independent from the rest of the

generate-and-validate system, i.e., the system could work with any defect localization

technique.

Kali, SPR, and Prophet use a standard spectrum-based localization algorithm that

prioritizes program statements 1) that are executed with more negative test cases, 2)

that are executed with fewer positive test cases, and 3) that are executed later during

executions with negative test cases. See Section 2.8 or Section 4.4.1 for more details.

Genesis uses a stack-trace-based localization algorithm because the current version

of Genesis focuses on three kinds of Java exception defects. The stack-trace-based

algorithm performs better than the spectrum-based algorithm for those defects. See

Section 6.3.3 for the defect localization algorithm in Genesis.

3.2 Apply Transforms

For each identified suspicious program location, the generate-and-validate system

applies a set of transforms at the location to generate candidate patches. In the end,

this step produces a search space of candidate patches that the system considers.

Note that there is an inherent trade-off between the coverage and tractability of

the candidate patch search space. For a patch generation system to generate a correct

patch for a defect, on one hand, the correct patch has to be inside the search space of

the system. On the other hand, the search space has to be small enough so that the

patch generation system can efficiently explore the space to find the correct patches.

Kali, SPR, Prophet, and Genesis apply different kinds of transforms to generate their

search spaces as follows.

o Kali: Kali applies three manually defined transforms. These transforms remove

statements, remove branches, and skip computations at suspicious locations. All

of these transforms are designed solely to eliminate functionality in the program.

See Section 2.8 for more details.
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" Prophet and SPR: Prophet and SPR use seven predefined transformation

schemas to modify each suspicious location. The seven transformation schemas

are "Condition Tightening", "Condition Loosening", "Condition Introduction",

"Conditional Control Flow Introduction", "Insert Initialization", "Value Replace-

ment", and "Copy and Replace". Each of these transformation schemas encodes

one kind of modification that may be useful for fixing common development

mistakes, such as missing a clause in a branch condition or missing an initializa-

tion statement. We manually developed these transformation schemas based on

previous patch generation literature [31, 55] and my own experience of analyz-

ing software defects. See Section 4.2 for the Prophet and SPR transformation

schemas.

" Genesis: Unlike any other patch generation system, Genesis does not use

predefined manual rules to obtain the transforms. Genesis, in contrast, auto-

matically infers a set of code transforms from training human patches. In our

experiments, Genesis infers in total 85 code transforms for null pointer deference,

out of bound, and class cast defects. In comparison with manual transforms,

each of the inferred transforms is more specific. But because there are so many

more inferred transforms together they can more effectively navigate the inherent

tradeoff between coverage and tractability. Our results show that the inferred

transforms enable Genesis to generate correct patches for approximately two

times more defects than manually defined transforms in PAR [49], a previous

patch generation system for Java. See Section 6.2 for the code transform infer-

ence technique. See Section 7.4 for examples of the inferred code transforms in

Genesis.

3.3 Rank Candidate Patches

Given the generated search space, the generate-and-validate system ranks the candidate

patches in the space to determine the search order. The goal of this step is to prioritize

potentially correct patches in the patch generation process. This ranking enables the
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system to produce more correct patches within a time limit. It also enables the system

to rank correct patches ahead of plausible but incorrect patches (i.e., patches that pass

the test cases but produce incorrect output for other inputs) in the generated patch

list and therefore makes the patch generation results more useful for the developer.

" Kali: Kali uses a manual rule to rank candidate patches. It first prioritizes

patches that remove branches, then prioritizes patches that skip computations,

and finally considers patches that remove individual statements.

" SPR: SPR uses an elaborate set of manual heuristic rules to rank candidate

patches generated by the seven transformation schemas. The rules are highly

tuned and in general tend to prioritize patches that manipulate conditions. See

Section 4.2.4 for the ranking rules in SPR.

" Prophet and Genesis: Prophet and Genesis use a machine learning tech-

nique to rank each candidate patch in the space. The goal of this step is to

prioritize potentially correct patches in the patch generation process. The learn-

ing technique operates with a probabilistic model to identify universal code

properties that correlate with successful human patches in a training set. Once

trained, the probabilistic model assigns a probability score to each candidate

patch. This score indicates the likelihood that the patch is correct. Prophet and

Genesis sort all candidate patches in the space according to their scores. In our

experiments, the learned algorithm enables Prophet to rank correct patches as

the first generated patch for five more C defects than the manual rules in SPR.

The learned algorithm also enables Genesis to generate correct patches for two

more Java defects. See Section 4.3 for the learning technique in Prophet. See

Section 6.3.1 for the implementation of the learning technique in Genesis.

3.4 Validate with Test Cases

The generate-and-validate system finally validates each candidate patch one by one

in the ranked order against the supplied test cases. The system returns an ordered
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sequence of patches that validate (i.e., produce correct outputs for all test cases in the

test suite) as the result of the patch generation process.

Prophet, SPR, and Genesis implement a condition synthesis technique that can

prune away invalid patches and speed up the validation process. Many candidate

patches in Prophet, SPR, and Genesis manipulate branch conditions. If two such

patches modify the branch condition and trigger the same sequence of branch direction

combinations on a test case, these two patches will produce the same output. Therefore

the condition synthesis technique groups such patches together. If one of those patches

fails on the test case, then a patch generation system can discard the rest of the

patches in the same group.

There are two ways to implement the condition synthesis techniques. Prophet and

SPR explicitly search different branch direction combinations and then synthesize

concrete patches only for those combinations that enable the program to pass all

test cases. See Section 4.2.3 for the condition synthesis algorithm in Prophet and

SPR. Genesis instruments the program to record, for each tested candidate patch,

the evaluation results of the modified expressions (conditions). Genesis then prunes

away any candidate patch that would produce the same value (branch direction)

combinations as a previously tested patch. See Section 6.3.2 for the implementation

of the condition synthesis algorithm in Genesis.

One intriguing result is that the condition synthesis technique prunes away less

patches for Genesis than for Prophet and SPR. In fact, Genesis generates fewer correct

patches when it enables the condition synthesis - the benefit of condition synthesis

does not even offset the instrumentation overhead. One reason is that, in comparison

with Prophet and SPR, Genesis works with a relatively large number of transforms

and each of the transforms is smaller. The current condition synthesis technique do

not group candidate patches from different transforms and therefore may miss pruning

opportunities for the Genesis search space. Another reason is that the Genesis inferred

transforms tend to generate more candidate patches that manipulate function calls.

The condition synthesis technique cannot prune away such patches. See Section 7.5

for our experimental results about this phenomena.
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Figure 3-2: The Offline Learning of Prophet and Genesis

3.5 Offline Learning in Prophet and Genesis

Prophet and Genesis differ from previous patch generation systems in that Prophet

and Genesis leverage information learned from past successful human patches to

enhance the patch generation process. Figure 3-2 presents the offline learning phase

of Prophet and Genesis. Prophet and Genesis operate with a database of training

human patches. In this dissertation, we collect such training patches from open source

repositories. Prophet and Genesis automatically learn a probabilistic model from the

training human patches to predict the correctness of each candidate patch. During

the patch generation phase, the systems apply the learned mode to rank candidate

patches. Genesis further automatically infers code transforms that summarize patching

strategies employed by human developers. During the patch generation phase, Genesis

applies the inferred code transforms to generate a productive set of candidate patches

instead of relying on manually crafted transforms.

Our experimental results in Chapter 5 and Chapter 7 show that by collectively

leveraging development efforts embedded in the human patches, Prophet and Genesis

outperform previous patch generation systems, generating more correct patches and
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ranking correct patches ahead for more defects. The results demonstrate that exploiting

additional information learned from successful human patches is a very promising

direction to build powerful generate-and-validate systems.
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Chapter 4

Learning Universal Properties of

Correct Code with Prophet

This chapter presents Prophet, a novel generate-and-validate patch generation system

for repairing defects in large real-world C applications. Prophet works with a set

of successful patches obtained from open-source software repositories to learn a

probabilistic model of correct code. It uses this model to rank and identify correct

patches within an automatically generated space of candidate patches. The goal of

Prophet is to obtain a correct patch as the first (or one of the first few) patches to

validate.

Universal Feature Extraction: During the offline learning phase, Prophet operates

with a parameterized probabilistic model to capture useful code properties in the

collected human patches. For each patch, Prophet extracts potentially useful patch

properties as universal features. These features include program value features, which

capture relationships between how variables and constants are used in the original

program and how they are used in the patch, and modification features, which capture

relationships between the kind of program modification that the patch applies and the

kinds of statements that appear near the patched statement in the original program.

Prophet converts the extracted features into a binary feature vector.

Each patch inserts new code into the program. But correctness does not depend

only on the new code - it also depends on how that new code interacts with the
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application into which it is inserted. The learned correctness model therefore works

with features that capture critical aspects of how the new code interacts with the

surrounding code from the patched application.

Probabilistic Model: Prophet operates with a parameterized probabilistic model

that, once the model parameters are determined, assigns a probability to each candidate

patch in the search space. This probability indicates the likelihood that the patch

is correct. The model is the product of a geometric distribution determined by the

Prophet defect localization algorithm (which identifies target program statements for

the patch to modify) and a log-linear distribution determined by the model parameters

and the feature vector.

Maximum Likelihood Estimation: Given a training set of correct patches,

Prophet learns the model parameters by maximizing the likelihood of observing the

training set. The intuition behind this approach is that the learned model should

assign a high probability to each of the correct patches in the training set.

Patch Ranking and Validation: Prophet extracts features from candidate patches

in the search space and converts them into binary feature vectors. Prophet then uses

the learned model and the extracted binary feature vectors to compute a probability

score for each patch in the search space of candidate patches. Prophet then sorts the

candidates according to their scores and validates the patches against the supplied

test suite in that order. It returns an ordered sequence of patches that validate (i.e.,

produce correct outputs for all test cases in the test suite) as the result of the patch

generation process.

Universal Roles and Program Value Features: A key challenge for Prophet

is to identify, learn, and exploit universal properties of correct code. Many surface

syntactic elements of the correct patches in the Prophet training set (such as variable

names and types) tie the patches to their specific applications and prevent the patches

from directly generalizing to other applications.

The Prophet program value features address this challenge as follows. Prophet

uses a static analysis to obtain a set of application-independent atomic characteristics

for each program value (i.e., variable or constant) that the patch manipulates. Each
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atomic characteristic captures a (universal, application-independent) role that the

value plays in the original or patched program (for example, a value may occur in the

condition of an if statement or be returned as the value of an enclosing function).

Prophet then defines program value features that capture relationships between

the roles that the same value plays in the patch and the original code that the patch

modifies. These relationships capture interactions between the patch and the patched

code that correlate with patch correctness and incorrectness. Because the features are

derived from universal, application-independent roles, they generalize across different

applications.

Sources. The previous version of this research presented in this chapter appeared

in [581. Prophet is built on our previous patch generation system, SPR, which

appeared in [59].

4.1 Motivating Example

We next present an example that illustrates how Prophet corrects a defect in the PHP

interpreter. The PHP interpreter (before version 5.3.5 or svn version 308315) contains

a defect (PHP bug #53971) in the Zend execution engine. If a PHP program accesses

a string with an out-of-bounds offset, the PHP interpreter may produce spurious

runtime errors even in situations where it should suppress such errors.

Figure 4-1 presents (simplified) code (from the source code file

Zend/zend_ execute.c) that contains the defect. The C function at line 1 in

Figure 4-1 implements the read operation that fetches values from a container at a

given offset. The function writes these values into the data structure referenced by

the first argument (result).

When a PHP program accesses a string with an offset, the second argument

(containerptr) of this function references the accessed string. The third argument

(dim) identifies the specified offset values. The code at lines 17-18 checks whether the

specified offset is within the length of the string. If not, the PHP interpreter generates

a runtime error indicating an offset into an uninitialized part of a string (lines 32-34).
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In some situations PHP should suppress these out-of-bounds runtime errors. Con-

sider, for example, a PHP program that calls isset(str[1000]). According to the PHP

specification, this call should not trigger an uninitialized data error even if the length

of the PHP string str is less than 1000. The purpose of isset( is to check if a value is

properly set or not. Generating an error message when issetO calls the procedure in

Figure 4-1 is invalid because it interferes with the proper operation of isset(.

In such situations the last argument (type) at line 3 in Figure 4-1 is set to 3. But

the implementation in Figure 4-1 does not properly check the value of this argument

before generating an error. The result is spurious runtime errors and, depending on

the PHP configuration, potential denial of service.

Offline Learning: Prophet works with a training set of successful human patches

to obtain a probabilistic model that captures why these patches were successful. We

obtain this training set by collecting revision changes from open source repositories.

In our example, we train Prophet with patches from seven open source projects (apr,

curl, httpd, libtiff, python, subversion, and wireshark). Although revision changes for

PHP are available, we exclude these revision changes from this training set. During

the offline learning phase, Prophet performs the following steps:

o Extract Features: For each patch in the training set, Prophet analyzes a

structural diff on the abstract syntax trees of the original and patched code to

extract both 1) modification features, which summarize how the patch modifies

the program given characteristics of the surrounding code and 2) program value

features, which summarize relationships between roles that values accessed by

the patch play in the original unpatched program and in the patch.

a Learn Model Parameters: Prophet operates with a parameterized log-linear

probabilistic model in which the model parameters can be interpreted as weights

that capture the importance of different features. Prophet learns the model

parameters via maximum likelihood estimation, i.e., the Prophet learning al-

gorithm attempts to find parameter values that maximize the probability of

observing the collected training set in the probabilistic model.
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1 static void zendfetch dimensionaddressread(

2 temp-variable *result, zval **container-ptr,

3 zval *dim, int dimtype, int type)

4 {
5 zval *container = *containerptr;

6 zval **retval;

7 switch (ZTYPEP(container)) {
8 ...
9 case ISSTRING: {

10 zval tmp;
11 zval *ptr;

12 ...
13 ALLOCZVAL(ptr);

14 INITPZVAL(ptr);

15 ZJTYPEP(ptr) = IS_STRING;

16
17 if (ZLVAL_P(dim) < 0 11

18 ZSTRLENP(container) <= ZLVAL_P(dim)) {
19 // A plausible but incorrect patch that validates
20 // if (W(type == 3)) return;

21
22 // An unconstrained patch with abstract condition C

23 // if (C), where C is unconstrained
24 // An partially instantiated patch
25 // if (C), where C checks the variable "type"

26
27 // The guard that the correct Prophet patch inserts

28 // before the following error generation statement.
29 // This Prophet patch is identical to the (correct)
30 // developer patch.
31 // if (!(type == 3))
32 zenderror(E-NOTICE,

33 "Uninitialized string offset: /ld",

34 (*dim).value.lval);

35 ZSTRVALP(ptr) = STREMPTY_ALLOCO;
36 ZSTRLENP(ptr) = 0;
37 } else {

38 ZSTRVALP(ptr) = (char*)emalloc(2);

39 ZSTRVALP(ptr)[0] =
40 ZSTRVALP(container)[ZLVALP(dim)];

41 ZSTRVALP(ptr)[1] = 0;

42 ZSTRLENP(ptr) = 1;

43 }
44 AISETPTR(result, ptr);

45 return;

46 } break;
47 ...
48 }
49 }

Figure 4-1: Simplified Code for PHP bug #53971
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Apply Prophet: We apply Prophet to automatically generate a patch for this defect.

Specifically, we provide Prophet with the PHP source code that contains the defect

and a test suite that contains 6957 test cases. One of the test cases exposes the defect

(i.e., the unpatched version of PHP produces incorrect output for this test case). The

remaining 6956 test cases are to prevent regression (the unpatched version of PHP

produces correct outputs for these test cases). Prophet generates a patch with the

following steps:

" Defect Localization: Prophet first performs a dynamic analysis of the

execution traces of the PHP interpreter on the supplied test suite to identify

a set of candidate program points for the patch to modify. In our example,

the Prophet defect localization algorithm observes that the negative test case

executes the statement at lines 32-34 in Figure 4-1 while the positive test cases

rarely execute this statement. Prophet therefore generates candidate patches

that modify this statement (as well as candidate patches that modify other

statements).

" Search Space Generation: Prophet works with a set of transformation

schemas to generate candidate patches. Some (but by no means all) of these

candidate patches are generated by a transformation schema (see lines 22-23)

that adds an if statement to guard (conditionally execute) the statement at lines

32-34 in Figure 4-1. This transformation schema contains an abstract condition

that the Prophet condition synthesis algorithm will eventually instantiate with

a concrete condition.

During search space generation and candidate patch ranking, Prophet does not

attempt to fully instantiate the patch. It instead works with partially instantiated

patches that identify the variable that the final concrete condition will check

(but not the final concrete condition itself).

In our example one of the partially instantiated patches is shown as lines 24-25.

It 1) adds an if statement guard before the statement at lines 32-34 in Figure 4-1
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(the statement that generates the error message) and 2) has a condition that

checks the function parameter type.

" Rank Candidate Patches: Prophet computes a feature vector for each

candidate (fully or partially instantiated) patch in the search space. It then

applies the learned model to the computed feature vector to obtain a probability

that the corresponding patch is correct. It then ranks the generated patches

according to the computed correctness probabilities.

In our example, the model assigns a relatively high correctness probability to

the partially instantiated patch mentioned above (lines 32-34) because it has

several features that positively correlate with correct patches in the training set.

For example, 1) it adds an if statement to guard a call statement and 2) the

guard condition checks a parameter of the enclosing procedure.

" Validate Candidate Patches: Prophet then uses the test suite to attempt

to validate the candidate patches (including partially instantiated patches) in

order of highest patch correctness probability. When the validation algorithm

encounters a partially instantiated patch, Prophet invokes the Prophet condition

synthesis algorithm to obtain concrete conditions that fully instantiate the patch

(see Section 4.2.3). In our example, the condition synthesis algorithm comes

back with the condition (type != 3) (the resulting patch appears at line 31 in

Figure 4-1). This patch is the first patch to validate (i.e., it is the first generated

patch that produces correct outputs for all of the test cases in the test suite).

The generated Prophet patch is correct and identical to the developer patch for

this defect. Note that the Prophet search space may contain incorrect patches that

nevertheless validate (because they produce correct outputs for all test cases in the

test suite). In our example, line 20 in Figure 4-1 presents one such patch. This patch

directly returns from the function if type != 3. This patch is incorrect because it

does not properly set the result data structure (referenced by the result argument)

before it returns from the function. Because the negative test case does not check

this result data structure, this incorrect patch nevertheless validates. The Prophet
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c := 1 0 c 1 && C2 C C2 I !c CI (ci) I v==const
simps v = v 1 op V2 v = c | print v v = read

ifs if (c) 6i f2
absts := if (c && !abstc) f 1 2 | if (c I abstc) 6i e2
s skip I stop I simps I ifs I absts
v, v 1 , v 2 E Variable const E Int fi, E2 E Label

C, c1, C2 E CondExpr s E Stmt ifs E If StMt
simps C SimpleStmt absts E AbstCondStmt

Figure 4-2: The Language for Illustrating Transformation Schemas

model ranks this plausible but incorrect patch below the correct patch because the

incorrect patch inserts a return statement before a subsequent assignment statement

in a code block. This interaction between the patch and the surrounding code incurs

a significant penalty in the learned model.

4.2 Transformation Schemas and Condition Syn-

thesis in Prophet and SPR

Prophet is built on our previous patch generation system, SPR. Prophet and SPR share

the same search space and patch validation algorithm. The main difference between

SPR and Prophet is that SPR uses a set of manual heuristic rules to determine the

patch validation order, while Prophet uses a machine learning algorithm to prioritize

potentially correct patches during the search.

This section presents the search space and the condition synthesis technique

in Prophet and SPR. The Prophet and SPR search space is derived from a set of

transformation schemas which target common mistakes developers would made in

C programs. Prophet and SPR use a novel validation technique called condition

synthesis which exploits the structure of the derived search space to efficiently prune

away candidate patches that cannot pass test cases.

We use a simple imperative core language (Section 4.2.1) to present the key concepts

in the Prophet transformation schemas and validation algorithm. Section 4.2.2 presents
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the transformation schemas as they apply to the core language. Section 4.2.3 presents

the validation algorithm with the condition synthesis technique.

4.2.1 Core Language

Language Syntax: Figure 4-2 presents the syntax of the core language that

we use to present our algorithm. A program in the language is defined as (p, n),

where p : Label -+ Statement maps each label to the corresponding statement,

n : Label -+ Label maps each label to the label of the next statement to execute in

the program. to is the label of the first statement in the program.

The language in Figure 4-2 contains arithmetic statements and if statements. An

if statement of the form "if (c) el f 2 " transfers the execution to f, if c is 1 and

transfers the execution to f2 if c is 0. The language uses if statements to encode

loops. A statement of the form "v = read" reads an integer value from the input

and stores the value to the variable v. A statement of the form "print v" prints the

value of the variable v to the output. Conditional statements that contain an abstract

condition abstc (i.e., AbstCondStmt) are temporary statements that the algorithm

may introduce into a program during condition synthesis. Such statements do not

appear in the original or patched programs.

Operational Semantics: A program state (f, -, I, 0, D, R, S) is composed of the

current program point (a label f), the current environment that maps each variable

to its value (o- : Variable -+ Int), the remaining input (I), the generated output (0),

a sequence of future abstract condition values (D), a sequence of recorded abstract

condition values (R), and a sequence of recorded environments for each abstract

condition execution (S). I and 0 are sequences of integer values (i.e., Sequence(Int)).

D and R are sequences of zero or one values (i.e., Sequence(0 1 1)). S is a sequence of

environments (i.e., Sequence(Variable -+ Int)).

Figure 4-3 presents the small step operational semantics of our language for

statements without abstract conditions. "o" in Figure 4-3 is the sequence concatenation

operator. The notation "o- V c = x" indicates that the condition c evaluates to x
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p(f) = skip

(, o-, I, 0, D, R, S) =11 (p, n) h-> (n(f), o, I, 0, D, R, S)

p(f) = stop

(f, o-, I, 0, D, R, S) -j (p, n) b (nil, -, I, 0, D, R, S)

p(f) = v = const

(f, o-, I, 0, D, R, S) -q (p, n) }-> (n(f), ojv - const), I, 0, D, R, S)

p() = v = v1 op V2 x = C-(v1) op -(v2)

(fa, 1, 0, D, R, S) -[ (p, n) }-> (n(f), a[v- x], 1, 0, D, R, S)

p(f) = v = read I x a I/

(f, , ,0, D, R, S) (p, n) }-=> (n(f), o[-{v x], I/, 0, D, R, S)

p(f) =print v

(, ,I, 0, D, R, S) -[ (p, n) > (n(e), oI, 0 o a(v), D, R, S)

p(f) =if (c) fl f2 oc - C c-1

(f, o,I, , D, R, S) -q (p, n) J-> (f, o-, I, 0, D, R, S)

p(f) = if (c) fl f2 o- c -> 0
(f, o-, 1, 0, D, R, S) -( (p, n) ]> (f2 , o, 1, 0, D, R, S)

Figure 4-3: Small Step Operational Semantics for Statements
Condition

without Abstract
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under the environment -. D, R, and S are unchanged in these rules because these

statements do not contain an abstract condition.

4.2.2 Transformation Schemas

Figure 4-4 presents our program transformation function M. It takes a program

(p, n) and produces a set of candidate modified programs after transformation schema

application. In Figure 4-4 TargetL((p, n)) is the set of labels of target statements

to transform. Our defect localization algorithm (Section 4.4.1) identifies this set of

statements. SimpleS(p) denotes all simple statements (i.e. SimpleStmt) in p. Vars(p)

and Vars(s) denote all variables in the program p and in the statement s, respectively.

Consts(p) denotes all constants in p.

The program transformation function implements the following seven transforma-

tion schemas:

9 Condition Tightening (MTighten): Given a target if statement, the func-

tion transforms the condition of the if statement by conjoining an additional

(synthesized) condition to the original if condition.

* Condition Loosening (MLoosen): Given a target if statement, the function

transforms the condition of the if statement by disjoining an additional (synthe-

sized) condition to the original if condition.

e Condition Introduction (MGuard): Given a target statement, the function

transforms the program so that the statement executes only if a (synthesized)

condition is true.

9 Conditional Control Flow Introduction (Mcontrol): The function inserts

a new control flow statement (return, break, or goto an existing label) that

executes only if a (synthesized) condition is true.

e Insert Initialization (Minit): Given a target statement, the function gener-

ates repairs that insert a memory initialization statement before the identified

statement.
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M((p, n))
Mifstmt ((P, n))
Mstmt ((, n))
MTighten((P, n), )
MLoosen((p, n), L)

MControl((4, n), f)
MGuard ((p, n), f)
MInit ((p, n), 0)
MRep ((p, n), f)
MCopyRepP, n), )

RepS(p, v = vi op

RepS(p, v = const)
RepS(p, v = read)

RepS(p,print v)
RepS (p, s)

00

Mlfstmt ((p, n)) U Mstmt ((p, n))

UfE TargetL((p,n)),p(f)Efstmt (MTighten ((p, n), f) U MLoosen ((p, n), L))

UtETargetL((p,n))(Mcontrol((p,fn),L) U Mnit((p, n),j) U MGuard((p, n),f) U MRep((p, n),j) U MCopyRep((p, n)))

(f V - if (c && ! abstc) li f2], n)}, where p(L) = if (c) 1  2

{(p[f -* if (c II abstc) fi 2],rn)}, where p(f) = if (c) f1 2

{p[f/ - p()](0/ - stop][f -* if (0 11 abstc) L/ n(f)],n[f/ / n(f)][f -4 0/][f// -+ L/])}
(p[f/ p(f)][f - if (1 && ! abstc) &/ n(f)], n[ , i-/ n(f)])}

(p[f ap(f)] [f av = 0], n[f/ n()][f - f/]) I Vv c Vars(p(f))}

{(p[e i s], n) I s E RepS(p, p(f))I

{(p[0/ - p(P)][F -4 s], n[PI 4 n(L)][Lf -4 L/]),
(p[/ -* p( )][f i- s/)], n[l/ 4 n( )][f - L/]) I Vs E SimpleS((p, n)), Vs/ E RepS(p, s)}

{VI = V 1 Op V2 , V = vi op v2, V = vi op v/ I Vv/ E Vars(p.)}
{v/ = const, v = consti |Vv/ e Vars(p), Vconst/ C Consts(p)}

{v/ = read I Vv/ C Vars(p)}
{print vi I Vvi c Vars(p)}
0, where s V SimpleStmt

V2)

f/ and f/I are fresh labels

Figure 4-4: The Program Transformation Function M



" Value Replacement (MRep): Given a target statement, the function gen-

erates patches that either 1) replace one variable with another, 2) replace an

invoked function with another function, or 3) replace a constant with another

constant.

* Copy and Replace (MCopyRep): Given a target statement, the function

generates repairs that copy an existing statement to the program point before

the target statement and then apply a Value Replacement transformation.

Note that the first four schemas introduce an abstract condition into the generated

candidate programs that will be handled by condition synthesis. Also note that

RepS(p, s) is an utility function that returns the set of statements generated by

replacing a variable or a constant in s with other variables or constants in p.

4.2.3 Validation Algorithm with Condition Synthesis

Figure 4-5 presents our main validation algorithm with condition synthesis. Given a

candidate program (p/, n/) that may contain an abstract condition, a set of positive

test cases PosT, and a set of negative test cases NegT, the algorithm produces a

patched program (p/, n/) that passes all test cases. Exec((p, n), I, D) at lines 12 and

20 produces the results of running the program (p, n) on the input I given the future

abstract condition value sequence D. Test((p, n), Neg T, Pos T) at lines 28 and 34

produces a boolean to indicate whether the program (p, n) passes all test cases. See

Figure 4-6 for relevant definitions.

If the candidate program does not contain an abstract condition, the algorithm

simply uses Test to validate the program with test cases (lines 35-36). Otherwise

the algorithm applies condition synthesis in two stages, condition value search and

condition generation.

Condition Value Search: We augment the operational semantics in Figure 4-3 to

handle statements with an abstract condition. Figure 4-7 presents the additional rules.

The first two rules specify the case where the result of the condition does not depend

on the abstract condition (the semantics implements short-circuit conditionals). In
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Input : a candidate program (p/, n/) that may contain an abstract condition
Input : positive and negative test cases Neg T and Pos T, each is a set of pairs

(I, 0) where I is the test input and 0 is the expected output.
Output: the patched program or 0 if the validation failed

1 if p/ contains abstc then
2 RI- e
3 S/ <-E
4 for (, 0) in Neg T do
5 (O/, R, S) +- Exec((p/, n/), I, E)
6 cnt +- 0
7 while O 1 0 and cnt < 10 do
8 if cnt = 10 then
9 LD <- o o 1 o 1 ...

10 else
11 L D <- Flip(R)

12 (0/, R, S) +-- Exec((p/, n/), I, D)
13 cnt <- cnt + 1

14 if #0 O/ then
15 L skip to the next candidate (p/, n/)

16 else
17 RI- Rio R
18 LS/ -S/o S

19 for (1, 0) in Pos T do
20 (O/, R, S) +- Exec((p/, ni), I, E)
21 RI +-- RI o R
22 S/i+--S/oS

23 C <-{

24 for (7 in S/ do
25 L C +-- C U { (v == const), ! (v == const) VvVconst, such that o(v) = const}

26 cnt +- 0
27 while C #0 and cnt < 20 do
28 let c E C maximizes F(RI, S/, c)
29 C +- C/{c}
30 if Test((p/[c/abst c], n/), NegT, PosT) then
31 L return (p/[c/abstc, ni)

32 cnt -- cnt + 1

33 else
34 if Test((p/, n/), Neg T, Pos T) then
35 return (p/, n/)

36 return 0

Figure 4-5: Patch Validation Algorithm with Condition Synthesis
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Exec((p, n), I, D) =
(0, R, S) ]I/,O, R, S, such that (to, oo, I, E, DI , ) - (p, n) 1Jw

(nil, o-, I/, 0, D/, R, S)
I otherwise

Test((p, n), Neg T, Pos T) =

False ](I,O) E (NegTUPosT),such that
Exec((p, n), I, e) = (0/, R, S), 0 5 0/

True otherwise

uF cox o-Ece(l-x)
F(E, E, c) = 0 X

F(x o R,a o S,c) F(R, S,c) +1 F(x o R,o o S,c) F(R, S,c)

Fli(E)= cR = RI o 0 R = R/ o I

Flip(R) = Ri o 1 Flip(R) = Flip(RI)

Figure 4-6: Definitions of Exec, Test, Flip, and F

this case the execution is transfered to the corresponding labels with D, R, and S

unchanged. The third and the fourth rules specify the case where there are no more

future abstract condition values in D for the abstract condition abstc. These rules

use the semantics-preserving value for the abstract condition abstc, with R and S

appropriately updated. The last four rules specify the case where D is not empty. In

this case the execution continues as if the abstract condition returns the next value in

the sequence D, with R, and S updated accordingly.

For each negative test case, the algorithm in Figure 4-5 searches a sequence of

abstract condition values with the goal of finding a sequence of values that generates

the correct output for the test case (lines 4-18). Flip is an utility function that enables

Prophet to explore different abstract condition value sequences (see Figure 4-6). The

algorithm (line 12) executes the program with different future abstract condition

value sequences D to search for a sequence that passes each negative test case. If the

algorithm cannot find such a sequence for any negative test case, it will move on to

the next current candidate program (line 15).

Prophet and SPR try a configurable number (in our current implementation, 11)

of different abstract condition value sequences for each negative test case in the loop
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p(f) = if (c && ! abstc) Li f2 a F c --> 0
(f, o, 1, 0, D, R, S) -q[ (p, n) )-> (f2, o, 1, 0, D, R, S)

p(f) = if (c II abstc) Li 2 a c -> 1

(f, a, I, 0, D, R, S) -([ (p, n) J=-> (fl, a, I, 0, D, R, S)

p(f) = if (c && !abstc) fi f2 O- H c r 1

(, aI, , , R, S) -( (p, n) ]-> (fi, o, I, 0, E, R o 0, S o a)

p( ) = if (c II abstc) Li 2 a c -> 0
(, aI, , , R, S) - (p, n) -> (f2 , 9, I, 0, E, R o 0, S a)

p() =if (c && !abstc) li E2 a - c 1 D = 0 o DI

(, ,I, 0, D, R, S) - (p, n) ]--> (fi, a, I, 0, D/, R o 0, S o a)

p( ) if (c II abstc) Eli 2 0 a c -> 0 D = 0 o D/

(f, 1, 0, D, R, S) -q (p, n) J-> ( 2, a, 1, 0, D/, R o 0, S o a)

p( ) if (c && !abstc) Li 2 aF c 1 D = 1 o D/

V, , ,1 D, R, S) f (p, n) }-> ( 2, U, 1, 0, D/, R o 1, S o a)

p( ) = if (c II abstc) Li 2 a c -> 0 D = I o DI

(f, oI, 0, D, R, S) -l (p, n) ]ja (fio, 1, 0, DI, R o 1, S o o-)

Figure 4-7: Small Step Operational Semantics for if-statements with Abstract Condi-
tion
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(lines 7-13). At each iteration (except the last) of the loop, the algorithm flips the last

non-zero value in the previous abstract condition value sequence (see Flip definition in

Figure 4-6). In the last iteration Prophet flips all abstract condition values to 1 (line

9 in Figure 4-5) (note that the program may executes an abstract condition multiple

times).

The rationale is that, in practice, if a negative test case exposes an error at an if

statement, either the last few executions of the if statement or all of the executions

take the wrong branch direction. This empirical property holds for all defects in our

benchmark set.

If a future abstract condition value sequence can be found for every negative

test case, the algorithm concatenates the found sequences RI and the corresponding

recorded environments to S/ (lines 17-18). The algorithm then executes the candidate

program with the positive test cases and concatenates the sequences and the recorded

environments as well (lines 21-22). Note that for positive cases the algorithm simply

returns zero for all abstract conditions, so that the candidate program has the same

execution as the original program.

Condition Generation: The algorithm enumerates all conditions in the search

space and evaluates each condition against the recorded condition values (R/) and

environments (Si). It counts the number of recorded condition values that the condition

matches. Our current condition space is the set of all conditions of the form (v ==

const) or ! (v == const) such that 3o- E S/.-(v) = const. It is straightforward to

extend this space to include comparison operators (<, <, >, >) and a larger set of

logical expressions. For our benchmark set of defects, the relatively simple Prophet and

SPR condition space contains a remarkable number of correct patches, with extensions

to this space delivering relatively few additional correct patches (see Section 5.5).

We define F(R/, S/, c) in Figure 4-6, which counts the number of branch directions

for the condition c that match the recorded abstract condition values RI given the

recorded environments S/. The algorithm enumerates a configurable number (in our

current implementation, 20) of the top conditions that maximize F(RI, S/, c) (lines

26-32). The algorithm then validates the transformed candidate program with the
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abstract condition replaced by the generated condition c (lines 30-31). p[c/abstc]

denotes the result of replacing every occurrence of abstc in p with the condition c.

Enumerating all conditions in the space is feasible because the overwhelming

majority of the candidate transformed programs will not pass the condition value

search stage. Prophet will therefore perform the condition generation stage very

infrequently and only when there is some evidence that transforming the target

condition may actually deliver a correct patch. In our experiments, Prophet performs

the condition generation stage for less than 1% of the candidate transformed programs

that contain an abstract condition. (see Section 5.4.4).

Alternate Condition Synthesis Techniques: It is straightforward to implement

a variety of different condition synthesis techniques. For example, it is possible to

synthesize complete replacements for conditions of if statements (instead of conjoining

or disjoining new conditions to existing conditions). The condition value search would

start with the sequence of branch directions at that if statement with the original

condition, then search for a sequence of branch directions that would generate correct

outputs for all negative inputs. Condition generation would then work with the

recorded branch directions to deliver a new replacement condition.

The effectiveness of condition value search in eliminating unpromising conditions

enables the Prophet condition generation algorithm to simply enumerate and test all

conditions in the condition search space. It is of course possible to apply arbitrarily

sophisticated condition generation algorithms, for example by leveraging modern solver

technology [73]. One issue is that there may be no condition that exactly matches

the recorded sequences of environments and branch directions. Even if this occurs

infrequently (as we would expect in practice), requiring an exact match may eliminate

otherwise correct patches. An appropriate solver may therefore need to generate

approximate solutions.

4.2.4 SPR Patch Validation Order

Given a program (p, n), both Prophet and SPR first apply transformation schemas

described in Section 4.2.2 to obtain the set of candidate patches M((p, n)). Prophet
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and SPR then use the validation algorithm in Section 4.2.3 to validate each candidate

patch one by one. Prophet uses a machine learning algorithm to determine the patch

validation order, which we will present in Section 4.3.

Unlike Prophet, SPR uses a set of manual heuristic rules to determine the patch

validation order. SPR empirically sets the validation order as follows:

1. SPR first tests patches that change only a branch condition (e.g., tighten and

loosen a condition).

2. SPR tests patches that insert an if-statement before a statement s, where s is

the first statement of a compound statement (i.e., C code block).

3. SPR tests patches that insert an if-guard around a statement s.

4. SPR tests patches that insert a memory initialization.

5. SPR tests patches that insert an if-statement before a statement s, where s is

not the first statement of a compound statement.

6. SPR tests patches a) that replace a statement or b) that insert a non-if statement

(i.e., generated by MCopyRep) before a statement s where s is the first statement

of a compound statement.

7. SPR finally tests the remaining patches.

Intuitively, SPR prioritizes patches that contain conditionals. With abstract

conditions that SPR later synthesizes, each condition value search stands in for

multiple potential patches. SPR also prioritizes patches that insert a statement before

the first statement of a compound statement (i.e., a code block), because inserting

statements at other locations is often semantically equivalent to such patches.

If two patches have the same tier in the previous list, their test orders are determined

by the rank of the two corresponding original statements (which two patches are based

on) in the list returned by the defect localizer.
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4.3 Learning Universal Properties

This section presents the learning algorithm in Prophet. The learning algorithm guides

the exploration of the search space in Prophet. It operates with a probabilistic model

that identifies and prioritize potentially correct patches in the search space. We first

discuss how Prophet works with the patches that do not contain abstract conditions

in the Prophet search space. We then extend the treatment to patches with abstract

conditions (see Section 4.3.5)

4.3.1 Probabilistic Model

Given a defective program p and a search space of candidate patches, the Prophet

probabilistic model is a parameterized likelihood function which assigns each candidate

patch J a probability P(6 I p, 0), which indicates how likely 6 is a correct patch for

p. 0 is the model parameter vector which Prophet learns during its offline training

phase (see Section 4.3.3). Once 0 is determined, the probability can be interpreted as

a normalized score (i.e., Ej P(J I p, 0) = 1) which prioritizes correct patches among

all possible candidate patches.

The Prophet probabilistic model assumes that each candidate patch 6 in the search

space can be derived from the given defective program p in two steps: 1) Prophet

selects a program point f E L(p), where L(p) denotes the set of program points in p

that Prophet may attempt to modify and 2) Prophet selects an AST modification

operation m E M(p, f) and applies m at f to obtain 6, where M(p, f) denotes the set

of all possible modification operations that Prophet may attempt to apply at f.

Therefore the patch 6 is a pair (in, f). We define P(6 I p, 0) = P(m, f I p, 0) for

f C L(p) and n E M(p, f) as follows:

1

P(m,f P, 0)= -B

A = (1 -- 3)(p)

B = exp (O(p, n, f) - 0)
E'EL(p) Zm'EI(pe') exp (q(p, ml, f') - 9)
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Here B is a standard parameterized log-linear distribution determined by the

extracted feature vectors 0 and the learned parameter vector 0. A is a geometric

distribution that encodes the information Prophet obtains from its defect localization

algorithm (which identifies target program points to patch). The algorithm performs

a dynamic analysis on the execution traces of the program p on the supplied test suite

to obtain a ranked set L(p) of candidate program points to modify (see Section 4.4.1).

r(p, f) denotes the rank of f G L(p) assigned by the defect localization algorithm. Here

13 is the parameter of the geometric distribution (which Prophet empirically sets to

0.02).

We use a geometric distribution for the defect localization information because

previous defect localization work reports that statements with higher localization ranks

are significantly more likely to be patched than statements with lower localization

ranks [48, 107]. The Prophet geometric geometric distribution matches this observation

of previous work.

Intuitively, the formula assigns the weight e"(Pme'O to each candidate patch (m, f)

based on the extracted feature vector 0(p, m, f) and the learned parameter vector 0.

The formula then computes the weight proportion of each patch over the total weight

of the entire search space derived from the functions L and M. The formula obtains

the final patch probability by multiplying the weight proportion of each patch with a

geometric distribution probability, which encodes the defect localization ranking of

the patch.

Note that L(p), r(p, f), and M(p, f) are inputs to the probabilistic model. M(p, f)

defines the patch search space while L(p) and r(p, f) define the defect localization

algorithm. The model can work with arbitrary L(p), r(p, f), and M(p, f), i.e., it is

independent of the underlying search space and the defect localization algorithm. It

is straightforward to extend the Prophet model to work with patches that modify

multiple program points.
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4.3.2 Defect Localization Approximation for Learning

The input to the Prophet training phase is a large set of revision changes D =

{ (p, 61).. . , (pa, &n)}, where each element of D is a pair of a defective program pi

and the corresponding successful human patch 6 i. Prophet learns a model parameter

0 such that the resulting probabilistic model assigns a high conditional probability

score to 6i among all possible candidate patches in the search space.

It is, in theory, possible to learn 9 directly over P(m, f I p, 0). But obtaining the

defect localization information requires 1) a compiled application that runs in the

Prophet training environment and 2) a test suite that includes both positive and

negative test cases (and not just a standard set of regression test cases for which the

unpatched application produces correct output).

The Prophet learning algorithm therefore uses an oracle-like defect localization

approximation to drive the training. For each training pair (pi, 6 i), the algorithm

computes the structural AST difference that the patch 6i induces to 1) locate the

modified program location fi and 2) identify a set of program points L' near Ci (i.e.,

in the same basic block as fi and within three statements of fi in this basic block). It

then uses maximum likelihood estimation to learn 0 over the following formula:

9 = argrmax E logCi - A1 Z1E9, - 0 2 3)

C = exp ((pi, miC) )- )
ZiyEL' Em'ElJ(p,e) exp (MI(p , I', L) - 9)

A, and A 2 are Li and L2 regularization factors which Prophet uses to avoid overfitting.

Prophet empirically sets both factors to 103.

