Effective Preprocessing with Hyper-Resolution and
Equality Reduction

Fahiem Bacchusand Jonathan Wintér

Department of Computer Science, University Of Torohto,
Toronto, Ontario, Canada
[fbacchus| wi nter] @s.toronto. edu

Abstract. HypBinRes, a particular form of hyper-resolution, was fanstployed
in the SAT solver 2LS+EQ. In 2CcLS+EQ, HypBinRes and equality reduction
are used at every node of a DPLL search tree, pruning muchedidhrch tree.
This allowed ZLs+EQ to display the best all-around performance in the 2002
SAT solver competition. In particular, it was the only salte qualify for the
second round of the competition in all three benchmark caies. In this paper
we investigate the use of HypBinRes and equality reductioa preprocessor
that can be used to simplify a CNF formula prior to SAT solviige present
empirical evidence demonstrating that such a preprocésssxtremely effec-
tive on large structured problems, including making sonavipusly unsolvable
problems solvable. The preprocessor is also able to solvender of non-trivial
instances by itself. Since the preprocessor does not haverty about undoing
changes on backtrack, nor about keeping track of reasonstfligent back-
tracking, we are able to develop a new algorithm for apphyiypBinRes that
can be orders of magnitude more efficient than the algoritmpl@yed inside of
2CLS+EQ. The net result is a technique that improves our ability teestiard
problems SAT problems.

1 Introduction

In this paper we investigate the use of a particular hypsoltgion rule, HypBinRes,
along with equality reduction to preprocess CNF encoded tBadries. HypBinRes is
an inference rule that attempts to discover new binary elsuBhese binary clauses are
in turn used to detect that a literal is either forced or mestfuivalent to other literals.
In either case the input formula can then be reduced to oreltes not contain that
literal.

The HypBinRes rule was developed as part of the SAT soleeis2eqQ [1]. This
solver was designed to further investigate the use of anditireasoning at every node
of a DPLL search tree in order to prune the search tree [2n3hé 2002 SAT com-
petition 2cLs+EQ displayed the best all around performance, being the onlesto
qualify for the second round of the competition in all thrembhmark categories: indus-
trial, handmade, and random problems. Furthermares2eQ was the top contributor
to the SOTA (state of the art) solver. That is, it solved 1&ems that were not solved

* This research was supported by the Canadian Governmengtitbeir NSERC program.

2 Fahiem Bacchus and Jonathan Winter

by any other solver, (second was zchaff which was the solesof 15 problems) [4].
This performance demonstrated that the right kind of adidéi reasoning can be very
effective. Furthermore, in [2] empirical evidence was préed demonstrating that it is
the specific use of HypBinRes and equality reduction thaeistk 2cLs+EQ’s perfor-
mance.

The competition results demonstrated two other things thewse of HypBinRes.
First, it can be quite expensive to utilize inside of the DRidarch, often resulting in a
significant slow down in the per-node search rate of the soe some problems, the
pruning produced is so dramatic that there is a significaninmgrovement in solution
times. However, on many problems the overheads are suclttitatof the art DPLL
SAT solvers, like zchaff [5], can solve the problem fasteerethough they search many
more nodes. Second, there are a number of problems on whigikfges and equality
reduction is so effective that2 s+EQ can solve the problem without doing any search.

These two observations lead us to investigate the use of HRE#3 and equal-
ity reduction as a preprocessor for simplifying SAT prob$gnior to invoking a DPLL
search. First, much of the expense in the implementatiorypBihRes comes from the
fact that it was being used dynamically inside of a DPPL deddsing HypBinRes dy-
namically means that it must maintain sufficient informatio allow all of the changes
it makes to the theory to be undone on backtrack. Furtherrheause @LS+EQ uti-
lizes intelligent backtracking, information also has tonh&intained so that the reasons
for failures can be computed. Since at each node HypBinRésgunality reduction
can produce huge changes to the theory, computing and nméngfall of this informa-
tion becomes quite expensive. All of that extra work can b@ded in a preprocessor.
Second, that HypBinRes with equality reduction was acyusthle to solve some hard
problems prior to search, gave us reason to believe thatitdasefully simplify other
problems even if it was not able to solve them completely.