Using the defect localization approximation (as opposed to full defect localiza-

tion) provides at least two advantages. First, it significantly expands the range of

applications from which Prophet can draw training patches - it enables Prophet to

work with successful human patches from applications even if the application does

not fully compile and execute in the Prophet training environment and even if the

application does not come with an appropriate test suite. Second, it also improves the
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running time of the training phase (which takes less than two hours in our experiments,

see Chapter 5), because Prophet does not need to compile and run patches during

training.

4.3.3 Learning Algorithm

Input :the training set D = (pi, f ), . .. , (pa, ,)}, where pi is the original program
and Ji is the successful human patch for pi.

Output: the feature weight parameter vector 0.
fori =1 tondo

(mi, f i) +-- 6i

L' +- NearLocations(pi, fi)
no s- 0.85 . n
Initialize all elements in 0 to 0
0* < Q
a 1
7)* +-- 1

cnt +- 0
while cnt < 200 do

Assume g(p, e, m, L, 0) = ( m',n,)-)

Assume f (0) = En log g (pi, fi, mi, L', 0) - A1 - ii - A2

0 0 + a -f

y s-- 0
for i =no + 1 to n do

tot +- I{m m E M(pi, f), f E L'I}I

rank +- {{m m E M(pi, f), t E L',
g (pi, f , mn, L', 0) ;> g (pi, fi, mni, L', 0)}1

- <- Y + (rank/tot)/(n - no)

if - < -* then
0* -- 0

cnt -- 0

else
c t cnt + 1
if a > 0.01 then

L a +- 0.9 - a

return 0*

Figure 4-8: Learning Algorithm

Figure 4-8 presents the Prophet learning algorithm. Combining standard machine

learning techniques, Prophet computes 0 via gradient descent as follows:
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" AST Structural Difference: For each pair (pi, 6j) in D, Prophet computes

the AST structural difference of 6i to obtain the corresponding modification

operation mi and the modified program point f, (lines 1-3). The function

NearLocations(pi, fi) at line 3 returns a set of program points that are close to

the known correct modification point fi.

" Initialization: Prophet initializes 9 with all zeros. Prophet also initializes the

learning rate of the gradient descent (a at line 7) to one. At line 4, Prophet

splits the training set and reserves 15% of the training pairs as a validation

set. Prophet uses this validation set to measure the performance of the learning

process and avoid overfitting. Prophet uses the remaining 85% of the training

pairs to perform the gradient descent computation.

" Update Current 9: Prophet runs an iterative gradient descent algorithm.

Prophet updates 9 at lines 11-13 at the start of each iteration.

" Measure Performance: For each pair of (pi, 6j) in the validation set, Prophet

computes the percentage of candidate programs in the search space that have

a higher probability score than 6i (lines 15-18). Prophet uses the average

percentage (-y) over all of the validation pairs to measure the performance of

the current 9. Lower percentage is better because it indicates that the learned

model ranks correct patches higher among all candidate patches.

" Update Best 9 and Termination: 0* in Figure 4-8 corresponds to the

best observed 9. At each iteration, Prophet updates 9* at lines 19-22 if the

performance (-y) of the current 9 on the validation set is better than the best

previously observed performance (y*). Prophet decreases the learning rate a at

lines 25-26 if 9* is not updated. If it does not update 9* for 200 iterations, the

algorithm terminates and returns 0* as the result.

4.3.4 Feature Extraction
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C C1 && c2  C1 C2 | v=const | v==const

simps v = v 1 op V2 v = const print v
skip | break

s :=t: simps { sis 2 ... } :if (c) si s 2

I : while (c) s,

p :={ s s2 --- }

v, v 1 , v 2 E Var const E Int e E Label
C, Cl, C2 E Cond s, Si, S2 C Stint
p E Prog Atom = Var U Int

Figure 4-9: The Language for Illustrating Feature Extraction

Patch Modification x Label Pos = {C, P, N}
MK {InsertControl,InsertGuard,ReplaceCond,

ReplaceStmt, InsertStmt}
SK {Assign,Print,While,Break,Skip,If}
ModFeature MK U (Pos x SK x MK)
ValueFeature Pos x AC x AC
Stmt: Prog x Label - Stmt
ApplyPatch : Prog x Patch - Prog x (Cond U Stmt)
ModKind: Modification - MK
StmtKind: Stmt - SK

: Prog x Atom x (Cond U Stmt) - AC
FIdx: (ModFeature U ValueFeature) - Int

Va,Vb, (FIdx(a) = FIdx(b)) (a = b)

Figure 4-10: Definitions and Notation. SK corresponds to the set of statement kinds.
MK corresponds to the set of modification kinds. AC corresponds to the set of
atomic characteristics that the analysis function b extracts.

Figure 4-9 presents the syntax of a simple programming language which we use

to present the Prophet feature extraction algorithm (see the end of this section for a

discussion of how we extend the feature extraction algorithm for C programs). Each

of the statements (except compound statements) is associated with a unique label f.

A program p in the language corresponds to a compound statement. The semantics

of the language in Figure 4-9 is similar to C. For brevity, we omit the operational

semantics.

Figure 4-10 presents the notation we use to present the feature extraction algorithm.

Figure 4-11 presents the feature extraction algorithm itself. Given a program p, a

program point f, and a modification operation m that is applied at f, Prophet extracts

features by analyzing both m and the original code near f.
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Input the input program p,
operation m

Output: the extracted feature
Initialize all elements in # to 0
Sc +- {Stmt(p,f)}
Sp <- Prev3stmts(p,e))
SN <-- Next3stmts(p, e))
idx <- FIdx(ModKind(m))

the modified program point f, and the modification

vector 0(p, e, m)

6 Oidx +-- 1
7 for i in {C,P, N} do
8 for s in Si do
9 idx +- Fid((i, StmtKind(s), ModKind(m)))

10 1 -idx 1

11 (p', n) <- ApplyPatch(p, (m, E))
12 for i in {C, P, N} do
13 for a in Atoms(n) do
14 for s in Si do
15 for ac' in 4'(p', a, n) do
16 for ac in b(p, a, s) do
17 idx <- FIdx((i, ac, ac'))
18 rOidn <--

19 return

Figure 4-11: Feature Extraction Algorithm
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4: Prog x Atom x (Cond U Stmt) -+ AC b(p, a, node) = Oo(a, node) U 0/1 (a, node)
AC = {var, constO, constnO, cond, if, prt, loop,==, '=, (op, L), (op, R), (=, L), (=, R)}

v E Var const 0 const c Int const # 0

?/o)(v, node) = {var} Oo(const, node) ={constO} Oo(const, node) {constno}

a V Atoms(node) c ="v==const"

'Vj (a, node) =0 Vi(v, c) {cond, ==} 0i(const, c) {cond,}

c= "v! =const"

4i(v, c) {cond, !=} 0i(const, c) = {cond, !=}

C "C1 && C2" or c "Cl I I C2" a e Atoms(c)

01(a, c) = 1 (a, ci) U 01 (a, C2)

s : V = vI op v2 "

V1j(v, s) = (,L)} 1~(vi, s) = (op, L), =,R)} V)I(V2, S) = (op, R), (=, R)}

s =": v=const" s =" print v"

VI(v, s) = {(=,L)} V/1(const, s) {(=,R)} V)1(v, s) {prt}

s = "f : while (c) si" a E Atoms(s) s "{SIS2 .. .}" a e Atoms(s)

V1 (a, s) = 7I (a, c) U Vb (a, si) U {loop} 41 (a, s) = $1(a, si) U 4ui(a, S2) U ...

s = ": if (C) si S2" a E Atoms(s)

01(a, s) =1 1(a, c) U 01 (a, si) U'011(V, S2) U f{if}

Figure 4-12: Atomic Characteristic Extraction Rules for i4(p, a, n)
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Prophet first partitions the statements near f in the original program p into three

sets Sc, Sp, and SN based on the relative positions of the statements (lines 1-3).

Sc contains only the statement associated with the modification point f (returned

by the utility function Stmt). Sp contains the statements that appear at most

three statements before f in the enclosing compound statement (returned by the

utility function Prev3stmts). SN contains the statements that appear at most three

statements after f in the enclosing compound statement (returned by the utility

function Next3stmts).

Prophet then extracts two types of features, modification features (lines 5-10)

and program value features (lines 11-18). Modification features capture interactions

between the modification m and the surrounding statements, while program value

features capture how the modification works with program values (i.e., variables and

constants) in the original and patched code. For each extracted feature, Prophet sets

the corresponding bit in 0 whose index is identified by the utility function FIdx (lines

5-6, lines 9-10, and lines 17-18). FIdx maps each individual feature to a unique integer

value.

Modification Features: Prophet implements two classes of modification features.

The first class captures the kind of modification that m applies. The second class

captures relationships between the kinds of statements that appear near the patched

statement in the original program and the modification kind of m. So, for example, if

successful patches often insert a guard condition before a call statement, a modification

feature will enable Prophet to recognize and exploit this fact.

At lines 5-6 in Figure 4-11, Prophet extracts the modification kind of m as the

modification feature. At lines 7-10, Prophet also extracts the triple of the position

of an original statement relative to the patched statement ("C" corresponds to the

original statement, "P" corresponds to one of the three previous statements in the

same block, and "N" corresponds to one of the three next statements in the same

block), the kind of the original statement, and the modification kind of m as the

modification feature. At line 9, the utility function StmtKind(s) returns the statement

kind of s and the utility function ModKind(m) returns the modification kind of m.
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Prophet currently classifies modification operations into five kinds: InsertControl

(inserting a potentially guarded control statement before a program point),

AddGuardCond (adding a guard condition to an existing statement), ReplaceCond

(replacing a branch condition), InsertStt (inserting a non-control statement before

a program point), and ReplaceStt (replacing an existing statement). See Figure 4-10

for the definition of modification features, statement kinds, and modification kinds.

Program Value Features: Program value features are designed to capture rela-

tionships between how variables and constants are used in the original program and

how they are used in the patch. For example, if successful patches often insert a

check involving a variable that is subsequently passed as a parameter to a nearby call

statement, a program value feature will enable Prophet to recognize and exploit this

fact. Program value features capture interactions between an occurrence of a variable

or constant in the original program and an occurrence of the same variable or constant

in the new code in the patch.

To avoid polluting the feature space with application-specific information, program

value features abstract away the specific names of variables and values of constants

involved in the interactions that these features model. This abstraction enables

Prophet to learn properties of correct code as captured by program value features from

patches for one set of applications, then apply the learned information to generate

correct patches for other applications.

To extract program value features, Prophet first applies the patch to the original

program (line 11 in Figure 4-11). ApplyPatch(p, (m, f)) denotes the results of the

patch application, which produces a pair (p', n), where p' is the new patched program

and n is the AST node for the new statement or condition that the patch introduces.

Prophet performs a static analysis on both the patched and original programs to

extract a set of atomic characteristics for each program atom a (i.e., a variable or an

integer). In Figure 4-11, O(p, a, n) denotes the set of atomic characteristics extracted

for a in n.

At lines 12-18, Prophet extracts each program value feature, which is a triple

(i, ac, ac') of the position i of a statement in the original program, an atomic character-
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istic ac of a program atom in the original statement, and an atomic characteristic ac'

of the same program atom in the AST node that the patch introduces. Intuitively, the

program value features track co-occurrences of each pair of the atomic characteristic

ac in the original code and the atomic characteristic ac' in the modification m. The

utility function Atoms(n) at line 12 returns a set that contains all program atoms

(i.e., program variables and constants) in n.

Figure 4-12 presents the static analysis rules that Prophet uses to extract atomic

characteristics Vb(p, v, n). These rules track the roles that v plays in the enclosing

statements or conditions and record the operations in which v participates. The first

three rules in Figure 4-12 track whether an expression atom is a variable, a zero

constant, or a non-zero constant. The fourth through eleventh rules track statement

types and operators that are associated with each expression atom. The last three rules

recursively compute and propagate atomic characteristics for if statements, statement

blocks, and while statements, respectively.

Note that Prophet can work with any static analysis to extract arbitrary atomic

characteristics. It is therefore possible, for example, to combine Prophet with more

sophisticated analysis algorithms to obtain a richer set of atomic characteristics.

Feature Extraction for C: Prophet extends the feature extraction algorithm to C

programs as follows. Prophet treats call expressions in C as a special statement kind

for feature extraction. Prophet extracts atomic characteristics for binary and unary

operations in C. For each variable v, Prophet also extracts atomic characteristics that

capture the scope of the variable (e.g., global or local) and the type of the variable (e.g.,

integer, pointer, pointer to structure). The current Prophet implementation tracks

over 30 atomic characteristics (see Table 4.1 for a list of these atomic characteristics)

and works with a total of 3515 features, including 455 modification features and 3060

program value features.

4.3.5 Feature Extraction for Abstract Conditions

Some of the transformation schemas in Prophet contain abstract conditions that the

Prophet condition synthesis algorithm will later instantiate to obtain a final patch.
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Table 4.1: Atomic Characteristics of Program Values for C

Specifically, Prophet implements schemas that 1) (Tighten) tighten the condition of

a target if statement (by conjoining a condition C to the if condition), 2) (Loosen)

loosen the condition of a target if statement (by disjoining a condition C to the if

condition), 3) (Add Guard) add a guard with a condition C to a target statement,

and 4) (Insert Guarded Control Flow) insert a new guarded control flow statement (if

(C) return; if (C) break; or if (C) goto 1; where 1 is an existing label in the program

and C is the condition that the guard enforces) before the target statement. Here C

is an abstract condition that the condition synthesis algorithm will later instantiate.

Partially Instantiated Patches: There are two obvious approaches to combine the

learning algorithm and the condition synthesis. The first is to use condition synthesis

to generate fully instantiated final patches during the initial generation of the search

space, then use the Prophet learned model to rank these patches for validation along

with all of the other candidate patches. A downside of this approach is the time

required to run the condition synthesis algorithm (which compiles and executes the
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Commutative Is an operand of
Operators +, *, ==, or !=
Binary Is a left/right operand of
Operators -, /, <, >, <=, >=, . (field access),

-> (member access), or D (index)
Unary Is an operand of
Operators -, ++ (increment), -- (decrement),

* (dereference), or & (address-taken)
Enclosing Occurs in an assign/loop/return/if statement
Statements Occurs in a branch condition

Is a function call parameter
Is the callee of a call statement

Value Is a local variable, global variable, argument,
Traits struct field, constant, non-zero constant,

zero, or constant string literal
Has an integer, pointer, or struct pointer type
Is dereferenced

Patch Is the only variable in an abstract expression
Related Is replaced by the modification operation



application potentially multiple times) to generate fully instantiated patches (many of

which will have low correctness probabilities).

The second approach is to rank the uninstantiated patch (this patch has an

unconstrained abstract condition C), then instantiate the abstract condition C later

during patch validation. The downside of this approach is that the correctness of

the final instantiated patches will depend heavily on the variables that they access.

This information, of course, is not available for patches with unconstrained abstract

conditions, which inhibits the ability of Prophet to compute accurate correctness

probabilities for the final fully instantiated patches that the condition synthesis

algorithm will generate.

Prophet therefore uses an intermediate third approach - it generates and ranks

partially instantiated patches that specify the variable that the synthesized condition

will check, but leave the abstract condition otherwise unconstrained. This approach

enables Prophet to work with patches that it can acceptably accurately rank while

deferring condition synthesis until patch validation time. Because deferring condition

synthesis enables Prophet to move quickly on to start validating highly ranked patches,

it can significantly reduce the time Prophet requires to find correct fully instantiated

patches.

Learning for Partially Instantiated Patches: We extend the Prophet feature

extraction algorithm to handle partially instantiated patches. Specifically, we de-

fine atomic characteristics that identify variables that the conditions in partially

instantiated patches check (see Table 4.1).

The Prophet learning algorithm works with partially instantiated patches as follows.

For each patch in the training set that could have been generated by a schema with

an abstract condition, it derives the corresponding partially instantiated patch. It

then extracts the features for this partially instantiated patch and learns over the

partially instantiated patch and its extracted features (instead of learning over the

fully instantiated patch).
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4.3.6 Repair Algorithm

Figure 4-13 presents the Prophet repair algorithm. Prophet generates a search space

of candidate patches and uses the learned probabilistic model to prioritize potentially

correct patches. Specifically, Prophet performs the following steps:

" Generate Search Space: At line 1, Prophet runs the defect localization

algorithm (DefectLocalizer(p, T)) to return a ranked list of candidate program

points to modify. At lines 2-6, Prophet then generates a search space that

contains candidate patches for all of the candidate program points.

* Rank Candidate Patch: At lines 5-6, Prophet uses the learned 0 to compute

the probability score for each candidate patch. At line 7, Prophet sorts all

candidate patches in the search space based on their probability score. Note

that the score formula at line 5 omits the constant divisor from the formula of

P(6 I p, 0), because it does not affect the sort results.

* Validate Candidate Patch: At lines 8-12, Prophet finally tests all of the

candidate patches one by one in the sorted order with the supplied test suite

(i.e., T). Prophet uses the validation algorithm described in Section 4.2.3 to

validate candidate patches and perform condition synthesis if necessary. Prophet

outputs a list of validated candidate patches.

4.3.7 Alternative Learning Objective

Prophet uses maximum likelihood estimation to learn the model parameter 0. One

alternative learning objective is to minimize the sum of hinge losses as defined by a

hinge-loss function h(p, m, 1, 0):

h(p, m, 1, 9) = max EL(p),m'EM(p,m')

((#(p, in', ') - 0 - #(p, m, 1) - 9) + A(p, (in, 1), (m', 1')))
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Input the original program p, the test suite T and the learned model parameter
vector 6

Output: emit a list of validated patches
i (L, r) +- DefectLocalizer(p, T)
2 Candidates <- 0
3 forf in Ldo
4 for m in M(p, f) do
5 prob _score <- (1 - O(Pfm).o
6 Candidates - Candidates U { ( probscore, m, f)}

7 SortedCands <-- SortWithFirstElement(Candidates)
s for (,m, ) in SortedCands do
9 r 6 (-(m, f)

10 6/ +- validate(p, 6, T)
11 if 6/ : 0 then
12 L emit 6/

Figure 4-13: Prophet Repair Algorithm

Prophet can then learn 0 with the following objective function:

= arg 1in( h(pi, mi, li, 0) + A, E + A2Z

Intuitively, for each correct patch in the training set, the hinge-loss function

measures the score difference between the correct patch and the incorrect patch with

the highest score plus the distance between these two patches. The objective function

minimizes the sum of the hinge losses over all correct patches in the training set. A1

and A 2 are regularization parameters, which we empirically set to 10- 3 (we found that

10-3 gives the best results in our experiments). A is an arbitrary distance function.

In our implementation, we use the euclidean distance between two feature vectors. In

the ideal case, the hinge-loss learning algorithm finds a 0 such that the score of the

correct patch outweighs the incorrect patch with the highest score by a significant

margin given by the distance between the two patches.

Although previous work has used the hinge-loss learning algorithm to successfully

predict program properties such as variable names and types [87], our experimental

results show that, for our set of benchmark defects, maximum likelihood estimation

outperforms using the hinge-loss objective function (see Section 5.4.2).
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The reason is that the hinge-loss function considers only the score of the most highly

ranked incorrect patch and not the scores of the other incorrect patches. The hinge-loss

algorithm therefore (unlike maximum likelihood estimation) does not directly attempt

to optimize the rank of the correct patch within the full set of candidate patches. On

both the training and benchmark sets, the hinge-loss algorithm is unable to find a

O that consistently ranks the correct patch within the top few patches in the search

space. In this situation maximum likelihood estimation, because it considers the scores

of all of the patches, produces a 0 that ranks the correct patches more highly within

the search space than the 0 that the hinge-loss algorithm produces. The result is that

the correct patches appear earlier in the validation order with maximum likelihood

estimation than with the hinge loss algorithm.

4.4 Implementation

We have implemented Prophet in C++ using the clang compiler front-end [14]. Clang

contains a set of APIs for manipulating the AST tree of a parsed C program, which

enables Prophet to generate a repaired source code file without dramatically changing

the overall structure of the source code. Existing program repair tools [55, 82, 104]

often destroy the structure of the original source by inlining all header files and

renaming all local variables in their generated repaired source code. Preserving the

existing source code structure helps developers understand and evaluate the repair

and promotes the future maintainability of the application.

4.4.1 Defect Localization

The Prophet defect localizer recompiles the given application with additional instru-

mentation. It inserts a call back before each statement in the source code to record a

positive counter value as the timestamp of the statement execution. Prophet then

invokes the recompiled application on all test cases and produces a prioritized list

that contains target statements to modify based on the recorded timestamp values.

Prophet prioritizes statements that 1) are executed with more negative test cases, 2)
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are executed with fewer positive test cases, and 3) are executed later during executions

with negative test cases.

This algorithm recompiles the given application with additional instrumentation.

It inserts a call back before each statement in the source code to record a positive

counter value as the timestamp of the statement execution. Prophet then invokes the

recompiled application on all test cases.

For a statement s and a test case i, t(s, i) is the recorded execution timestamp

that corresponds to the last timestamp from an execution of the statement s when

the application runs with the test case i. If the statement s is not executed at all

when the application runs with the test case i, then t(s, i) = 0.

We use the notation NegT for the set of negative test cases that expose the defect

of the program and PosT for the set of positive test cases that the original program

already passes. Prophet computes three scores a(s), b(s), c(s) for each statement s:

a(s) = | {i t(s, i) = 0, i E NegT} I
b(s) = Z {i I t(s, i) = 0, i E PosT} I

c(s) = EieNegTt(s, i)

A statement s, has higher priority than a statement S2 if prior(si, S2) = 1, where

prior is defined as:

1 a(si) > a(s2 )

1 a(si) = a(s2), b(si) > b(s 2 )

prior(si,s 2) = a(si) = a(s2 ), b(si) = b(s 2 ),
1*

c(si) > c(s2 )

0 otherwise

Intuitively, Prophet prioritizes statements that 1) are executed with more negative

test cases, 2) are executed with fewer positive test cases, and 3) are executed later

during executions with negative test cases. Prophet considers the first 200 statements

as potential statements for modification.
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The probabilistic model and the repair algorithm are independent from the defect

localization component. Prophet can integrate with any defect localization technique

that returns a ranked list of target program points to patch. It is therefore possible to

combine Prophet with other defect localization techniques [29, 48, 107].

4.4.2 C Program Support and Optimizations

Prophet extends the algorithm in Section 4.2 and Section 4.3 to support C programs.

Prophet applies the transformation function separately to each function in a C

program. When Prophet performs variable replacement or condition synthesis, it

considers all variables (including local, global, and heap variables) that appear in the

current transformed function. During condition generation, Prophet also searches

existing conditions c that occur in the same enclosing compound statement (in

addition to conditions of the form (v == const) and ! (v == const) described above

in Section 4.2.3).

When Prophet inserts control statements, Prophet considers break, return, and

goto statements. When inserting return statements, Prophet generates a repair to

return each constant value in the returned type that appeared in the enclosing function.

When inserting goto statements, Prophet generates a repair to jump to each already

defined label in the enclosing function. When Prophet inserts initialization statements,

Prophet considers to call memset() to initialize memory blocks. When Prophet

copies statements for C programs, Prophet considers to copy compound statements in

addition to simple statements, as long as the copied code can fit into the new context.

To represent a abstract condition, Prophet inserts a function call abstractcode()

into the modified condition. When Prophet tests a candidate transformed program

with abstract conditions, Prophet links the program with its runtime library, which

contains an implementation of abstractcond(). The abstract-condo in the library

implements the semantics specified in Figure 4-7.

Batched Compilation: When Prophet tests candidate repairs, compilations of the

repaired application may become the performance bottleneck for Prophet. To reduce

the time cost of compilations, Prophet merges similar candidate repairs into a single
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combined repair with a branch statement. A global integer environment variable

controls the branch statement, so that the batched repair will be equivalent to each

individual candidate repair, when the environment variable takes a corresponding

constant value. Prophet therefore only needs to recompile the merged repair once to

test each of the individual candidate repairs.

Test Case Evaluation Order: Prophet always first tests each candidate repair

with the negative test cases. Empirically, negative test cases tend to eliminate invalid

repairs more effectively than positive test cases. Furthermore, whenever a positive

test case eliminates a candidate repair, Prophet will record this positive test case and

prioritize this test case for the future candidate repair evaluation.

Repairs for Code Duplicates: Programs often contain duplicate or similar source

code, often caused, for example, by the use of macros or code copy/paste during

application development. Prophet detects such duplicates in the source code. When

Prophet generates repairs that modify one of the duplicates, it also generates additional

repairs that propagate the modification to the other duplicates.
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Chapter 5

Evaluation of Prophet Patch

Generation System

This chapter evaluates Prophet on a benchmark set of 69 real world defects from

eight large open source applications. All of our experimental results and a replication

package are also available at [11]. Our evaluation consists of the following parts:

Patch Generation: We evaluate the patch generation capability of Prophet on the

benchmark set and compare it with three previous patch generation systems GenProg,

AE, and Kali. For each system, we report the number of defects for which the system

generates correct patches or plausible patches.

Design Decisions: We evaluate the effectiveness of the Prophet learning algorithm

and the impact of this algorithm on the patch generation results. We also evaluate

the impact of feature selection, the learning objective, and the condition synthesis.

Search Space and Extensions: We systematically evaluate the search space

design in Prophet. We consider three different search space extensions and 16 different

search space configurations. We evaluate the patch generation process on each of the

different search space configurations.

Sources. The previous version of this research presented in this chapter appeared

in [59], [58], and [60].
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Application LoC Tests Defects
libtiff 77k 78 8
lighttpd 62k 295 7
php 1046k 8471 31

gmp 145k 146 2
gzip 491k 12 4
python 407k 35 9
wireshark 2814k 63 6
fbc 97k 773 2
Total 69

Table 5.1: Benchmarks for Prophet Evaluation

5.1 Benchmarks

We evaluate Prophet on 69 real world defects in eight large open source applications:

libtiff, lighttpd, php, gmp, gzip, python, wireshark, and fbc. libtiff is an image

processing library for the TIFF image format. lighttpd is a popular lightweight HTTP

server. php is the official implementation of the interpreter for PHP programs. gmp is

a widely used free library for high precision arithmetic computations on integers and

floating-point numbers. gzip is a popular compression tool in Linux. python is the

official implementation of the interpreter for Python programs. wireshark is a popular

network package analysis application. fbc is a compile for Free Basic programs.

Table 5.1 summarizes our benchmark defects. The first column (Application)

presents the name of each application. The second column (LoC) presents the number

of lines of code in the application. The third column (Tests) presents the number of

the test cases in the supplied test suite of the application. php is the outlier, with an

order of magnitude more test cases than any other application. The fourth column

(Defects) presents the number of defects in the benchmark set for each application.

This is the same benchmark set used to evaluate Kali (see Section 2.8), GenProg [55],

and AE [104]. For each defect, the benchmark set contains a test suite with positive

test cases for which the unpatched program produces correct outputs and at least one

negative test case for which the unpatched program produces incorrect output (i.e.,

the negative test case exposes the defect).
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This benchmark set is, to the best of our knowledge, currently the most compre-

hensive publicly available C data set suitable for evaluating generate-and-validate

systems - other benchmark sets have fewer defects, much smaller programs, or do

not have the positive and negative test cases and build infrastructures required for

generate-and-validate patch generation.

Note that the original version of benchmark set is reported to contain 105 de-

fects [55]. Our examination of the revision changes and corresponding check in entries

indicates that 36 of these reported defects are not, in fact, defects. They are instead

deliberate functionality changes (see Chapter 2). Because there is no defect to correct,

they are therefore outside the scope of patch generation systems. We therefore exclude

these functionality changes from our experiments.

5.2 Human Patch Collection and Training

This section presents how we collect successful human patches from open source

repositories and how we use the collected training patches to train Prophet.

5.2.1 Collect Successful Human Patches

We used the advanced search functionality in GitHub [16] to obtain a list of open

source C project repositories that 1) were started before January 1, 2010 and 2) had

more than 2000 revisions. We browsed the projects from the list one by one and

collected the first eight projects that 1) are command-line applications or libraries that

run on our experimental environment Ubuntu 14.04, 2) whose repositories contain

more than ten revision changes with patches that are within the Prophet search space,

and 3) whose compilation flags can be extracted by our scripts for clang to obtain

abstract syntax trees for these patches.

In this process, we considered but rejected many applications because they do not

satisfy the above requirements. For example, we rejected lighttpd because it contained

fewer than ten revision changes with patches within the Prophet search space. We

rejected git because we were unable to extract its compilation flags using our scripts.
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Project Revisions Used for Training
apr 12
curl 53
httpd 75
libtiff 11
php 187
python 114
subversion 240
wireshark 85
Total 777

Table 5.2: Statistics of Collected Successful Human Patches

We stopped collecting projects when we believed we had obtained a sufficiently large

training set of successful patches.

For each of the resulting eight application repositories, we ran a script to analyze

the check-in logs to identify and collect all of those patches that repair defects (as

opposed to changing or adding functionality) and are within the Prophet search space.

From the eight repositories, we collected a total of 777 such patches. Table 5.2 presents

statistics for these 777 patches.

5.2.2 Train Prophet on Collected Training Set

We train Prophet on the collected set of successful human patches. The collected

set of training applications and the benchmark set share four common applications,

specifically libtiff, PHP, python, and wireshark. For each of these four applications,

we train Prophet separately and exclude the collected human patches of the same

application from the training set. The goal is to ensure that we evaluate the ability of

Prophet to apply the learned model trained with one set of applications to successfully

repair defects in other applications.

The offline training takes less than two hours. Training is significantly faster than

repair because the learning algorithm does not compile and run the patches in the

training set during training (see Section 4.3.3). This approach enables Prophet to

include patches from applications 1) for which an appropriate test suite may not be

immediately available and/or 2) with relevant source code files that may not fully
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compile on the training platform. These two properties can significantly expand the

range of applications that can contribute patches to the training set of successful

human patches.

5.3 Patch Generation Evaluation

This section presents the patch generation results of Prophet and compares the

results with four other patch generation systems, SPR (see Section 4.2.4), Kali (see

Section 2.8), GenProg [55], and AE [104], which are evaluated on the same benchmark

set.

5.3.1 Methodology

Experimental Setup: For each defect, we run the trained Prophet to obtain a

sequence of validated plausible patches for that defect. For comparison, we also run

SPR on each defect. We obtain the results of Kali, GenProg [55], and AE [104] on

this benchmark set from Chapter 2. We terminate the execution of Prophet or SPR

after 12 hours. According to the original papers, the GenProg results for each defect

are obtained from 10 runs of 12 hours with different random seeds [55], the AE results

for each defect are obtained from a single run of 60 hours [104].

We note that GenProg and AE require the user to specify the source file name

to modify when the user applies GenProg and AE to an application that contains

multiple source files (all applications in the benchmark set contain multiple source

files) [85]. Prophet, SPR, and Kali do not have this limitation.

Running Environment: We run all of our experiments except those of fbc on

Amazon EC2 Intel Xeon 2.6GHz machines running Ubuntu-64bit server 14.04. fbc

runs only in 32-bit environments, so we run all fbc experiments on EC2 Intel Xeon

2.4GHz machines running Ubuntu-32bit 14.04.

Running Time: Although we set 12 hours as the time limit for generating patches,

for the 39 defects for which Prophet finds at least one plausible patch, Prophet requires,

on average, only 108.9 minutes to find and validate the first plausible patch. For the
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App LoC Tests Defects Prophet SPR Kali GenProg AE
libtiff 77k 78 8 2,2 1,1 0 0 0
lighttpd 62k 295 7 0,0 0,0 0 0 0
php 1046k 8471 31 13,10 10,9 2 1 2

gmp 145k 146 2 1,1 1,1 0 0 0
gzip 491k 12 4 1,1 1,0 0 0 0
python 407k 35 9 0,0 0,0 0 0 0
wireshark 2814k 63 6 0,0 0,0 0 0 0
fbc 97k 773 2 1,1 1,0 0 0 0
Total 69 18,15 16,11 2 1 2

Table 5.3: The Number of Correct Patches Per Application Per System

15 defects for which the first validated patch is correct, Prophet requires, on average,

138.5 minutes to find and validate the first correct patch.

Evaluate Generated Patches: We manually analyze each generated plausible

patch to determine whether the patch is a correct patch or just a plausible but incorrect

patch that happens to produce correct outputs for all of the inputs in the test suite.

We acknowledge that, in general, determining whether a specific patch corrects a

specific defect can be difficult (or in some cases not even well defined). We emphasize

that this is not the case for the patches and defects that we consider here. The

correct behavior for all of the evaluated defects is clear, as is patch correctness and

incorrectness. Furthermore, subsequent developer patches are available for all of the

defects in the benchmark set. A manual code analysis indicates that each of the correct

patches in the experiments is semantically equivalent to the subsequent developer

patch for that defect.

5.3.2 Experimental Results

Table 5.3 and Table 5.4 summarize the patch generation results for Prophet, SPR,

Kali, GenProg, and AE. See Appendix A for the detailed experimental results of each

benchmark defect. There is a row in the tables for each benchmark application. The

first column (App) presents the name of the application, the second column (LoC)

presents the number of lines of code in each application, and the third column (Tests)

130



App LoC Tests Defects Prophet SPR Kali GenProg AE
libtiff 77k 78 8 5 5 5 3 5
lighttpd 62k 295 7 3 3 4 4 3
php 1046k 8471 31 17 16 8 5 7
gmp 145k 146 2 2 2 1 1 1
gzip 491k 12 4 2 2 1 1 2
python 407k 35 9 5 5 1 0 2
wireshark 2814k 63 6 4 4 4 1 4
fbc 97k 773 2 1 1 1 1 1
Total 69 39 38 25 16 25

Table 5.4: The Number of Plausible Patches Per Application Per System

presents the number of test cases in the test suite for that application. The fourth

column (Defects) presents the number of benchmark defects in each application.

The fifth through ninth columns in Table 5.3 summarize the correct patches that

each system finds. For Prophet and SPR, each entry is of the form X,Y. Here X is

the number of the defects for which Prophet or SPR finds a correct patch before the

12 hour timeout (even if that patch is not the first patch to validate), and Y is the

number of defects for which Prophet or SPR finds a correct patch as the first patch to

validate. For Kali, GenProg, and AE, each entry presents the number of the defects

for which the system finds a correct patch.

The fifth through ninth columns in Table 5.4 summarize the plausible patches

that each system finds. Each entry presents the number of the defects for which the

corresponding system finds at least one plausible patch (i.e., a patch that passes the

supplied test suite)

The results show that Prophet finds a correct patch for significantly more cases

than GenProg and AE (17 more than GenProg and 15 more than AE). The results

also show that Prophet finds a correct patch as the first to validate for more defects

than SPR, Kali, GenProg, and AE (4 more defects than SPR, 14 more than GenProg,

and 13 more than Kali and AE). One potential explanation for the underperformance

of Kali, GenProg, and AE is that the correct Prophet and SPR patches are outside

the search spaces of these systems (see Section 5.5), which suggests that these systems

will never find correct patches for the remaining defects.
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Both Prophet and SPR find a correct patch as the first to validate significantly

more often for PHP than for other applications. There are significantly more defects

for PHP than for other applications. PHP also has a much stronger test suite (an

order of magnitude more test cases) than other applications, which helps both Prophet

and SPR find correct patches as the first to validate.

5.3.3 Case Studies

We next present case studies of five representative benchmark defects. On the first

four defects, Prophet outperforms SPR. These results illustrate the advantage of

the learned patch prioritization order in Prophet over the manually defined order in

SPR. The remaining defects are representative cases where Prophet does not generate

correct patches or Prophet does not successfully prioritize the correct patch as the

first generated patch.

php-308262-308315: Figure 5-1 presents the first patch generated by Prophet

for php-308262-308315. This is a correct patch and it is identical to the developer

patch for this defect. The correct patch inserts an if statement guard for an existing

statement at line 11 in Figure 5-1. The inserted guard checks a function parameter

variable in the existing statement against a constant value. The machine learning

algorithm in Prophet detects that such relationships often correlate with successful

human patches and therefore ranks this correct patch as one of top 2% in the patch

validation order. Because the supplied test suite is strong enough to filter out other

patches that are ranked before this correct patch, Prophet successfully generates

this correct patch as the first generated patch. The SPR hand-coded heuristics rank

patches that add a guard statement below patches that change a branch condition.

Because of this lower rank, SPR is unable to find the correct patch within 12 hours.

gzip-ald3d4-f17cbd: Figure 5-2 presents the first patch generated by Prophet for

for gzip-ald3d4-fl7cbd. The Prophet patch is correct and semantically equivalent

to the developer patch. Figure 5-3 presents the first patch generated by SPR for

gzip-ald3d4-fl7cbd. The SPR patch is a plausible but incorrect patch. For gzip-

ald3d4-fl7cbd, an initialization statement can be inserted at multiple candidate
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1 static void zendfetchdimensionaddressread(

2 tempvariable *result, zval **containerptr,

3 zval *dim, int dim type, int type) {

4 zval *container = *container-ptr;
5

6 switch (ZTYPEP(container)) {
7 ...

8 case IS-STRING: {
9 ...

10 if (ZLVALP(dim) < 0 11 ZSTRLENP(container) <= ZLVALP(dim)) {
11 + if (!(type == 3))

12 zenderror((1 << 3L), "Uninitialized string offset: %ld",

13 (*dim).value.lval);

14 ZSTRVALP(ptr) = STREMPTYALLOCO;
15 ZSTRLENP(ptr) = 0;

16 }else{

17 ZSTRVALP(ptr) = (char*)emalloc(2);

18 ZSTRVALP(ptr)[0] = ZSTRVALP(container)[ZLVALP(dim)];
19 ZSTRVALP(ptr) [1] = 0;

20 ZSTRLENP(ptr) = 1;

21 }
22 AISETPTR(result, ptr);

23 return;

24 }
25 break;

26 ...

27 }
28 }

Figure 5-1: Prophet Patch for php-308262-308315. Add Line 11.

1 void treatstdin() {

2 ...

3 + ifd = 0;
4 if (decompress) {
5 method = get-method(ifd);
6 if (method < 0) {
7 doexit(exitcode);

8 }
9 }

10 if (list) {
11 dolist(ifd, method);

12 return;

13 }
14 ...

15 }

Figure 5-2: Prophet Patch for gzip-ald3d4-f17cbd. Add Line 3.
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1 void treat-file(char *iname) {
2 + ifd = 0;
3 /* Accept "-" as synonym for stdin */
4 if (strequ(iname, '-")) {
5 int cflag = to-stdout;
6 treat_stdino;

7 tostdout = cflag;
8 return;

9 }
10
11 }

Figure 5-3: SPR Patch for gzip-ald3d4-fl7cbd. Add Line 2.

1 if ((td->tdnstrips > 1 && td->td_compression == 1
2 && td->tdstripbytecount[O] != td->tdstripbytecount[1])
3 + && !(td->td-nstrips == 2)
4 ) f
5 TIFFWarning(module,

6 "%s: Wrong \"%s\" field, ignoring and calculating from imagelength",
7 tif->tifname, TIFFFieldWithTag(tif, 279)->field name);
8 if (EstimateStripByteCounts(tif, dir, dircount) < 0)
9 goto bad;

10 }

Figure 5-4: Prophet Patch for libtiff-dl3be-ccadf. Add Line 3.

locations to pass the supplied test case, but not all of the resulting patches are correct.

Prophet successfully prioritizes the correct patch among multiple plausible patches,

because Prophet identifies many potentially useful interactions between the inserted

assignment and the surrounding code via the variable "ifd". The SPR heuristics

prioritize an incorrect patch that inserts the initialization at the start of a basic block.

libtiff-d13be-ccadf: Figure 5-4 presents the first patch generated by Prophet

for libtiff-dl3be-ccadf. The Prophet patch is correct and semantically equivalent

to the developer patch. Figure 5-5 presents the first patch generated by SPR for

libtiff-dl3be-ccadf. The SPR patch is a plausible but incorrect patch. For libtiff-dl3be-

ccadf, there are multiple candidate program variables that can be used to tighten a

branch condition to enable the resulting patched program to pass the supplied test

suite. The learned program value features enable Prophet to successfully identify and

prioritize correct patches that manipulate the right variables, which are later used

in the surrounding statements following the patches. The SPR heuristics treat many
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1 if ((td->tdnstrips > 1 && td->td-compression == 1
2 && td->tdstripbytecount[0] != td->td.stripbytecount[1])
3 + && !(1)
4

5 TIFFWarning(module,

6 "%s: Wrong \"%s\" field, ignoring and calculating from imagelength",
7 tif->tif name, TIFFFieldWithTag(tif, 279)->fieldname);

8 if (EstimateStripByteCounts(tif, dir, dircount) < 0)

9 goto bad;
10 }

Figure 5-5: SPR Patch for libtiff-dl3be-ccadf. Add Line 3.

candidate clauses with the same priority and therefore generate a patch that simply

eliminate the branch and disables the error checking.

fbc-5458-5459: Figure 5-6 presents the first patch generated by Prophet for fbc-

5458-5459. The Prophet patch is correct and semantically equivalent to the developer

patch. Figure 5-7 presents the first patch generated by SPR for fbc-5458-5459. The

SPR patch is a plausible but incorrect patch. Both of the Prophet and SPR insert

a clause to check the corner case where the value of the passed variable "len" is

zero. The learned program value features enable Prophet to prioritize the patch in

Figure 5-6 because there are many potentially useful relationships between the patch

and surrounding code via the program value "len" - "len" is used multiple times in

the branch at lines 21-26. SPR, on the other hand, modifies a wrong branch statement

and therefore generates an incorrect patch, although passing the supplied test cases.

php-310011-310050: Figure 5-8 presents a plausible but incorrect patch generated

by Prophet for php-310011-310050. This patch -is ranked ahead of the generated

correct patch. Figure 5-9 presents the developer patch for php-310011-310050. The

code at line 4 in Figure 5-8 and Figure 5-9 sets the reference counter of the variable

"tmp" to zero to free the underlying data structure. If the "tmp" variable shares

the data structure with other variables, it may cause a dangling pointer error. The

developer patch inserts a call to zval_copyctoro to separate the underlying data

structure if shared. The Prophet patch however replaces line 4 with another function

call to avoid setting the reference counter of "tmp" to zero. This fixes the dangling
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1 if((dst == NULL) 11 (dst->data == NULL) 11 (FBSTRSIZE( dst ) == 0) ) {
2 fb_hStrDelTempNoLock( src
3 fb_hStrDelTempNoLock( dst );
4 FB_STRUNLOCK();

5 return;

6 }
7
8 if((src == NULL) 11 (src->data NULL) |I (FB_STRSIZE( src ) == 0) ) {
9 fb_hStrDelTempNoLock( src
10 fb_hStrDelTempNoLock( dst );
11 FB_STRUNLOCKO;

12 return

13 }
14

15 srclen = FBSTRSIZE( src
16 dstlen = FB_STRSIZE( dst );
17

18 if (((start > 0) && (start <= dst-len))
19 + && !(len == 0)
20 ) {
21 --start;

22 if ((len < 1) 11 (len > srclen))
23 len = srclen;
24 if (start + len > dstlen)
25 len = (dstlen - start);
26 memcpy(dst->data + start, src->data, len);
27 }
28 ...

Figure 5-6: Prophet Patch for fbc-5458-5459. Add Line 19.

136



if((dst == NULL) II (dst->data == NULL)
+ I| (len == 0)

fbhStrDelTempNoLock( src

fb_hStrDelTempNoLock( dst );

FBSTRUNLOCKO;

return;

}

11 (FBSTRSIZE( dst ) == 0)1
2

3

4

5
6

7

8
9

10

11
12

13

14

15
16

17

18

19

20

21

22

23

24

25
26
27

28

Figure 5-7: SPR Patch for fbc-5458-5459. Add Line 10.

1 if (Z_ISREFPP(p)) {
2 ALLOC_INITZVAL(tmp);

3 ZVALCOPYVALUE(tmp, *p);

4 - ZSETREFCOUNTP(tmp, 0);
5 + zendptrstack_npop(tmp, 0);
6 Z_UNSET_ISREF_P(tmp);

7 }else {
8 tmp = *p;
9 }

Figure 5-8: A Plausible But Incorrect Patch Generated by Prophet for php-310011-
310050. Modify Lines 4-5.
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if((src == NULL) 11 (src->data == NULL) 11 (FBSTRSIZE( src ) == 0) ) {
fb_hStrDelTempNoLock( src

fb_hStrDelTempNoLock( dst );

FBSTRUNLOCKO;

return

}

srclen = FBSTRSIZE( src
dstlen = FBSTRSIZE( dst );

if (((start > 0) && (start <= dstlen))) {
--start;

if ((len < 1) 11 (len > srclen))
len = srclen;

if (start + len > dstlen)
len = (dstlen - start);

memcpy(dst->data + start, src->data, len);
}



1 if (ZISREFPP(p)) {
2 ALLOCINITZVAL(tmp);

3 ZVALCOPYVALUE(tmp, *p);

4 + zvalcopy-ctor(tmp);
5 ZSETREFCOUNTP(tmp, 0);

6 ZUNSETISREFP(tmp);

7 } else {

8 tmp = *p;
9 }

Figure 5-9: Developer Patch for php-310011-310050. Add Line 4.

1 - htmlNodeDumpFormatOutput(buf, docp, node, 0, format);
2 - mem = (xmlChar*) xmlBufferContent(buf);
3 - if (!mem) {
4 - RETVAL_FALSE;

5 + size = htmlNodeDump(buf, docp, node);

6 + if (size >= 0) {
7 + mem = (xmlChar*) xmlBufferContent(buf);

8 + if ('mem) {
9 + RETVALFALSE;

10 + }else {
11 + RETVALSTRINGL((const char*) mem, size, 1);

12 + }
13 }else{

14 - RETVALSTRING(mem, 1);

15 + php errordocref(NULL TSRMLSCC, E_WARNING, "Error dumping HTML node");

16 + RETVALFALSE;

17 }
18 }

Figure 5-10: Developer Patch for php-307563-307571. Modify Lines 1-16.

pointer error but introduces a potential memory leak error which is not tested by the

supplied test suite.

This case shows that if the test suite is too weak, the learned model alone may not

be able to prioritize correct patches ahead of plausible but incorrect patches. For this

error, the learned model does not distinguish different function calls that manipulate

the reference counter of "tmp". The model therefore does not prioritize the correct

patch in Figure 5-9 ahead of the incorrect patch in Figure 5-8.

php-307563-307571: Figure 5-10 presents the developer patch for php-307563-

307571. The code in Figure 5-10 converts an internal php data structure into a

text string with html format. The original code invokes an incorrect function (i.e.,
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htmlNodeDumpFormatOutput() to implement this functionality. The patch rewrites

the code block completely to properly invoke the correct function htmlNodeDump()

instead.

This correct patch is outside the Prophet search space and, despite the fact that

Prophet prioritizes the patch search process using information learned from successful

human patches, is likely to remain beyond the reach of Prophet or similar generate

and validate systems. In our experience, patch search spaces that include patches

generated by transforming three or more statements can easily become intractable

to search. Augmenting the search space to include such patches, in the absence of

other techniques designed to improve the tractability of the search space, can leave

the generate and validate system unable to find the correct patch even if the search

space contains the correct patch.

5.4 Design Decision Evaluation

This section evaluates the effectiveness of the Prophet learning algorithm and the

impact of it on the patch generation results. This section also evaluates several design

decisions in Prophet including the feature extraction, the learning objective, and the

condition synthesis.

5.4.1 Methodology

Different Variants of Prophet: To better understand how the probabilistic model,

the learning algorithm, and the features affect the result, we also run five variants of

Prophet, specifically Random (a naive random search algorithm that prioritizes the

generated patches in a random order), Baseline (a baseline algorithm that prioritizes

patches in the defect localization order, with patches that modify the same statement

prioritized in an arbitrary order), MF (an variant of Prophet with only modification

features; program value features are disabled), PF (a variant of Prophet with only

program value features; modification features are disabled), and HL (a variant of

Prophet that replaces the maximum likelihood learning with the hinge-loss learning
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System Corrected Defects Mean Rank
in Search Space

Prophet 18,15 Top 11.5%
Random 14,7 Top 41.8%
Baseline 15,8 Top 20.7%
MF 18,10 Top 12.2%
PF 18,13 Top 12.3%
HL 17,13 Top 17.0%
SPR 16,11 Top 17.5%

Table 5.5: Comparative Results for Different Systems

as described in Section 4.3.7). All of these variants, Prophet, and SPR differ only in

the patch validation order, i.e., they operate with the same patch search space and

the same set of optimizations for validating candidate patches.

Result Comparison between Prophet and SPR: To better understand the

advantage of the learned model over the heuristic patch ranking rules in SPR, we

compare the per-defect patch generation results of Prophet and SPR.

Condition Synthesis Evaluation: To better understand the advantage of the

condition synthesis technique, for each Prophet run, we record the number of evaluated

partially instantiated templates and the number of plausible templates (which Prophet

attempts to generate concrete conditions). The difference of these two numbers

indicates the number of templates that are pruned away by the Prophet validation

algorithm with the condition synthesis.

5.4.2 Comparison of Different Variant Systems

Table 5.5 presents results from different patch generation systems. The first column

(System) presents the name of each system (Random, Baseline, MF, and PF are

variants of Prophet with different capabilities disabled, see Section 5.4.1). The second

column (Corrected Defects) presents the number of the 69 defects for which the system

finds at least one correct patch. Each entry is of the form X,Y, where X is the number

of defects for which the system finds correct patches (whether this correct patch is
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the first to validate or not) and Y is the number of defects for which the system finds

a correct patch as the first patch to validate.

The third column (Mean Rank in Search Space) presents a percentage number,

which corresponds to the mean rank, normalized to the size of the search space for each

defect, of the first correct patch in the patch prioritization order of each system. This

number is an average over the 19 defects for which the search space of these systems

contains at least one correct patch. We compute the size of the search space as the

sum of 1) the number of partially instantiated patches generated by transformation

schemas with abstract conditions and 2) the number of patches generated by other

transformation schemas (these patches do not include abstract conditions). "Top X%"

in an entry indicates that the corresponding system prioritizes the first correct patch

as one of the top X% of the patches in the search space on average. We run the

random search algorithm with the default random seed to obtain the results in the

figure. The results are generally consistent with the hypothesis that the more highly

a system ranks the first correct patch, the more correct patches it finds and the more

correct patches it finds as the first patch to validate.

The results show that Prophet delivers the highest average rank (11.7%) for the

first correct patch in the search space. The results also highlight how the Prophet

model enables Prophet to successfully prioritize correct patches over plausible but

incorrect patches - the Random and Baseline systems, which operate without a

probabilistic model or heuristics, find a correct patch as the first to validate only

roughly half as often as Prophet.

The results also show that the maximum likelihood learning algorithm in Prophet

outperforms the alternative hinge-loss learning algorithm in Section 4.3.7. One

potential explanation is that the hinge-loss objective function only considers two

patches: the correct patch and the incorrect patch with the highest score. The

maximum likelihood objective function, in contrast, considers all of the patches. The

result is that the hinge-loss-trained model does not prioritize correct patches as highly

in the search space as the maximum likelihood model (also see Section 4.3.7).

141



The results also highlight how program value features are more important than

modification features for distinguishing correct patches from plausible but incorrect

patches. We observed a common scenario that the search space contains multiple

plausible patches that operate on different program variables. In these scenarios, the

learned model with program value features enables PF (and Prophet) to identify the

correct patch among these multiple plausible patches.

5.4.3 Per-Defect Results of Prophet and SPR

Table 5.6 presents the per-defect patch generation results of Prophet for the 19

benchmark defects for which the correct patch is inside the Prophet and SPR search

space. Table 5.7 presents the per-defect patch generation results of SPR for the same

19 benchmark defects.

The first column (Defect) of the table presents the defect id. The second column

(Search Space Templates - All) of the table presents the total number of candidate

patch templates in the search space. The third column (Search Space Templates -

Cond.) presents the number of patch templates that manipulate branch conditions.

The fourth column (Evaluated Templates - All) presents the total number of evaluated

patch templates in 12 hours. The fifth column (Evaluated Templates - Cond.) presents

the total number of evaluated condition patch templates during in 12 hours. The

sixth column (Plausible Templates - All) presents the number of templates for which

generate plausible patches. The seventh column (Plausible Templates - Cond.)presents

the number of condition templates for which generate plausible patches. The eighth

column (Plausible Patches - All) presents the total number of plausible patches the

system finds in 12 hours. The ninth column (Plausible Patches - Cond.) presents the

number of plausible patches which manipulate branch conditions.

The tenth column (Correct Patch Gen.) presents the correct patch generation

status. The number in each entry presents the number of correct patches found in 12

hours for the corresponding defect. "/" in an entry indicates that the corresponding

system successfully finds this correct patch as the first plausible patch. "A" in an

entry indicates that the algorithm finds a plausible but incorrect patch as the first
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Search Space Evaluated Plausible Plausible Correct Correct Correct
Defect Templates Templates Templates Patches Patch Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Gen. In Space In Plausible in Plausible
libtiff-5b0217-3dfb33 221134 65017 64363 31834 247 149 250 152 0 X 50770 - -
libtiff-d13be7-ccadf4 296426 228659 70050 65731 1423 1423 1703 1423 1 1183 1 1
gmp-13420-13421 50672 8763 50672 8763 3 0 3 0 2 14102 1 1
gzip-ald3d4-fl7cbd 48702 15104 48702 15104 14 0 14 0 1 1929 1 1
fbc-5458-5459 9857 4495 9857 4495 37 37 61 46 2 33 1 1
libtiff-ee2ce5-b5691a 171379 106867 137262 103332 328 328 328 328 1 280 1 1
php-310991-310999 89230 18988 21250 11637 1 1 1 1 1 907 1 1
php-308734-308761 14692 4160 14692 4160 4 4 4 4 2 . 5376 1 1
php-308262-308315 90431 10845 8496 7508 3 3 5 5 1 1365 1 1
php-307562-307561 31597 6997 14698 6997 1 0 1 0 1 2672 1 1
php-309579-309580 60351 11416 23605 11416 2 2 2 2 1 767 1 1
php-310011-310050 77671 16558 4857 4556 63 13 69 23 1 A 1348 13 21
php-309688-309716 71633 15744 3310 3241 68 68 92 92 1 A 3465 61 83
php-309516-309535 27098 6314 27098 6314 1 0 1 0 1 10954 1 1
php-307846-307853 22131 4757 16871 4709 1 0 1 0 1 10742 1 1
php-311346-311348 9799 3879 9799 3879 50 38 72 60 2 27 1 1
php-307914-307915 47988 15066 35684 15066 1 0 1 0 1 1 1 1
php-309111-309159 52908 12232 36533 11928 10 1 10 1 1 A 7701 9 9
php-309892-309910 40758 9999 13614 7118 21 17 26 22 4 , 462 1 1

Table 5.6: Prophet Per-defect Patch Generation Results



Search Space Evaluated Plausible Plausible Correct Correct Correct
Defect Templates Templates Templates Patches Patch Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Gen. In Space In Plausible in Plausible
libtiff-5b0217-3dfb33 221134 65017 107534 65017 237 149 240 152 1 A 56644 208 211
1ibtiff-d13be7-ccadf4 296426 228659 230917 214697 1723 1723 2003 1723 1 A 372 3 3
grnp-13420-13421 50672 8763 50672 8763 3 0 3 0 2 V 14645 1 1
gzip-ald3d4-f17cbd 48702 15104 48702 15104 14 0 14 0 1 A 21926 4 4
fbc-5458-5459 9857 4495 9791 4495 37 37 61 46 2 A 454 8 11
libtiff-ee2ce5-b5691a 171379 106867 14068 13454 15 15 15 15 1 V 13296 1 1
php-310991-310999 89230 18988 31084 16653 2 2 2 2 2 v 384 1 1
php-308734-308761 14692 4160 14692 4160 4 4 4 4 2 v 5771 1 1
php-308262-308315 90431 10845 9137 8516 0 0 0 0 0 X 7191 - -
php-307562-307561 31597 6997 13425 6997 1 0 1 0 1 v 4918 1 1
php-309579-309580 60351 11416 25400 11416 2 2 2 2 1 46 1 1
php-310011-310050 77671 16558 8160 7316 32 32 49 49 OX 30647 - -
php-309688-309716 71633 15744 10699 6516 31 30 32 31 OX 8398 -
php-309516-309535 27098 6314 27098 6314 1 0 1 0 1 4000 1 1
php-307846-307853 22131 4757 21654 4757 1 0 1 0 1 3867 1 1
php-311346-311348 9799 3879 9799 3879 50 38 72 60 2 e 312 1 1
php-307914-307915 47988 15066 43285 15066 1 0 1 0 1 v 5748 1 1
php-309111-309159 52908 12232 29459 12232 10 1 10 1 1 A 24347 10 10
php-309892-309910 40758 9999 17455 9999 17 17 22 22 3 / 179 1 1

Table 5.7: SPR Per-defect Patch Generation Results



validated patch although it eventually finds a correct patch. "X" indicates that the

algorithm fails to find any correct patch in 12 hours. The eleventh column (Correct

Template Rank - In Space) presents the rank of the template that generates the first

correct patch in the search space. The twelfth column (Correct Template Rank - In

Plausible) presents the rank of the template among plausible templates. The last

column (Correct Patch Rank in Plausible) presents the rank of the correct patch

among all generated plausible patches.

The results show that for 5 out of the 19 defects (php-307562-307561, php-307846-

307853, php-309516-309535, php-310991-310999, and php-307914-307915), all validated

patches are correct. The results indicate that for these five defects, the supplied test

suite is strong enough to identify correct patches within the Prophet search space.

Therefore any patch generation order is sufficient as long as it allows the system to

find a correct patch within 12 hours. In fact, all variants of Prophet find correct

patches for these 5 defects.

For 10 of the remaining 14 defects, Prophet finds a correct patch as the first to

validate. SPR, in contrast, finds a correct patch as the first to validate for 6 of these

14 defects. SPR empirically prioritizes candidate patches that change existing branch

conditions above all other candidate patches in the search space (see Section 4.2.4).

This rule conveniently allows SPR to find a correct patch as the first to validate for

php-309579-309580, php-309892-309910, and php-311346-311348. See Section 5.3.3

for case studies of the four benchmark defects where Prophet outperforms SPR.

5.4.4 Condition Synthesis

The results in the fifth and seventh columns in Table 5.6 highlight the effectiveness of

the validation algorithm with the condition synthesis. Among those evaluated partial

instantiated templates with abstract conditions, only a significantly small portion is

plausible. Up to 99% of the templates are discarded before Prophet even attempts to

generate a concrete condition to repair the program. We observe a similar phenomenon

in SPR (see Table 5.7), this is because Prophet and SPR differs only on the patch

validation order.
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We note that, for all defects except php-310991-310999, the condition generation

algorithm is able to find an exact match for the recorded abstract condition values.

For php-310991-310999, the correct generated condition matches all except one of the

recorded abstract condition values. We attribute the discrepancy to the ability of the

program to generate a correct result for both branch directions [102].

5.5 Search Space Extensions and Evaluation

This section presents a systematic quantitative analysis on the Prophet and SPR

search space.

5.5.1 Methodology

Search Space Comparison: To explain why GenProg and AE generates correct

patches for significantly less benchmark defects, we first compare the Prophet and

SPR search space with the search space of GenProg and AE. We manually analyze

the correct patch of each benchmark defect inside the Prophet and SPR search space

and identify the modification operation that generates the patch. We also analyze

whether the patch is inside the GenProg and AE search space or not.

Search Space Extension Implementation: We identify possible extensions to

the Prophet and SPR search space to include correct patches for more defects. We

implement three different extensions to our search space. With these extensions, we

obtain in total 16 different search space configurations for Prophet and SPR. The

extended Prophet and SPR search space contains correct patches for 24 benchmark

defects (up from 19 defects).

Patch Generation: We run Prophet and SPR with each of the search space

configuration for the 24 benchmark defects inside the extended search space. For each

defect, we analyze the generated plausible patches for the defect to determine whether

the patch is correct or incorrect.
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Defect Modification Type
php-307562-307561 Replacet
php-307846-307853 Add Initt
php-307914-307915 Replacet
php-308262-308315 Add Guardt
php-308734-308761 Guarded Controlt
php-309111-309159 Copy
php-309516-309535 Add Initt
php-309579-309580 Change Conditiont

php-309688-309716 Change Conditiont
php-309892-309910 Delete
php-310011-310050 Copy and Replacet
php-310991-310999 Change Conditiont
php-311346-311348 Redirect Brancht
libtiff-ee2ce5-b5691a Add Controlt
libtiff-dl3be-ccadf Change Conditiont
gmp-13420-13421 Replacet

gzip-ald3d4-fl7cbd Copy and Replacet
fbc-5458-5459 Change Conditiont

libtiff-5b021-3dfb3 Replacet

Table 5.8: Modification Type of Prophet Correct Patches

5.5.2 Search Space Analysis

The Prophet search space contains correct patches for 19 defects. Table 5.8 classifies

the modification type of the correct patches for these 19 defects. Note that for some

defects, there are multiple correct patches. For such defects, here we consider the first

validated correct patches. The first column (Defect) presents the defect id.

The second column (Modification Type) presents the modification type of the

correct patch for each defect. "Add Control" indicates that the patch inserts a control

statement with no condition. "Guarded Control" indicates that the patch inserts a

guarded control statement with a meaningful condition. "Replace" indicates that

the patch modifies an existing statement using value replacement to replace an atom

inside it. "Copy and Replace" indicates that the patch copies a statement from

somewhere else in the application using value replacement to replace an atom in

the statement. "Add Init" indicates that the patch inserts a memory initialization

statement. "Delete" indicates that the patch simply removes statements (this is a
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special case of the Conditional Guard modification in which the guard condition

is set to false). "Redirect Branch" indicates that the patch removes one branch

of an if statement and redirects all executions to the other branch (by setting the

condition of the if statement to true or false). "Change Condition" indicates that the

patch changes a branch condition in a non-trivial way (unlike "Delete" and "Redirect

Branch"). "Add Guard" indicates that the patch conditionally executes an existing

statement by adding an if statement to enclose the existing statement. A "t" in the

second column indicates. that all Prophet patches for this defect is outside the search

space of GenProg and AE (for 17 out of the 19 defects, the Prophet correct patch is

outside the GenProg and AE search space).

For php-307846-307853, php-308734-308761, php-309516-309535, and libtiff-

ee2ce5b7-b5691a5a, the correct patches insert control statements or initialization

statements that do not appear elsewhere in the source file. For php-307562-307561,

php-307914-307915, gmp-13420-13421, gzip-ald3d4-f17cbd, php-310011-310050, and

libtiff-5b021-3dfb3 the Prophet patches change expressions inside the copied or re-

placed statements. For php-309579-309580, php-310991-310999, php-311346-311348,

php-308262-308315, php-309688-309716, libtiff-dl3be-ccadf, and fbc-5458-5459 the

Prophet generated patches change the branch condition in a way which is not equiva-

lent to deleting the whole statement. These patches are therefore outside the search

space of GenProg and AE, which only copy and remove statements.

Our results show that the Prophet and SPR search space is much more effective

than the GenProg and AE search space. Because the correct patches for these defects

are outside the search space of GenProg and AE, these two systems will never be able

to generate these patches no matter how long one runs the two systems.

5.5.3 Defects Outside Prophet Search Space

The Prophet search space contains correct patches for 19 defects. It is possible

to extend the Prophet search space to cover more defects. Extending Prophet to

consider more suspicious locations from the defect localization results would bring

correct patches for one additional defect into the search space (lighttpd-2661-2662).
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Extending the Prophet condition space to include comparison operations (<, <, >, >)

would bring correct patches for an additional two defects into the search space

(lighttpd-1913-1914 and python-70056-70059). Extending the repair space to include

patches that apply two transformation schemas (instead of only one as in the current

Prophet implementation) would bring correct patches for another two defects into the

space (php-308525-308529 and gzip-3feOca-39a362). Extending the Copy and Replace

schema instantiation space to include more sophisticated replacement expressions would

bring correct patches for five more defects into the search space (php-311164-311141,

libtiff-806c4c9-366216b, gmp-14166-14167, python-69934-69935, and fbc-5556-5557).

Combining all four of these extensions would bring an additional six more defects

into the search space (php-307687-307688, php-308523-308525, php-309453-309456,

php-310108-310109, lighttpd-1948-1949, and gzip-3eb609-884ef6). Correct patches for

the remaining 34 defects require changes to or insertions of at least three statements.

All of these extensions come with potential costs. The most obvious cost is the

difficulty of searching a larger repair space. A more subtle cost is that increasing the

search space may increase the number of plausible but incorrect patches and make it

harder to find the correct repair. We will investigate several search space extensions

in the remaining of this section.

5.5.4 Search Space Extensions

A rich search space is critical for the success of patch generation systems, but extending

a search space comes with potential costs. The most obvious cost is the difficulty of

searching a larger repair space. A more subtle cost is that increasing the search space

may increase the number of plausible but incorrect repairs and make it harder to find

the correct repair. We next investigate straightforward extensions to the Prophet and

SPR search space.

We implement three extensions to the SPR and Prophet search spaces: consid-

ering more candidate program statements to patch, synthesizing more sophisticated

conditions, and evaluating more complicated value replacement transformations.
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Defect Localization
Rank RExt CExt

lighttpd-2661-2662 1926 No No
lighttpd-1913-1914 280 No Yes
python-70056-70059 214 No Yes
python-69934-69935 136 Yes No
gmp-14166-14167 226 Yes No

Table 5.9: Search Space Extensions

More Program Statements to Patch: The baseline SPR and Prophet configu-

rations consider the first 200 program statements identified by the error localizer. We

modify SPR and Prophet to consider the first 100, 200, 300, and 2000 statements.

Condition Synthesis Extension (CExt): We extend the baseline SPR and Prophet

condition synthesis algorithm to include the "<" and ">" operators and to also consider

comparisons between two check expressions (e.g., E < K, El == E2 , and El > E2 , where

E, E1 , and E2 are check expressions and K is a check constant). In the rest of this

chapter, we use "CExt" to denote this search space extension.

Value Replacement Extension (RExt): We extend the baseline SPR and

Prophet replacement transformations to also replace a variable or a constant in the

target statement with an expression that is composed of either 1) a unary operator

and an atomic value (i.e., a variable or a constant) which appears in the basic block

containing the statement or 2) a binary operator and two such atomic values. The

operators that SPR and Prophet consider are "+", -", "*", "=", "!=", and "&". In

the rest of this chapter, we use "RExt" to denote this search space extension.

With all three search space extensions, the generated SPR and Prophet search

spaces contain correct patches for five more defects (i.e., 24 defects in total) than

the baseline search space. Table 5.9 summarizes these five defects. The first column

(Defect) contains entries of the form X-Y-Z, where X is the name of the application

that contains the defect, Y is the defective revision in the application repository, and

Z is the reference fixed revision in the repository. The second column (Localization

Rank) presents the error localization rank of the modified program statement in the

correct patch for the defect. The third column (RExt) presents whether the correct
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patches for the defect require the RExt extension (value replacement extension) The

fourth column (CExt) presents whether the correct patches for the defect require the

CExt extension (condition synthesis extension).

Remaining Defects: The extended Prophet search space contains correct

patches for 24 defects. It is possible to bring correct patches for 10 more defects

(php-311164-311141, php-308525-308529, libtiff-806c4c9-366216b, fbc-5556-5557, php-

307687-307688, php-308523-308525, php-309453-309456, php-310108-310109, lighttpd-

1948-1949, and gzip-3eb609-884ef6) with three additional extensions: 1) Applying two

transformation schemas instead of only one in Prophet and SPR, 2) Further extending

Copy and Replacement schema to include more operators, 3) Further extending the

condition synthesis to include more operators. Correct patches for the remaining 35

defects require changes to or insertions of at least three statements.

Search Space Configurations: We obtained in total 16 different search space

configurations derived from all possible combinations of 1) working with the first 100,

200, 300, or 2000 program statements identified by the error localizer, 2) whether

to enable value replacement extension (RExt), and 3) whether to enable condition

synthesis extension (CExt).

5.5.5 Results of Search Space Extentions

We next present the experimental result summary on the 16 different search space

configurations. php is an outlier with a test suite that contains an order of magnitude

more test cases than the other applications. We therefore separate the php results

from the results from other benchmarks. We present the result summary for all of the

24 defects for which any of the search spaces contains a correct patch. See Appendix A

for the detailed results of each defect in all different search space configurations.

Table 5.10 presents a summary of the results for all of the benchmarks except php.

Table 5.11 presents a summary of the results for the php benchmark. Each row presents

patch generation results for SPR or Prophet with one search space configuration. The

first column (System) presents the evaluated system (SPR or Prophet). The second

column (Loc. Limit) presents the number of considered candidate program statements
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System Loc. Space Correct Plausible Timeout Space Correct Plausible Correct
Limit Extension In Space First & Blocked Size Rank in 12h in 12h

SPR 100 No 4 1 7(3) 3(0) 20068.5 4614.0 8(2747) 4(5)

SPR 100 CExt 4 1 7(3) 3(0) 20068.5 4614.0 8(11438) 3(4)

SPR 100 RExt 4 1 7(3) 3(0) 21999.8 6004.8 8(2742) 4(5)

SPR 100 RExt+CExt 4 1 7(3) 3(0) 21999.8 6004.8 8(11192) 3(4)

SPR 200 No 6 2 7(4) 2(0) 46377.6 17889.5 9(2558) 6(8)

SPR 200 CExt 6 2 7(4) 2(0) 46377.6 17889.5 9(10823) 4(6)

SPR 200 RExt 7 2 7(4) 2(1) 52864.3 24759.9 9(3753) 6(8)

SPR 200 RExt+CExt 7 2 7(4) 2(1) 52864.3 24759.9 9(10855) 4(6)

SPR 300 No 6 1 8(5) 2(0) 73559.6 22960.0 9(2818) 6(8)

SPR 300 CExt 8 1 8(6) 2(1) 73559.6 30761.8 9(10237) 4(6)

SPR 300 RExt 8 1 8(6) 2(1) 82187.2 32951.4 9(2069) 7(8)

SPR 300 RExt+CExt 10 1 8(7) 2(2) 82187.2 37427.4 9(10455) 5(6)

SPR 2000 No 7 2 7(5) 2(0) 523753.8 157038.4 9(751) 5(6)

SPR 2000 CExt 9 2 7(6) 2(1) 523753.8 156495.1 9(6123) 4(5)

SPR 2000 RExt 9 2 7(6) 2(1) 574325.1 200996.7 9(657) 5(6)

SPR 2000 RExt+CExt 11 2 7(7) 2(2) 574325.1 192034.0 9(5831) 4(5)

Prophet 100 No 4 4 4(0) 3(0) 20068.5 589.2 8(2481) 4(5)

Prophet 100 CExt 4 3 5(1) 3(0) 20068.5 589.2 8(11901) 3(4)

Prophet 100 RExt 4 4 4(0) 3(0) 21999.8 520.5 8(2183) 4(5)

Prophet 100 RExt+CExt 4 3 5(1) 3(0) 21999.8 520.5 8(11595) 3(4)

Prophet 200 No 6 5 4(1) 2(0) 46377.6 11382.8 9(2579) 5(7)

Prophet 200 CExt 6 4 5(2) 2(0) 46377.6 11382.8 9(10969) 4(6)

Prophet 200 RExt 7 5 4(1) 2(1) 52864.3 19581.0 9(1939) 5(6)

Prophet 200 RExt+CExt 7 4 5(2) 2(1) 52864.3 19581.0 9(10928) 4(5)

Prophet 300 No 6 4 5(2) 2(0) 73559.6 11997.2 9(2555) 5(7)

Prophet 300 CExt 8 3 6(4) 2(1) 73559.6 14466.8 9(10948) 4(6)

Prophet 300 RExt 8 4 5(3) 2(1) 82187.2 25769.1 9(1548) 5(6)

Prophet 300 RExt+CExt 10 3 6(5) 2(2) 82187.2 25455.1 9(10886) 4(5)

Prophet 2000 No 7 4 5(3) 2(0) 523753.8 188588.4 9(1229) 5(7)

Prophet 2000 CExt 9 3 6(5) 2(1) 523753.8 156555.8 9(8208) 4(6)

Prophet 2000 RExt 9 3 6(5) 2(1) 574325.1 170715.4 9(1216) 5(6)

Prophet 2000 RExt+CExt 11 2 7(7) 2(2) 574325.1 148288.4 9(7919) 4(5)

Table 5.10: Patch Generation Results with Search Space Extensions (excluding php)



S Loc. Space Correct Plausible T Space Correct Plausible Correctystem Limit Extension In Space First & Blocked Timeout Size Rank in 12h in 12h
SPR 100 No 12 8 3(3) 2(1) 13446.5 4157.8 11(237) 9(14)
SPR 100 CExt 12 8 4(4) 1(0) 13446.5 4157.8 12(415) 10(12)
SPR 100 RExt 12 8 4(4) 1(0) 14026.7 4360.8 12(288) 11(15)
SPR 100 RExt+CExt 12 8 4(4) 1(0) 14026.7 4360.8 12(421) 10(12)
SPR 200 No 13 9 3(3) 1(1) 26512.0 7369.8 12(197) 10(15)
SPR 200 CExt 13 9 3(3) 1(1) 26512.0 7369.8 12(330) 10(13)
SPR 200 RExt 13 9 3(3) 1(1) 28158.2 7984.5 12(200) 10(15)
SPR 200 RExt+CExt 13 9 3(3) 1(1) 28158.2 7984.5 12(323) 10(13)
SPR 300 No 13 8 4(4) 1(1) 41859.8 10915.2 12(176) 9(14)
SPR 300 CExt 13 8 4(4) 1(1) 41859.8 10915.2 12(305) 9(12)
SPR 300 RExt 13 8 4(4) 1(1) 44631.1 12440.9 12(179) 9(14)
SPR 300 RExt+CExt 13 8 4(4) 1(1) 44631.1 12440.9 12(313) 9(12)
SPR 2000 No 13 5 2(2) 6(6) 327905.6 81570.5 7(58) 5(6)
SPR 2000 CExt 13 5 2(2) 6(6) 327905.6 81570.5 7(126) 5(6)
SPR 2000 RExt 13 5 3(3) 5(5) 356104.8 83997.9 8(59) 5(6)
SPR 2000 RExt+CExt 13 5 2(2) 6(6) 356104.8 83997.9 7(127) 5(6)
Prophet 100 No 12 8 3(3) 2(1) 13446.5 2599.4 11(279) 11(15)
Prophet 100 CExt 12 6 6(6) 1(0) 13446.5 2599.4 12(466) 11(11)
Prophet 100 RExt 12 9 3(3) 1(0) 14026.7 3433.8 12(327) 11(15)

Prophet 100 RExt+CExt 12 6 6(6) 1(0) 14026.7 3433.8 12(458) 11(11)
Prophet 200 No 13 10 3(3) 0(0) 26512.0 3522.1 13(285) 13(18)
Prophet 200 CExt 13 7 6(6) 0(0) 26512.0 .3522.1 13(447) 12(13)
Prophet 200 RExt 13 10 3(3) 0(0) 28158.2 4504.4 13(299) 12(17)

Prophet 200 RExt+CExt 13 7 6(6) 0(0) 28158.2 4504.4 13(434) 12(13)
Prophet 300 No 13 10 3(3). 0(0) 41859.8 4319.6 13(280) 13(18)
Prophet 300 CExt 13 7 6(6) 0(0) 41859.8 4319.6 13(425) 12(13)
Prophet 300 RExt 13 10 3(3) 0(0) 44631.1 5403.1 13(283) 12(17)
Prophet 300 RExt+CExt 13 7 6(6) 0(0) -44631.1 5403.1 13(422) 12(13)
Prophet 2000 No 13 7 2(2) 4(4) 327905.6 21118.6 9(117) 7(10)
Prophet 2000 CExt 13 4 4(4) 5(5) 327905.6 21118.6 8(153) 6(6)
Prophet 2000 RExt 13 6 2(2) 5(5) 356104.8 25168.5 8(104) 6(9)
Prophet 2000 RExt+CExt 13 4 4(4) 5(5) 356104.8 25168.5 8(183) 6(6)

Table 5.11: Patch Generation Results with Search Space Extensions (php only)



to patch under the configuration. The third column (Space Extension) presents the

transformation extensions that are enabled in the configuration: No (no extensions,

baseline search space), CExt (condition synthesis extension), RExt (value replacement

extension), or RExt+CExt (both).

The fourth column (Correct In Space) presents the number of defects with correct

patches that lie inside the full search space for the corresponding configuration. The

fifth column (Correct First) presents the number of defects for which the system finds

the correct patch as the first patch that validates against the test suite.

Each entry of the sixth column (Plausible & Blocked) is of the form X(Y). Here X

is the number of defects for which the system discovers a plausible but incorrect patch

as the first patch that validates. Y is the number of defects for which a plausible but

incorrect patch blocked a subsequent correct patch (i.e., Y is the number of defects

for which 1) the system discovers a plausible but incorrect patch as the first patch

that validates and 2) the full search space contains a correct patch for that defect).

Each entry of the seventh column (Timeout) is also of the form X(Y). Here X

is the number of defects for which the system does not discover any plausible patch

within the 12 hour timeout. Y is the number of defects for which 1) the system does

not discover a plausible patch and 2) the full search space contains a correct patch for

that defect.

The eighth column (Space Size) presents the average number of candidate patch

templates in the search space over all of the 24 considered defects. Note that SPR and

Prophet may instantiate multiple concrete patches with the staged program repair

technique from a patch template that contains an abstract expression (See Section 4.2).

This column shows how the size of the search space grows as a function of the

number of candidate statements to patch and the two extensions. Note that the CExt

transformation extension does not increase the number of patch templates. Instead it

increases the number of concrete patches which each patch template generates. The

ninth column (Correct Rank) presents the average rank of the first patch template

that generates a correct patch in the search space over all of those defects for which at
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least one correct patch is inside the search space. Note that the correct rank increases

as the size of the search space increases.

Each entry of the tenth column (Plausible in 12h) is of the form X(Y). Here X is

the number of defects for which the system discovers a plausible patch within the 12

hour timeout. Y is the sum, over the all of the 24 considered defects, of the number

of plausible patches that the system discovers within the 12 hour timeout.

Each entry of the eleventh column (Correct in 12h) is of the form X(Y). Here X

is the number of defects for which the system discovers a correct patch (blocked or

not) within the 12 hour timeout. Y is the number of correct patches that the system

discovers within the 12 hour timeout.

5.5.6 Plausible and Correct Patch Density

An examination of the tenth column (Plausible in 12h) in Tables 5.10 and 5.11

highlights the overall plausible patch densities in the search spaces. For the benchmarks

without php, the explored search spaces typically contain hundreds up to a thousand

plausible patches per defect. For php, in contrast, the explored search spaces typically

contain tens of plausible patches per defect. We attribute this significant difference in

the plausible patch density to the quality of the php test suite and its resulting ability

to successfully filter out otherwise plausible but incorrect patches. Indeed, for three

php defects, the php test suite is strong enough to filter out all of the patches in the

explored search spaces except the correct patch.

An examination of the eleventh column (Correct in 12h) in Tables 5.10 and 5.11

highlights the overall correct patch densities in the explored search spaces. In sharp

contrast to the plausible patch densities, the explored search spaces contain, on average,

less than two correct patches per defect for all of the benchmarks including php. There

are five defects with as many as two correct patches in any search space and one defect

with as many as four correct patches in any search space. The remaining defects

contain either zero or one correct patch across all of the search spaces.
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5.5.7 Search Space Tradeoffs

An examination of the fourth column (Correct In Space) in Table 5.10 shows that the

number of correct patches in the full search space increases as the size of the search

space increases (across all benchmarks except php). But an examination of the fifth

column (Correct First) indicates that that this increase does not translate into an

increase in the ability of SPR or Prophet to actually find these correct patches as the

first patch to validate. In fact, the ability of SPR and Prophet to isolate a correct

patch as the first patch to validate reaches a maximum at 200 candidate statements

with no extensions, then (in general) decreases from there as the size of the search

space increases. For php, Table 5.11 shows that the number of correct patches in the

space does not significantly increase with the size of the search space, but that the

drop in the number of correct patches found as the first patch to validate is even more

significant. Indeed, the 200+No Prophet configuration finds 10 correct patches as the

first patch to validate, while the largest 2000+RExt+CExt configuration finds only

four!

We attribute these facts to an inherent tradeoff in the search spaces. Expanding

the search spaces to include more correct patches also includes more implausible and

plausible but incorrect patches. The implausible patches consume validation time

(extending the time required to find the correct patches), while the plausible but

incorrect patches block the correct patches. This trend is visible in the Y entries in

the sixth column in Table 5.10 (Plausible & Blocked) (these entries count the number

of blocked correct patches), which generally increase as the size of the search space

increases.

Tables 5.10 and 5.11 show how this tradeoff makes the baseline SPR and Prophet

configurations perform best despite working with search spaces that contain fewer

correct patches. Increasing the candidate statements beyond 200 never increases the

number of correct patches that are first to validate. Applying the CExt and RExt

extensions also never increases the number of correct patches that are first to validate.
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Our results highlight two challenges that SPR and Prophet (and other generate

and validate systems) face when generating correct patches:

" Weak Test Suites: The test suite provides incomplete coverage. The most

obvious problem of the weak test suite is that it may accept incorrect patches.

Our results show that (especially for larger search spaces) plausible but incorrect

patches often block correct patches. For example, when we run Prophet with the

baseline search space (200+No), there are only 4 defects whose correct patches are

blocked; when we run Prophet with the largest search space (2000+RExt+CExt),

there are 11 defects whose correct patches are blocked.

A more subtle problem is that weak test suites may increase the validation cost

of plausible but incorrect patches. For such a patch, SPR or Prophet has to run

the patched application on all test cases in the test suite. If a stronger test suite

is used, SPR and Prophet may invalidate the patch with one test case and skip

the remaining test cases.

" Search Space Explosion: A large search space contains many candidate

patch templates and our results show that it may be intractable to validate all of

the candidates. For example, with the baseline search space (200+No), Prophet

times out for only two defects (whose correct patches are outside the search

space); with the largest evaluated search space (2000+RExt+CExt), Prophet

times out for seven defects (whose correct patches are inside the search space).

Note that many previous systems [49, 55, 82, 104] neglect the weak test suite

problem and do not evaluate whether the generated patches are correct or not. In

contrast, our results show that the weak test suite problem is at least as important as the

search space explosion problem. In fact, for all evaluated search space configurations,

there are more defects for which SPR or Prophet generates plausible but incorrect

patches than for which SPR or Prophet times out.
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Search Space SPR Prophet R) Ro

100+No 52 / 3 38 / 4 65.0 / 1.4 65.0 / 1.4
100+CExt 65 / 2 53 / 3 73.0 / 1.0 73.0 / 1.0
100+RExt 52 / 3 38 / 4 65.1 / 1.4 65.1 / 1.4
100+RExt+CExt 65 / 2 53 / 3 73.0 / 1.0 73.0 / 1.0
200+No 59 / 4 45 / 5 73.5 / 2.7 76.5 / 2.1
200+CExt 66 / 3 54 / 4 78.1 / 1.7 78.1 / 1.7
200+RExt 59 / 4 45 / 5 76.2 / 2.1 75.9 / 2.1
200+RExt+CExt 66 / 3 54 / 4 77.8 / 1.7 77.8 / 1.7
300+No 60 / 5 50 / 5 80.2 / 2.0 78.2 / 2.1
300+CExt 75 / 2 63 / 3 83.9 / 1.3 83.2 / 1..4
300+RExt 62 / 4 50 / 5 81.4 / 1.4 79.9 / 2.1
300+RExt+CExt 75 / 2 63 / 3 85.2 / 1.1 84.4 / 1.2
2000+No 56 / 4 50 / 5 78.9 / 1.3 77.8 / 2.3
2000+CExt 72 2 63 3 86.6 0.7 83.2 1.4
2000+RExt 60 / 3 51 / 5 74.7 / 1.7 78.5 / 2.1
2000+RExt+CExt 72 2 64 3 82.6 1.1 84.4 1.3

Table 5.12: Costs and Payoffs of Reviewing the First 10 Generated Patches (excluding
php)

Search Space SPR Prophet Random Random

100+No 38 /9 37 /9 45.8 /8.1 44.7 /8.4
100+CExt 48 / 9 56 / 9 66.7 / 6.8 66.8 / 6.8
100+RExt 39 / 10 39 / 10 50.9 / 8.8 51.4 / 8.9
100+RExt+CExt 46 / 9 57 / 9 66.9 / 6.8 66.7 / 6.8
200+No 39 / 10 39 / 11 47.7 / 9.1 49.3 / 10.4
200+CExt 39 / 10 57 / 11 59.7 / 7.6 68.1 / 7.9
200+RExt 39 / 10 40 / 11 47.8 / 9.1 51.7 / 10.1
200+RExt+CExt 39 / 10 58 / 11 59.6 / 7.6 68.0 / 7.9
300+No 32 /9 39 /11 43.8 /8.1 50.2 /10.4
300+CExt 32 / 9 57 / 11 59.3 / 6.4 72.8 / 7.9
300+RExt 34 / 9 40 / 11 45.8 / 8.1 51.5 / 10.2
300+RExt+CExt 34 / 9 58 / 11 61.3 / 6.4 69.5 / 8.0
2000+No 7 / 5 25 / 7 16.7 / 4.4 37.4 / 6.3
2000+CExt 7 / 5 34 / 5 29.8 / 2.9 46.4 / 4.0
2000+RExt 9 / 5 17 / 6 18.7 / 4.4 29.3 / 5.3
2000+RExt+CExt 7 / 5 27 / 5 29.8 / 2.9 47.4 / 3.2

Table 5.13: Costs and Payoffs of Reviewing the First 10 Generated Patches (php only)
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5.5.8 Prophet and SPR Effectiveness

We compare the effectiveness of the SPR and Prophet patch prioritization orders on

different search space configurations by measuring the costs and payoffs for a human

developer who reviews the generated patches to find a correct patch. We consider a

scenario in which the developer reviews the first 10 generated patches one by one for

each defect until he finds a correct patch. He gives up if none of the first 10 patches

are correct. For each system and each search space configuration, we compute (over

the 24 defects that have correct patches in the full SPR and Prophet search space) 1)

the total number of patches the developer reviews (this number is the cost) and 2) the

total number of defects for which the developer obtains a correct patch (this number is

the payoff). We also compute the expected costs and payoffs if the developer examines

the generated plausible SPR and Prophet patches in a random order. The raw data

used to compute these numbers is available at Appendix A.