In this paper we report on the results of our investigatidéa the use of HypBinRes
and equality reduction as a preprocessor. A short summang ltlkeat such a prepro-
cessor is often extremely effective in improving net saatiimes, in contrast with the
mixed results about preprocessing reported in [6]. In tlypisewe will first describe
HypBinRes and equality reduction in more detail. Then wé skittch a new algorithm
suitable for implementing it in a preprocessor. Empiriedults from an implementa-
tion of this algorithm are presented next, followed by someatusions.

2 HypBinResteq

HypBinRes is a rule of inference involving a hyper-resantstep (i.e., a resolution step
that involves more than two input clauses). It takes as iaintiglen-ary clausef > 2)
(I1,1a,...,1,) andn — 1 binary clauses each of the for(h,¢) (i = 1,...,n — 1). It
produces as output the new binary clagsé,,). For example, using HypBinRes hyper-
resolution on the inputés, b, ¢, d), (h,a), (h,¢), and(h, d), produces the new binary
clause(h, b).

HypBinRes is equivalent to a sequence of ordinary resaiugteps (i.e., resolution
steps involving only two clauses). However, such a sequencéd generate clauses of
intermediate length while HypBinRes side-steps this, @d@gerating the final binary

Effective Preprocessing 3

clause. In a SAT solver it is generally counter productivadd all of these intermediate
clauses to the theofyHowever, can be very useful to add the final binary clause.

It should also be noted that if the inpuatary clause is itself binary, HypBinRes
reduces to the simple resolution of binary clauses. For gi@ntypBinRes on the
“n-ary” clause(a, b) and the clauséh, a) yields the new binary claugé, b).

HypBinRes could also be used to generate unit clauses, ifllow & to consider
one more binary clause. For examgle,b, ¢, d), (h,a), (h,b), (h,), and(h, d), when
hyper resolved together produces the unit cldéseEquivalently, one can do as we do
in our implementation. We can apply HypBinRes as specifiedaland then a separate
single step of ordinary resolution of binary clauses. Inexample, the HypBinRes step
uses only the first 3 binary clauses would prodegl), then an ordinary resolution
step with clauséh, d) producesh).

Once binary clauses are available equality reduction ceonmeed. If the theory
contains(a, b) as well as(a, b) (i.e,,a = b as well ash = a), then we can generate
a new formula EqRedu¢g’) by equality reduction. Equality reduction involves (a)
replacing all instances éfin F' by a, (b) removing all clauses which now contain both
a anda, (c) removing all duplicate instances @{or a) from all clauses. This process
might generate new binary clauses.

For example, EqRedutf(a, b), (a, b), (a, b, ¢), (b,d), (a,b,d)}) = {(a,d), (a,d)}.
Clearly EqRedudg”) will have a satisfying truth assignment if and onlyAf does.
Furthermore, any truth assignment for EqQRed#tecan be extended to one fér by
assigning the same value as

Finally, we can apply the standard reduction of unit claud&ge have a unit clause
(¢) in the theory, we can remove all clauses contairingnd then remové from all
remaining clauses. We use R to denote such an application of this inference rule.
The iterative application of UR until no more unit clausesaén is commonly known
as unit propagation UP.

We can apply unit reduction (UR), HypBinRes, and equaliguction to a CNF
theory until no more new inferences can be made with thess.rWe call the resultant
theory theHypBinRes+eqg-closure. A theory in which these three inference rules can
infer nothing new is called HypBinRes+eq-closed. Inténggdy, a Church-Rosser result
holds for this collection of inference rules.

Theorem 1. The HypBinRes+eg-closure of a CNF theory F is unique up to renaming.
That is, the order in which the inference rules are applied is irrelevant, as long as we
continue until we cannot apply them anymore.