Tables 5.12 and 5.13 present these costs and payoffs. The first column presents

the search space configuration. The second and third columns present the costs and

payoffs for the SPR and Prophet patch prioritization orders; the fourth and fifth

columns present the corresponding costs and payoffs for the random orders. Each entry

is of the form X/Y, where X is the total number of patches that the developer reviews

and Y is the total number of defects for which he obtains a correct patch. These

numbers highlight the effectiveness of the SPR and Prophet patch prioritization in

identifying correct patches within much larger sets of plausible but incorrect patches.

5.6 Discussion

Prophet automatically learns from past successful human patches to obtain a probabilis-

tic, application-independent model of correct code. It uses this model to automatically

generate correct patches for defects in real world applications. The experimental

results show that, in comparison with previous patch generation systems, the learned

information significantly improves the ability of Prophet to generate correct patches.
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5.6.1 Prophet Hypothesis

The patch generation results are consistent with a key hypothesis of Prophet, i.e.,

that even across applications, correct code shares properties that can be learned

and exploited to generate correct patches for incorrect applications. The results

show that by learning properties of correct code from successful patches for different

applications, Prophet significantly outperforms all previous patch generation systems

on a systematically collected benchmark set of defects in large real-world applications.

We note that the applications in the training set share many characteristics with

the benchmark applications on which we evaluate Prophet. Specifically, all of these

applications are open source Linux applications, written in C, that can be invoked

from the command line. It therefore remains an open question whether this hypothesis

generalizes across broader classes of programs.

5.6.2 Important Features

The Prophet features capture interactions between the code in the patch and the

surrounding code that the patch modifies. The learning algorithm of Prophet then

identifies a subset of such interactions that characterize correct patches.

We inspected the feature weights of the learned model. Features with large positive

weights capture positively correlated interactions. Examples of such interactions

include 1) the patch checks a value that is used as a parameter in a nearby procedure

call, 2) the patch checks a pointer that nearby code dereferences, and 3) the patch

checks a value that was recently changed by nearby code. These features are positively

correlated because the root cause of many defects is a failure to check for a condition

involving values that the surrounding code manipulates. Successful patches often insert

checks involving these values. Another example of a positively correlated interaction

is an inserted function call that replaces one of the parameters with a pointer that

nearby code manipulates. Such patches often correct defects in which the programmer

forgot to perform an operation on the object that the pointer references.
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Features with large negative weights capture negatively correlated interactions.

Examples of such interactions include: 1) the patch changes the value of a variable

whose value is also changed by nearby code in the same block, 2) the patch checks

a global variable, and 3) the patch inserts a call to a function that nearby code in

the same block also calls. These features are negatively correlated because they often

correspond to redundant, irrelevant, or less organized program logic that rarely occurs

in successful patches.

While none of these features is, by itself, able to definitively distinguish correct

patches among candidate patches, together they deliver a model that makes Prophet

significantly better at finding correct patches than the heuristic rules in SPR.

5.6.3 Search Space Tradeoff

The results in Section 5.5.7 show that straightforwardly enlarging the search space

beyond the SPR and Prophet baseline increases the number of defects that have a

correct patch in the search space. But it does not increase the ability of SPR and

Prophet to find correct patches for more defects - in fact, these increases often cause

SPR and Prophet to find correct patches for fewer defects!

We attribute this phenomenon to the following tradeoff. Straightforwardly enlarging

the search space also increases the number of candidate patches and may increase the

number of plausible patches. The increased number of candidate patches consumes

patch evaluation time and reduces the density of the correct patches in the search

space. The increased number of plausible but incorrect patches increases the chance

that such patches will block the correct patch (i.e., that the system will encounter

plausible but incorrect patches as the first patches to validate).

This highlights the importance of better search space design for the further

improvement of patch generation systems. Although the Prophet search space is

much more effective than the GenProg and AE on our benchmark applications, it

still relies on a set of manually designed transformation schemas. The next chapter

will present techniques that automatically infer code transforms and search spaces

from human patches to more efficiently navigate the tradeoff space of the search space
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design. Our evaluation results in Chapter 7 show that the inferred code transforms

navigate the search space tradeoff more efficiently and therefore generate more correct

patches than manually crafted rules.
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Chapter 6

Learning Universal Patching

Strategies with Genesis

All previous generate and validate systems including Prophet work with a set of

manually crafted transforms [53, 55, 58, 59, 82, 93, 103, 104. This approach limits the

system to fixing only those defects that fall within the scope of the transforms that the

developers of the patch generation system can conceive. The results in Section 5.5 show

that there is an inherent trade-off between the search space coverage and tractability.

Straightforwardly enlarging those manually crafted transforms often does not improve

the patch generation results - it may even cause the patch generation system to

produce fewer correct patches.

This limitation is especially unfortunate given the widespread availability (in open-

source software repositories) of patches developed by many different human developers.

Together, these patches embody a rich variety of different patching strategies developed

by a wide range of human developers, and not just the patch generation strategies

encoded in a set of manually crafted transforms from the developers of the patch

generation system.

This chapter presents a new patch generation system for Java programs, Geneiss,

that processes sets of human patches to automatically infer code transforms and search

spaces for automatic patch generation. To the best of my knowledge, Genesis is the
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first system to automatically infer patch generation transforms or candidate patch

search spaces from successful patches.

Transforms: Each Genesis transform has two template abstract syntax trees (ASTs).

One template AST matches code in the original program. The other template AST

specifies the replacement code for the generated patch. Template ASTs contain

template variables, which match subtrees or subforests in the original or patched code.

Template variables enable the transforms to abstract away patch- or application-

specific details to capture common patch patterns implemented by multiple patches

drawn from different applications.

Generators: Many useful patches do not simply rearrange existing code and logic;

they also introduce new code and logic. Genesis transforms therefore implement partial

pattern matching in which the template AST for the patch contains free template

variables that are not matched in the original code. Each of the free template variables

is associated with a generator, which systematically generates new candidate code

components for the free variable. This new technique, which enables Genesis to

synthesize new code and logic in the candidate patches, is essential to enabling Genesis

to generate correct patches.

Transform Generalization: The novel definition of transforms and generators in

Genesis does not only provide an expressive way to capture common patching strategies

used by human developers. It also enables a powerful generalization algorithm to

automatically obtain transforms from a set of human patches. The generalization

algorithm summarizes the common AST structures and the developer modifications

of the supplied human patches. The algorithm produces a generalized transform 1)

that covers all of the human patches it derives and 2) that is as restrictive as possible

to limit the number of candidate patches the transform would generate.

Search Space Inference with ILP: A key challenge in patch search space design

is navigating an inherent trade-off between coverage and tractability (see Section 5.5).

On one hand, the search space needs to be large enough to contain correct patches for

the target class of errors (coverage). On the other hand, the search space needs to be
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small enough so that the patch generation system can efficiently explore the space to

find the correct patches (tractability).

Genesis navigates this tradeoff by formulating an integer linear program (ILP)

whose solution maximizes the number of training patches covered by the inferred

search space while acceptably bounding the number of candidate patches that the

search space can generate (Section 6.2.5).

The ILP operates over a collection of subsets of patches drawn from a set of

training patches. Each subset generalizes to a Genesis transform, with the final search

space generated by the set of transforms that the solution to the ILP selects. Genesis

uses a sampling algorithm to tractably derive the collection of subsets of patches for

the ILP. This sampling algorithm incrementally builds up larger subsets of patches

from smaller subsets, using a fitness function to identify promising candidate subsets

(Section 6.2.4). Together, the sampling algorithm and final ILP formulation of the

search space selection problem enable Genesis to scalably infer a set of transforms

with both good coverage and good tractability.

Learning Patch Prioritization: Genesis implements a modified version of the

learning algorithm in Prophet to obtain a probabilistic model to recognize correct

patches. Genesis then uses the learned model to prioritize potentially correct patches

in the inferred search space (Section 6.3.1). By combining both the new search space

inference technique and the Prophet learning technique, Genesis leverages information

in past successful human patches in two harmonic dimensions. The inference technique

enables Genesis to operate on a productive search space automatically derived from

patch generation strategies and patterns of human developers, while the learning

technique enables Genesis to explore the inferred search space efficiently via prioritizing

potentially correct patches in the space.
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6.1 Motivating Example

We next present, via an example, an overview of the Genesis transform inference

algorithm. Genesis works with a training set of successful human patches to infer a

set of patch generation transforms. In our example, the training set consists of 963

human patches collected from 356 github repositories.

Patch Sampling and Generalization: The Genesis inference algorithm works

with sampled subsets of patches from the training set. For each subset, it applies a

generalization algorithm to infer a transform that it can apply to generate candidate

patches (Section 6.2.3). Figure 6-1 presents one of the sampled subsets of patches in

our example: the first patch disjoins the clause mapperTypeElement==null to an if

condition, the second patch conjoins the clause subject ! =null to a return value, and

the third patch conjoins the clause Material.getMaterials (getTypeIdo) !=null

to an if condition. These patches are from three different applications, specifically

mapstruct [19] 6d7a4d, modelmapper [21] d85131, and Bukkit [2] f13115. Genesis

generalizes these patches to infer the transform P1 in Figure 6-1. When applied,

P1 can generate all of the sampled three patches as well as other patches for other

applications.

Template Anatomy: Each transform has a template. In our example, the template

is Vo => ((V3)op 2 (null))op1 (Vo) (Figure 6-1 presents this template in graphical form).

The transform has an initial template AST 70 , which matches a boolean expression

Vo in the unpatched program. V must occur within a function body (if all of the

training patches had modified if conditions, 70 would have reflected that more specific

context).

The transform also has a replacement template AST T1 , which replaces the matched

boolean expression V with a patch of the form ((V3)op 2 (null))op1 (Vo). Here V3, oP2,

and op, are unmatched template variables. Each such variable is associated with a

generator, which enumerates candidate code components for the variable.

Generator Constraints: Generator constraints control the components that the

generator will enumerate. The generator constraints for oP2 and opi (op 2 C {==, !
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if (MapperPrism.getlnstanceof(

mapperTypeElement) =null){.}I

if (mapperTypeElement = null 11

MapperPnsm.getlnstanceof) ]mapperTypeElement) = null){.}

return type.isAssignableFrom(subject.getClass);

return subject !=null &&
type.isAssignableFrom(subject.getClass);

if (Material.getMaterial(getTypeldo).getData() != null)

if (Material.getMaterial(getTypeldo) != null &&
Material.getMaterial(getTypeldo).getDatao != null) {...}

Transform P Generators: ( pE } -.- - - - - - -

TO OP2 - 0P2 (E - --- -- --

transform to OP null i E Expr nodes(V 1) C CallUVar

VEExr Dvars(Vi)| < 1 Icalls(Vi)l < 2 n-ion
oP vars( i) C M calls(Vi) 

if (unions.isEmpty0) { if (useDefault) return defaultValue; ... } if (unions == null 11 unions.isEmptyo) {
if (useDefault) return defaultValue; ... }

Figure 6-1: Example Inference and Application of a Genesis Transform. The training patches (original and patched code) are at
the top, the inferred transform is in the middle, and the new patch that Genesis generates is at the bottom.

# of candidate patches derived by applying
each transform to each validation case

P 1 P2 3 4

VP3 24 80 40 > 105

Constraint: the # of derived
candidate patches for each covered

case is less than 50000.

Maximize: the # of covered
validation cases

Integer Linear
Programming

Solver

The integer linear
program selects
Pi, P2, and P3.

Figure 6-2: Example of Using Integer Linear Programming to Select an Effective Set of Transforms.

A'

VP1 44 264 40 > 10*
VP2 308 2534 40 > 105

;a



and opi E {&&, I }) simply specify sets of operators to enumerate. The generator

constraints for V3 control the AST subtrees that the generator will enumerate for V3.

V3 E Expr states that V3 must be an expression. nodes(V3 ) C Call U Var states that

V3 can contain only method calls or variable references. IV31 < 2 states that V3 can

contain at most 2 AST nodes.

vars(3) C M states that any variables that appear in V3 must also appear in the

matched template AST Vo (here M denotes the set of nodes in the original matched

code). Ivars(V3 )l < 1 states that at most 1 variable can appear in V3. calls( 3) C M

and |calls( 3 )| < 2 similarly constrain the method calls that may appear in V3.

As these generator constraints illustrate, the Genesis patch generalization algorithm

infers the least general Genesis transform that generates all of the sampled training

patches. This strategy is critical for obtaining precisely targeted transforms that

produce a tractable number of patches in the patch search space.

Candidate Transforms: Genesis repeatedly samples training patches to obtain the

candidate transforms (from which Genesis will select the selected transforms that it

uses for patch generation). In our example the candidate transforms include the

previous transform P1 as well as a transform (P2 ) that adds a conditional (ternary)

operator to guard the computation of an expression from NP defects, a transform

(P3) that adds an if-guarded return or continue statement to skip the computation

that triggers NP defects, and a transform P4 that replaces an arbitrary expression

with a new expression. The new expression may contain binary operators, conditional

operators, and up to six variables and six method calls from the enclosing function.

Not all of these transforms are equally useful. P4, for example, is an overly general

transform that can generate an intractably large patch search space that Genesis

cannot search effectively. P1, P2, and P3, on the other hand, are more targeted -

because they were inferred from conceptually similar training patches, each generates a

much smaller search space that nevertheless contains correct patches. And P1, P2, and

P3 effectively complement each other - their generated search spaces have relatively

few patches in common.
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Search Space Inference: To obtain an effective set of transforms, Genesis must

discard overly general transforms such as P4 and include complementary and effectively

targeted transforms such as P1, P2, and P3. Genesis drives the transform selection

with a set of validation patches chosen from the training patches. Genesis starts by

computing the number of validation patches that each candidate transform generates

and the size of the search space that each candidate transform generates when applied

to the pre-patch code for each validation patch.

The inatrix in Figure 6-2 presents these numbers for the four candidate transforms

P1, P2, P3, and P4 and three validation patches VP1, VP2, and VP3 (in our example

the validation patches are drawn from joda-time [17] revision bcb044, dynjs [15]

revision 68df61, and orientdb [22] revision 51706f). Each number in the matrix is

the number of candidate patches that a transform generates when applied to the pre-

patch code of a validation patch. A bold green number indicates that a transform

can generate the validation patch when applied to the pre-patch code of the patch.

These numbers highlight the coverage vs. tractability tradeoff that the candidate

patches present. With tractable search spaces, P1, P2, and P3 all generate a single

validation patch. P4, in contrast, generates two validation patches but at the cost of

an intractably large search space.

Working with the information from the matrix, Genesis formulates an integer linear

program (ILP) that maximizes the number of validation patches that the selected

transforms can generate subject to the constraint that the total number of generated

candidate patches from all selected transforms for each covered validation case is less

than 5 x 104 . In our example the ILP selects P1, P2, and P3 as the selected transforms

and excludes P4.

Patch Generation: For the NP defect from DataflowJavaSDK [4] revision c06125

(shown at the bottom of Figure 6-1), Genesis first uses a defect localization technique

(Section 6.3.3) to produce a ranked list of potential statements to modify. The resulting

ranked list includes the if condition shown at the bottom left of Figure 6-1. Genesis

then applies all selected transforms, including 'P1, to the if condition to generate

candidate patches.
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Figure 6-1 shows how Genesis applies P1 to the if condition. Here the patch

instantiates V3 as the variable unions, oP2 as == and Op3 as I I to disjoin the clause

unions == null to the original if condition. The patch causes the enclosing function

innerGetOnly() to return a predefined default value when unions is null (instead of

incorrectly throwing a null pointer exception). This patch validates (produces correct

outputs for all inputs in the DataflowJavaSDK JUnit [18] test suite), is correct, and

matches the subsequent human developer patch for this defect.

6.2 Inference Algorithm

We next present the Genesis inference algorithm. Given a set of training pairs D, each

of which corresponds to a program before a change and a program after a change,

Genesis infers a set of transforms P that, working together, generate the search space

of patches.

6.2.1 Preliminaries

Genesis works with abstract syntax trees (ASTs) of programs. We model the pro-

gramming language that Genesis works with as a context free grammar (CFG) with

abstract syntax trees (AST) as the parse trees for the CFG.

Definition 1 (CFG). A context free grammar (CFG) G is a tuple (N, E, R, s) where

N is the set of non-terminals, E is the set of terminals, R is a set of production rules

of the form a - b1b 2b3 ... bk where a E N and bi E N U E, and s E N is the starting

non-terminal of the grammar. The language of G is the set of strings derivable from

the start non-terminal: L(G) = {w E E* I s ** w}.

Definition 2 (AST). An abstract syntax tree (AST) T is a tuple (G, X, r, , -) where

G = (N, E, R, s) is a CFG, X is a finite set of nodes in the tree, r E X is the root

node of the tree, : X -4 X* maps each node to the list of its children nodes, and

- : X -+ (N U E) attaches a non-terminal or terminal label to each node in the tree.
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Definition 3 (AST Traversal and Valid AST). Given an AST T = (G, X, r, , 0-)

where G = (N, E, R, s), str(T) denotes the terminal string obtained via traversing T.

T is a valid AST of G iff str(T) E L(G).

We next define AST forests and AST slices, which we will use to present the

Genesis inference algorithm. An AST forest is similar to an AST except it contains

multiple trees and a list of root nodes. An AST slice is a special forest inside a large

AST which corresponds to a list of adjacent siblings.

Definition 4 (AST Forest). An AST forest T is a tuple (G, X, L, , -) where G is a

CFG, X is the set of nodes in the forest, L = (xI, x 2 ,.-- -, Xk) is the list of root nodes

of trees in the forest, maps each node to the list of its children nodes, and o- maps

each node in X to a non-terminal or terminal label.

Definition 5 (AST Slice). An AST slice S is a pair (T, L). T = (G, X, r, , a-) is an

AST; L = (r) is a list that contains only the root node or L = (x,,... ,x) is a list

of AST sibling nodes in T such that 3x' E X : (x') = (xe,... , x,..., Xc..., Xk)

(i.e., L is a sublist of (x')).

Given two ASTs T and T', where T is the AST before the change and T' is

the AST after the change, Genesis computes AST difference between T and T' to

produce an AST slice pair (S, S') such that S and S' point to the sub-forests in

T and T' that subsume the change. For brevity, in this section we assume D =

{(S1, Si), (S2 , S2), .. . , (Sm, S' )} is a set of AST slice pairs, i.e., Genesis has already

converted AST pairs of changes to AST slices.

Notation and Utility Functions: For a map M, dom(M) denotes the domain of

M. M[a -+ b] denotes the new map which maps a to b and maps other elements in

dom(M) to the same values as M. 0 denotes an empty set or an empty map.

nodes( , L) denotes the set of nodes in a forest, where maps each node to a list of

its children and L is the list of the root nodes of the trees in the forest.

inside(S) denotes the set of non-terminals of the ancestor nodes of an AST slice S.

nonterm(L, X, , o-, N) denotes the set of non-terminals inside a forest, where L is the

root nodes in the forest, X is a finite set of nodes, maps each node to a list of
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children nodes, - attaches each node to a terminal or non-terminal label, and N is

the set of non-terminals.

diff (A, B) denotes the number of different terminals in leaf nodes between two ASTs,

AST slices, or AST forests. If A and B differ in not just terminals in leaf nodes,

diff (A, B) = oc. A = B denotes that A and B are equivalent, i.e., diff (A, B) = 0.

6.2.2 Template AST Forest, Generator, Transforms

Template AST Forest: We next introduce the template AST forest, which can

represent a set of concrete AST forests or slices. The key difference between template

and concrete AST forests is that template AST forests contain template variables,

each of which can match against any appropriate AST subtree or AST sub-forest.

Definition 6 (Template AST Forest). A template AST forest T is a tuple

(G, V,yX, L, ,o-), where G = (N, E, R,s) is a CFG, V is a finite set of template

variables, y: V -+ {0, 1} x Powerset(N) is a map that assigns each template variable

to a bit of zero or one and a set of non-terminals, X is a finite set of nodes in the

subtree, L = (x1, x 2 , - - -, Xk ), xi E X is the list of root nodes of the trees in the forest,

: X -+ X* maps each node to the list of its children nodes, and - : X -+ N U E U V

attaches a non-terminal, a terminal, or a template variable to each node.

For each template variable v E V, (v) = (b, W) determines the kind of AST

subtrees or sub-forests which the variable can match against. If b = 0, v can match

against only AST subtrees not sub-forests. If b = 1, then v can match against

both subtrees and sub-forests. Additionally, v can match against an AST subtree or

sub-forest only if its roots have non-terminals in W.

Intuitively, each non-terminal in the CFG of a programming language typically

corresponds to one kind of syntactic unit in programs at a certain granularity. Template

AST forests with template variables enable Genesis to achieve a desirable abstraction

over concrete AST trees during the inference. They also enable Genesis to abstract

away program-specific syntactic details so that Genesis can infer useful transforms

from changes across different applications.
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Definition 7 (The = and kmsice Operators for Template AST Forests). Figure 6-3

presents the formal definition of the operator |-- for a template AST forest T =

(G, V, y, X, L, , a). T - (T, M) denotes that T matches the concrete AST forest T

with the template variable bindings specified in M, where M is a map that assigns

each template variable in V to an AST forest.

Figure 6-3 also presents the formal definition of the operator =Sice. Similarly,

T tsice (S, M) denotes that T matches the concrete AST slice S with the variable

bindings specified in M.

The first rule in Figure 6-3 corresponds to the simple case of a single terminal

node. The second and the third rules correspond to the cases of a single non-terminal

node or a list of nodes, respectively. The two rules recursively match the children

nodes and each individual node in the list.

The fourth and the fifth rules correspond to the case of a single template variable

node in the template AST forest. The fourth rule matches the template variable

against a forest, while the fifth rule matches the variable against a tree. These two

rules check that the corresponding forest or tree of the variable in the binding map M

is equivalent to the forest or tree that the rules are matching against.

Generators: Generators enumerate new code components:

Definition 8 (Generator). A generator g is a tuple (G, b, 3, W), where G =

(N, E, R, s) is a CFG, b C {0, 1} indicates the behavior of the generator, 3 is an

integer bound for the number of tree nodes, and W C N is the set of allowed non-

terminals during generation.

Generators exhibit two kinds of behaviors. If b = 0, the generator generates a

sub-forest with less than 3 nodes that contains only non-terminals inside the set W.

If b = 1, the generator copies an existing sub-forest from the original AST tree with

non-terminal labels in W and then replaces up to 3 leaf nodes in the copied sub-forest.

Definition 9 (Generation Operator ==>). Figure 6-4 presents the formal definition

of the operator -> for a generator g. Given 9 and an AST slice S = (T, L) as the

context, (!, S) =-o- T' denotes that the generator ! generates the AST forest T'.
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G = (N, E, R, s)
T = (G, V,-y,X, L, (,o) L = (x, X2, . .. , Xk)

T = (G, X', L', ', o,') L' = (X'/ 7'27 .. I -x'/)

k = k'== 1 0- (xT1) = (X')

T = (T, M)

k = k'= 1 o(xi) = a'(x') E N (G, V, y, X, (x1), (, a) b ((G, X', '(x'), M', a'), M)

T (T, M)

k = k'> 1 Vi c {1, 2,. .. , k} ((G, V, -y, X, {xi}I, , o) - ((G, X', {x'_, ', o-'), M))

T (T, M)

k = 1 a(xi) = v E V M(v) = T -y(v) (1, W) (U=ia'(x')) G (W U E)

T -(T, M)

k =k'=1 a(x1) = v c V M(v) = T y(v) = (0, W) u'(x') E (W U E)

T (T, M)

T F ((G, X', L', a', ' M)
T -=slice (((G, X', r', a'), L'), M)

Figure 6-3: Definitions of = and ,,ce

G=(N,E,R,s) S=(T,L)
T = (G, X1 r, r, a) T' = (G, X', L', (', a')

< 6 nonterm(L', X', ', o', N) C W

((G, 0, J, W), S) -=> T'

-X' E X (L" is a sublist of (x'))
diff((G, X, L", , a), T') j Vx" c L' (a'(x") c W)

((G, 1, J, W), S) -=> T'

Figure 6-4: Definition of the =- for the Generator g = (G, b, 6, W)
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The first rule in Figure 6-4 handles the case where b = 0. The rule checks that the

number of nodes in the result forest is within the bound 6 and the set of non-terminals

in the forest is a subset of W. The second rule handles the case where b = 1. The

rule checks that the difference result forest and an existing forest in the original AST

is within the bound and the root labels are in W.

Transforms: Finally, we introduce transforms, which generate the search space

inferred by Genesis. Given an AST slice, a transform generates new AST trees.

Definition 10 (Transform). A transform P is a tuple (A, ,T 1, B). A C N is a

set of non-terminals that denote the context where this transform can apply; To =

(G,Voyo, Xo, Lo, o,ro) is the template AST forest before applying the transform;

T = (GV,1, X1, L1,i1, -1) is the forest after applying the transform; B maps each

template variable v that appears only in T, to a generator (i.e., Vv E V \ Vo, B(v) is

a generator).

Definition 11 (==- and --->.ce Operators). Figure 6-5 presents the formal definition

of the ==> and ---- >siice operators for a transform P. (P, S) == T' denotes that

applying P to the AST slice S generates the new AST T'. (P, S) ->i'ce S' denotes

that applying P to the AST slice S generates the AST of the slice S'.

Intuitively, in Figure 6-5 A and To determine the context where the transform

P can apply. P can apply to an AST slice S only if the ancestors of S have all

non-terminal labels in A and To can match against S with a variable binding map M.

T, and B then determine the transformed AST tree. 'T specifies the new arrangement

of various components and B specifies the generators to generate AST sub-forests to

replace free template variables in Ti. Note that (S, T') > T denotes that the obtained

AST tree of replacing the AST slice S with the AST forest T' is equivalent to T.

6.2.3 Transform Generalization

The generalization operation for transforms takes a set of AST slice pairs D as input

and produces a set of transforms, each of which can at least generate the corresponding

changes of the pairs in D.
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S = ((G, X, r, , a-), L)
A C inside(S) To I (S, M) B = {v -+ g1, V 2 4 92 , ... Vm, gm}

V11 I ((gi, S) -- >' Ti") M' = {f VI - Ti", V2 - T2', . . . Vk -+ T""
71 & (T', M U M') (S, T') > T str(T) EE (G)

((A, To, 1, B), S) => T

1 < i < <k
S= ((G,X,r, ,-),L) L= (xi,.. .,) (x') = (x1,x2,.--,Xk)

T' = (G, X', L', ', o') L' = (x"l, x'',A x ,)
X nX' 0 L"1 = (i, . . ., xi-1, I', IX'21, ... I'b // ,-- k

(S, T') > (G, X U X', r, (( U ')[x' -4 L"], o- U 0-')

S' = (T', LV) (P, S) -==> T'

(M, S) ===slce S'

Figure 6-5: Definition of ==> and =slice for the Transform P

Definition 12 (Generator Generalization). Figure 6-6 presents the definition of

the generalization function V)(D). Given a set of of AST slice pairs D =

{A, S'), (S2, S2),..,(Sm,S')}} from the same CFG grammar G, where Si is the

generation context AST slice and S4 is the generated result AST slice, V/(D) =

{g 1 , 2 ,... gk} denotes the set of the generators generalized from D.

In Figure 6-6, A is the formula for a generator that generates from scratch (i.e.,

b = 0) and B is the formula for a generator that generates via copying from the

existing AST tree (i.e., b = 1). The formula A produces the generator by computing

the bound of the number of nodes and the set of non-terminals in the supplied slices.

The formula B produces the generator by computing 1) the bound of the minimum

diff distance between each supplied slice and an arbitrary existing forest in the AST

tree and 2) the set of non-terminals of the root node labels of the supplied slices.

Definition 13 (Transform Generalization). Figure 6-7 presents the definition of T(D).

Given a set of pairs of AST slices D = {(S 1 , S'j),(S2 , S2),... ,(Sm, S')}} where Si is

the AST slice before a change and S is the AST slice after a change, q1(D) is the set

of transforms generalized from D.
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G =(N, E, R, s) D =((SI, SI), (2 G,---,( m ')
Vi E {1, 2,. ,m}:
Si = (T, Lj) T= (G, Xj, ri, j, aj)
Sj= (T, L') Ti (G, X,r,,o )

(D)= {A,B} Vic{1,...,m},VjE 11,...,k },j'( ) EN
{ {A} otherwise

where:
A (G, 0, maxTi1 nodes( ', L') , Um1 nonterm(Si))

B =(G, 1, maxZ= i, UtiI U {r'(x'29})
Ci = mini, diff((Ti, L'), Sj), 3x" E Xj, L' is a sublist of (X1")

Figure 6-6: Definition of the Generator Inference Operator V)

'(((S1, S'), (S2, S21), - - -, (Sm S' )) =M
{(nglinside(Si), To, T1,B) I

(M, M) = T'((S, S2,. SM), 0),

(71, M') = '((S'i, S, S'), M),
B = {vi 4 9i I

vi E dom(M') \ dom(M),
M '(vi) = (bj, Wi, ( Si S 21 -.. - i - m)),
Pi = {(S1, S'1), (S2, S4'2), -.. , (Sm, Sm)},

Fi f tPh

Figure 6-7: Definition of the Generalization Function XF
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=(Si, S2, ... , Sm) G = (N, E, R, s) x' is a fresh node v' is a fresh template variable
Ti = (G, Xi, ri, i, ai) ci = oi (xi,1)

I'( , M) = Conditions for k and c Other Conditions

(G, 0, 0, (), 0, 0),1 M) Vi E I, ... , ki = 0
((G, 0, 0, { x'}, (x'), dcEE Vi E {, ... , m}

{x' /- 0}1, {x' d}), M) k =1 ci=d
(G, V, 7, X' U { x'}, ( X'), deN ViE {1,...,m} S' = 1(1,1)), (T2, 2(X2,1)), (Tm, mXm,1)))

-[x' + L'], u'[x' -4 d]), M') kj=1 ci =d V'(S', M) = (T, M') T = (G, V, -, X', L, ', ,')
((G, {v}, {v - (0, W)}, i, i'E {1,...,m} M(v) =(

3i7 f 1 ... E n {1, . . ., (S" S )

{ x'/ 0}, {f X, +V}), M) : i iEfI,..IMIA S)

((G, {v'}, {v' - (0, W)}, Vi E {1,... ,m} ki =1 Vv E dom(M)
{x'}, (x'), 2i',i" E{1,...,m} M(v) = (0, W', (SI, S ... , S' )) ]ie{1,2,...,m}(Siz#S )
{x' - 0}, {x' a v'}), M') (c, $ ci/) W= Nn (4U 1{os(xi,1)}) M' =M[v' 4 (0, W, S)]

((G, U _1/V, U I1j, ViE {1,. .. , m} 0

u _Xj, (ri, r2, ...,rk), kI=k S' = ((T1, (X1,j)), (T2, (X2,j)), ...,(TM, (Xm,j)))
U. =_I__I U__=_1_),I Mk) ' >(S', M_) =((G, Vy, 7j, Xj, (r), j, o-j),I M)

((G,f{v},{v (1,W)}, 3i" {E , ... , } (V) = 1, , I(Si, S'))

{ { 1 , . , m }4 ( v ) k V i E 1 , 2 , ...M } (A. ( S )

((G {'} {' s (1 W }'Ai', i 1 . .. , m} M (v) =- (1, W', (SI, S , . . ., S' )) 3i E f{1, 2, . .. , m} (Si St')

{ X+ 0W), {k' - }k, W =N n (U t 1 U1 i 1{O (X,,)})
____'-+ _ __},_{__ ____}),_ _)__' =M [v'_ " (1, W, S)]

Figure 6-8: Definition of '

00

Vi E {1, 2, . .. , m} I: Si =- (Ti, Li) Li = (Xi,1, Xi,2, . . . ,ia )



The formula for T in Figure 6-7 invokes ' twice to compute the template AST

forest before the change 70 and the template AST forest after the change 71. It

then computes B by invoking O to obtain the generalized generators for AST sub-

slices that match against each free template variable in 71. Figure 6-8 presents the

definition of '. Intuitively, ' is the generalization function for template AST forests.

'I(S, M) = (T, M') takes a list of AST slices S and an initial variable binding map M

and produces a generalized template AST forest T and an updated binding map M'.

The first two rows in Figure 6-8 correspond to the formulas for the cases of empty

slices and slices with a single terminal, respectively. The two formulas simply create an

empty template AST forest or a template AST forest with a single non-terminal node.

The third row corresponds to the formula for the case of a single non-terminal. The

formula recursively invokes ' on the list of children nodes of each slice and creates a

new node with the non-terminal label in the result template AST forest as the root

node.

The fourth and fifth rows correspond to the formulas for the cases where each slice

is a single tree and the root nodes of the slice trees do not match. The fourth formula

handles the case where there is an existing template variable in M that can match

the slice trees. The formula creates a template AST forest with the matching variable.

The fifth formula handles the case where there is no existing template variable in M

that can match the slice trees. The formula creates a template AST forest with a new

variable and updates the variable binding map to include the variable.

The sixth row corresponds to the formula for the case where each slice is a forest

with the same number of trees. The formula recursively invokes I' on each individual

tree and combines the obtained template AST forests.

The seventh row corresponds to the formula for the case in which each slice is a

forest, the forests do not match, and there is an existing template variable in M to

match these forests. The formula therefore creates a template AST forest with the

matching variable.

The eighth row corresponds to the formula for the case where the forests do not

match and there is no template variable in M to match these forests. The formula
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creates a template AST forest with a new template variable and updates the variable

binding map accordingly.

6.2.4 Sampling Algorithm

Given a training database D, we could obtain an exponential number of transforms

with the generalization function T described in Section 6.2.3, i.e., we can invoke XI

on any subset of D to obtain a different set of transforms. Not all of the generalized

transforms are useful. The goal of the sampling algorithm is to use the generalization

function to systematically obtain a set of productive candidate transforms for the

inference algorithm to consider.

Figure 6-9 presents the pseudo-code of our sampling algorithm. As a standard

approach in other learning and inference algorithms to avoid overfitting, Genesis splits

the training database into a training set D and a validation set E. Genesis invokes

the generalization functions only on pairs in the training set D to obtain candidate

transforms. Genesis uses the validation set E to evaluate generalized transforms. W

in Figure 6-9 is a work set that contains the candidate subset of D that the sampling

algorithm is considering to use to obtain generalized transforms. The algorithm runs

five iterations. At each iteration, the algorithm first computes a fitness score for each

candidate subset, keeps the top a candidate subsets, (we empirically set a to 1000

in our experiments) and eliminates the rest from W (lines 3-7). The algorithm then

attempts to update W by augmenting each subset in W with one additional pair in D

(see lines 8-10). fitness(W, S, D, E) denotes the fitness score of the subset based on

the coverage and tractability of transforms generalized from S.

6.2.5 Search Space Inference Algorithm

ILP Formulation: Given a set of candidate transforms P', the goal is to select

a subset P from P' that successfully navigates the patch search space coverage vs.

tractability tradeoff.
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Input : a training set of pairs of AST slices D and a set of pairs of AST slices E
Output: a set of transforms P'

1 W <- {{(S, S'), (S", S"')} (S, S') E D, (S", S"') c D, (S, S') $ (S", S"')}
2 for i = 1 to 5 do
3 f <- {S- 4 fitness(W, S, D, E) 1 Se W}
4 W' +- {S I SCW,f(S) >0}
5 Sort elements in W' based on f
6 Select top a elements in W' with largest f value as a new set W"
7 W +- W"

8 if i # 5 then
9 for S in W" do

10 for (S, S') in D do
11 L Lw-Wu{su(ss')}

12 k' UswWT(S)
13 return P'

Figure 6-9: Sampling Algorithm sample(D, E)

P' = {P1, P2, .. ., Pk} E = {(S1, Si),..., (Sn, S')}
Cjj= I{str(T) I (Pj, S ) =-> T}

G - I (P, Si) =>S1ice S
0 otherwise

Variables: xi, yj Maximize:r7 - x1 -I + E O+1 xn Satisfy:

VZ E f{1, . .. ,n} :i _ -k ((-# 1 C?"jy_ > 0
Vi E {1, ... ,}: (E) _1 Giyy - xZi 0
Vi E f, ... ,n xi E{0,1}
Vi E , .. ., k}: y E{0, 1}

Result Transform Set: P = {Pi I y= 1}

Figure 6-10: Integer Linear Programming Formulas for Selecting Transforms Given a
Set of Candidate Transforms P' and a Validation Set of AST Slice Pairs E

Figure 6-10 presents our formulation of the transform selection problem as an

integer linear program (ILP). E is the set of training and validation patch pairs. In

Figure 6-10, the first no pairs are training patches (i.e. (S 1 , S') ... (SnO, S' 0 )), the

remaining pairs are validation patches. Cjj corresponds to the size of the search

space derived from the j-th transform when applied to the i-th AST slice pair in

E. Gjj indicates whether the space derived from the j-th transform contains the

corresponding change for the i-th AST slice pair.

The variable xi indicates whether the result search space covers the i-th AST slice

pair. The variable y indicates whether the ILP solution selects the i-th transform.
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The ILP optimization goal is to maximize the weighted sum of x, where r/ = 0.1 is a

parameter that controls the weight of covering training patches. The intuition is to

prioritize the coverage of validation patches because the validation patches are hidden

during the generalization step.

The first group of constraints is for tractability. The i-th constraint specifies that

the derived final search space size (i.e. E Cjyj), when applied to the i-th AST pair

in E, should be less than 3 if the space covers the i-th AST pair (i.e. xi = 1) or less

than ( if the space does not cover the i-th AST pair (i.e. xi = 0). We empirically set

4 = 5 x 104 and ( = 108. The second group of constraints is for coverage. The i-th

constraint specifies that if the final search space covers the i-th AST slice pair in E

(i.e. xi = 1), then at least one of the selected transforms should cover the i-th pair.

Inference Algorithm: Starting from a training set of AST slice pairs D, Genesis

first removes 25% of the AST slice pairs from D to form the validation set E. It then

runs the sampling algorithm to produce a set of candidate transforms P'. It finally

solves the above ILP with Gurobi [46], an off-the-shelf solver, to obtain the set of

transforms P that generates the Genesis patch search space.

6.3 Implementation

We have implemented the Genesis inference algorithm for Java programs. We use

the spoon library [77] to parse Java programs to obtain Java ASTs. We next discuss

several extensions of the above inference algorithm for handling Java programs.

6.3.1 Integration with Patch Characteristic Learning

Genesis implements a modified version of the Prophet learning algorithm from Sec-

tion 4.3 to prioritize potentially correct patches during the search space exploration.

The learning algorithm in Genesis takes an inferred search space and a set of training

human patches as the input. The algorithm produces the model parameter 0 for the

parameterized probabilistic model in Section 4.3. In Genesis, the inference algorithm

and the learning algorithm share the same set of training human patches. For each
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Commutative Is an operand or a result value of
Operators + * == != or integer bit operations
Binary Is a left operand, a right operand, or a result value of
Operators -, /, <, >, <=, >=, . (field access),

<<, >>, or . (function call)
Unary Is an operand or a result value of
Operators -, ++ (increment), -- (decrement)
Enclosing Occurs in an assign/loop/return/if statement
Statements Is a function call parameter

Is the callee of a call statement
Is the callee of a call statement with no argument

Value Is 0, 1, boolean true, boolean false,
Traits an integer constant, a null constant,

or a constant string literal

Table 6.1: Atomic Characteristics of Program Values for Java in Genesis

training patch pair for which the inferred search space can generate the reference

correct patch, the learned model attempts to prioritize the correct patch against all

other candidate patches.

The main difference between the learning algorithm in Genesis and the learning

algorithm in Prophet is the set of extracted atomic characteristics. Table 6.1 presents

the extracted atomic characteristics in Genesis. The extracted characteristics in Genesis

include Java specific features to track function calls that do not have arguments. This

is because such functions tend to be getter functions that behave differently than other

functions. Genesis uses the same algorithm (see Section 4.3.4) to combine pairs of

atomic characteristics into final features. In the current version, Genesis tracks in total

5280 features. Genesis has more features because the inferred search spaces in our

experiments can have up to 85 different transforms (see Section 7.2), while Prophet

only has five modification kinds. Each Genesis transform will introduce additional

modification features in the learning algorithm.

Another difference is that in Genesis we set the geometric prior /3 = 0.2 in the

model (in Prophet 3 = 0.05, see Section 4.3.1). This is because the defect localization

algorithm in Genesis relies on the stack trace information, which produces more

accurate results than the localization algorithm in Prophet.
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6.3.2 Integration with Condition Synthesis

Input : a test case t, the original program p, and a program location f that
corresponds to an expression (condition).

Input : a list of side-effect-free expressions {e1, ... , e,,} which correspond to a group
of n candidate patches. The i-th patch replaces the expression at f with ej.

Output: a list of indexes of patches that pass t.
1T +-0

2 P 0
3 F 0
4 for i E {1, ... ,n} do
5 f <- 0

6 for jEFdo
7 T <-- T(j)
8 if equivalent(T, ei, ej) then
9 f I

10 break

11 iff=0 then

12 (f , T) <-- runt est (t, A, f, ei)
13 if f = I then
14 F- F U {i}
15 LT -T[i - T]

16 else
17 LP -P u {i}

18 return P

Figure 6-11: The Condition Synthesis Algorithm in Genesis

Genesis also implements the condition synthesis technique in Prophet (see Sec-

tion 4.2.3). Figure 6-11 presents the condition synthesis algorithm in Genesis. Note

that runtest(t, p, f, ej) at line 12 denotes a utility function that runs the test case t on

the candidate patch that replaces the original expression at f in p with the new expres-

sion ej. It returns a pair that contains the test result and the test execution trace. The

test result is either 1 (i.e., failing) or 0 (i.e., passing). The test execution trace records

the values of all available variables at the program location f. equivalent(T, ej, ej) is a

utility function that check whether ej and ej are equivalent if they are evaluated with

the values recorded in the given trace T.

To better integrate with the automatically inferred code transforms, the Genesis

implementation does not explicitly explore different branch combinations. Instead,
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Genesis groups candidate patches that manipulate the same expression (condition)

together. Then for each failed validation run, Genesis instruments the run to record

all available program values in the patched expression (condition). When a new

candidate patch that manipulates the same expression arrives, Genesis first evaluates

the patched expression (condition) in the new patch with the recorded program values

in the failed run to check whether this new patch will evaluate to the same value, as

shown in lines 6-10 in Figure 6-11. If so, Genesis prunes away this new patch without

further validation because this patch will produce same results as the failed run.

One advantage of this alternative implementation is that it generalizes to all side-

effect-free expression changes. Condition synthesis for branch condition expressions

are just a special case of side-effect-free expressions. However, our experimental results

show that the condition synthesis does not provide as much reduction as it provides in

Prophet (see Section 7.5). This is because Genesis typically infers a large number of

transforms and the inferred transforms tend to generate more patches with side-effects.

In fact, we observe that the reduction is not enough to offset the instrumentation

overhead and the condition synthesis causes Genesis to generate fewer correct patches.

Therefore we turn off the condition synthesis technique in Genesis by default.

6.3.3 Defect Localization

Genesis is designed to work with arbitrary defect localization algorithms. Our current

implementation starts with stack traces generated from test cases that trigger the

null pointer or out of bounds defect. It extracts the top ten stack trace entries and

discards any entries that are not from source code files in the project (as opposed to

external libraries or JUnit). Suppose the extracted stack trace contains the statements

si, S2, ... , sio in order. For each statement s, Genesis first computes a(s), b(s), and
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c(s) as follows:

a(s) = arg min (linedis(s, si))

b(s) = linedis(s, sa(s))

C(S) = I s is if/while/for/try statements

0 otherwise

Note that linedis(s, s') denotes the line distance between two program statements

s and s'. Genesis then computes the suspiciousness score f(s) of the statement s as

follows. Genesis sorts all statements according to their scores.

f (s) = max(O, 0.5 - (a(s) + b(s))/60 + c(s) x 0.5)

Intuitively, for each entry it finds the corresponding line of code in a project source

code file and collects that line as well as the 50 lines before and after that line of code.

The line of code given by the first stack trace entry has a suspiciousness score of 0.5,

with the score linearly decreasing to zero as the sum of the distance to the closest line

of code from the stack trace and the rank of that line within the stack trace increases.

Genesis prioritizes lines containing if, try, while, or for statements by adding 0.5 to

their suspiciousness scores. The final scores are in the range of 0 to 1.

6.3.4 Handling Java Programs

Identifiers and Constants: The CFG for Java has an infinite set of terminals,

because there are an infinite amount of possible variables, fields, functions, and

constants. For the kind of generators that enumerate all possible AST forests (i.e.,

b = 0), Genesis does not generate changes that import new packages and or changes

that introduce new local variables (even if a change introduces new local variables, it

is typically possible to find a semantically equivalent change that does not). Therefore

Genesis only considers a finite set of possible variables, fields, and functions.
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Genesis also extends enumeration-based generators so that each generator has an

additional set to track the constant values that the generator can generate. For the

generation operator of a generator, Genesis will only consider finite constant values

that are 0, 1, null, f alse, or any value that is inside the tracked set of the generator.

Many string constants in Java programs are text messages (e.g., the message in

throw statements). These constants may blow up the set of the allowed constants in the

transforms during the generalization process. To avoid this problem, Genesis detects

such string constants and convert them to a special constant string - the specific

string values are typically not relevant to the overall correctness of the programs.

Identifier Scope: Genesis exploits the structure of Java programs to obtain more

accurate generators. Each enumeration-based generator (i.e., b = 0) tracks separate

bounds for the number of variables and functions it uses inside the original slice,

from the enclosing function, from the enclosing file, and from all imported files. For

example, a generator may specify that it will only use up to two variables from the

enclosing function in the generated AST forests. Similarly, each copy-based generator

(i.e., b = 0) has additional flags to determine whether it copies code from the original

code, the enclosing function, or the entire enclosing source file.

Semantic Checking: Genesis performs type checking in its implementation of

the generation operators for generators and transforms. Genesis will discard any

AST tree or AST forest that cannot pass Java type checking. Genesis also performs

semantic checking to detect common semantic problems like undefined variables and

uninitialized variables.

Code Style Normalization: Genesis has a code style normalization component to

rewrite programs in the training set while preserving semantic equivalence. The code

style normalization enables Genesis to find more common structures among ASTs of

training patches and improves the quality of the inferred transforms and search spaces.
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Chapter 7

Evaluation of Genesis Patch

Generation System

This chapter evaluates Genesis on a set of 49 benchmark defects systematically collected

from open source repositories. All of our experimental results and the replication

packages for Genesis are also available at [11]. The evaluation consists of three parts:

9 Patch Generation: We compare the patch generation results of Genesis

with the results of PAR [49], the previous state-of-the-art Java patch generation

system, which uses a set of manually crafted templates.

9 Inferred Transforms: We manually examine the Genesis inferred transforms

to understand the advantage of the inferred transforms over manually crafted

templates in previous systems.

o Patch Prioritization and Condition Synthesis: We evaluate the impact of

the patch prioritization learning and the condition synthesis technique in Genesis.

We investigate how these techniques interact with the inferred transforms.

o Comparison of Patch Prioritization and Condition Synthesis in Gen-

esis and Prophet: We compare the effect of these techniques in Genesis

and Prophet. We discuss how the manually crafted search spaces and the in-
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ferred search spaces interact with patch prioritization and condition synthesis

techniques.

7.1 Benchmark and Training Defects

We developed a script that crawled the top 1000 github Java projects (ranked by

number of stars), a list of 50968 github repositories from the MUSE corpus [9], and

the github issue database. The script crawls the repositories and issues and it collects

a project revision if 1) the project uses the Apache maven management system [20],

2) we can use maven 3.3 to automatically compile both the current revision and the

parent revision of the current revision (in the github revision tree) in our experimental

environment, 3) we can use the spoon library [77] to parse the source code of both of

the two revisions into AST trees, 4) the issue discussion or the commit message of the

current revision contains certain keywords to indicate that the revision corresponds to

a patch for null pointer (NP), out of bound (OB), or class cast (CC) defects, and 5)

the revision changes only one source file (because revisions that change more than one

source file often correspond to composite changes and not just patches for NP, 0GB,

or CC defects).

For NP defects, the scripts search for keywords "null deref", "null pointer", "null

exception", and "npe". For OOB defects, the scripts search for keywords "out of

bounds", "bound check", "bound fix", and "oob". For CC defects, the scripts search for

keywords "classcast exception", "cast check", and "cast fix". We manually inspected

the retrieved revisions to discard revisions that do not correspond to fixing NP, OB,

CC defects. Note that we discard many repositories and revisions because we are

unable to automatically compile them with maven, i.e., they do not support maven or

they have special dependencies that cannot be automatically resolved by the maven

system.

We focus on NP, OB, and CC defects because we want to compare the patch

generation results of Genesis with PAR, a previous patch generation system. PAR [49]

contains manual transform templates for NP, OB, and CC defects. In fact, a review
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NP OOB CC Combined
Sampled Transforms 607 504 503 579
Selected Transforms 43 20 17 85

Inference Time 12h 7h 8h 42h

Table 7.1: Genesis Search Space Inference Results

of PAR system finds out that most reported patches in the PAR paper are generated

by its manual templates for NPE and 00B defects [69].

In total we collected 1012 human patches from 372 different applications. These

patches include 503 null pointer error (NPE) patches, 212 out of bound error (00B)

patches, and 303 class cast error (CCE) patches. Note that there are six patches

whose revision commit logs contain keywords for two kinds of defects and we count

them as patches for both of the two kinds.

7.2 Offline Inference and Learning

Search Space Inference: We ran the inference algorithm on all of the training

patches together to infer transforms for patching all three classes of defects combined.

We also ran the inference algorithm on the training patches for each class of defects

to infer transforms for that specific class of defects. Table 7.1 presents the results.

The first row "Sampled Transforms" presents the number of candidate transforms

produced by the sampling algorithm for each search space. The second row "Selected

Transforms" presents the number of selected transforms in each inferred search space.

We note that the number of selected transforms (tens for the targeted search spaces

to over eighty for the combined search space) is substantially larger than the number

of manually generated transforms that previous search spaces work with [49, 53, 55,

58, 59, 82, 93, 103, 104]. This fact highlights the ability of the automated Genesis

inference system to work effectively with large, detailed, and appropriately targeted

sets of candidate transforms.

Patch Prioritization Learning: We ran the learning algorithm on the training

patches for each inferred search space to learn a probabilistic model to rank candidate
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patches in the space. Genesis tracks in total 5380 features and the offline learning

finishes in less than one hour for all search spaces.

7.3 Patch Generation

This section evaluates the patch generation results of Genesis. It compares the results

of Genesis with the results of PAR [49], the previous state-of-the-art patch generation

system for Java.

7.3.1 Methodology

PAR Template Implementation: PAR is the previous state-of-the-art patch

generation system for Java program [49]. It was first published in International

Conference of Software Engineering (ICSE) 2013 and won a best paper award of

ICSE 2013 [49, 69]. PAR deploys a set of transform templates to fix bugs in Java

programs, with the templates manually derived by humans examining real-world

patches. We implemented the PAR templates for NP, 00B, and CC defects under

our own framework (most of the reported PAR patches are generated by the PAR

NP and 00B templates [69]). To circumvent any ambiguities in the PAR template

descriptions, we implemented the templates, with our best efforts, to enable the

templates to generate correct patches for as many benchmark defects as possible.

Patch Generation: We ran Genesis on all of the benchmark defects with 1) the

inferred transforms for patching each class of defects, 2) the inferred transforms for

patching all three classes of defects combined, and 3) the PAR templates. For each

defect, Genesis produces (a possibly empty) ranked list of validated patches. We

performed all of the patch generation experiments on Amazon EC2 m4.xlarge instances

with Intel Xeon E5-2676 processors, 4 vCPU, and 16 GB memory. We collected all

patches that validated within 5 hours.

Analyze Generated Patches: We next manually analyzed each benchmark defect

along with the corresponding developer patch from the repository to understand the

root cause of the defect. We then analyzed the ranked list of generated patches to
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Genesis (Per Defect Type) Genesis PAR
Errors First 1/5/10 (All) First 1/5/10 (All) First 1/5/10 (All)
20. NP 11/13/13 (13) 7/12/12 (13) 8/8/8 (8)

13 OB 3/4/4 (6) 5/5/5 (6) 4/4/4 (4)
16 CC 2/2/2 (3) 4/4/4 (5) 0/0/0 (0)
Total 16/19/19 (22) 16/21/21 (24) 12/12/12 (12)

Table 7.2: Genesis Patch Generation Results

identify the first correct patch in each list (if any). Note that in our experiments all

of the generated patches that we identify as correct are semantically equivalent to the

corresponding developer patch (and differ in at most error or log messages).

We note that, in principle, determining patch correctness can be difficult. We

emphasize that this is not the case for the patches in our experiments. The correct

behavior for all of the defects is clear, as is patch correctness and incorrectness. All of

the generated patches that we identify as correct are semantically equivalent to the

corresponding developer patch (and differ in at most error or log messages).

7.3.2 Experimental Results

Table 7.2 summarizes the patch generation results. See Appendix B for the detailed

per defect experimental results of each search space. The first column of Tabel 7.2

presents the number and type of each class of defect. The next columns present patch

generation results for Genesis working with 1) the transforms for patching each class

of defect, 2) the transforms for patching all three classes of defects combined, and 3)

the PAR templates. Each entry is of the form X/Y/Z (W), where X is the number

of defects for which the first patch to validate is correct, Y is the number of defects

for which one of the first 5 patches to validate is correct, Z is the number of defects

for which one of the first 10 patches to validate is correct, and W is the number of

defects for which one of the validated patches is correct.

Our results show that Genesis significantly outperforms PAR. Genesis with the

combined search space generates correct patches for 13 NP, 6 OB, and 5 CC defects,

while PAR templates generate correct patches for only 7 NP and 4 OB defects.
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Many of the Genesis generated correct patches are outside the search space of the

PAR templates (see Section 7.4).

One interesting phenomenon is that moving to the combined transforms increases

the number of cases with correct patches by two. One explanation is that learning

from training patches of all three kinds of defects enables Genesis to better capture

code transforms shared by different kinds of defects. In fact, the targeted CC space

fails to generate correct patches for two cases because the space does not include

a transform that inserts try-catch block to ignore exceptions. This transform can

potentially fix NP, 00B, or CC defects.

This highlights the ability of Genesis to infer meaningful transforms to form a

diverse search space for multiple classes of defects from a single combined corpus

of human patches. With its patch prioritization learning algorithm, Genesis is also

able to navigate the diverse search space efficiently by prioritizing potentially correct

patches among all candidate patches in the space.

Consistent with previous results [60], there are many more validated patches than

correct patches - for the combined search space, there are 8 NP defects, 4 0GB

defects, and 1 CC defect with more than 20 validated patches. The maximum numbers

of validated patches for a single NP, OB, or CC defect are 62, 166, and 74 validated

patches, respectively.

Defect Localization Oracle: To isolate the effect of defect localization, we also run

Genesis and PAR with an oracle that identifies, for each defect, the correct line of code

to patch. With the oracle, the combined Genesis space generates correct patches for one

more NP defect (HikariCP-ce4ff92 ) and one more OB defect (RoaringMap-29c6d59

). PAR does not generate any additional correct patches with the oracle.

Correct Patches: In general, the Genesis correct patches either 1) apply a standard

defect-specific patch pattern that Genesis successfully inferred, or 2) modify an existing

condition or expression in the unpatched program. Four of the NP patches insert a

null pointer check that returns if the checked variable is null. Another three insert a

null pointer check that conditionally executes existing code only if the checked variable
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1 public ResponseEntity<?> deleteItemResource(

2 RootResourceInformation resourceInformation, OBackendId Serializable id)

3 throws ResourceNotFoundException, HttpRequestMethodNotSupportedException {
4 resourceInformation. verifySupportedMethod(HttpMethod. DELETE, ResourceType. ITEM);

5 + if ((resourceInformation.getInvokero.invokeFindOne(id)) == null) {
6 + throw new org.springframework.data.rest.webmvc.ResourceNotFoundExceptiono;

7 + }

8 org.springframework.data.rest.core.invoke.RepositoryInvoker invoker

9 = resourceInformation.getInvokero;
10 Object domainObj = invoker.invokeFindOne(id);
11 publisher.publishEvent (new BeforeDeleteEvent(domainObj));

12 invoker.invokeDelete(id);

13 publisher. publishEvent (new AfterDeleteEvent(domainObj));

14 return new ResponseEntity<bject>(HttpStatus.NOCONTENT);

15 }

Figure 7-1: Genesis Correct Patch for spring-data-rest-aa28aeb. Add Lines 5-7.

is not null. Two NP patches throw an exception if the checked variable is null; Another

inserts a null pointer check that executes generated code when the check fires.

Three of the OB patches insert a check for either a variable less than zero or

an object field equal to zero, then return a generated value (either null or zero) if

the check fires. One of the remaining OOB patches conditionally executes existing

code if an object field is not zero. Two of the correct CC patches insert a try/catch

statement that catches and ignores class cast exceptions. One of the remaining CC

patches changes the declared type of a local variable.

The remaining NP, 0GB, and CC patches change existing conditions or expressions

in various ways. For example, one OB patch corrects an off by one defect by changing

< to <=; another OOB patch changes a condition to compare an expression against

a variable instead of against zero; one CC patch wraps an expression to convert its

value into another type.

7.3.3 Case Studies

We next investigate the results of four representative benchmark defects.

spring-data-rest-aa28aeb: Figure 7-1 presents the correct patch generated by

Genesis for spring-data-rest-aa28aeb. This patch is semantically equivalent to the

developer patch. The patch modifies the function deleteItemResourceO. A null pointer

error occurs when the user attempts to remove an item resource that does not exist.
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1 public int unpack (ISOComponent m, byte[] b) throws ISOException {
2 ...
3 + if ((b.length) == 0) {
4 + return 0;
5 + }
6 if ((logger) != null)

7 evt.addMessage(org.jpos.iso.ISOUtil.hexString(b));

8 ...

9 }

Figure 7-2: Genesis Correct Patch for jPOS-df400ac. Add Lines 3-5.

The patch fixes this defect by inserting a branch condition to check the returned value

of the function invokeFindOneo. If the returned value is null, the supplied resource

does not exist. The inserted code therefore throws an appropriate exception.

Note that PAR is unable to generate this patch because PAR does not have any

template that inserts throw statements. This patch also highlights the difference

between the inferred transforms in Genesis and the transformation schemas in Prophet.

The checked expression in this patch is a sequence of two method calls, while the

Prophet transformation schemas do not attempt to generate any function call in the

inserted conditions.

jPOS-df400ac: Figure 7-2 presents the correct patch generated by Genesis for jPOS-

df400ac. This patch is ranked as the first generated patch and it is semantically

equivalent to the developer patch. The patch modifies the function unpack() in

Figure 7-2. An GOB error occurs when the supplied byte array parameter "b" is

empty. The patch fixes this defect by inserting a branch condition to check the length

of the byte array. If the length is zero, it returns zero immediately.

Note that PAR is unable to generate this patch because PAR templates only

consider conditions that check index out of bound for 0OB errors. This patch

highlights the coverage of the Genesis inferred transforms - the inferred transforms

cover significantly more patching strategies than manually crafted templates.

jade4j-114e886: Figure 7-3 presents the correct patch generated by Genesis for

jade4j-114e886. This patch is ranked as the first generated patch and it is semantically

equivalent to the developer patch. The map "o" at line 4 is obtained via statically

casting from another map. Therefore the keys in "o" may take integer values, even
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1 protected String visitAttributes(

2 JadeModel model, JadeTemplate template) {
3 ...
4 for (Map.Entry<String, String> entry : o.entrySeto) {
5 Attr attr = new Attro;
6 - attr.setName(entry.getKeyo);

7 + attr.setName(this.attributeValueToString(entry.getKeyo));

8 attr.setValue(entry.getValueo);

9 newAttributes.add(attr);

10 }
11
12 }

Figure 7-3: Genesis Correct Patch for jade4j-114e886. Modify Lines 6-7.

I public DefaultClassDefiner run() {
2 - one = new DefaultClassDefiner(cd);

3 + if (cd != null)
4 + one = new DefaultClassDefiner(cd);
5 + else
6 + one = new DefaultClassDefiner(DefaultClassDefiner.class.getClassLoadero);
7 return (DefaultClassDefiner) DefaultClassDefiner.defaultOneo;
8 }

Figure 7-4: Developer Patch for nutz-80e85d0. Add Lines 2 and 4-5.

though the first type parameter of "o" is "String". When an integer key is retrieved in

the loop, a CC error occurs at line 6. The patch wraps the expression with a function

call to convert the expression value to string.

This patch highlights the expressiveness of generators in Genesis. The patch is

generated by a transform that replaces an arbitrary expression with a new expression

associated with a generator. The generator enumerates expressions that contain

program elements from the original expression plus an additional method call that

appears in the same file. The transform therefore can generate candidate patches that

insert a function call to wrap the original expression.

nutz-80e85d0: Figure 7-4 presents the developer patch for nutz-80e85d0. The

variable "cd" may equal to null at line 3, which causes a NP error. The developer

patch wraps the function call at line 3 with an if-else statement. If "cd" equals null, it

calls the static method getClassLoader() instead to replace "cd".

Although the Genesis search space contains transforms that insert if-else statements

to wrap existing statements, this patch is still outside the Genesis space. This
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1 + int first = buffer.lengtho;
2 // pad the buffer with adequate zeros
3 for(int digit = 0; digit<mSize; ++digit) {
4 buffer.append('O');

5 }
6 // backfill the buffer with non-zero digits
7 int index = buffer.lengtho;
8 for( ; value>0; value /= 10) {
9 - buffer.setCharAt(--index, (char)('O' + value % 10));
10 + char c= (char)('O' + value % 10);
11 + if(--index<first) {
12 + buffer.insert(first, c);

13 + }
14 + else{

15 + buffer.setCharAt(index, c);

16 + }
17 }

Figure 7-5: Developer Patch for commons-lang-52b46e7. Modify Lines 1 and 9-16.

is because generators in the Genesis transforms cannot synthesize the expression

DefaultClassDefiner.class.getClassLoader(). This case demonstrates the challenge of

navigating the search space tradeoff between the coverage and the tractability. Note

that it is possible to train Genesis on a larger training set of human patches to infer a

richer and larger search space to cover this defect. But Genesis would also need more

advanced search algorithms (with potentially better patch prioritization) to efficiently

explore the larger search space.

commons-lang-52b46e7: Figure 7-5 presents the developer patch for commons-

lang-52b46e7. The original code sets the character in a string buffer at a specific index

at line 9. If "index" is greater than the length of "buffer" at line 9, an out of bound

error occurs. Unlike usual 00B patches where the 00B accesses are discarded, the

correct patch inserts additional characters into the buffer if the index is out of the

range. The correct patch modifies multiple statements at two different locations to

implement this behavior.

This correct patch is outside the inferred search space of Genesis and, despite the

fact that Genesis deploys a focused search space derived by learning from successful

human patches, is likely to remain beyond the reach of Genesis or similar generate

and validate systems. In our experience, patch search spaces that include patches
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generated by transforming three or more statements can easily become intractable

to search. Augmenting the search space to include such patches, in the absence of

other techniques designed to improve the tractability of the search space, can leave

the generate and validate system unable to find the correct patch even if the search

space contains the correct patch.

7.4 Genesis Transforms

For the combined search space, Genesis selects 85 transforms from a set of 579 sampled

transforms. This section first presents an overview of these 85 transforms. We then

compare the inferred transforms with the manually crafted templates in other systems.

7.4.1 Transform Overview

Transforms That Target Boolean Expressions: Many defects involve incorrect

boolean expressions [31, 58, 59, 65]. It is therefore not surprising that many of the

inferred transforms target boolean expressions. Specifically, 16 of the 85 transforms

(including the example transform discussed in Section 6.1) conjoin or disjoin a generated

subexpression to a boolean condition in the original program.

Conditional Execution: 13 transforms conditionally execute existing matched code.

7 of the 13 add an if statement to guard the existing code, while the remaining 6 of

the 13 add a conditional expression (i.e., ?:) to guard the existing code. There are

also composite transforms such as a transform that 1) matches the declaration and

the initialization of a variable, 2) change the initialization to first assign a default null

or zero value, and 3) add an if statement to guard the original initialization code to

avoid null pointer or out of bound defects:

V2 V1 = V; =-

V2 V1 = V3 ; if(V oP5 V8)V 1 =Vo}, V3 E {null,0}, Op5 E {<,! =}
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Inserted If Then Else: Two transforms wrap existing code in an if then else

statement. The generated condition tests for a previously unhandled case, generated

code handles the case on one branch, and the transform places existing code in the

other branch. One transform, for example, inserts a null pointer check and generates

code to return an empty array if the check succeeds. Another generates an equality

check and sets a variable to a different value on the new branch:

Vo = V; =- if(V3 ==V4 ){Vo = V6 ; }else{Vo = V1; }

Inserted If Then: 15 transforms insert conditionally executed generated code - the

condition tests for a previously unhandled case. The generated code executes when

the case occurs. To handle the case, typically the generated code either 1) includes

throw, return, break, or continue statements or 2) is copied from the existing code

elsewhere. 6 of the 15 transforms directly check for various null pointer cases, for

example:

Vo == if(V == null){V4}; Vo

Replace Code: 24 transforms replace existing code with newly generated code. The

transforms differ in 1) the form of the code they replace and generate and 2) the

generator constraints. There are also several transforms that replace most but not all

of the existing code. The following method call transform, for example, replaces the

invoked method and parameters, but keeps the original receiver:

V2.V1 (V) ==* V2 .V6(V5 )

Try/Catch/Continue: One transform wraps existing code in a try construct with

an empty catch block. Like failure-oblivious computing [90], the patch discards the

exception and continues execution:

Vo -=> try{ Vo}catch(V2){V3}, where V3 is empty or a return statement.
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Change Declared Type: One transform changes the declared type (and potentially

also the initializer) of a variable declaration. This transform generates patches that

eliminate class cast exceptions, specifically by moving the declared type up in the

class hierarchy (V2 is the original declared type and V4 is the new declared type):

V2 V1 = VO = V4 V1 =V3

Insert Statements: One transform inserts a generated assignment statement into

the code. Another transform copies a statement from the existing code in the same

function and inserts the copied statement.

Other Transforms: Genesis also infers a variety of more specialized transforms that,

for example, combine null check insertions with bound check insertions. It also infers

9 transforms that, in our judgement, are specific to the defects in the training set and

are unlikely to be useful for other defects. Even though these transforms are unlikely

to correct any other defects, because they are so specific, they impose negligible search

overhead.

Discussion: In comparison with previous manually developed transforms [49, 58, 59],

the Genesis transforms are more numerous, more diverse, and target a wider range of

defects more precisely and tractably. Some transforms target specific defect classes

such as off by one defects in for loops. Other transforms apply general templates

(for example, replacing one expression with another expression), with the generator

constraints controlling the enumeration to deliver a tractable search space. While

the inferred templates often correspond to intuitive patch generation patterns that

can correct a wide range of defects, the generator constraints typically more closely

reflect the specific characteristics of the patches in the training set. For example,

many generator constraints focus the transform on introducing instanceof checks (to

patch class cast exceptions), null pointer checks (to patch null pointer defects), or

checks involving comparison operators such as <, <, >, or > (to patch out of bounds

defects). As the above discussion highlights, the combination of transform inference
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and generator constraints enables Genesis to infer a rich, precisely targeted, but still

tractable patch search space.

7.4.2 Comparison with PAR

The PAR NP templates include "add an if statement to guard an existing statement"

and "add an if guarded return statement" with null check boolean conditions. For the

13 NP defects for which Genesis generates correct patches, two NP defect (error-prone-

370933 and spring-data-rest-aa28aeb ) are outside the PAR search space because

the correct patches add "if (...) throw ... " statements. Three more NP defects

(DataflowJavaSDK-c06125 , javaslang-faf9ac , and Activiti-3d624a ) are outside the

PAR search space because the correct patches change condition expressions in a

non-trivial way that is not equivalent to adding an if-guard.

The PAR 0GB templates include "add an if statement to guard an existing

statement" and "add an if guarded return statement" with range check conditions.

The templates also consider "increases or decreases a variable by one" and "add an if

guarded assignment statement to enforce index lower and upper bounds of a variable".

For six OOB defects for which Genesis generates correct patches, two OB cases

(jgit-929862 and jPOS-df400a ) are outside the PAR search space because the correct

patches change conditions in a way different from the standard range checks.

The PAR CC templates include "add an if statement to guard an existing statement"

and "add an if guarded return statement" with instanceof type checks. They

also include "change the casting type of a cast operator". These templates do not

generate correct patches for any of the benchmark CC defects. For two of these five

defects (jade47-114e88 and HdrHistogram-030aac), the correct patches change existing

expressions in a way that is not equivalent to adding a type check guard. The correct

patches for two more CC defects (htmlelements-bf3f27 and hamcrest-bean-84586d )

insert a try-catch statement to catch and ignore class cast exceptions (the developers

introduced these try-catch statements in the patched revision and these statements

are still present in the latest revision of these repositories). The correct patch for the
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remaining defect (jade4j-dd4739 ) modifies the declared type of a local variable to

avoid class cast exceptions.

7.4.3 Comparison with Prophet

Note that the Prophet transformation schema in Section 4.2 is designed for C pro-

grams. If we straightforwardly convert the Prophet transformation schemas into Java

transforms, it would contain correct patches for 11 NP and 5 00B defects.

The correct patches for two NP defect (error-prone-370933 and spring-data-rest-

aa28aeb ) are outside the Prophet search space because they add "if (...) throw ... "

statements. The correct patch for one 00B defect is outside the original Prophet search

space (but inside the extended space in Section 5.5) because the patch manipulates a

condition with two variables instead of one variable. The Prophet search space cannot

generate correct patches for any CC errors, because the space does not contain schemas

to change variable types, add instanceof type checks, or add try-catch blocks.

7.4.4 Defects Outside Genesis Search Space

Genesis does not generate correct patches for 25 out of the 49 benchmark defects.

For HikariCP-ce4ff92 and RoaringBitmap-29c6d59, the correct patches are inside the

search space of Genesis but the defect localization algorithm does not correctly identify

the locations to modify. For the remaining 23 defects, the correct patches are outside

the search space of Genesis.

For 19 out of the 23 defects, the correct patches modify less than three statements.

For 11 out of the 19 defects (nutz-80e85d0, checkstyle-aaf606e, jongo-f46f658, spring-

hateoas-29b4334, coveralls-maven-plugin-20490f6, maven-shared-77937el, spoon-

48d3126, pebble-942aa6e, fastjson-c886874, joinmo-a5ee885, antlr4-9e7b131), Genesis

contains transforms with template AST pairs that match correct patches but the

generators inside these transforms are not general enough to generate the correct

patches. For 8 out of the 19 defects (webmagic-ff2f588, HdrHistogram-db18018, named-

regexp-82bdfeb, pdfbox-93c0b69, tree-root-fef0f36, spring-cloud-connectors-56c6eca,
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buildergenerator-d9d73b3, mybatis-3-809c35d), Genesis does not contain transforms

with template AST pairs to match correct patches. We expect learning from a larger

training set of human patches and increasing the tractability parameter 3 (see Sec-

tion 6.2.5) will generate a richer and larger search space to cover these 19 defects.

However, due to the inherent tradeoff between the coverage and the tractability, en-

larging the search space always comes with a cost on the tractability. We would need

more advanced search algorithms (with potentially even better patch prioritization)

to generate correct patches for these 19 defects in the larger search space.

For the remaining 4 defects (javapoet-70b38e5, truth-99b314e, commons-lang-

52b46e7, raml-java-parser-49aab8f), the correct patches modify three or more state-

ments. We believe these 4 defects are outside the capability of any generate-and-

validate system.

7.5 Patch Prioritization and Condition Synthesis

This section evaluates the impact of the patch prioritization learning and condition

synthesis techniques in Genesis.

7.5.1 Methodology

Patch Prioritization Learning Evaluation: We ran a modified version of Genesis

with the combined search space which does not use the patch prioritization learning to

rank candidate patches. This modified version uses the following heuristic rules instead.

It explores its search space in order to each of the suspicious statements in the ranked

list returned by the error localization algorithm. For each transform, this version

computes a cost score which equals to the average number of candidate patches the

transform need to generate to cover a validation case. For each suspicious statement,

this version prioritizes candidate patches that are generated by those transforms with

lower cost scores. If a transform produces two candidate patches that modify the same

location, those two patches will be explored in an arbitrary order. We then compare

the patch generation results of this modified version with the results of the original
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Genesis Genesis (No PP) Genesis (With CS)
First 1/5/10 (All) First 1/5/10 (All) First 1/5/10 (All)

20 NP 7/12/12 (13) 11/12/13 (13) 7/12/12 (13)
13 OB 5/5/5 (6) 5/5/6 (6) 5/5/5 (6)
16 CC 4/4/4 (5) 3/3/3 (4) 2/2/2 (3)
Total 16/21/21 (24) 19/20/22 (23) 14/19/19 (22)

Mean Gen. Time 31.9m 53.7m 46.7m

Table 7.3: Patch Generation Results for Three Different Versions of Genesis.

version of Genesis to evaluate the effectiveness of the patch prioritization learning

algorithm in Genesis.

Condition Synthesis Evaluation: Genesis by default does not turn on its condition

synthesis reduction (see Section 6.3.2). We ran a modified version of Genesis which

turns on the condition synthesis with the combined search space. We then compare

the patch generation results of the two versions to evaluate the effectiveness of the

condition synthesis reduction in Genesis.

7.5.2 Experimental Results

Table 7.3 summarizes the patch generation results of three different versions of Genesis.

See Appendix B for the detailed per defect experimental results of each version. The

first column of Table 7.3 presents the number and type of each class of defect. The

next columns present patch generation results for 1) the original Genesis working

with the transforms for patching all three classes of defects combined, 2) the modified

version of Genesis with the same space and without the patch prioritization learning,

and 3) the modified version of Genesis with the same space and the condition synthesis

reduction, Each entry is of the form X/Y/Z (W), where X is the number of defects

for which the first patch to validate is correct, Y is the number of defects for which

one of the first 5 patches to validate is correct, Z is the number of defects for which

one of the first 10 patches to validate is correct, and W is the number of defects for

which one of the validated patches is correct.

The last row of Table 7.3 presents the mean patch generation time of the first

correct patch for the 24 benchmark defects which the original Genesis version produces
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correct patches. If a modified version of Genesis does not produce correct patch for one

of the 24 defects, we count the timeout limit value (i.e., five hours) as the generation

time for the defect.

Our results show that the patch prioritization learning improves the capability of

Genesis to efficiently explore its search space. The original version of Genesis generates

correct patches for one more cases than the modified version with the learning turned

off. With the patch prioritization learning, Genesis takes on average 22 fewer minutes

(i.e., 68% speedup) to find the first correct patch.

Intriguingly, our results show that the condition synthesis in Genesis does not

provide as much reduction as we observed in Prophet. It only prunes away less than

18% candidate patches on average (see Appendix B). In fact, the amount of reduction

is not enough to offset instrumentation overhead for implementing it. The modified

version of Genesis with condition synthesis runs slower and generates correct patches

for two fewer benchmark defects than the original version.

7.6 Discussion

We next discuss the difference between Genesis and PAR. We also discuss differences

and similarities in how the patch prioritization and condition synthesis techniques

interact with the inferred search spaces in Genesis and Prophet.

7.6.1 Comparison of Genesis and PAR

Genesis outperforms PAR because there are many design choices and parameters for a

transform (template) and it is difficult for human to tune them manually. For example,

consider an inferred transform for null pointer (NP) defects A -+ if (B! =null) {A},

which adds an if statement to guard an existing statement A. There are many design

questions for this transform: what is allowed in the checked expression B? Should we

just allow local variables and constants or do we allow complicated expressions? If we

allow complicated expressions, how we are going to bound the expressions? If A is

already an if statement, should we consider to change its condition instead of adding
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a new if statement? All these questions correspond to design choices and parameters

in the transform. Suboptimal choices often produce unproductive search spaces that

do not contain enough useful patches or that are too large to explore. It is difficult

for manually defined templates to capture these complexities.

Our experimental results highlight how automating transform inference can produce

more effective patch search spaces. Automating the inference makes it possible to work

with larger sets of more detailed transforms that, working together, can more effectively

navigate the inherent tradeoff between coverage and tractability. In comparison with

manual transforms, the inferred transforms can be more specific (with focused generator

parameters). But because there are so many more inferred transforms (over eighty for

the combined training set) together they cover many more patch patterns and can

successfully patch more defects. By automating transform inference and formulating

the transform selection problem as an integer linear program, Genesis can effectively

work with hundreds to thousands of candidate transforms to select tens of final

transforms.

7.6.2 Patch Prioritization in Genesis and Prophet

Genesis combines the Prophet patch prioritization learning algorithm together with

the inferred search space to learn universal correctness properties to prioritize correct

patches in the space. Genesis uses the same learning algorithm as Prophet with a

different set of atomic characteristics for handling Java programs (see Section 6.3.1).

Note that the original set of atomic characteristics in Prophet is designed for handling

C programs (see Section 4.3.4).

Our experimental results show that the patch prioritization algorithm enables

Genesis to rank the first correct patches over 60% higher on average. It therefore

enables Genesis to generate correct patches 68% faster and enables Genesis to generate

one more correct patch. Note that we had similar results in Prophet - the patch

prioritization algorithm enables Prophet to rank the first correct patch 52% higher

on average. The results show that the patch prioritization algorithm works well for

the Genesis context, although Genesis targets a different programming language and
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different classes of defects than Prophet and operates with an inferred search space

rather than a manually crafted search space.

Our results highlight how the learned universal correctness properties complement

with the learned universal patching strategies. Genesis first applies the learned

patching strategies to generate a sophisticated search space derived from close to

one hundred inferred code transforms. Genesis then applies the learned universal

correctness properties, encoded as a discriminative probabilistic model, to prioritize

correct patches in the space to guide the patch generation search. Because the Genesis

search space is automatically inferred and may contain significantly more transforms

than Prophet (e.g., 85 transforms in Genesis and seven transformation schemas in

Prophet), it is infeasible to manually craft optimal rules to determine the patch

prioritization order. Therefore exploiting the universal properties to automate the

patch prioritization process is even more important.

To apply the learning algorithm to Java, we only redesigned the set of the extracted

atomic characteristics. The rest of the learning algorithm remains the same. The

results therefore also highlight the generalizability of the patch prioritization learning

algorithm across different programming languages. The success of the learning algo-

rithm in Genesis demonstrates that the existence of universal correctness properties is

programming-language-independent.

7.6.3 Condition Synthesis in Genesis and Prophet

The condition synthesis technique in Genesis only prunes away less than 18% candidate

patches on average. In fact, the pruning is not even enough to offset the instrumentation

overhead of implementing the condition synthesis technique. On the other hand, the

condition synthesis in Prophet prunes away over 90% candidate patches on average.

The reason behind this phenomena is the structural difference between the Genesis

search space derived from the inferred code transforms and the Prophet search space

derived from the seven transformation schemas.

Firstly, because each of the Genesis code transforms is more specific than the

Prophet transformation schemas, the Genesis search space tends to contain fewer
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redundant candidate patches. For example, an inferred Genesis code transform for

null pointer errors considers only conditions that check a variable against null value,

while the transformation schemas in Prophet consider conditions that check a variable

against any runtime constant value. As a result, there are fewer pruning opportunities

for the condition synthesis in Genesis than in Prophet.

Secondly, Genesis has a relatively large number of small code transforms. Prophet

has seven large transformation schemas, while the combined search space of Genesis

contains 85 transforms. Each Genesis transform tends to generate much fewer candidate

patches than each Prophet transformation schema does so that the total search space

size of Genesis is still tractable. The current condition synthesis technique does not

perform reductions for two candidate patches generated from different transforms.

The technique therefore may miss pruning opportunities if two candidate patches

modify the same expression but they are generated by different transforms.

Lastly, the Genesis inferred search space is much more diverse and tends to generate

more patches with function calls than the Prophet search space. Java programs also

tend to use function calls (e.g., getter functions) more often than C programs in

branch conditions. The condition synthesis cannot prune away such patches. Five out

of the seven Prophet transformation schemas do not introduce any new function call

in the generated patch. In contrast, 52 out of the 85 Genesis inferred transforms for

the combined search space contain generators that can introduce new function calls.
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Chapter 8

Future Directions and Realistic

Expectations

This chapter discusses potential future directions of learning successful human patches

to build generate-and-validate systems like Prophet and Genesis. This chapter also

discusses realistic expectations and potential limitations.

8.1 Future Directions

By learning universal properties and patching strategies of past successful human

patches, Prophet and Genesis efficiently explore productive search spaces to generate

correct patches for large real-world applications. We identify the following future

research directions to further enhance Prophet and Genesis.

More Sophisticated Learning Algorithm: It is possible to design learning

algorithms with more sophisticated models to extract more human knowledge from

existing code. For example, how to apply neural network models to programs is still

an interesting open question. One challenge is how to design new neural network

structures that are capable to capture program semantic properties. Another challenge

is how to effective map various program elements into numeric vectors for neural

networks. Yet another challenge is that sophisticated models like neural networks will

require significantly more training patches to drive the learning.
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Exploiting Natural Language Resrouces: Natural language resources like

commit logs and program comments are associated with existing code in software

repositories. Although these resources are originally designed to help human developers

to understand programs, we can exploit them to help machine understand programs

as well. One future direction is therefore to combine natural language processing

techniques together with the program learning techniques presented in this dissertation.

A key challenge is to find a way to establish meaningful semantic mappings from

natural language elements like words and phrases to program elements like variables

and functions.

More Training Patches: In our experiments, we train Prophet with 777 training

patches; we train Genesis with more than 900 training patches. But Prophet and

Genesis could benefit from even more training patches. One challenge of collecting

more training patches from open source repositories is to automatically compile the

source code in the collected repositories. In our Genesis experiments, around 80%

of crawled projects are discarded because we are unable to compile the projects due

to missing dependencies. In our Prophet experiments, compiling C programs is even

more difficult and we have to manually write a script to compile the revisions in each

of the eight collected training projects. As a future work, an automated tool to resolve

those compilation dependencies would be immensely helpful.

Learning Runtime Information: The learning algorithms in Prophet and Genesis

consider only static information of the training human patches. It is possible to extend

the algorithms consider runtime information, for example, determining the patch

prioritization and the code transforms based on the execution traces of a program

on its test cases. One challenge is that such extended algorithms would require an

automated infrastructure to collect training inputs and run all training programs. As

we discussed above, even automatically compiling the collected programs is already a

non-trivial challenge. How to build an infrastructure to further automatically run the

collected programs is still an open question.

Faster Sampling Algorithm: In our experiments, the Genesis search space

inference takes up to 42 hours to finish. A significant part of the time is spent on the
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sampling algorithm to select promising subsets of the training patches. The complexity

of the sampling algorithm is cubic and it may not be fast enough if we operate with

a larger set of training patches. One future direction is therefore to design a faster

sampling algorithm that still selects productive subsets of training patches for the

generalization process.

Synthesis Reduction Across Transforms: In our experiments, the condition

synthesis technique does not provide as much reduction in Genesis as we observed in

Prophet. One reason is that Genesis has many smaller transforms, while Prophet has

several large transforms. The current condition synthesis technique only operates with

the candidate patches per transform. One future direction is therefore to improve the

technique to enable reduction across different transforms.

Stronger Test Suite: Stronger test suites will enable generate-and-validate systems

to generate less plausible but incorrect patches. One future direction is to automatically

improve the test suite via test generation techniques. The key challenge here is how

to classify a generated test case as positive or negative. Unless the test case triggers

runtime errors, it is typically difficult to determine whether the program runs correctly

on the case or not, because the generated test case may have triggered the defect in

the program and produced an incorrect output.

8.2 Realistic Expectations and Limitations

Genesis generates correct patches for 24 out of the 49 defects. With a more accurate

defect localization algorithm, Genesis is able to generate correct patches for two

additional defects. As we discussed in Section 7.4.4, inferring transforms with richer

template AST pairs would bring correct patches for up to 11 additional defects into the

Genesis search space. Inferring transforms with more general generators would bring

correct patches for up to 8 additional defects into the search space. Therefore if we

successfully implemented the above enhancements in Section 8.1 for Genesis, Genesis

would be able to generate correct patches for up to 45 defects out of the evaluated 49

defects. Similarly as we discussed in Section 5.5.3, a richer set of transforms would
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cover correct patches for 35 out of the 69 Prophet benchmark defects. If we successfully

integrate these enhancement together with the Genesis inference system into Prophet,

Prophet would be able to generate correct patches for up to 35 defects for the Prophet

benchmark set.

Despite incorporating the learned information, Prophet and Genesis like all other

generate-and-validate systems are still search-based systems. As we discuss above

(Sections 5.5.3 and 7.4.4), in our experience, it is typically infeasible for generate-and-

validate systems that operate at the level of statement transformations to generate

a correct patch for a defect if the patch modifies more than three statements. For

the 49 defects in the Genesis evaluation, four out of the 49 require to modify more

than three statements. For the 69 defects in the Prophet evaluation, 34 out of the 69

require to modify more than three statements. The benchmark defects in the Genesis

evaluation tend to require smaller modifications, because those defects are NP, 0GB,

and CC errors and the developer patches typically modify one or two statements to

handle the corner cases that trigger those errors.

Another inherent limitation of Prophet and Genesis, like all other generate-and-

validate systems, is the generation of plausible but incorrect patches. If we incorporate

more learned information into Prophet and Genesis, Prophet and Genesis will prioritize

correct patches more often and use more productive search space. However, because

of the lack of formal specifications, Genesis will not be able to provide correctness

guarantees for the generated patches. One possible way to circumvent this limitation

is to have human developers to review a generated patch like the standard code review

process for human patches.
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Chapter 9

Related Work

We first present related work in automatic patch generation. We then discuss program

learning and inference techniques for other software engineering tasks like specification

mining, program synthesis, and code completion. We also present related work in

relevant areas including defect localization and code refactoring.

9.1 Automatic Patch Generation

Automatic patch generation is an active research topic in the software engineering

and programming language communities. We classify automatic patch generation

techniques into three categories, 1) generate-and-validate techniques, which work

with a test suite of inputs, generate a set of candidate patches, then test the patched

programs against the test suite to find a patch that validates [49, 55, 65, 73, 80, 82, 104],

2) specification-based techniques that leverage formal specifications to produce patches

that enable a defective program to satisfy the specification [79, 92], and 3) targeted

techniques that repair specific classes of universal defects such as null dereferences [61],

out of bounds accesses [90], and infinite loops [28, 50].

Automatic patch generation has been applied to generate feedback for online pro-

gramming education as well [30, 97]. Because the problem setting of fixing submitted

student programs is substantially different from fixing defects in software applications,

we discuss these feedback generation techniques separately.
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9.1.1 Generate-and-validate Techniques

Two earliest generate-and-validate patch generation systems are ClearView [80] and

GenProg [103]. Since then, researchers have developed many other generate-and-

validate patch generation systems [31, 37, 49, 55, 65, 73, 82, 104].

ClearView: ClearView is a generate-and-validate system that observes normal

executions to learn invariants that characterize safe behavior [80]. It deploys monitors

that detect crashes, illegal control transfers and out of bounds write defects. In

response, it selects a nearby invariant that the input that triggered the defect violates,

and generates patches to apply one of manually defined repair actions to enforce the

violated invariant. Subsequent executions enable ClearView to determine if 1) the

patch eliminates the defect while 2) preserving desired benign behavior. ClearView

generates patches that can be applied directly to a running program without requiring

a restart.

ClearView was evaluated by a hostile Red Team attempting to exploit security

vulnerabilities in Firefox [80]. The Red Team developed attacks that targeted 10

Firefox vulnerabilities and evaluated the ability of ClearView to automatically generate

patches that eliminated the vulnerability. For 9 of these 10 vulnerabilities, ClearView

is able to generate patches that eliminate the vulnerability and enable Firefox to

continue successful execution [80].

ClearView sits on a different point in the design space than Genesis and Prophet.

It exploits the runtime information of individual programs to infer invariants, while

Genesis and Prophet exploit the static information of human patches across different

projects to improve their search space and search algorithm. ClearView is effective

at fixing security vulnerabilities in browser and server applications, because 1) it

is possible to collect a large number of execution traces for these applications and

2) enforcing violated runtime invariants with the manually defined repair actions

is typically an effective way to fix security vulnerabilities. Genesis and Prophet,

on the other hand, can be applied to broader classes of defects (not just security
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vulnerabilities) and broader kinds of scenarios, even when the runtime information is

limited.

The ClearView technique and the learning technique in this dissertation are in fact

orthogonal to each other. As we discussed in Section 7.6, one promising future direction

is to combine the power of ClearView and Genesis, building a generate-and-validate

system to learn from both static and runtime information of human patches across

different applications. One challenge of pursuing this direction is how to design a

generalization algorithm that extracts universal information from runtime invariants

of different applications. Another challenge is how to collect a large training corpus of

applications that the learning technique can automatically compile and run.

GenProg, RSRepair, and AE: GenProg [55, 103] uses a genetic programming

algorithm to search a space of patches, with the goal of enabling the application to

pass all considered test cases. RSRepair [82] changes the GenProg algorithm to use

random modification instead. AE [104] uses a deterministic patch search algorithm

and uses program equivalence relations to prune equivalent patches during testing.

Our results in Chapter 2 show that, contrary to the design principle of GenProg,

RSRepair, and AE, the majority of the reported patches of these three systems are

implausible due to errors in the patch validation. Further semantic analysis on the

remaining plausible patches reveals that despite the surface complexity of these patches,

an overwhelming majority of these patches are equivalent to functionality elimination.

The Kali patch generation system, which only eliminates functionality, can do as well

(see Section 2.8).

One potential explanation for this result is that the GenProg, RSRepair, and

AE search spaces do not contain correct patches for these defects (see Section 5.5.2).

Another potential explanation is that the search algorithms in GenProg, AE, and

RSRepair cannot prioritize potentially correct patches in the space. AE and RSRepair

search patches in their spaces in arbitrary and random orders, respectively. GenProg

uses a genetic algorithm with a fitness function to guide the search, but the fitness

function only relies on the test case information. The fitness of a patch in GenProg is

defined as the number of passing test cases. For those common scenarios where there
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are only few correlated negative test cases, the genetic algorithm behaves similar to a

random search [82].

Genesis and Prophet differ from GenProg, RSRepair, and AE in that Genesis

and Prophet learn and exploit information to guide the patch generation process.

This additional source of information enables Genesis and Prophet to work on better

search algorithms that prioritize potentially correct patches and better search spaces

that contain more useful patches. Our results show that most of the correct patches

Prophet and Genesis generate in our experiments are outside the search space of

GenProg, RSRepair, and AE.

PAR: PAR [49] deploys a set of patterns to fix bugs in Java programs, with the

patterns manually derived by humans examining multiple real-world patches. In

general, the design philosophy of PAR is to include the most widely used human

patterns for common types of defects to avoid search space explosion. The disadvantage

of this approach limits PAR to fix only those defects that fall within the scope of

those patterns - a study found that most of the reported PAR patches are generated

by the PAR NP and OB templates [69].

The transformation schemas in SPR and Prophet tend to produce a richer search

space than PAR especially for patches that manipulate conditions. Because of the

condition synthesis technique in SPR and Prophet, SPR and Prophet can still explore

their relatively larger search space efficiently. Our results in Section 7.4 show that SPR

and Prophet transformation schemas, if straightforwardly converted to handle Java

programs, can generate correct patches for more defects in the Genesis benchmark set

than PAR templates.

Instead of relying on human examining real-world human patches to summarize

patterns, Genesis automatically infers code transforms from real-world patches. This

automation enables Genesis to use a larger number of transforms with each of the

transforms being more focused than manually crafted templates. Together the inferred

transforms deliver a more productive trade-off between the search space coverage and

tractability, enabling Genesis to generate significantly more correct patches than PAR

(see Section 7.3). The inference algorithm in Genesis also provides the flexibility - to
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apply Genesis on a new kind of defects, the user can train Genesis on a set of human

patches that fix the new defect kind.

NOPOL: NOPOL [31, 37] applies the angelic debugging technique [29] to locate

conditions that, if changed, may enable defective JAVA program to pass the supplied

test suite. It then uses an SMT solver to synthesize patches for such conditions.

Compared to Prophet and Genesis, NOPOL only target defects that can be fixed with

patches that manipulate conditions. This focus enables NOPOL to limit the number

of candidate patches it generates and avoid the search space explosion.

Prophet transformation schemas generate a relatively larger search space than

NOPOL with patches that modify both branch conditions and other kinds of state-

ments. Prophet uses the learned information from human patches to guide the search

process and efficiently explore the search space. The code transforms in Genesis are

automatically inferred from human patches. For NP, 00B, and CC defects, the in-

ferred transforms focus on patches that modify branch conditions but they also include

transforms such as changing the type of a declared variable or adding a try-catch

block. The inference algorithm enables Genesis to efficiently navigate the trade-off of

the search space design. It enables Genesis to operate with different transforms based

on the kinds of defects Genesis is applied to.

SemFix and Angelix: SemFix [73] replaces a potentially faulty expression in a

program with a symbolic value, performs symbolic executions on the supplied test cases

to generate symbolic constraints, and uses SMT solvers to find concrete expressions

that enable the program to pass the test cases. Because SemFix converts the whole

program into SMT formulas, it is difficult to scale SemFix to large programs. In the

SemFix paper, SemFix is only evaluated on programs with less than ten thousands

lines of code [73].

Angelix [65] combines the technique in SemFix with the condition synthesis

algorithm in SPR and Prophet. Angelix finds a sequence of values for the replaced

faulty expression to pass the test suites and then uses the SMT solvers to find a

patch with a concrete expression that generates the value sequence. Because Angelix

searches the target value sequence like the condition synthesis algorithm in SPR and
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Prophet does, Angelix does not need to convert the whole program into SMT formulas

and therefore avoids the scalability problem in SemFix.

Angelix is also evaluated on the GenProg benchmark set and it generates correct

patches for ten defects (eight fewer than Prophet). Prophet outperforms Angelix

because 1) Angelix only generates patches that modify expressions and 2) Prophet

exploits additional information learned from human patches to guide the patch

generation process. Note that the synthesis algorithm in Angelix can handle multiple

faulty expressions. This capability enables Angelix to fix defects that Prophet cannot

fix. Theoretically it would be possible to extend Prophet and Genesis to handle

multiple expressions as well. In practice, this would complicate the design of the

learning and inference algorithms in Prophet and Genesis.

Anti-patterns: Tan et al. proposed a technique to define a set of manually crafted

anti-patterns to reduce the number of plausible but incorrect patches generated by

generate-and-validate systems [101]. Each anti-pattern encodes ineffective patch

strategies or dangerous modifications that typically generate incorrect patches. In

general, the anti-pattern technique provides an alternative way to rank candidate

patches. Instead of prioritizing potentially correct patches, the technique aims to

remove ineffective patches in the search space.

Note that the learning algorithm in Prophet and Genesis also deprioritize ineffective

patches. The algorithm can defect whether an universal feature often correlates with

incorrect patches in the training set. If so, it will assign a negative weight value in the

learned feature parameter vector, deprioritizing any candidate patch that contains

this universal feature - this universal feature effectively becomes an anti-pattern. The

advantage of Prophet and Genesis is that such anti-patterns are automatically learned,

rather than manually encoded.

9.1.2 Leveraging Human Patches

Besides Prophet and Genesis, researchers have developed other patch generation

techniques to leverage information in past successful human patches.
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Code Transfer: CodePhage automatically locates a correct condition check in

one application, then transfers that condition check to eliminate defects in another

application [94]. CodePhage has been applied to eliminate otherwise fatal integer

overflow, buffer overflow, and divide by zero errors. CodeCarbonCopy [96] further

extends the CodePhage technique to transfer functionality implementations across

applications. uScalpel [24] uses test-driven genetic programming to transfer code from

a donor application to a recipient application.

The code transfer techniques rely on the existence of donor applications that already

contain the exact program logic required to eliminate the defect. The techniques in

this dissertation, in contrast, learn universal patching strategies and properties of

successful patches to guide the exploration of an automatically inferred search space

of newly synthesized candidate patches. CodePhage uses symbolic execution traces to

accurately translate variable names and data structures between the namespaces of

two applications. It therefore may produce better patches for a defect than Prophet

and Genesis, if the defect can be fixed with a code transfer from available donor

applications. But Prophet and Genesis can be applied to any defect, not just those

defects that can be fixed with code transfers.

Patch Generation via Q&A Sites: Gao et. al. [44] propose to repair recurring

defects by analyzing Q&A sites such as Stack Overflow. The proposed technique

locates the relevant Q&A page for a recurring defect via a search engine query, extracts

code snippets from the page, and renames variables in the extracted code snippets

to generate patches. Prophet and Genesis are different from their technique, because

Prophet and Genesis do not rely on the existence of exact defect repair logic on Q&A

pages. Their technique may produce better patches for a defect than Prophet and

Genesis if there are high quality Stack Overflow pages for the defect. But Prophet

and Genesis can be applied to any defect, not just those defects that have existing or

similar fixes in Stack Overflow.

History-driven Repair and ACS: Like Prophet, history-driven program repair [53]

uses information from previous human patches to rank candidate patches generated

by human-specified transforms. It classifies candidate patches into categories based
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on the shapes of the abstract syntax trees of the patches and then prioritize those

categories that appear more often in the previous human patches. ACS [106] ranks

candidate variables in condition patches based on the control dependency and the

data dependency of the variables in the patch context.

Prophet and Genesis differ from these two systems in that Prophet and Genesis

use a machine learning algorithm instead of deterministic rules to extract universal

properties of successful patches. This enables Prophet and Genesis to operate with

a probabilistic model that tracks thousands of universal features to rank candidate

patches, not just a limited set of hand-encoded rules. Genesis further differs from

these two systems because these two systems operate on manually defined search

spaces while Genesis uses automatically inferred search spaces. The inferred search

space enables Genesis to operate with productive search spaces that deliver better

trade-offs between the coverage and tractability.

DeepFix: DeepFix [45] uses recurrent neural network (RNN) with attention to

predict and fix compilation errors in C programs. It is evaluated on a set of student

programs collected from an introductory programming class. The techniques in this

dissertation differ from DeepFix in both the goal and the program scale. Prophet and

Genesis generate correct patches for runtime defects in large open source programs.

Directly applying the DeepFix technique to runtime defects would not produce desirable

results because the DeepFix model does not consider information from test cases -

DeepFix may even generate patches that cannot pass test cases. How to apply deep

learning techniques to improve automatic patch generation for runtime defects is still

an open question.

9.1.3 Specification-based Techniques

Program Repair with Formal Specifications: Deductive Program Repair for-

malizes the program repair problem as a program synthesis problem, using the original

defective program as a hint [51]. It replaces the expression to repair with a synthesis

hole and uses a counterexample-driven synthesis algorithm to find a patch that satisfies

the specified pre- and post-conditions. AutoFixE [79] is a program repair tool for
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Eiffel programming language. AutoFixE leverages the developer-provided formal

specifications (e.g., post-condtions, pre-conditions, and invariants) to automatically

find and generate repairs for defects. Cost-aware Program Repair [92] abstracts a

C program as a boolean constraint, repairs the constraint based on a cost model,

and then concretizes the constraint back to a repaired C program. The goal is to

find a repaired program that satisfies all assertions in the program with minimized

modification cost. The technique was evaluated on small C programs (less than 50

lines of code) and requires human intervention to define the cost model and to help

with the concretization.

Prophet and Genesis differ from these techniques in that they work with large real

world applications where formal specifications are typically not available. Note that

the learning algorithms in Prophet can apply to these specification-based techniques

as well, i.e., if there are multiple patches that satisfy the supplied specifications, the

learned model can be used to determine which patch is more likely to be a correct

patch.

9.1.4 Targeted Techniques

Researchers have developed a variety of repair and recovery systems that are targeted at

specific classes of errors. Comparing to generate-and-validate techniques like Prophet

and Genesis, targeted techniques can only be applied to narrow scopes of defects. But

they exploit underlying properties of the defects in their targeted scopes to improve

the repair or recovery results.

Failure-Oblivous Computing: Failure-oblivious computing [90] checks for out of

bounds reads and writes. It discards out of bounds writes and manufactures values

for out of bounds reads. This eliminates data corruption from out of bounds writes,

eliminates crashes from out of bounds accesses, and enables the program to continue

execution along its normal execution path.

Failure-oblivious computing was evaluated on five errors in five server applications.

The goal was to enable servers to survive inputs that trigger the errors and continue

on to successfully process other inputs. For all five systems, the implemented system
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realized this goal. For two of the five errors, failure-oblivious computing completely

eliminates the error and, on all inputs, delivers the same output as the official developer

patch that corrects the error.

Infinite Loop: Bolt [50] attaches to a running application, determines if the applica-

tion is in an infinite loop, and, if so, exits the loop. A user can also use Bolt to exit

a long-running loop. In both cases the goal is to enable the application to continue

useful execution. Bolt was evaluated on 13 infinite and 2 long-running loops in 12

applications. For 14 of the 15 loops Bolt delivered a result that was the same or better

than terminating the application. For 7 of the 15 loops, Bolt completely eliminates the

error and, on all inputs, delivers the same output as the official developer patch that

corrects the error. Jolt applies a similar approach but uses the compiler to insert the

instrumentation [28]. Infinitel [52] uses SMT solvers to synthesize new loop conditions

which terminate the error-triggering executions and leave benign executions intact.

RCV: RCV [61] enables applications to survive null dereference and divide by zero

errors. It discards writes via null references, returns zero for reads via null references,

and returns zero as the result of divides by zero. Execution continues along the normal

execution path.

RCV was evaluated on 18 errors in 7 applications. For 17 of these 18 errors, RCV

enables the application to survive the error and continue on successfully process the

remaining input. For 11 of the 18 errors, RCV completely eliminates the error and,

on all inputs, delivers either identical (9 of 11 errors) or equivalent (2 of 11 errors)

outputs as the official developer patch that corrects the error.

DieHard: DieHard [25] provides probabilistic memory safety in the presence of

memory errors. In stand-alone mode, DieHard replaces the default memory manager

with a memory manager that places objects randomly across a heap to reduce the

possibility of memory overwrites due to buffer overflows. In replicated mode, DieHard

obtains the final output of the application based on the votes of multiple replications.

Memory Leaks: Cyclic memory allocation eliminates memory leaks by statically

bounding the amount of memory that can be allocated at any allocation site [74].

LeakFix [43] proposes to fix memory leaks in C programs by inserting deallocations
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automatically. LeakFix guarantees that the inserted fix is safe, i.e., the inserted fix

will not cause free-before-allocation, double-free, or use-after-free errors.

Integer and Buffer Overflows: TAP automatically discovers and patches integer

and buffer overflow errors [95]. TAP uses a template-based approach to generate

source-level patches that test for integer or buffer overflows. If an overflow is detected,

the patches exit the program before the overflow can occur.

APPEND: APPEND [36] proposes to eliminate null pointer exceptions in Java by

applying recovery techniques such as replacing the null pointer with a pointer to an

initialized instance of the appropriate class. The presented examples illustrate how

this technique can effectively eliminate null pointer exceptions and enhance program

survival.

Data Structure Repair: Data structure repair enables applications to recover from

data structure corruption errors [33]. Data structure repair enforces a data structure

consistency specification. This specification can be provided by a human developer or

automatically inferred from correct program executions [34].

Self-Stabilizing Java: Self-Stabilizing Java uses a type system to ensure that the

impact of any errors are eventually flushed from the system, returning the system

back to a consistent state and promoting successful future execution [38].

9.1.5 Feedback Generation for Programming Education

Singh et al. proposed a technique to automatically generate patches for submitted stu-

dent Python programs for introductory programming assignments [97]. The technique

captures the error model (potential mistakes) of a programming task with a domain

specific language. It then takes the submitted Python program and the defined error

model as the inputs and produces a sketch [98] that encodes all possible repairs of

the submitted program. It finally synthesizes the sketch program to produce a patch

with minimal syntactic corrections. Qlose [30] defines program distance based on the

number of changes of the behavior of a program with respect to a given set of tests.

It attempts find a qualitative program repair that minimizes the program distance

between the fixed program and the original program.
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Prophet and Genesis differ from those techniques in that Prophet and Genesis

generate patches for real-world defects in large applications not programming errors in

small student programs. On the other hand, although it would be possible to directly

apply Prophet and Genesis to fix student programs, I expect those techniques would

outperform Prophet and Genesis on fixing student programs.

The reason is that providing feedbacks for student programs is different from

fixing real-world defects in large applications. The submitted student programs for

programming assignments are typically small with less than 100 lines of code. It is

therefore possible for the sketch tool to fully encode the program logic into SMT

formulas. Teachers usually have a reference implementation for each assignment and

this reference implementation can be used as a specification for the feedback generation

systems.

REFAZER implements an algorithm for learning syntactic program transformations

from examples [91]. The REFAZER transformations were used to perform repetitive

edits on large code bases and to correct defects in student submissions, and were

mostly not useful across assignments. Genesis differs in that it processes patches from

multiple applications to derive generalized application-independent transforms that

it can apply to fix bugs in yet other (previously unseen) applications. The Genesis

transforms also include generators that enable transforms to generate new code (as

opposed to simply reusing existing matched code).

9.2 Learning from Existing Programs

Researchers have developed a variety of techniques to learn from existing programs

for specification mining, program synthesis, code beautification, and code completion.

Specification Mining and PROSPECTOR: The specification mining tech-

nique [23] collects API execution traces of a target library across different applications.

The technique then learns a finite state automata that is capable to generate the

majority of the collected traces. PROSPECTOR [63] synthesizes a sequence of unary

API calls (i.e., jungloids) to derive an object of a specified output type from an object
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of an input type. It mines API specifications and existing programs with API snippets

to construct a graph where each node corresponds to a type and each edge corresponds

to an API call. It then computes a path from the node of the input type to the node

of the output type to produce an API sequence.

These approaches differ from Prophet and Genesis, because these techniques only

focus on API invocations in the program, while Prophet and Genesis reason all kinds

of program elements for patch generation. The learning techniques in these approaches

rely on deterministic algorithms to produce automata specifications or API sequences,

while Prophet and Genesis learn the ranking of generated patches with a probabilistic

model.

JSNICE: JSNICE [87] is a JavaScript beautification tool that automatically predicts

variable names and generates comments to annotate variable types for JavaScript

programs. JSNICE first learns, from a database of JavaScript programs, a probabilistic

model of relationships between either pairs of variable names (for predicting variable

names) or pairs of types (for generating comments to annotate variable types). Given

a new JavaScript program, JSNICE uses a greedy algorithm to search a space of

predicted variable names or types, with the learned model guiding the search.

A key difference between JSNICE and Prophet/Genesis is that JSNICE does

not aspire to change the program semantics - the goal of JSNICE is instead to

change variable names and add comments to beautify the program but leave the

original semantics intact. The goal of Prophet and Genesis, in contrast, is to produce

correct patches that change the program semantics to eliminate defects. Prophet and

Genesis therefore aspire to solve deep semantic problems associated with automatically

generating correct program logic. To this end, Prophet and Genesis work with a

probabilistic model that combines defect localization information with learned universal

properties of correct code. Genesis further works with a novel inference algorithm to

infer useful code transforms from human patches.

Code Completion: There is a rich set of work on applying probabilistic model

and machine learning learning techniques for code completion [26, 86, 88]. These

techniques learn a probabilistic model from a training set of programs and then use
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the learned model to predict the next token for a partial program. In contrast, our

universal property learning algorithm in Prophet and Genesis ranks candidate patches

in a search space instead of just the next token. Because the goals are different,

our learning technique abstracts away syntactic information like variable names and

function names to capture application-independent semantic relationships between

the patch and the surrounding code. In contrast, the learning techniques for code

completion attempt to cover such syntactic information to precisely predict the next

token.

Furthermore, the inference algorithm in Genesis has the high-order goal of inferring

transforms that can be applied to a new bug to generate a set of candidate patches.

It does not use probabilistic models. It instead obtains candidate transforms with a

novel generalization algorithm and formulates the transform selection problem as an

integer linear programming.

9.3 Defect Localization

Similar to many other patch generation systems, Prophet and Genesis use defect

localization (also called fault localization) techniques to identify potential program

locations that are relevant to a software defect. They then modify those identified

locations to generate candidate patches.

Spectrum-based Localization: Spectrum-based defect localization techniques [27,

47, 72, 105] collect the execution traces of test cases on the program. The techniques

then track the frequencies of each program statement being executed in positive test

cases and negative test cases. Most of the techniques use the tracked frequencies to

compute a suspicious score for each statement and rank all statements by the order of

their suspicious scores. The defect localization algorithm in Prophet is also spectrum-

based. There are many different formulas proposed to compute the suspicious score

based on the tracked frequencies [27, 47, 72, 105], but recently Pearson et al. show

that the performance difference of different formulas is statistically insignificant on

real-world defects [78].
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Mutation-Based Localization: Mutation-based defect localization techniques [70,

75, 76] extend spectrum-based techniques to consider the importance of an executed

statement. The techniques mutate each statement in the program and check whether

mutating the statement changes the results of negative test cases and positive test

cases. The more often the statement changes the results of negative cases and less

often changes the results of positive test cases, the more suspicious the statement is

considered.

In fact, Kali described in Section 2.8 could be used as a mutation-based defect

localization system as well. Our results indicate that the generated functionality

elimination patches can often help developers to pinpoint the root cause of a defect.

Indeed, if removing a statement or a branch can cause the defective program to pass

all test cases, the removed part is very likely to be the root cause of the defect.

9.4 Code Refactoring

SYDIT [66] and Lase [67] extract edit scripts from one (SYDIT) or more (Lase)

example edits. The script is a sequential list of modification operations that insert

statements or update existing statements. SYDIT and Lase then generate changes to

other code snippets in the same application with the goal of automating repetitive edits.

RASE [68] uses Lase edit scripts to refactor code clones. FixMeUp [100] works with

access control templates that implement policies for sensitive operations. Using these

templates, FixMeUp finds unprotected sensitive operations and inserts appropriate

checks. An analysis of the application can extract an application-specific template [99],

which FixMeUp can then apply across the same application. The inference algorithm

in Genesis differs in that it processes multiple patches from multiple applications to

derive generalized application-independent transforms that it can apply to fix bugs in

yet other applications. The Genesis transforms include generators so that transforms

can generate multiple candidate patches (as opposed to a single edit as in SYDIT,

Lase, and FixMeUp).
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9.5 Discussion

In general, Prophet and Genesis differ from many previous generate-and-validate

systems because these previous systems only rely on the information from the supplied

test cases with the goal of finding plausible (but not necessarily correct) patches

in a hand-coded search space. Prophet and Genesis automatically learn universal

properties and patching strategies of past successful patches to recognize and prioritize

correct patches among multiple plausible patches in an automatically inferred search

space. To the best of my knowledge, Prophet is the first generate-and-validate system

that learns a probabilistic model of correct patches. Genesis is the first generate-and-

validate system that automatically infers code transforms and search spaces from

human patches.
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Chapter 10

Conclusion

Automatic patch generation holds out the promise of automatically correcting software

defects without human interventions. Standard generate-and-validate systems formu-

late the patch generation as a search problem. Therefore such a system operates in a

completely different way than human developers. The system exhaustively enumerates

all candidate patches in its search space with its superior computation power, while

human developers often unconsciously apply certain software engineering patching

strategies to consider only those patches that exhibit certain properties of successful

code.

This dissertation presents a new automatic patch generation approach that com-

bines the superior computation power of machines with the sophisticated insights of

human developers. Specifically, this dissertation presents novel learning and inference

algorithms that extract universal patching strategies and universal properties from

past successful human patches. This dissertation also presents new generate-and-

validate frameworks that integrate the learned and inferred information into the patch

generation process. Powered by the automatically extracted human knowledge, our

two prototype systems, Prophet and Genesis, generate correct patches for significantly

more benchmark defects than previous generate-and-validate systems.

The experimental results in this dissertation are consistent with our hypotheses.

Correct patches across different applications share universal properties and patching

strategies that can be automatically learned from past successful human patches.

231



Our results demonstrate that the universal patching strategies and properties of

successful human patches, if appropriately extracted and integrated into an automatic

patch generation system, will significantly improve the capability of the system to

generate correct patches for new defects. Exploiting information of human patches

is a promising direction for automatic patch generation. The work presented in this

dissertation lays the foundation for future progress in this direction.

My work also demonstrates that the growing volume of programs is not just a

challenge but also a great opportunity. This opportunity enables new learning and

inference techniques such as Prophet and Genesis that were impossible before. Besides

patch generation, I believe the ideas of the presented learning and inference techniques

in this dissertation can be applied to other software engineering tasks such as program

synthesis and code refactoring. As the number of software programs continues to

grow, I expect automated programming techniques that exploit information of existing

programs will become more powerful in future.
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Appendix A

Prophet and SPR Results Per

Search Space Configuration

Tables A. 1-A.32 present the detailed experimental results. Each table presents the

results of SPR or Prophet on one search space configuration. The first column of

the table presents the defect id. The second column of the table presents the total

number of candidate patch templates in the search space. The third column presents

the number of patch templates that manipulate branch conditions. The fourth column

presents the total number of evaluated patch templates in 12 hours. The fifth column

presents the total number of evaluated condition patch templates during in 12 hours.

The sixth column presents the number of templates for which generate plausible

patches. The seventh column presents the number of condition templates for which

generate plausible patches. The eighth column presents the total number of plausible

patches the system finds in 12 hours. The ninth column presents the number of

plausible patches which manipulate branch conditions. The tenth column presents the

number of correct patches the system finds in 12 hours. The eleventh column presents

the rank of the template that generates the first correct patch in the search space. The

twelfth column presents the rank of the template among plausible templates. The last

column presents the rank of the correct patch among all generated plausible patches.
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Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 10949 3394 10949 3394 33 28 111 106 0 -
libtiff-5b0217-3dfb33 83937 19298 52303 16953 208 147 211 150 0 - - -
libtiff-d13be7-ccadf4 184068 141307 63046 58498 1423 1423 1703 1423 1 1093 1 1
lighttpd-2661-2662 34688 27541 34688 27541 70 8 73 11 0 - - -
lighttpd-1913-1914 32903 21707 32903 21707 4 4 4 4 0 - -

python-69934-69935 17828 5874 6501 4383 0 0 0 0 0 - - -
gmp-13420-13421 29703 5319 29703 5319 0 0 0 0 0 - - -
gzip-ald3d4-f17cbd 25303 7535 25303 7535 5 0 5 0 1 1135 1 1
python-70056-70059 22537 9353 4106 3644 0 0 0 0 0 - - -

fbc-5458-5459 4864 2144 4864 2144 26 26 46 35 2 19 1 1
libtiff-ee2ce5-b5691a 34863 25186 34863 25186 328 328 328 328 1 110 1 1
php-310991-310999 47688 11762 21206 9962 1 1 1 1 1 808 1 1
php-308734-308761 14 11 14 11 0 0 0 0 0 - -

php-308262-308315 22003 1869 5283 1869 0 0 0 0 0 150 - -
php-307562-307561 21252 4869 13996 4869 1 0 1 0 1 2221 1 1
php-309579-309580 41568 6890 19370 6890 2 2 2 2 1 288 1 1
php-310011-310050 34470 8642 2394 2082 63 13 69 23 1 640 13 21
php-309688-309716 47600 11980 2609 2540 71 71 95 95 1 2740 64 86
php-309516-309535 19142 4578 19142 4578 1 0 1 0 1 8851 1 1
php-307846-307853 13971 3009 13971 3009 1 0 1 0 1 8470 1 1
php-311346-311348 8096 3027 8096 3027 50 38 72 60 2 25 1 1
php-307914-307915 25707 7731 25707 7731 1 0 1 0 1 1 1 1
php-309111-309159 32541 6583 32541 6583 10 1 10 1 1 6838 9 9
php-309892-309910 8665 1432 8665 1432 21 17 26 22 4 161 1 1

Table A.1: Prophet-100 Statistics



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 10949 3394 10949 3394 29 24 56 51 0 - - -

libtiff-5bO217-3dfb33 83937 19298 1249 1112 146 146 3192 3192 0 - -
libtiff-d13be7-ccadf4 184068 141307 3938 3896 116 116 4540 4362 2 1093 1 1
lighttpd-2661-2662 34688 27541 34688 27541 78 16 109 47 0 - - -
lighttpd-1913-1914 32903 21707 32903 21707 4 4 12 12 0 - -
python-69934-69935 17828 5874 6501 4383 0 0 0 0 0 - - -
gmp-13420-13421 29703 5319 29703 5319 0 0 0 0 0 - - -
gzip-ald3d4-f17cbd 25303 7535 25303 7535 5 0 5 0 1 1135 1 1
python-70056-70059 22537 9353 4106 3644 0 0 0 0 0 - - -
fbc-5458-5459 4864 2144 4864 2144 23 23 98 71 0 19
libtiff-ee2ce5-b5691a 34863 25186 4576 4282 113 113 3889 3889 1 110 1 1
php-310991-310999 47688 11762 20995 9962 1 1 1 1 1 808 1 1
php-308734-308761 14 11 14 11 0 0 0 0 0 - - -

php-308262-308315 22003 1869 2019 1510 18 18 44 44 1 150 2 2
php-307562-307561 21252 4869 13736 4869 1 0 1 0 1 2221 1 1
php-309579-309580 41568 6890 15676 6890 11 11 38 38 1 288 6 12
php-310011-310050 34470 8642 2424 2082 71 7 76 14 1 640 7 9
php-309688-309716 47600 11980 538 501 2 2 96 96 0 2740 - -
php-309516-309535 19142 4578 19142 4578 1 0 1 0 1 8851 1 1
php-307846-307853 13971 3009 13971 3009 1 0 1 0 1 8470 1 1
php-311346-311348 8096 3027 1485 1397 5 5 101 101 1 25 1 1
php-307914-307915 25707 7731 25707 7731 1 0 1 0 1 1 1 1
php-309111-309159 32541 6583 32541 6583 10 1 10 1 1 6838 9 9
php-309892-309910 8665 1432 451 345 11 11 96 96 1 161 2 12

Table A.2: Prophet- 100-CExt Statistics



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 12718 3394 12718 3394 33 28 111 106 0
1ibtiff-5b0217-3dfb33 88613 19298 53568 16729 210 147 213 150 0 - -

libtiff-d13be7-ccadf4 186777 141307 60747 54316 1185 1185 1405 1185 1 1202 1 1
lighttpd-2661-2662 35810 27541 35810 27541 66 4 69 7 0 - - -

lighttpd-1913-1914 34917 21707 34917 21707 4 4 4 4 0 - -

python-69934-69935 18168 5874 6408 4339 0 0 0 0 0 - - -

gmp-1
3 4 2 0-1 3 4 2

1 49743 5319 49743 5319 0 0 0 0 0 - - -

gzip-ald3d4-fl7cbd 31251 7535 31251 7535 5 0 5 0 1 715 1 1
python-70056-70059 26398 9353 3950 3517 0 0 0 0 0 - - -

fbc-5458-5459 5938 2144 5938 2144 28 26 48 35 2 16 1 1
libtiff-ee2ce5-b5691a 37661 25186 37661 25186 328 328 328 328 1 149 1 1
php-310991-310999 48843 11762 19316 8758 1 1 1 1 1 1509 1 1
php-308734-308761 14 11 14 11 0 0 0 0 0 - -

php-308262-308315 22472 1869 2963 1648 4 3 6 5 1 206 1 1
php-307562-307561 21944 4869 14071 4869 1 0 1 0 1 2962 1 1
php-309579-309580 42322 6890 19229 6890 2 2 2 2 1 330 1 1
php-310011-310050 35256 8642 4112 3411 60 13 70 23 1 742 9 14
php-309688-309716 48118 11980 3019 2899 68 68 92 92 0 6827 -
php-309516-309535 21008 4578 21008 4578 1 0 1 0 1 9788 1 1
php-307846-307853 16435 3009 16435 3009 1 0 1 0 1 10250 1 1

php-311346-311348 8173 3027 8173 3027 51 38 73 60 2 17 1 1
php-307914-307915 27121 7731 27121 7731 1 0 1 0 1 1 1 1
php-309111-309159 34080 6583 34080 6583 10 1 10 1 1 8261 10 10

php-309892-309910 10855 1432 3184 1368 64 17 69 22 4 313 1 1

Table A.3: Prophet- 100-RExt Statistics



Search Space Evaluated Plausible Plausible C Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. In Space In Plausible in Plausible
gmp-14166-14167 12718 3394 12718 3394 29 24 56 51 0 - - -

libtiff-5b0217-3dfb33 88613 19298 1455 1325 146 146 3192 3192 0 - - -
libtiff-d13be7-ccadf4 186777 141307 4252 4207 115 115 4525 4347 2 1202 1 1
lighttpd-2661-2662 35810 27541 35810 27541 74 12 97 35 0 - - -
lighttpd-1913-1914 34917 21707 34917 21707 4 4 12 12 0 -
python-69934-69935 18168 5874 6402 4339 0 0 0 0 0 - - -

gmp-13420-13421 49743 5319 49743 5319 0 0 0 0 0 - - -
gzip-ald3d4-fl7cbd 31251 7535 31251 7535 5 0 5 0 1 715 1 1
python-70056-70059 26398 9353 3967 3517 0 0 0 0 0 - - -
fbc-5458-5459 5938 2144 5938 2144 25 23 100 71 0 16 - -
libtiff-ee2ce5-b5691a 37661 25186 5031 4747 113 113 3608 3608 1 149 1 1
php-310991-310999 48843 11762 20496 9251 1 1 1 1 1 1509 1 1
php-308734-308761 14 11 14 11 0 0 0 0 0 - - -

php-308262-308315 22472 1869 2163 1526 18 18 43 43 1 206 2 2
php-307562-307561 21944 4869 14132 4869 1 0 1 0 1 2962 1 1
php-309579-309580 42322 6890 15022 6890 11 11 38 38 1 330 6 12
php-310011-310050 35256 8642 4122 3411 58 7 64 14 1 742 7 9
php-309688-309716 48118 11980 920 857 2 2 92 92 0 6827 - -
php-309516-309535 21008 4578 21008 4578 1 0 1 0 1 9788 1 1
php-307846-307853 16435 3009 16435 3009 1 0 1 0 1 10250 1 1
php-311346-311348 8173 3027 1462 1363 5 5 106 106 1 17 1 1
php-307914-307915 27121 7731 27121 7731 1 0 1 0 1 1 1 1
php-309111-309159 34080 6583 34080 6583 10 1 10 1 1 8261 10 10
php-309892-309910 10855 1432 470 372 11 11 100 100 1 313 2 12

Table A.4: Prophet- 100-RExt-CExt Statistics

b.)



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible

gmp-14166-14167 39287 14161 39287 14161 34 28 112 106 0 -
Iibtiff-5b0217-3dfb33 221134 65017 64363 31834 247 149 250 152 0 50770 - -
libtiff-d13be7-ccadf4 296426 228659 70050 65731 1423 1423 1703 1423 1 1183 1 1

lighttpd-2661-2662 120263 98028 79882 67844 48 2 50 4 0 - - -

lighttpd-1913-1914 68199 48133 37214 30701 58 58 58 58 0 - -

python-69934-69935 47544 13775 6546 4750 0 0 0 0 0 - - -

gmp-13420-13421 50672 8763 50672 8763 3 0 3 0 2 14102 1 1
gzip-ald3d4-f17cbd 48702 15104 48702 15104 14 0 14 0 1 1929 1 1
python-70056-70059 39599 17961 4032 3645 0 0 0 0 0 - - -

fbc-5458-5459 9857 4495 9857 4495 37 37 61 46 2 33 1 1
libtiff-ee2ce5-b5691a 171379 106867 137262 103332 328 328 328 328 1 280 1 1

php-310991-310999 89230 18988 21250 11637 1 1 1 1 1 907 1 1

php-308734-308761 14692 4160 14692 4160 4 4 4 4 2 5376 1 1
php-308262-308315 90431 10845 8496 7508 3 3 5 5 1 1365 1 1
php-307562-307561 31597 6997 14698 6997 1 0 1 0 1 2672 1 1
php-309579-309580 60351 11416 23605 11416 2 2 2 2 1 767 1 1

php-310011-310050 77671 16558 4857 4556 63 13 69 23 1 1348 13 21
php-309688-309716 71633 15744 3310 3241 68 68 92 92 1 3465 61 83
php-309516-309535 27098 6314 27098 6314 1 0 1 0 1 10954 1 1
php-307846-307853 22131 4757 16871 4709 1 0 1 -0 1 10742 1 1
php-311346-311348 9799 3879 9799 3879 50 38 72 60 2 27 1 1
php-307914-307915 47988 15066 35684 15066 1 0 1 0 1 1 1 1
php-309111-309159 52908 12232 36533 11928 10 1 10 1 1 7701 9 9
php-309892-309910 40758 9999 13614 7118 21 17 26 22 4 462 1 1

Table A.5: Prophet-200 Statistics

00



Search Space Evaluated Plausible Plausible ' Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. atches In Space In Plausible in Plausible
gmp-14166-14167 39287 14161 39287 14161 30 24 57 51 0 - -
libtiff-5b0217-3dfb33 221134 65017 2054 1940 146 146 2776 2776 0 50770 - -
Iibtiff-d13be7-ccadf4 296426 228659 4679 4657 111 111 4308 4191 2 1183 1 1
lighttpd-2661-2662 120263 98028 77400 65714 55 10 75 30 0 - - -
lighttpd-1913-1914 68199 48133 22474 19567 56 56 160 160 0 - - -

python-69934-69935 47544 13775 6616 4760 0 0 0 0 0 - - -
gmp-13420-13421 50672 8763 50672 8763 3 0 3 0 2 14102 1 1
gzip-ald3d4-fl7cbd 48702 15104 48702 15104 14 0 14 0 1 1929 1 1
python-70056-70059 39599 17961 4464 4074 0 0 0 0 0 - - -
fbc-5458-5459 9857 4495 6132 3920 34 34 118 89 0 33 - -
libtiff-ee2ce5-b5691a 171379 106867 8258 7714 113 113 3458 3458 1 280 1 1
php-310991-310999 89230 18988 21436 11684 1 1 1 1 1 907 1 1
php-308734-308761 14692 4160 14692 4160 4 4 4 4 2 5376 1 1
php-308262-308315 90431 10845 7641 7304 15 15 36 36 1 1365 2 2
php-307562-307561 31597 6997 15277 6997 1 0 1 0 1 2672 1 1
php-309579-309580 60351 11416 18816 11416 11 11 38 38 1 767 6 11
php-310011-310050 77671 16558 4867 4556 61 7 69 14 1 1348 7 9
php-309688-309716 71633 15744 538 501 2 2 93 93 0 3465 - -
php-309516-309535 27098 6314 27098 6314 1 0 1 0 1 10954 1 1
php-307846-307853 22131 4757 16927 4709 1 0 1 0 1 10742 1 1
php-311346-311348 9799 3879 1799 1719 5 5 103 103 1 27 1 1
php-307914-307915 47988 15066 35979 15066 1 0 1 0 1 1 1 1
php-309111-309159 52908 12232 36614 11949 10 1 10 1 1 7701 9 9
php-309892-309910 40758 9999 1417 1316 11 11 89 89 1 462 2 10

Table A.6: Prophet-200-CExt Statistics



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible

gmp-14166-14167 61171 14161 53629 13793 33 28 111 106 0 - -

libtiff-5b0217-3dfb33 278857 65017 52657 22730 377 149 380 152 0 70740 - -
libtiff-d13be7-ccadf4 300745 228659 70497 63153 819 819 939 819 1 1321 1 1
lighttpd-2661-2662 124449 98028 78470 64364 62 0 62 0 0- -
lighttpd-1913-1914 70712 48133 35590 27952 54 54 54 54 0 - -

python-69934-69935 48560 13775 6699 4826 0 0 0 0 0 24090 - -
gmp-13420-13421 79763 8763 64198 8713 1 0 1 0 1 39181 1 1
gzip-ald3d4-f17cbd 58432 15104 58432 15104 14 0 14 0 1 1303 1 1
python-70056-70059 43598 17961 4428 4021 0 0 0 0 0 - - -

fbc-5458-5459 11828 4495 9775 4353 30 28 50 37 2 24 1 1
libtiff-ee2ce5-b5691a 190629 106867 119616 81875 328 328 328 328 1 408 1 1
php-310991-310999 90936 18988 21023 11071 1 1 1 1 1 1778 1 1
php-308734-308761 18784 4160 18784 4160 4 4 4 4 2 6242 1 1
php-308262-308315 92459 10845 8606 7477 4 3 6 5 1 1817 1 1
php-307562-307561 32546 6997 15557 6997 1 0 1 0 1 3481 1 1
php-309579-309580 61407 11416 22933 11416 2 2 2 2 1 603 1 1
php-310011-310050 78981 16558 6593 5934 52 24 66 41 1 1413 9 14
php-309688-309716 73424 15744 2177 2081 68 68 92 92 0 8488 - -
php-309516-309535 29514 6314 29514 6314 1 0 1 0 1 11765 1 1
php-307846-307853 25447 4757 18938 4661 1 0 1 0 1 12791 1 1
php-311346-311348 9978 3879 10051 3879 52 38 74 60 2 20 1 1
php-307914-307915 50442 15066 36291 15066 1 0 1 0 1 1 1 1
php-309111-309159 58903 12232 34193 11196 10 1 10 1 1 9220 10 10
php-309892-309910 52975 9999 7971 4457 35 17 40 22 4 938 1 1

Table A. 7: Prophet-200-RExt Statistics



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 61171 14161 55865 14057 29 24 56 51 0 - -

libtiff-5b0217-3dfb33 278857 65017 2032 1923 146 146 2806 2806 0 70740 - -
libtiff-d13be7-ccadf4 300745 228659 4825 4803 109 109 4279 4162 2 1321 1 1
lighttpd-2661-2662 124449 98028 77686 64125 64 10 81 27 0 - - -
lighttpd-1913-1914 70712 48133 23341 19172 55 55 155 155 0 - - -

python-69934-69935 48560 13775 6699 4826 0 0 0 0 0 24090 - -
gmp-13420-13421 79763 8763 63696 8713 1 0 1 0 1 39181 1 1
gzip-ald3d4-fl7cbd 58432 15104 58432 15104 14 0 14 0 1 1303 1 1
python-70056-70059 43598 17961 4385 3978 0 0 0 0 0 - - -

fbc-5458-5459 11828 4495 8182 4060 29 27 107 78 0 24 - -
libtiff-ee2ce5-b5691a 190629 106867 6895 6520 113 113 3429 3429 1 408 1 1
php-310991-310999 90936 18988 20884 11014 1 1 1 1 1 1778 1 1
php-308734-308761 18784 4160 18784 4160 4 4 4 4 2 6242 1 1
php-308262-308315 92459 10845 7422 7082 15 15 36 36 1 1817 2 2
php-307562-307561 32546 6997 15557 6997 1 0 1 0 1 3481 1 1
php-309579-309580 61407 11416 17325 11416 11 11 38 38 1 603 6 11
php-310011-310050 78981 16558 6623 5934 54 12 61 19 1 1413 7 9
php-309688-309716 73424 15744 920 857 2 2 91 91 0 8488 - -
php-309516-309535 29514 6314 29514 6314 1 0 1 0 1 11765 1 1
php-307846-307853 25447 4757 18964 4661 1 0 1 0 1 12791 1 1
php-311346-311348 9978 3879 1733 1643 5 5 105 105 1 20 1 1
php-307914-307915 50442 15066 36465 15066 1 0 1 0 1 1 1 1
php-309111-309159 58903 12232 33503 11036 10 1 10 1 1 9220 10 10
php-309892-309910 52975 9999 1413 1305 11 11 84 84 1 938 2 10

Table A.8: Prophet-200-RExt-CExt Statistics



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 59327 22055 49749 21743 33 28 111 106 0 - -

1ibtiff-5b0217-3dfb33 276142 85251 64841 32860 225 149 228 152 0 52950 -
libtiff-d13be7-ccadf4 568172 432083 76111 71854 1423 1423 1703 1423 1 1453 1 1
lighttpd-2661-2662 191579 159862 92356 80355 48 3 51 6 0 - - -
lighttpd-1913-1914 159739 114667 36479 30861 63 63 63 63 0 - -

python-69934-69935 65326 18300 7258 5562 0 0 0 0 0 - - -

gmp-13420-13421 69661 12794 61424 12794 9 5 9 5 2 14989 6 6
gzip-ald3d4-f17cbd 82349 18024 82349 18024 14 0 14 0 1 2250 1 1
python-70056-70059 58530 26327 4453 4155 0 0 0 0 0 - - -

fbc-5458-5459 16353 5416 10124 5416 28 28 48 37 2 33 1 1
libtiff-ee2ce5-b5691a 218252 142593 151378 118052 328 328 328 328 1 308 1 1
php-310991-310999 139311 31061 27055 18568 1 1 1 1 1 1396 1 1
php-308734-308761 30623 7437 13609 7432 4 4 4 4 2 7684 1 1
php-308262-308315 150963 19358 12615 11830 2 2 4 4 1 2046 1 1
php-307562-307561 60507 15748 18133 10420 1 0 1 0 1 4780 1 1
php-309579-309580 101940 17784 24749 17625 2 2 2 2 1 875 1 1
php-310011-310050 105542 23824 7441 7000 55 14 64 25 1 2203 14 23
php-309688-309716 95206 19747 528 501 68 68 90 90 1 3758 61 82
php-309516-309535 52377 12093 35403 11940 1 0 1 0 1 12002 1 1
php-307846-307853 40272 8051 16704 6229 3 2 4 3 1 12101 1 1
php-311346-311348 14543 5619 8465 5526 50 41 72 63 2 28 1 1
php-307914-307915 64378 20107 36206 18364 1 0 1 0 1 1 1 1
php-309111-309159 86627 22335 34642 13196 10 1 10 1 1 8749 9 9
php-309892-309910 62347 19484 16588 10223 21 17 26 22 4 532 1 1

Table A.9: Prophet-300 Statistics

IG



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 59327 22055 51701 21934 29 24 56 51 0 - - -

libtiff-5b0217-3dfb33 276142 85251 2433 2326 146 146 2794 2794 0 52950 - -
libtiff-d13be7-ccadf4 568172 432083 10788 10704 108 108 4237 4120 2 1453 1 1
lighttpd-2661-2662 191579 159862 90638 78887 59 14 80 35 0 - - -
lighttpd-1913-1914 159739 114667 22555 20308 57 57 160 160 0 42256 - -

python-69934-69935 65326 18300 7307 5579 0 0 0 0 0 - - -
gmp-13420-13421 69661 12794 60776 12794 7 3 22 18 2 14989 4 19
gzip-ald3d4-f17cbd 82349 18024 82349 18024 14 0 14 0 1 2250 1 1
python-70056-70059 58530 26327 4507 4200 0 0 0 0 0 1495 - -
fbc-5458-5459 16353 5416 6663 4350 34 34 118 89 0 33 - -
libtiff-ee2ce5-b5691a 218252 142593 9848 9310 113 113 3467 3467 1 308 1 1
php-310991-310999 139311 31061 27584 18695 1 1 1 1 1 1396 1 1
php-308734-308761 30623 7437 13646 7432 4 4 4 4 2 7684 1 1
php-308262-308315 150963 19358 12072 11728 10 10 26 26 1 2046 2 2
php-307562-307561 60507 15748 18148 10436 1 0 1 0 1 4780 1 1
php-309579-309580 101940 17784 18107 14178 11 11 38 38 1 875 6 12
php-310011-310050 105542 23824 7451 7000 57 7 61 14 1 2203 7 9
php-309688-309716 95206 19747 528 501 2 2 90 90 0 3758 - -
php-309516-309535 52377 12093 35698 11940 1 0 1 0 1 12002 1 1
php-307846-307853 40272 8051 15952 6206 5 4 12 11 1 12101 1 1
php-311346-311348 14543 5619 1923 1843 8 8 99 99 1 28 1 1
php-307914-307915 64378 20107 36360 18402 1 0 1 0 1 1 1 1
php-309111-309159 86627 22335 35676 13501 10 1 10 1 1 8749 9 9
php-309892-309910 62347 19484 1925 1845 11 11 81 81 1 532 2 10

Table A.10: Prophet-300-CExt Statistics

IQ



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 95751 22055 43517 13623 31 28 109 106 0 62583 -
iibtiff-5b0217-3dfb33 336808 85251 53883 23725 303 149 306 152 0 72938 - -

libtiff-dl3be7-ccadf4 573714 432083 76021 68438 556 556 609 556 1 1608 1 1
lighttpd-2661-2662 197676 159862 90518 76321 58 4 61 7 0 - - -
lighttpd-1913-1914 168946 114667 36761 29588 60 60 60 60 0 - -

python-69934-69935 66616 18300 7338 5570 0 0 0 0 0 26404 - -
gmp-13420-13421 107650 12794 65759 12094 9 5 9 5 1 40564 6 6
gzip-ald3d4-fl7cbd 100652 18024 102416 18024 14 0 14 0 1 1588 1 1
python-70056-70059 64192 26327 4479 4184 0 0 0 0 0 - -

fbc-5458-5459 18782 5416 9032 4753 32 30 52 39 2 24 1 1
libtiff-ee2ce5-b5691a 241707 142593 121791 85492 328 328 328 328 1 444 1 1
php-310991-310999 142164 31061 26773 17940 1 1 1 1 1 2939 1 1
php-308734-308761 36012 7437 14040 6893 4 4 4 4 2 8317 1 1
php-308262-308315 159696 19358 12721 11808 2 2 4 4 1 2694 1 1
php-307562-307561 64392 15748 17926 10160 1 0 1 0 1 5763 1 1
php-309579-309580 103151 17784 24041 16881 2 2 2 2 1 749 1 1
php-310011-310050 107479 23824 9297 8378 44 25 62 43 1 2233 10 16
php-309688-309716 97372 19747 900 857 68 68 88 88 0 9296 - -
php-309516-309535 56549 12093 35228 11710 1 0 1 0 1 12585 1 1
php-307846-307853 44992 8051 19506 6176 3 2 4 3 1 14098 1 1
php-311346-311348 14889 5619 8610 5526 50 41 72 63 2 21 1 1
php-307914-307915 67286 20107 36344 17795 1 0 1 0 1 1 1 1
php-309111-309159 102384 22335 32495 12321 10 1 10 1 1 10350 10 10
php-309892-309910 74780 19484 11247 7175 28 17 33 22 4 1194 1 1

Table A. 11: Prophet-300-RExt Statistics



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible

gmp-14166-14167 95751 22055 45224 14092 27 24 54 51 0 62583 -
libtiff-5b0217-3dfb33 336808 85251 2369 2261 146 146 2848 2848 0 72938 -
libtiff-d13be7-ccadf4 573714 432083 11655 11585 107 107 4205 4088 2 1608 1 1
lighttpd-2661-2662 197676 159862 90748 76551 57 3 59 5 0 - - -

lighttpd-1913-1914 168946 114667 23858 20291 54 54 149 149 0 46828 --

python-69934-69935 66616 18300 7948 5824 0 0 0 0 0 26404 - -
gmp-13420-13421 107650 12794 65438 12094 4 3 19 18 1 40564 4 19

gzip-ald3d4-f17cbd 100652 18024 102416 18024 14 0 14 0 1 1588 1 1

python-70056-70059 64192 26327 4479 4184 0 0 0 0 0 1570 - -

fbc-5458-5459 18782 5416 7041 4022 33 31 113 84 0 24 - -
libtiff-ee2ce5-b5691a 241707 142593 8496 8118 113 113 3425 3425 1 444 1 1
php-310991-310999 142164 31061 26306 17900 1 1 1 1 1 2939 1 1
php-308734-308761 36012 7437 13969 6893 4 4 4 4 2 8317 1 1
php-308262-308315 159696 19358 11843 11506 10 10 25 25 1 2694 2 2
php-307562-307561 64392 15748 17976 10160 1 0 1 0 1 5763 1 1
php-309579-309580 103151 17784 17004 12979 11 11 38 38 1 749 6 12
php-310011-310050 107479 23824 9327 8378 50 12 60 19 1 2233 7 9

php-309688-309716 97372 19747 900 857 2 2 88 88 0 9296 - -
php-309516-309535 56549 12093 34931 11710 1 0 1 0 1 12585 1 1

php-307846-307853 44992 8051 19371 6176 4 3 5 4 1 14098 1 1

php-311346-311348 14889 5619 1883 1795 8 8 102 102 1 21 1 1
php-307914-307915 67286 20107 36699 17978 1 0 1 0 1 1 1 1
php-309111-309159 102384 22335 32398 12291 10 1 10 1 1 10350 10 10
php-309892-309910 74780 19484 1925 1845 11 11 86 86 1 1194 2 10

Table A.12: Prophet-300-RExt-CExt Statistics



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible

gmp-14166-14167 448318 141182 43569 22779 31 28 109 106 0 - -

1ibtiff-5b0217-3dfb33 1941177 1352092 83094 59078 182 149 185 152 0 91329 - -
ibtiff-d13be7-ccadf4 2353240 1771135 113514 106810 416 416 431 416 1 2820 1 1

lighttpd-2661-2662 1269307 1016413 120469 107039 46 10 54 18 0 1197010 - -
lighttpd-1913-1914 1183286 935121 59987 56385 51 51 51 51 0 - -

python-69934-69935 863452 386935 39078 29758 0 0 0 0 0 - - -

gmp-13420-13421 389124 104714 60147 20342 8 5 8 5 1 22027 6 6
gzip-ald3d4-f17cbd 341681 92972 137970 43616 16 0 16 0 2 4299 1 1
python-70056-70059 526778 236707 4555 4551 0 0 0 0 0 - - -

fbc-5458-5459 16353 5416 8882 5169 28 28 47 36 2 33 1 1
libtiff-ee2ce5-b5691a 3237374 2609366 145761 129703 328 328 328 328 1 2601 1 1
php-310991-310999 783770 185001 56088 55384 1 1 1 1 1 8294 1 1
php-308734-308761 440926 151934 43304 38805 0 0 0 0 0 45726 - -
php-308262-308315 637558 192659 57001 56034 1 1 2 2 1 8304 1 1
php-307562-307561 637588 163053 59252 53402 1 0 1 0 1 34355 1 1
php-309579-309580 621880 198376 65289 59970 2 2 2 2 1 7010 1 1
php-310011-310050 582198 162849 653 653 0 0 0 0 0 13331 - -
php-309688-309716 609953 191952 30720 30659 34 34 35 35 0 34218 - -
php-309516-309535 496992 136030 33781 27530 0 0 0 0 0 41978 - -
php-307846-307853 477171 130366 32604 26252 0 0 0 0 0 43891 - -

php-311346-311348 1030763 123671 6068 6068 38 38 45 45 2 303 1 1
php-307914-307915 539078 175191 55905 49061 1 0 1 0 1 1 1 1
php-309111-309159 513188 178631 56649 49491 8 1 8 1 0 31831 - -
php-309892-309910 498669 177309 48111 46807 17 17 22 22 3 5300 1 1

Table A.13: Prophet-2000 Statistics

I Q



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 448318 141182 45987 23728 27 24 54 51 0 - -
1ibtiff-5b0217-3dfb33 1941177 1352092 21932 21903 111 111 2276 2276 0 91329 - -
libtiff-d13be7-ccadf4 2353240 1771135 34658 34608 103 103 3559 3446 2 2820 1 1
lighttpd-2661-2662 1269307 1016413 115409 103056 57 23 92 58 0 1197010 - -
lighttpd-1913-1914 1183286 935121 57046 54412 40 40 108 108 0 81194 -
python-69934-69935 863452 386935 34011 28504 0 0 0 0 0 - - -
gmp-13420-13421 389124 104714 58786 20230 6 3 21 18 1 22027 4 19
gzip-ald3d4-f17cbd 341681 92972 137153 43377 16 0 16 0 2 4299 1 1
python-70056-70059 526778 236707 5424 5420 0 0 0 0 0 7689 - -
fbc-5458-5459 16353 5416 6663 4350 34 34 118 89 0 33 - -
libtiff-ee2ce5-b5691a 3237374 2609366 53567 53119 101 101 1964 1964 1 2601 1 1
php-310991-310999 783770 185001 56048 55384 1 1 1 1 1 8294 1 1
php-308734-308761 440926 151934 43302 38805 0 0 0 0 0 45726 - -
php-308262-308315 637558 192659 15637 15631 9 9 19 19 1 8304 2 2
php-307562-307561 637588 163053 60720 53760 1 0 1 0 1 34355 1 1
php-309579-309580 621880 198376 33743 33664 11 11 38 38 1 7010 6 11
php-310011-310050 582198 162849 653 653 0 0 0 0 0 13331 - -
php-309688-309716 609953 191952 7138 7121 13 13 40 40 0 34218 - -
php-309516-309535 496992 136030 34112 27593 0 0 0 0 0 41978 - -
php-307846-307853 477171 130366 32634 26252 0 0 0 0 0 43891 - -
php-311346-311348 1030763 123671 6068 6068 3 3 45 45 1 303 1 1
php-307914-307915 539078 175191 56054 49117 1 0 1 0 1 1 1 1
php-309111-309159 513188 178631 56630 49491 8 1 8 1 0 31831 - -
php-309892-309910 498669 177309 33432 33262 0 0 0 0 0 5300 - -

Table A.14: Prophet-2000-CExt Statistics

I~Q

-KJ



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 780425 141182 35880 14864 30 28 108 106 0 87034 -
Iibtiff-5b0217-3dfb33 2027218 1352092 71298 51369 154 149 157 152 0 112099 -
libtiff-d13be7-ccadf4 2414317 1771135 113033 104624 416 416 431 416 1 4324 1 1
lighttpd-2661-2662 1290186 1016413 110266 95506 60 11 68 19 0 1217473 - -
lighttpd-1913-1914 1206699 935121 60268 55919 48 48 48 48 0 - --

python-69934-69935 937134 386935 34097 28463 0 0 0 0 0 55996 - -
gmp-13420-13421 823835 104714 61757 17041 6 5 6 5 1 48675 6 6
gzip-ald3d4-fl7cbd 399573 92972 127371 34577 14 0 14 0 1 6336 2 2
python-70056-70059 573639 236707 5114 5110 0 0 0 0 0 - - -

fbc-5458-5459 18782 5416 9052 4762 36 34 56 43 2 24 1 1
Iibtiff-ee2ce5-b5691a 3311995 2609366 126968 113041 328 328 328 328 1 4478 1 1
php-310991-310999 802073 185001 45417 44536 1 1 1 1 1 19354 1 1
php-308734-308761 464785 151934 43563 38707 0 0 0 0 0 46137 - -
php-308262-308315 658758 192659 58189 56960 1 1 2 2 1 8635 1 1
php-307562-307561 651312 163053 60650 53423 0 0 0 0 0 38971 - -
php-309579-309580 629763 198376 64486 59261 2 2 2 2 1 8104 1 1
php-310011-310050 599295 162849 666 666 0 0 0 0 0 16975 - -
php-309688-309716 621923 191952 47000 46831 31 31 32 32 0 46337 - -
php-309516-309535 561904 136030 34972 27427 0 0 0 0 0 42385 - -
php-307846-307853 541823 130366 32871 26033 0 0 0 0 0 45315 - -
php-311346-311348 1404751 123671 5524 5524 38 38 43 43 2 411 1 1
php-307914-307915 549783 175191 55642 48600 1 0 1 0 1 3 1 1
php-309111-309159 539576 178631 58288 50205 1 1 1 1 0 39224 -
php-309892-309910 520768 177309 46811 45988 17 17 22 22 3 15340 1 1

Table A.15: Prophet-2000-RExt Statistics

00



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 780425 141182 39259 15947 27 24 54 51 0 87034 -
libtiff-5b0217-3dfb33 2027218 1352092 22673 22656 111 111 2178 2178 0 112099 - -
libtiff-d13be7-ccadf4 2414317 1771135 37308 37266 93 93 3371 3258 2 4324 1 1
lighttpd-2661-2662 1290186 1016413 104869 90483 69 23 102 56 0 1217473 - -
lighttpd-1913-1914 1206699 935121 57257 54013 42 42 109 109 0 86441 -
python-69934-69935 937134 386935 34092 28463 0 0 0 0 0 55996 - -
gmp-13420-13421 823835 104714 60747 16845 4 3 19 18 1 48675 4 19
gzip-ald3d4-f17cbd 399573 92972 127959 34611 14 0 14 0 1 6336 2 2
python-70056-70059 573639 236707 5048 5044 0 0 0 0 0 8292 - -
fbc-5458-5459 18782 5416 6972 4007 36 34 120 89 0 24 - -
libtiff-ee2ce5-b5691a 3311995 2609366 48940 48555 90 90 1952 1952 1 4478 1 1
php-310991-310999 802073 185001 45417 44536 1 1 1 1 1 19354 1 1
php-308734-308761 464785 151934 43596 38707 0 0 0 0 0 46137 - -
php-308262-308315 658758 192659 14190 14158 9 9 21 21 1 8635 2 2
php-307562-307561 651312 163053 60650 53423 0 0 0 0 0 38971 - -
php-309579-309580 629763 198376 35100 34932 11 11 38 38 1 8104 6 11
php-310011-310050 599295 162849 666 666 0 0 0 0 0 16975 - -
php-309688-309716 621923 191952 7147 7120 13 13 40 40 0 46337 -
php-309516-309535 561904 136030 34838 27396 0 0 0 0 0 42385 -
php-307846-307853 541823 130366 32846 26033 0 0 0 0 0 45315 -
php-311346-311348 1404751 123671 5524 5524 3 3 42 42 1 411 1 1
php-307914-307915 549783 175191 55601 48600 1 0 1 0 1 3 1 1
php-309111-309159 539576 178631 58271 50205 1 1 1 1 0 39224 - -
php-309892-309910 520768 177309 11497 11492 11 11 39 39 1 15340 1 1

Table A.16: Prophet-2000-RExt-CExt Statistics

I0Q



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 10949 3394 10949 3394 33 28 111 106 0
libtiff-5b0217-3dfb33 83937 19298 64840 19298 174 147 177 150 0 - - -
libtiff-d13be7-ccadf4 184068 141307 45961 45374 1723 1723 2003 1723 1 2408 3 3
lighttpd-2661-2662 34688 27541 34688 27541 70 8 73 11 0 - - -

lighttpd-1913-1914 32903 21707 32903 21707 4 4 4 4 0 - -

python-69934-69935 17828 5874 6960 4981 0 0 0 0 0 - - -

gmp-13420-13421 29703 5319 29703 5319 0 0 0 0 0 - - -

gzip-ald3d4-f17cbd 25303 7535 25303 7535 5 0 5 0 1 12083 4 4
python-70056-70059 22537 9353 4254 3971 0 0 0 0 0 - - -

fbc-5458-5459 4864 2144 4864 2144 26 26 46 35 2 273 8 11
libtiff-ee2ce5-b5691a 34863 25186 34863 25186 328 328 328 328 1 3692 1 1
php-310991-310999 47688 11762 27894 11762 2 2 2 2 2 1348 1 1
php-308734-308761 14 11 14 11 0 0 0 0 0 - -

php-308262-308315 22003 1869 5933 1869 0 0 0 0 0 2176 - -
php-307562-307561 21252 4869 11682 4869 1 0 1 0' 1 3224 1 1
php-309579-309580 41568 6890 22390 6890 2 2 2 2 1 46 1 1
php-310011-310050 34470 8642 4739 3465 52 6 54 9 0 13476 - -
php-309688-309716 47600 11980 7073 5111 65 64 67 66 0 5240 - -
php-309516-309535 19142 4578 19142 4578 1 0 1 0 1 2584 1 1
php-307846-307853 13971 3009 13971 3009 1 0 1 0 1 2570 1 1
php-311346-311348 8096 3027 8096 3027 50 38 72 60 2 465 1 1
php-307914-307915 25707 7731 25707 7731 1 0 1 0 1 3135 1 1
php-309111-309159 32541 6583 22565 6583 10 1 10 1 1 15538 10 10
php-309892-309910 8665 1432 8665 1432 21 17 26 22 4 92 1 1

Table A.17: SPR-100 Statistics

t--,)



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 10949 3394 10949 3394 29 24 56 51 0 - - -

libtiff-5b0217-3dfb33 83937 19298 13487 5683 162 162 2879 2879 0 - - -
libtiff-d13be7-ccadf4 184068 141307 5269 5269 247 247 4450 4450 2 2408 5 104
lighttpd-2661-2662 34688 27541 34688 27541 78 16 109 47 0 - - -
lighttpd-1913-1914 32903 21707 32903 21707 4 4 12 12 0 - - -

python-69934-69935 17828 5874 6963 4984 0 0 0 0 0 - - -
gmp-13420-13421 29703 5319 29703 5319 0 0 0 0 0 - - -
gzip-ald3d4-fl7cbd 25303 7535 25303 7535 5 0 5 0 1 12083 4 4
python-70056-70059 22537 9353 4773 4353 0 0 0 0 0 - - -
fbc-5458-5459 4864 2144 4864 2144 23 23 98 71 0 273 - -

libtiff-ee2ce5-b5691a 34863 25186 4828 4185 101 101 3829 3829 1 3692 1 1
php-310991-310999 47688 11762 27444 11762 2 2 2 2 2 1348 1 1
php-308734-308761 14 11 14 11 0 0 0 0 0 - - -

php-308262-308315 22003 1869 2416 784 12 12 34 34 1 2176 12 25
php-307562-307561 21252 4869 11831 4869 1 0 1 0 1 3224 1 1
php-309579-309580 41568 6890 15680 6890 11 11 38 38 1 46 1 1
php-310011-310050 34470 8642 4739 3465 52 6 58 13 0 13476 - -
php-309688-309716 47600 11980 6235 4276 15 14 70 69 0 5240 - -
php-309516-309535 19142 4578 19142 4578 1 0 1 0 1 2584 1 1
php-307846-307853 13971 3009 13971 3009 1 0 1 0 1 2570 1 1
php-311346-311348 8096 3027 1030 1022 31 30 102 101 2 465 1 1
php-307914-307915 25707 7731 25707 7731 1 0 1 0 1 3135 1 1
php-309111-309159 32541 6583 22886 6583 10 1 10 1 1 15538 10 10
php-309892-309910 8665 1432 353 187 11 11 97 97 1 92 1 1

Table A.18: SPR-100-CExt Statistics

c-fl
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Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 12718 3394 12718 3394 33 28 111 106 0 - -

Iibtiff-5b0217-3dfb33 88613 19298 68340 19298 174 147 177 150 0 - - -
libtiff-dl3be7-ccadf4 186777 141307 160494 141307 1723 1723 2003 1723 1 2117 3 3
lighttpd-2661-2662 35810 27541 35810 27541 66 4 66 4 0 - - -
lighttpd-1913-1914 34917 21707 34917 21707 4 4 4 4 0 - - -

python-69934-69935 18168 5874 7329 5320 0 0 0 0 0 - - -
gmp-13420-13421 49743 5319 49743 5319 0 0 0 0 0 - - -
gzip-ald3d4-f17cbd 31251 7535 31251 7535 5 0 5 0 1 17958 4 4
python-70056-70059 26398 9353 4794 4365 0 0 0 0 0 - - -

fbc-5458-5459 5938 2144 5938 2144 28 26 48 35 2 264 8 11
libtiff-ee2ce5-b5691a 37661 25186 37661 25186 328 328 328 328 1 3680 1 1
php-310991-310999 48843 11762 27311 11762 2 2 2 2 2 1289 1 1
php-308734-308761 14 11 14 11 0 0 0 0 0 - -

php-308262-308315 22472 1869 3304 1211 2 2 4 4 1 2177 2 3
php-307562-307561 21944 4869 11937 4869 1 0 1 0 1 3227 1 1
php-309579-309580 42322 6890 22265 6890 2 2 2 2 1 46 1 1
php-310011-310050 35256 8642 4689 3465 52 6 55 9 0 14262 - -
php-309688-309716 48118 11980 7083 5111 63 62 64 63 1 5240 34 35
php-309516-309535 21008 4578 21008 4578 1 0 1 0 1 2583 1 1
php-307846-307853 16435 3009 16435 3009 1 0 1 0 1 2616 1 1
php-311346-311348 8173 3027 8173 3027 51 38 73 60 2 455 1 1
php-307914-307915 27121 7731 27121 7731 1 0 1 0 1 3135 1 1
php-309111-309159 34080 6583 23959 6583 10 1 10 1 1 17075 8 8
php-309892-309910 10855 1432 2556 1432 69 17 74 22 3 224 1 1

Table A.19: SPR-100-RExt Statistics

ND



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 12718 3394 12718 3394 29 24 56 51 0 - - -

libtiff-5b0217-3dfb33 88613 19298 10264 5607 136 136 2721 2721 0 - - -

libtiff-d13be7-ccadf4 186777 141307 5269 5269 232 232 4350 4350 2 2117 5 104
lighttpd-2661-2662 35810 27541 35810 27541 74 12 97 35 0 - - -
lighttpd-1913-1914 34917 21707 34917 21707 4 4 12 12 0 - - -

python-69934-69935 18168 5874 7047 5066 0 0 0 0 0 - - -

gmp-13420-13421 49743 5319 49743 5319 0 0 0 0 0 - - -
gzip-ald3d4-f17cbd 31251 7535 31251 7535 5 0 5 0 1 17958 4 4
python-70056-70059 26398 9353 4825 4365 0 0 0 0 0 - - -
fbc-5458-5459 5938 2144 5938 2144 25 23 100 71 0 264 - -
libtiff-ee2ce5-b5691a 37661 25186 4765 4121 101 101 3851 3851 1 3680 1 1
php-310991-310999 48843 11762 27441 11762 2 2 2 2 2 1289 1 1
php-308734-308761 14 11 14 11 0 0 0 0 0 - - -

php-308262-308315 22472 1869 2416 784 16 16 39 39 1 2177 12 25
php-307562-307561 21944 4869 11967 4869 1 0 1 0 1 3227 1 1
php-309579-309580 42322 6890 15360 6890 11 11 38 38 1 46 1 1
php-310011-310050 35256 8642 4679 3465 48 6 53 13 0 14262 - -
php-309688-309716 48118 11980 6235 4276 15 14 68 67 0 5240 - -
php-309516-309535 21008 4578 21008 4578 1 0 1 0 1 2583 1 1
php-307846-307853 16435 3009 16435 3009 1 0 1 0 1 2616 1 1
php-311346-311348 8173 3027 1040 1022 32 30 105 103 2 455 1 1
php-307914-307915 '27121 7731 27121 7731 1 0 1 0 1 3135 1 1
php-309111-309159 34080 6583 23843 6583 10 1 10 1 1 17075 8 8
php-309892-309910 10855 1432 353 187 11 11 102 102 1 224 1 1

Table A.20: SPR-100-RExt-CExt Statistics



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 39287 14161 33154 14161 34 28 112 106 0 - - -
libtiff-5b0217-3dfb33 221134 65017 107534 65017 237 149 240 152 1 56644 208 211
libtiff-d13be7-ccadf4 296426 228659 230917 214697 1723 1723 2003 1723 1 372 3 3
lighttpd-2661-2662 120263 98028 105423 98028 52 4 55 7 0 - - -

lighttpd-1913-1914 68199 48133 45191 40674 55 55 55 55 0 - -

python-69934-69935 47544 13775 11024 8634 0 0 0 0 0 - - -

gmp-13420-13421 50672 8763 50672 8763 3 0 3 0 2 14645 1 1
gzip-ald3d4-f17cbd 48702 15104 48702 15104 14 0 14 0 1 21926 4 4
python-70056-70059 39599 17961 4126 3652 0 0 0 0 0 - - -

fbc-5458-5459 9857 4495 9791 4495 37 37 61 46 2 454 8 11
libtiff-ee2ce5-b5691a 171379 106867 14068 13454 15 15 15 15 1 13296 1 1
php-310991-310999 89230 18988 31084 16653 2 2 2 2 2 384 1 1
php-308734-308761 14692 4160 14692 4160 4 4 4 4 2 5771 1 1
php-308262-308315 90431 10845 9137 8516 0 0 0 0 0 7191 - -
php-307562-307561 31597 6997 13425 6997 1 0 1 0 1 4918 1 1
php-309579-309580 60351 11416 25400 11416 2 2 2 2 1 46 1 1
php-310011-310050 77671 16558 8160 7316 32 32 49 49 0 30647 - -
php-309688-309716 71633 15744 10699 6516 31 30 32 31 0 8398 - -
php-309516-309535 27098 6314 27098 6314 1 0 1 0 1 4000 1 1
php-307846-307853 22131 4757 21654 4757 1 0 1 0 1 3867 1 1
php-311346-311348 9799 3879 9799 3879 50 38 72 60 2 312 1 1
php-307914-307915 47988 15066 43285 15066 1 0 1 0 1 5748 1 1
php-309111-309159 52908 12232 29459 12232 10 1 10 1 1 24347 10 10
php-309892-309910 40758 9999 17455 9999 17 17 22 22 3 179 1 1

Table A.21: SPR-200 Statistics

-)1



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 39287 14161 34474 14161 30 24 57 51 0 - - -

libtiff-5b0217-3dfb33 221134 65017 13644 8420 111 111 2604 2604 0 56644 - -
libtiff-d13be7-ccadf4 296426 228659 13486 13486 225 225 4240 4240 2 372 5 104
lighttpd-2661-2662 120263 98028 105296 98028 36 12 57 33 0 - - -
lighttpd-1913-1914 68199 48133 41374 37396 49 49 125 125 0 - -
python-69934-69935 47544 13775 11862 9464 0 0 0 0 0 - - -
gmp-13420-13421 50672 8763 50672 8763 3 0 3 0 2 14645 1 1
gzip-ald3d4-f17cbd 48702 15104 48702 15104 14 0 14 0 1 21926 4 4
python-70056-70059 39599 17961 4364 3836 0 0 0 0 0 - -
fbc-5458-5459 9857 4495 7000 4495 34 34 120 89 0 454 - -
libtiff-ee2ce5-b5691a 171379 106867 16480 14448 101 101 3603 3603 1 13296 1 1
php-310991-310999 89230 18988 31084 16653 2 2 2 2 2 384 1 1
php-308734-308761 14692 4160 14692 4160 4 4 4 4 2 5771 1 1
php-308262-308315 90431 10845 9167 8516 0 0 0 0 0 7191 - -
php-307562-307561 31597 6997 13565 6997 1 0 1 0 1 4918 1 1
php-309579-309580 60351 11416 17487 11416 11 11 38 38 1 46 1 1
php-310011-310050 77671 16558 10005 7386 21 20 38 37 0 30647 - -
php-309688-309716 71633 15744 9861 5681 15 14 38 37 0 8398 - -
php-309516-309535 27098 6314 27098 6314 1 0 1 0 1 4000 1 1
php-307846-307853 22131 4757 21674 4757 1 0 1 0 1 3867 1 1
php-311346-311348 9799 3879 1329 1319 31 30 104 103 2 312 1 1
php-307914-307915 47988 15066 43355 15066 1 0 1 0 1 5748 1 1
php-309111-309159 52908 12232 29464 12232 10 1 10 1 1 24347 10 10
php-309892-309910 40758 9999 4986 4931 11 11 92 92 1 179 1 1

Table A.22: SPR-200-CExt Statistics
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Search Space Evaluated Plausible Plausible Correct Correct

Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible

gmp-14166-14167 61171 14161 50781 14161 33 28 111 106 0 - - -

ibtiff-5b0217-3dfb33 278857 65017 104524 65017 1164 149 1167 152 1 56646 209 212
libtiff-d13be7-ccadf4 300745 228659 226189 210869 1723 1723 2003 1723 1 6080 3 3
lighttpd-2661-2662 124449 98028 108906 98028 9 3 10 4 0 - -

lighttpd-1913-1914 70712 48133 45056 40544 55 55 55 55 0 - -

python-69934-69935 48560 13775 11024 8634 0 0 0 0 0 24561 -
gmp-13420-13421 79763 8763 74674 8763 2 0 2 0 2 40506 1 1
gzip-ald3d4-f17cbd 58432 15104 58432 15104 14 0 14 0 1 31657 4 4
python-70056-70059 43598 17961 4364 3836 0 0 0 0 0 - - -

fbc-5458-5459 11828 4495 10288 4495 39 37 63 46 2 573 8 11

libtiff-ee2ce5-b5691a 190629 106867 167664 106867 328 328 328 328 1 13296 1 1
php-310991-310999 90936 18988 30573 16385 2 2 2 2 2 403 1 1
php-308734-308761 18784 4160 18784 4160 4 4 4 4 2 5728 1 1
php-308262-308315 92459 10845 9197 8516 0 0 0 0 0 7366 - -
php-307562-307561 32546 6997 13573 6997 1 0 1 0 1 4918 1 1
php-309579-309580 61407 11416 24205 11416 2 2 2 2 1 46 1 1
php-310011-310050 78981 16558 7960 7316 32 32 49 49 0 31956 - -
php-309688-309716 73424 15744 10699 6516 32 31 33 32 0 8398 - -
php-309516-309535 29514 6314 29514 6314 1 0 1 0 1 3999 1 1
php-307846-307853 25447 4757 24349 4757 1 0 1 0 1 3868 1 1
php-311346-311348 9978 3879 9568 3879 52 38 74 60 2 312 1 1

php-307914-307915 50442 15066 44514 15066 1 0 1 0 1 5748 1 1
php-309111-309159 58903 12232 32717 12232 10 1 10 1 1 30340 10 10

php-309892-309910 52975 9999 17434 9999 17 17 22 22 3 716 1 1

Table A.23: SPR-200-RExt Statistics
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Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 61171 14161 51587 14161 29 24 56 51 0 - - -

libtiff-5b0217-3dfb33 278857 65017 12964 8420 111 111 2604 2604 0 56646 - -
libtiff-d13be7-ccadf4 300745 228659 13486 13486 232 232 4329 4329 2 6080 5 104
lighttpd-2661-2662 124449 98028 108266 98028 10 4 16 10 0 - - -

lighttpd-1913-1914 70712 48133 41374 37396 48 48 123 123 0 - - -

python-69934-69935 48560 13775 11024 8634 0 0 0 0 0 24561 - -
gmp-13420-13421 79763 8763 74666 8763 2 0 2 0 2 40506 1 1
gzip-ald3d4-f17cbd 58432 15104 58432 15104 14 0 14 0 1 31657 4 4
python-70056-70059 43598 17961 4364 3836 0 0 0 0 0 - - -

fbc-5458-5459 11828 4495 6799 4495 34 34 120 89 0 573 - -
libtiff-ee2ce5-b5691a 190629 106867 16480 14448 101 101 3591 3591 1 13296 1 1
php-310991-310999 90936 18988 30423 16385 2 2 2 2 2 403 1 1
php-308734-308761 18784 4160 18784 4160 4 4 4 4 2 5728 1 1
php-308262-308315 92459 10845 9197 8516 0 0 0 0 0 7366 - -
php-307562-307561 32546 6997 13518 6997 1 0 1 0 1 4918 1 1
php-309579-309580 61407 11416 14155 8539 11 11 36 36 1 46 1 1
php-310011-310050 78981 16558 9895 7316 21 20 38 37 0 31956 - -
php-309688-309716 73424 15744 9861 5681 15 14 35 34 0 8398 - -
php-309516-309535 29514 6314 29514 6314 1 0 1 0 1 3999 1 1
php-307846-307853 25447 4757 24329 4757 1 0 1 0 1 3868 1 1
php-311346-311348 9978 3879 1329 1319 31 30 105 104 2 312 1 1
php-307914-307915 50442 15066 44544 15066 1 0 1 0 1 5748 1 1
php-309111-309159 58903 12232 33002 12232 10 1 10 1 1 30340 10 10
php-309892-309910 52975 9999 4986 4931 11 11 89 89 1 716 1 1

Table A.24: SPR-200-RExt-CExt Statistics
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Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 59327 22055 41316 22055 34 28 112 106 0 - - -
Iibtiff-5b0217-3dfb33 276142 85251 123778 85251 237 149 240 152 1 59068 206 209
fibtiff-d13be7-ccadf4 568172 432083 250826 237142 1723 1723 2003 1723 1 6126 3 3
lighttpd-2661-2662 191579 159862 119941 113050 10 5 13 8 0 - - -
lighttpd-1913-1914 159739 114667 37901 34739 32 32 32 32 0 - -

python-69934-69935 65326 18300 11022 8243 0 0 0 0 0 - -
gmp-13420-13421 69661 12794 58934 12794 15 5 15 5 2 20779 6 6
gzip-ald3d4-f17cbd 82349 18024 82349 18024 14 0 14 0 1 30814 4 4
python-70056-70059 58530 26327 5006 4985 0 0 0 0 0 - - -

fbc-5458-5459 16353 5416 9850 5416 37 37 61 46 2 299 5 6
libtiff-ee2ce5-b5691a 218252 142593 203493 142593 328 328 328 328 1 20674 1 1
php-310991-310999 139311 31061 31955 19597 2 2 2 2 2 2256 1 1
php-308734-308761 30623 7437 20855 7437 4 4 4 4 2 7493 1 1
php-308262-308315 150963 19358 14708 14158 0 0 0 0 0 10111 - -
php-307562-307561 60507 15748 18574 11458 1 0 1 0 1 10019 1 1
php-309579-309580 101940 17784 23578 15481 2 2 2 2 1 46 1 1
php-310011-310050 105542 23824 10543 10543 37 37 55 55 0 41309 - -
php-309688-309716 95206 19747 13260 7432 7 6 8 7 0 10803 - -
php-309516-309535 52377 12093 40324 12093 1 0 1 0 1 4695 1 1
php-307846-307853 40272 8051 20723 8051 3 2 4 3 1 5909 1 1
php-311346-311348 14543 5619 8568 5619 52 41 74 63 2 741 4 4
php-307914-307915 64378 20107 45432 20107 1 0 1 0 1 8122 1 1
php-309111-309159 86627 22335 41971 22335 2 1 2 1 0 39752 - -
php-309892-309910 62347 19484 21735 15396 17 17 22 22 3 641 1 1

Table A.25: SPR-300 Statistics
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Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 59327 22055 42448 22055 30 24 57 51 0 - - -

libtiff-5b0217-3dfb33 276142 85251 16314 9388 111 111 2598 2598 0 59068 - -
libtiff-d13be7-ccadf4 568172 432083 19425 19425 203 203 4089 4089 2 6126 5 104
lighttpd-2661-2662 191579 159862 116171 109330 14 9 34 29 0 - - -
lighttpd-1913-1914 159739 114667 28702 27455 24 24 53 53 0 107499 - -

python-69934-69935 65326 18300 11077 8243 0 0 0 0 0 - - -
gmp-13420-13421 69661 12794 58745 12794 13 3 28 18 2 20779 4 19
gzip-ald3d4-f17cbd 82349 18024 82349 18024 14 0 14 0 1 30814 4 4
python-70056-70059 58530 26327 5032 50Il 0 0 0 0 0 835 - -
fbc-5458-5459 16353 5416 6925 4707 34 34 120 89 0 299 - -
libtiff-ee2ce5-b5691a 218252 142593 24635 22006 101 101 3244 3244 1 20674 1 1
php-310991-310999 139311 31061 32409 19972 2 2 2 2 2 2256 1 1
php-308734-308761 30623 7437 20902 7437 4 4 4 4 2 7493 1 1
php-308262-308315 150963 19358 14748 14158 0 0 0 0 0 10111 - -
php-307562-307561 60507 15748 18594 11458 1 0 1 0 1 10019 1 1
php-309579-309580 101940 17784 12994 8849 11 11 38 38 1 46 1 1
php-310011-310050 105542 23824 10543 10543 23 23 54 54 0 41309 - -
php-309688-309716 95206 19747 13260 7432 7 6 8 7 0 10803 - -
php-309516-309535 52377 12093 41374 12093 1 0 1 0 1 4695 1 1
php-307846-307853 40272 8051 17882 8051 5 4 12 11 1 5909 1 1
php-311346-311348 14543 5619 1655 1644 34 33 97 96 2 741 4 4
php-307914-307915 64378 20107 45791 20107 1 0 1 0 1 8122 1 1
php-309111-309159 86627 22335 42158 22335 2 1 2 1 0 39752 - -
php-309892-309910 62347 19484 4917 4917 11 11 85 85 1 641 1 1

Table A.26: SPR-300-CExt Statistics



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible

gmp-14166-14167 95751 22055 54107 22055 39 28 117 106 1 50188 32 110
libtiff-5b0217-3dfb33 336808 85251 123207 85251 1164 149 1165 155 1 59066 209 215
libtiff-d13be7-ccadf4 573714 432083 87760 87073 309 309 309 309 1 4629 3 3
lighttpd-2661-2662 197676 159862 120127 113198 8 3 8 3 0 - - -

lighttpd-1913-1914 168946 114667 37891 34739 32 32 32 32 0 -

python-69934-69935 66616 18300 12534 9511 0 0 0 0 0 32709 - -
gmp-13420-13421 107650 12794 78103 12794 41 5 41 5 1 46636 6 6
gzip-ald3d4-f17cbd 100652 18024 91433 18024 14 0 14 0 1 49115 4 4
python-70056-70059 64192 26327 5032 5011 0 0 0 0 0 - - -

fbc-5458-5459 18782 5416 12524 5416 34 32 55 38 2 582 8 11
libtiff-ee2ce5-b5691a 241707 142593 195947 142593 328 328 328 328 1 20686 1 1
php-310991-310999 142164 31061 31855 19597 2 2 2 2 2 2139 1 1
php-308734-308761 36012 7437 21042 7437 4 4 4 4 2 7493 1 1

php-308262-308315 159696 19358 14748 14158 0 0 0 0 0 10106 - -
php-307562-307561 64392 15748 18564 11458 1 0 1 0 1 10022 1 1
php-309579-309580 103151 17784 23738 15481 2 2 2 2 1 46 1 1
php-310011-310050 107479 23824 10543 10543 37 37 55 55 0 43288 - -
php-309688-309716 97372 19747 13259 7432 10 9 11 10 0 10803 - -
php-309516-309535 56549 12093 43485 12093 1 0 1 0 1 4694 1 1
php-307846-307853 44992 8051 21298 8051 3 2 4 3 1 5909 1 1
php-311346-311348 14889 5619 8607 5619 52 41 74 63 2 741 4 4

php-307914-307915 67286 20107 46603 20107 1 0 1 0 1 8122 1 1
php-309111-309159 102384 22335 43158 22335 2 1 2 1 0 55064 - -
php-309892-309910 74780 19484 21370 15253 17 17 22 22 3 3305 1 1

Table A.27: SPR-300-RExt Statistics



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 95751 22055 54176 22055 35 24 62 51 1 50188 28 55
libtiff-5b0217-3dfb33 336808 85251 13784 9388 111 111 2604 2604 0 59066 - -
libtiff-d13be7-ccadf4 573714 432083 19425 19425 215 215 4125 4125 2 4629 5 104
lighttpd-2661-2662 197676 159862 116171 109330 16 11 31 26 0 - - -
lighttpd-1913-1914 168946 114667 28116 26867 24 24 53 53 0 107498 -
python-69934-69935 66616 18300 12773 9592 0 0 0 0 0 32709 - -
gmp-13420-13421 107650 12794 77443 12794 39 3 54 18 1 46636 4 19
gzip-ald3d4-fl7cbd 100652 18024 91870 18024 14 0 14 0 1 49115 4 4
python-70056-70059 64192 26327 5032 5011 0 0 0 0 0 3165 - -
fbc-5458-5459 18782 5416 9253 5416 29 27 100 67 0 582 - -
libtiff-ee2ce5-b5691a 241707 142593 24635 22006 101 101 3412 3412 1 20686 1 1
php-310991-310999 142164 31061 31955 19597 2 2 2 2 2 2139 1 1
php-308734-308761 36012 7437 21072 7437 4 4 4 4 2 7493 1 1
php-308262-308315 159696 19358 14748 14158 0 0 0 0 0 10106 - -
php-307562-307561 64392 15748 18534 11458 1 0 1 0 1 10022 1 1
php-309579-309580 103151 17784 13274 8849 11 11 38 38 1 46 1 1
php-310011-310050 107479 23824 10543 10543 23 23 54 54 0 43288 - -
php-309688-309716 97372 19747 12494 6667 7 7 13 13 0 10803 -
php-309516-309535 56549 12093 43728 12093 1 0 1 0 1 4694 1 1
php-307846-307853 44992 8051 20127 8051 5 4 12 11 1 5909 1 1
php-311346-311348 14889 5619 1655 1644 34 33 98 97 2 741 4 4
php-307914-307915 67286 20107 46743 20107 1 0 1 0 1 8122 1
php-309111-309159 102384 22335 41638 22335 2 1 2 1 0 55064 - -
php-309892-309910 74780 19484 4917 4917 11 11 87 87 1 3305 1 1

Table A.28: SPR-300-RExt-CExt Statistics
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Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 448318 141182 48639 40229 28 28 106 106 0 - -

libtiff-5b0217-3dfb33 1941177 1352092 376088 346011 59 59 59 59 0 309678 - -
libtiff-d13be7-ccadf4 2353240 1771135 537943 510074 39 39 39 39 1 34935 3 3
lighttpd-2661-2662 1269307 1016413 158849 158849 84 84 108 108 1 73333 10 18
lighttpd-1913-1914 1183286 935121 67947 67947 30 30 30 30 0 - - -
python-69934-69935 863452 386935 74931 67619 0 0 0 0 0 - -

gmp-13420-13421 389124 104714 77939 51103 5 5 5 5 0 148326 - -
gzip-ald3d4-f17cbd 341681 92972 172669 92972 15 0 15 0 1 21929 1 1
python-70056-70059 526778 236707 5549 5549 0 0 0 0 0 - - -

fbc-5458-5459 16353 5416 10804 5416 37 37 61 46 2 299 5 6
libtiff-ee2ce5-b5691a 3237374 2609366 559844 545779 328 328 328 328 1 510769 1 1
php-310991-310999 783770 185001 71978 71969 1 1 1 1 1 20811 1 1
php-308734-308761 440926 151934 70790 69209 0 0 0 0 0 70482 - -
php-308262-308315 637558 192659 56294 56291 0 0 0 0 0 84098 -
php-307562-307561 637588 163053 85244 84684 0 0 0 0 0 85214 - -
php-309579-309580 621880 198376 103822 99184 2 2 2 2 1 28250 1 1
php-310011-310050 582198 162849 4293 4293 0 0 0 0 0 249855 - -
php-309688-309716 609953 191952 100081 94908 1 0 1 0 0 84053 - -
php-309516-309535 496992 136030 56498 47458 0 0 0 0 0 58080 - -
php-307846-307853 477171 130366 58099 49977 0 0 0 0 0 59502 - -
php-311346-311348 1030763 123671 11552 11552 29 29 47 47 2 8838 1 1
php-307914-307915 539078 175191 89793 83690 1 0 1 0 1 57702 1 1
php-309111-309159 513188 178631 90328 84540 1 1 1 1 0 249184 - -
php-309892-309910 498669 177309 90902 86247 5 5 5 5 1 4347 1 1

Table A.29: SPR-2000 Statistics
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Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 448318 141182 29653 24692 24 24 51 51 0 - -
libtiff-5b0217-3dfb33 1941177 1352092 13873 13873 111 111 2442 2442 0 309678 -
libtiff-d13be7-ccadf4 2353240 1771135 288244 284634 52 52 2708 2708 2 34935 5 104
lighttpd-2661-2662 1269307 1016413 141022 141022 117 117 189 189 1 73333 9 14
lighttpd-1913-1914 1183286 935121 60084 60084 37 37 84 84 0 297232 - -
python-69934-69935 863452 386935 75020 67619 0 0 0 0 0 - -
gmp-13420-13421 389124 104714 69769 46070 3 3 18 18 0 148326 - -
gzip-ald3d4-fl7cbd 341681 92972 173757 92972 15 0 15 0 1 21929 1 1
python-70056-70059 526778 236707 6816 6816 0 0 0 0 0 11955 - -
fbc-5458-5459 16353 5416 6746 4640 34 34 120 89 0 299 - -
libtiff-ee2ce5-b5691a 3237374 2609366 525373 513075 71 71 496 496 1 510769 1 1
php-310991-310999 783770 185001 71978 71969 1 1 1 1 1 20811 1 1
php-308734-308761 440926 151934 70790 69209 0 0 0 0 0 70482 - -
php-308262-308315 637558 192659 56286 56283 0 0 0 0 0 84098 -
php-307562-307561 637588 163053 92960 84711 0 0 0 0 0 85214 - -
php-309579-309580 621880 198376 81472 81463 11 11 34 34 1 28250 1 1
php-310011-310050 582198 162849 4293 4293 0 0 0 0 0 249855 - -
php-309688-309716 609953 191952 99991 94908 1 0 1 0 0 84053 -
php-309516-309535 496992 136030 56588 47458 0 0 0 0 0 58080 -
php-307846-307853 477171 130366 58149 49977 0 0 0 0 0 59502 - -
php-311346-311348 1030763 123671 11552 11552 28 28 46 46 2 8838 1 1
php-307914-307915 539078 175191 89763 83690 1 0 1 0 1 57702 1 1
php-309111-309159 513188 178631 90378 84540 1 1 1 1 0 249184 - -
php-309892-309910 498669 177309 3691 3691 11 11 42 42 1 4347 1 1

Table A.30: SPR-2000-CExt Statistics



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Template Rank Patch Rank

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 780425 141182 27515 23574 10 10 29 29 0 214233 -
Iibtiff-5b0217-3dfb33 2027218 1352092 353982 324268 59 59 59 59 0 309679 - -
libtiff-d13be7-ccadf4 2414317 1771135 532541 506165 39 39 39 39 1 33699 3 3
lighttpd-2661-2662 1290186 1016413 157305 157305 84 84 105 105 1 73333 10 18
lighttpd-1913-1914 1206699 935121 67947 67947 31 31 31 31 0 - - -
python-69934-69935 937134 386935 75716 67619 0 0 0 0 0 470550 -
gmp-13420-13421 823835 104714 69833 46134 5 5 5 5 0 174177 - -
gzip-ald3d4-f17cbd 399573 92972 183189 92972 5 0 5 0 1 21936 1 1
python-70056-70059 573639 236707 5761 5761 0 0 0 0 0 - - -
fbc-5458-5459 18782 5416 14112 5416 34 32 55 38 2 582 8 11
libtiff-ee2ce5-b5691a 3311995 2609366 544755 531755 329 329 329 329 1 510781 1 1
php-310991-310999 802073 185001 71978 71969 1 1 1 1 1 13860 1 1
php-308734-308761 464785 151934 70780 69209 0 0 0 0 0 70482 - -
php-308262-308315 658758 192659 54186 54183 0 0 0 0 0 84097 -
php-307562-307561 651312 163053 92759 84711 0 0 0 0 0 85216 - -
php-309579-309580 629763 198376 103872 99184 2 2 2 2 1 28294 1 1
php-310011-310050 599295 162849 5151 5151 1 1 2 2 0 266951 - -
php-309688-309716 621923 191952 99781 94908 1 0 1 0 0 83933 - -
php-309516-309535 561904 136030 56528 47458 0 0 0 0 0 58080 - -
php-307846-307853 541823 130366 58119 49977 0 0 0 0 0 59503 - -
php-311346-311348 1404751 123671 6977 6977 28 28 46 46 2 3218 1 1
php-307914-307915 549783 175191 89743 83690 1 0 1 0 1 57702 1 1
php-309111-309159 539576 178631 90328 84540 1 1 1 1 0 275198 - -
php-309892-309910 520768 177309 90793 86247 5 5 5 5 1 5439 1 1

Table A.31: SPR-2000-RExt Statistics



Search Space Evaluated Plausible Plausible Correct Correct
Defect Templates Templates Templates Patches Correct Tempate Rank Patch Rank___ ____ TmpatPRnkcathean

All Cond. All Cond. All Cond. All Cond. Patches In Space In Plausible in Plausible
gmp-14166-14167 780425 141182 27505 23574 6 6 13 13 0 214233 -
libtiff-5b0217-3dfb33 2027218 1352092 37909 37909 111 111 2264 2264 0 309679 - -
libtiff d13be7-ccadf4 2414317 1771135 285546 283944 52 52 2708 2708 2 33699 5 104
lighttpd-2661-2662 1290186 1016413 136816 136816 117 117 189 189 1 73333 9 14
lighttpd-1913-1914 1206699 935121 64918 64918 28 28 65 65 0 297229 - -
python-69934-69935 937134 386935 75590 67619 0 0 0 0 0 470550 -
gmp-13420-13421 823835 104714 69833 46134 3 3 18 18 0 174177 -
gzip-ald3d4-fl7cbd 399573 92972 183149 92972 5 0 5 0 1 21936 1 1
python-70056-70059 573639 236707 5825 5825 0 0 0 0 0 6175 - -
fbc-5458-5459 18782 5416 8812 5416 27 27 98 67 0 582 - -
libtiff-ee2ce5-b5691a 3311995 2609366 525373 513075 71 71 471 471 1 510781 1 1
php-310991-310999 802073 185001 71688 71679 1 1 1 1 1 13860 1 1
php-308734-308761 464785 151934 70770 69209 0 0 0 0 0 70482 - -
php-308262-308315 658758 192659 54186 54183 0 0 0 0 0 84097 --

php-307562-307561 651312 163053 85204 84684 0 0 0 0 0 85216 - -
php-309579-309580 629763 198376 54142 54139 11 11 37 37 1 28294 1 1
php-310011-310050 599295 162849 5151 5151 0 0 0 0 0 266951 - -
php-309688-309716 621923 191952 99781 94908 1 0 1 0 0 83933 - -
php-309516-309535 561904 136030 56548 47458 0 0 0 0 0 58080 - -
php-307846-307853 541823 130366 58119 49977 0 0 0 0 0 59503 - -
php-311346-311348 1404751 123671 6977 6977 28 28 45 45 2 3218 1 1
php-307914-307915 549783 175191 89723 83690 1 0 1 0 1 57702 1 1
php-309111-309159 539576 178631 90328 84540 1 1 1 1 0 275198 - -
php-309892-309910 520768 177309 8224 8224 11 11 41 41 1 5439 1 1

Table A.32: SPR-2000-RExt-CExt Statistics
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Appendix B

Genesis Per Defect Experimental

Results

Tables B.1, B.2, and B.3 show the results of Genesis when we run Genesis using

the combined search space containing patches for NP, 00B, and CC defects. Ta-

bles B.4, B.5, and B.6 present the results of Genesis using per-defect-type search

spaces for all types of defects. Tables B.7, B.8, and B.9 present the results of Genesis

using the combined search space with the condition synthesis technique for all types of

defects. Tables B.10, B.11, and B.12 present the results of Genesis using the combined

search space without the patch prioritization learning for all types of defects. Finally,

Tables B.13, B.14, B.15, contain the results of running our formulation of the PAR

templates on our benchmark sets.

Each table contains one line for each error of its defect type. The "Init. Time"

column presents the amount of time required to initialize the search for that error.

The "Search Space Size" column presents the size of the search space for that error,

the "Explored Space Size" column presents the size of the search space that the

algorithm explores within the five hour timeout, the "Search Time" column presents

the amount of time spent exploring the space, and "Validated Patches" presents

the number of candidate patches that validate (produce correct outputs for all test

cases). The last three columns present statistics for the first generated correct patch,

specifically how long it takes to generate the patch ("Generation Time"), the rank of
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the first correct patch in the sequence of validated patches ("Validated Rank"), and

the rank of the correct patch in the sequence of candidate patches ("Space Rank").

For Tables B.7, B.8, and B.9, there is an extra column ("Cond. Synthesis Saved"),

which presents the ratio of the explored candidate patches that are pruned away by

the condition synthesis technique.
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Init. Search Explored Search Validated First Correct Patch
Repository Revision Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
caelum-stella 2ec5459 <im 42832 42832 71m 32 6m 13 1126
caelum-stella 2d2dd9c <1m 17440 17440 54m 26 <im 1 1
caelum-stella e73113f <im 17535 17535 55m 26 <1m 1 1

HikariCP ce4ff92 3m 121103 45355 >5h 46 - - -
nutz 80e85d0 2m 378640 57586 >5h 0 - - -

spring-data-rest aa28aeb 6m 79798 5911 >5h 20 39m 3 778
checkstyle 8381754 2m 380041 77289 >5h 25 10M 1 38
checkstyle 536bc20 2m 471302 82244 >5h 50 OiM 1 10
checkstyle aaf606e 2m 448997 81239 >5h 0 - - -
checkstyle aa829d4 <im 532656 86660 >5h 3 20m 2 598

jongo f46f658 <im 263930 23454 >5h 1 - - -

DataflowJavaSDK c06125d 3m 55490 36408 >5h 7 3m 1 1
webmagic ff2f588 <im 109723 70229 >5h 1 - - -

javapoet 70b38e5 <im 172908 55070 >5h 0 - - -

closure-compiler 9828574 3m >1000000 54953 >5h 41 16m 1 5
truth 99b314e <1m 79357 79357 88m 0 - - -

error-prone 3709338 2m 504557 34148 >5h 5 23m 2 96
javaslang faf9ac2 <im >1000000 228578 232m 46 37m 2 76
Activiti 3d624a5 2m 255897 607 >5h 75 9m 4 20

spring-hateoas 48749e7 <im 23075 23075 46m 54 <im 1 1

Table B.1: Results of the Genesis Combined Search Space on NP Defects



Init. Search Explored Search Validated First Correct Patch

Repository Revision Time Space Space Time Patches Generation Validated Space
Size Size Time Rank Rank

Bukkit a91c4c6 <im 294393 225756 >5h 7 urm 1 1

RoaringBitmap 29c6d59 4m 689635 34635 >5h 3 - - -

commons-lang 52b46e7 im 128007 67062 >5h 0 - - -

HdrHistogram db18018 <im 482000 124967 >5h 203 - - -

spring-hateoas 29b4334 <1m 29952 29952 34m 0 - - -

wicket b708e2b 6m 133116 41525 >5h 38 20m 1 1442

coveralls-maven-plugin 20490f6 <im 5088 5088 12m 0 - -

named-regexp 82bdfeb <im 0 0 <1m 0 - -

jgit 929862f 2m 96541 96541 225m 3 36m 1 10190

jPOS df400ac 2m 128162 128162 218m 18 16m 1 5335

httpcore dd00a9e 2m 206919 9420 >5h 74 43m 12 1586

vectorz 2291d0d <1m 177962 177962 261m 25 14m 1 1162

maven-shared 77937el 2m 0 0 <im 0 - -

Table B.2: Results of the Genesis Combined Search Space on OB Defects
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Init. Search Explored Search Validated First Correct Patch
Repository Revision Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
jade4j dd47397 <im 171777 61649 >5h 1 181m 1 34265
jade4j 114e886 <im 340472 52402 >5h 2 212m 1 35614

HdrHistogram 030aacl <1m 40726 40726 80m 230 7m 16 2452
pdfbox 93c0b69 <im 148930 120597 >5h 0 - - -

tree-root fef0f36 <1m 28688 28688 21m 0 - - -
spoon 48d3126 8m 0 0 <im 0 - - -
pebble 942aa6e 2m 151427 27058 >5h 0 - - -

fastjson c886874 im >1000000 176898 >5h 0 - - -
htmlelements bf3f275 Im 157745 107844 >5h 32 34m 1 7437

spring-cloud-connectors 56c6eca <im 101598 101598 182m 4 - - -
joinmo a5ee885 <im 454141 137112 >5h 16 - - -

buildergenerator d9d73b3 <1m 44946 44946 84m 0 - - -
mybatis-3 809c35d 6m 793166 70895 >5h 0 - - -

antlr4 9e7b131 3m 5177 5177 72m 1 - - -
hamcrest-bean 84586d9 ,<1m 973459 117037 >5h 9 16m 1 2586

raml-java-parser 49aab8f <im 58871 58871 181m 0 - - -

Table B.3: Results of the Genesis Combined Search Space on CC Defects
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Init. Search Explored Search Validated First Correct Patch
Repository Revision Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank

caelum-stella 2ec5459 <im 30599 30599 60m 13 2m 3 371

caelum-stella 2d2dd9c <im 11901 11901 37m 12 <im 1 1

caelum-stella e73113f <im 11964 11964 37m 12 <1m 1 1

HikariCP ce4ff92 3m 188369 49250 >5h 30 - - -

nutz 80e85d0 Im 407660 123079 >5h 0 - - -

spring-data-rest aa28aeb 7m 36286 5882 >5h 18 121m 3 2502

checkstyle 8381754 2m 641676 161122 >5h 6 14m 1 31

checkstyle 536bc20 2m 805920 168444 >5h 47 13m 1 2

checkstyle aaf606e 2m 673428 162822 >5h 0 - -

checkstyle aa829d4 1m 732293 207175 >5h 7 17m 1 4877

jongo f46f658 <im 153232 41193 >5h 2 - - -

Dataflow.JavaSDK c06125d 3m 33251 30586 >5h 30 3m 1 2

webmagic ff2f588 <1m 756186 756186 216m 0 - - -

javapoet 70b38e5 <im 239560 140194 >5h 0 - - -

closure-compiler 9828574 3m 227516 38366 >5h 6 18m 1 1

truth 99b314e <im 27516 27516 42m 0 - - -

error-prone 3709338 2m 400008 43924 >5h 2 27m 1 1

javaslang faf9ac2 <1m >1000000 323786 >5h 150 28m 1 6

Activiti 3d624a5 2m 649756 279 >5h 80 7m 1 3

spring-hateoas 48749e7 <im 11073 11073 31m 25 <im 1 1

Table B.4: Results of the Genesis Per-Defect-Type Search Space on NP Defects
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Init. Search Explored Search Validated First Correct Patch
Repository Revision Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
Bukkit a91c4c6 <im 129491 129491 140m 4 4m 1 4

RoaringBitmap 29c6d59 4m 223889 15809 >5h 0 - - -

commons-lang 52b46e7 im 28310 28310 95m 0 - - -

HdrHistogram db18018 <im 83521 83521 222m 681 - - -

spring-hateoas 29b4334 <1m 9732 9732 9m 0 - - -

wicket b708e2b 5m 28340 28340 153m 22 23m 2 2978
coveralls-maven-plugin 20490f6 <1m 764 764 Im 0 -- -

named-regexp 82bdfeb <im 0 0 <im 0 -- -

jgit 929862f 2m 42419 42419 146m 6 38m 1 9300
jPOS df400ac 2m 37179 37179 65m 9 3m 1 283

httpcore dd00a9e 2m 70054 22075 >5h 134 120m 82 3160
vectorz 2291d0d <1m 67356 67356 78m 33 14m 14 7622

maven-shared 77937el 2m 0 0 <im 0 - - -

Table B.5: Results of the Genesis Per-Defect-Type Search Space on 00B Defects
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Init. Search Explored Search Validated First Correct Patch
Repository Revision Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
jade4j dd47397 <im 75303 65173 >5h 1 125m 1 25608

jade4j 114e886 <im 118087 69932 >5h 1 70m 1 13090

HdrHistogram 030aacl <1m 19026 19026 38m 126 3m 11 287
pdfbox 93c0b69 <im 150408 150408 269m 0 - - -

tree-root fef0f36 <im 22941 22941 4m 0 - - -

spoon 48d3126 8m 0 0 <im 0 - - -

pebble 942aa6e 2m 190363 78037 >5h 0 - - -

fastjson c886874 1m 664669 192976 >5h 0 - - -

htmlelements bf3f275 Im 93142 93142 201m 0 - - -

spring-cloud-connectors 56c6eca <im 100925 100925 162m 0 - - -

joinmo a5ee885 <1m 461121 101044 >5h 0 - - -

buildergenerator d9d73b3 <1m 30074 30074 52m 0 - - -

mybatis-3 809c35d 6m 541027 61870 >5h 0 - - -

antlr4 9e7b131 3m 1329 1329 16m 0 - - -

hamcrest-bean 84586d9 <im 548771 101882 >5h 3 - - -

raml-java-parser 49aab8f <1m 26394 26394 125m 0 - - -

Table B.6: Results of the Genesis Per-Defect-Type Search Space on CC Defects



Init. Search Explored Cond. Search Validated First Correct Patch
Repository Revision Time Space Space Synthesis Time Patches Generation Validated Space

Size Size Saved Time Rank Rank
caelum-stella 2ec5459 <im 42832 42832 1.8% 218m 32 12m 13 1126
caelum-stella 2d2dd9c <1m 17440 17440 13.4% 98m 26 <im 1 1
caelum-stella e73113f <1m 17535 17535 13.9% 98m 26 <im 1 1

HikariCP ce4ff92 3m 121103 32758 15.2% >5h 28 - - -

nutz 80e85d0 14m 378640 29975 6.9% >5h 0 - - -

spring-data-rest aa28aeb 6m 79798 4904 4.7% >5h 19 45m 3 778
checkstyle 8381754 2m 380040 30510 6.8% >5h 25 9m 1 38
checkstyle 536bc20 2m 471302 30167 4.4% >5h 50 10M 1 10
checkstyle aaf606e 2m 448997 35430 3.5% >5h 0 - - -
checkstyle aa829d4 Im 532656 45650 2.4% >5h 3 13m 1 514

jongo f46f658 <1m 263926 12685 4.2% >5h 0 - - -
DataflowJavaSDK c06125d 3m 55490 25008 7.5% >5h 7 3m 1 1

webmagic ff2f588 <1m 109723 36193 5.0% >5h 0 - - -

javapoet 70b38e5 <im 172908 33535 1.2% >5h 0 - - -
closure-compiler 9828574 3m >1000000 18698 12.4% >5h 29 16m 1 5

truth 99b314e <im 79357 79357 10.3% 237m 0 - - -
error-prone 3709338 2m 504557 23547 15.4% >5h 5 26m 2 96
javaslang faf9ac2 <1m >1000000 64195 16.4% >5h 46 39m 2 76
Activiti 3d624a5 2m 255897 329 5.2% >5h 28 9m 4 20

spring-hateoas 48749e7 <1m 23075 8369 17.6% >5h 50 <im 1 1

Table B.7: Results of the Genesis Combined Search Space with Condition Synthesis on NP Defects
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Init. Search Explored Cond. Search Validated First Correct Patch

Repository Revision Time Space Space Synthesis Time Patches Generation Validated Space
Size Size Saved Time Rank Rank

Bukkit a91c4c6 <im 294393 113659 7.2% >5h 7 12m 1 1

RoaringBitmap 29c6d59 4m 689635 24924 16.6% >5h 2 - - -

commons-lang 52b46e7 im 127997 30057 9.1% >5h 0 - - -

HdrHistogram db18018 <1m 482000 42542 16.8% >5h 85 - - -

spring-hateoas 29b4334 <im 29955 29955 15.5% 163m 0 - - -

wicket b708e2b 6m 133116 27302 10.1% >5h 31 26m 1 1442

coveralls-maven-plugin 20490f6 <1m 5088 5088 10.4% 41m 0 - -

named-regexp 82bdfeb <im 0 0 0.0% <im 0 - - -

jgit 929862f 2m 96541 57597 7.2% >5h 3 67m 1 10190

jPOS df400ac 2m 128162 64165 6.8% >5h 17 33m 1 5335

httpcore dd00a9e 2m 206919 8486 11.1% >5h 61 51m 11 1586

vectorz 2291d0d <1m 177962 73628 4.6% >5h 25 22m 1 1162

maven-shared 77937el 2m 0 0 0.0% <im 0 - - -

Table B.8: Results of the Genesis Combined Search Space with Condition Synthesis on OB Defects
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Init. Search Explored Cond. Search Validated First Correct Patch
Repository Revision Time Space Space Synthesis Time Patches Generation Validated Space

Size Size Saved Time Rank Rank
jade4j dd47397 <im 171777 32430 11.7% >5h 0 - - -

jade4j 114e886 <im 340472 23294 4.0% >5h 0 - - -
HdrHistogram 030aaci <im 40726 40726 2.0% 212m 224 16m 16 2452

pdfbox 93c0b69 <1m 148930 55369 4.3% >5h 0 - - -
tree-root fef0f36 <im 28688 28688 3.6% 51m 0 - - -

spoon 48d3126 8m 0 0 0.0% <im 0 - -
pebble 942aa6e 2m 151427 23380 13.0% >5h 0 - - -

fastjson c886874 1m >1000000 100927 9.3% >5h 0 - - -
htmlelements bf3f275 1m 157745 33997 2.9% >5h 32 61m 1 7437

spring-cloud-connectors 56c6eca <im 101598 59891 1.6% >5h 2 - - -
joinmo a5ee885 <im 454159 68622 7.8% >5h 16 - - -

buildergenerator d9d73b3 <im 44946 44946 1.0% 249m 0 - - -
mybatis-3 809c35d 7m 793166 37169 12.1% >5h 0 - - -

antIr4 9e7b131 3m 5177 5177 2.4% 91m 1 - - -
hamcrest-bean 84586d9 <1m 973459 32067 7.7% >5h 9 48m 1 2586

raml-java-parser 49aab8f <im 58871 42283 6.6% >5h 0 - - -

Table B.9: Results of the Genesis Combined Search Space with Condition Synthesis on CC Defects
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Init. Search Explored Search Validated First Correct Patch
Repository Revision Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank

caelum-stella 2ec5459 <im 42832 42832 73m 32 Im 1 14

caelum-stella 2d2dd9c <im 17440 17440 54m 26 <1m 1 43

caelum-stella e73113f <im 17535 17535 55m 26 <im 1 42

HikariCP ce4ff92 3m 121103 45560 >5h 63 - - -

nutz 80e85d0 2m 378640 59464 >5h 0 - - -

spring-data-rest aa28aeb 6m 79798 7375 >5h 13 217m 1 4917

checkstyle 8381754 2m 380041 65304 >5h 36 46m 5 3415

checkstyle 536bc20 2m 471302 71087 >5h 66 26m 1 13

checkstyle aaf606e 2m 448997 72704 >5h 0 - -

checkstyle aa829d4 1m 532656 78152 >5h 0 - - -

jongo f46f658 <im 263926 33203 >5h 2 - - -

DatafowJavaSDK c06125d 3m 55490 36849 >5h 7 15m 1 2202

webmagic ff2f588 <im 109723 71998 >5h 1 - - -

javapoet 70b38e5 <1m 172908 53849 >5h 0 - - -

closure-compiler 9828574 3m >1000000 56226 >5h 41 16m 1 10

truth 99b314e <im 79357 79357 88m 0 -- -

error-prone 3709338 2m 504557 33673 >5h 5 57m 1 168

javaslang faf9ac2 <im >1000000 888480 235m 46 38m 8 2209

Activiti 3d624a5 2m 255897 283 >5h 7 10M 2 250

spring-hateoas 48749e7 <1m 23075 23075 47m 54 <1M 1 21

Table B.10: Results of the Genesis Combined Search Space without Patch Prioritization Learning on NP Defects
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Init. Search Explored Search Validated First Correct Patch
Repository Revision Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
Bukkit a91c4c6 <im 294393 249060 >5h 7 11m 1 378

RoaringBitmap 29c6d59 4m 689635 41166 >5h 5 - - -
commons-lang 52b46e7 1m 128007 68634 >5h 0 - - -

HdrHistogram db18018 <im 481997 115144 >5h 221 - - -

spring-hateoas 29b4334 <1m 29952 29952 35m 0 - - -

wicket b708e2b 6m 133116 39445 >5h 36 178m 12 26014

coveralls-maven-plugin 20490f6 <im 5088 5088 12m 0 - -
named-regexp 82bdfeb <im 0 0 <im 0 - - -

jgit 929862f 2m 96541 96541 226m 3 71m 1 27865
jPOS df400ac 2m 128162 128162 223m 17 12m 1 3442

httpcore dd00a9e 2m 206919 11171 >5h 169 9m 1 101

vectorz 2291d0d <im 177960 177960 265m 25 11m 1 2
maven-shared 77937e1 2m 0 0 <1m 0 - - -

Table B.11: Results of the Genesis Combined Search Space without Patch Prioritization Learning on OB Defects



Init. Search Explored Search Validated First Correct Patch
Repository Revision Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
jade4j dd47397 <im 171777 62053 >5h 1 217m 1 43466

jade4j 114e886 <im 340472 56015 >5h 0 - -
HdrHistogram 030aacl <im 40726 40726 81m 230 7m 33 1588

pdfbox 93c0b69 <1m 148931 117382 >5h 0 - - -

tree-root fef0f36 <1m 28688 28688 21m 0 - - -

spoon 48d3126 8m 0 0 <im 0 - - -

pebble 942aa6e 2m 151427 35357 >5h 0 - - -

fastjson c886874 1m >1000000 240729 >5h 0 - - -

htmlelements bf3f275 1m 157745 124437 >5h 32 7m 1 353

spring-cloud-connectors 56c6eca <im 101598 101598 182m 4 - - -

joinmo a5ee885 <1m 454141 142234 >5h 16 - - -

buildergenerator d9d73b3 <im 44946 44946 84m 0 - - -

mybatis-3 809c35d 7m 793166 70237 >5h 0 - - -

antlr4 9e7b131 3m 5177 5177 72m 1 - - -

hamcrest-bean 84586d9 <1m 973459 125740 >5h 9 36m 1 6243

raml-java-parser 49aab8f <1m 58871 58871 184m 0 - - -

Table B.12: Results of the Genesis Combined Search Space without Patch Prioritization Learning on CC Defects
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Init. Search Explored Search Validated First Correct Patch
Repository Revision Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
caelum-stella 2ec5459 1m 876 876 2m 4 <im 1 5
caelum-stella 2d2dd9c <1m 606 606 3m 9 <im 1 18
caelum-stella e73113f <im 614 614 3m 9 <1m 1 16

HikariCP ce4ff92 3m 2021 2021 12m 1 - - -
nutz 80e85d0 2m 11937 11937 48m 9 - -

spring-data-rest aa28aeb 7m 1349 1349 59m 0 - - -
checkstyle 8381754 3m 8126 8126 33m 5 <im 1 41
checkstyle 536bc20 2m 8551 8551 38m 10 <1m 1 6
checkstyle aaf606e 2m 7862 7862 29m 0 - -
checkstyle aa829d4 <im 8717 8717 33m 2 3m 1 606

jongo f46f658 <im 6395 6395 86m 3 - - -
DataflowJavaSDK c06125d 3m 1519 1519 7m 0 - -

webmagic ff2f588 Im 4624 4624 15m 0 - - -

javapoet 70b38e5 <im 3343 3343 17m 0 - - -
closure-compiler 9828574 3m 3809 3809 25m 2 Im 1 8

truth 99b314e <1m 1128 1128 Im 0 - - -

error-prone 3709338 2m 15905 117 >5h 0 - - -

javaslang faf9ac2 <1m 45225 45225 47m 0 - - -

Activiti 3d624a5 4m 6113 6113 286m 92 - - -

spring-hateoas 48749e7 <1m 357 357 Im 6 <im 1 6

Table B.13: Results of PAR Templates on NP Defects
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Init. Search Explored Search Validated First Correct Patch
Repository Revision Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
Bukkit a91c4c6 <im 543 543 Im 2 <im 1 9

RoaringBitmap 29c6d59 4m 2054 2054 24m 0 - - -

commons-lang 52b46e7 2m 1460 1460 3m 0 - - -

HdrHistogram db18018 <im 853 853 2m 0 - - -

spring-hateoas 29b4334 <im 640 640 <im 0 - - -

wicket b708e2b 8m 2917 2917 18m 3 3m 1 550
coveralls-maven-plugin 20490f6 <1m 266 266 <im 0 - - -

named-regexp 82bdfeb <1m 0 0 <im 0 - - -

jgit 929862f 3m 1234 1234 4m 0 - - -

jPOS df400ac 3m 3171 3171 6m 0 - - -

httpcore dd00a9e 2m 1588 1588 9m 4 2m 1 15

vectorz 2291d0d <im 2314 2314 5m 2 <im 1 107

maven-shared 77937el 2m 0 0 <1m 0 - - -

Table B.14: Results of PAR Templates on OB Defects
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Init. Search Explored Search Validated First Correct Patch
Repository Revision Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
jade4j dd47397 <im 5371 5371 25m 0 - - -
jade4j 114e886 <im 5313 5313 27m 0 - - -

HdrHistogram 030aac1 <im 936 936 3m 7 - - -
pdfbox 93c0b69 Im 1375 1375 5m 0 - - -

tree-root fef0f36 <im 1722 1722 Im 0 - - -
spoon 48d3126 9m 0 0 <im 0 - - -
pebble 942aa6e 2m 5104 5104 178m 0 - - -
fastjson c886874 1m 35079 35079 131m 0 - - -

htmlelements bf3f275 Im 3609 3609 9m 0 - - -
spring-cloud-connectors 56c6eca <im 3258 3258 5m 0 - - -

joinmo a5ee885 <im 15045 15045 33m 0 - - -

buildergenerator d9d73b3 <im 750 750 2m 0 - - -

mybatis-3 809c35d 7m 28248 28248 119m 0 - - -

antlr4 9e7b131 3m 446 446 2m 0 - - -

hamcrest-bean 84586d9 <1m 25912 25912 69m 0 - - -

raml-java-parser 49aab8f <1m 1003 1003 3m 0 - - -

Table B.15: Results of PAR Templates on CC Defects
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