Proof. We show that these inference rules satisfy the Church-Rpssperty. Namely,
if a CNF theoryTl" can be reduced td; or 75 by zero or more applications of the above
three inference rules, then there exists another expresisat bothT; andT, can be
reduced to (up to renamify From this we immediately obtain the theorem.

First, we show that for any sequence of two rule applicationandr,, there is
some other sequence of rule applicatigits,, r2) such thatr;[r;[T]] is equivalent to
f(r1,m2)[r2[T]] up to renaming. This is shown by exhaustive case analyseh Ease

! These clauses are not like conflict clauses. Adding confietses does appear to be useful.
2 Renaming might be necessary because the EqReduce rulesmigpplied in different ways.

4 Fahiem Bacchus and Jonathan Winter

is easy, but there are many of cases. Hence, we only give decotipxamples. Say
thatry is {(a,), (a,y), (%, 7, 2)} F (a, z), andry is {(a, 2), (¢, 2), (¢, @, §)} F (s, 2).

ro depends of, and thus might not be applicableo In this case we view,[T] as
being a null operation, i.erp[T] = T. Hences[r1[T]] is equivalent ta [ry [r2[T]]].
Another case is with the same but withr, being URz). Now ro[r1[T]]] is equivalent

to ri [r2[T]] wherer] is {(a,y), (7, 2)} F (a, z). From this result it follows that for
any theoryr[n[T]] wherer is a sequence of rule applications, there exists an al&rnat
sequence’ such that[x[T]] is equivalent tar’ [»[T']]: we simply pushr in one step at
atime.

Second, we observe that for any two theoffgsandT>, equivalent up to renaming,
and any inference rule;, Church-Rosser holds fof [T1] andT»>. We simply rename
the literals inr; according to the renaming function betweBnand 7> and apply the
renamed to T»: r{[T2]. The result is clearly equivalent tq[7}]. That is, the empty
sequence and, transformr [T1] andT% to equivalent theories.

Finally, we consider two theorie§; andT» for which Church-Rosser holds. We
show that for any rule applicationChurch-Rosser still holds faffT} | andTs. Church-
Rosser means that there exists two sequencaadr, such thatr, [T}] is equivalent to
ma[T>]. Hencey[m [T1]] is equivalent to’[w2[T3]] wherer’ is r appropriately renamed.
By our first result, there are sequenegsandr’, such thatr][r[T}]] is equivalent to
r[m [T1]], andrs [r'[T5]] is equivalent ta” [m2[T3]]. Thusm, applied tor[T;] andzl; r/
applied toT> make these two theories equivalent. With the previous base and this
inductive step we have shown that Church-Rosser holds.

Now we can conclude that since no rules can be applied in thEBRes+eq-
closure it must be the case that we that any two sequenceestaaching closure must
yield the same theory (to renaming). Church-Rosser holtisd®n the two theories
obtained by these two sequences. Hence, if these theorresdifferent, there would
be a non-empty sequence of rules applicable to at least dhemf(to move them both
to an equivalent theory). That is, the theories could not bbetHypBinRes+eq-closed.

The practical significance of Theorem 1 is that we are fre@pdyethese inference
rules in any order; we are guaranteed to reach the same fgdt.ré/e now turn our
attention to an algorithm for computing the HypBinRes+&wpare. Our new algorithm
does not implement HypBinRes directly, rather it exploits tlose relation between
HypBinRes and unit propagation.

2.1 UPand HypBinRest+eq

Unit propagation is the iterative procedure of applyingualit reduction rules until no
more unit clauses remain. Unit propagation can also be doreidal basis. That is we
can choose a literal to set to be true and then perform unitggation. We call thisnit
propagating a literal, and denote it UR:), wherea is the literal that has been initially
set to true. When Uf) causes another literdlto become true we use the notation
UP(a) F £.1f UP(a) I~ ¢ as well as UPa) I~ ¢, we have detected thatis afailed
literal, and it must be the case that the original the®rl a. We can then reducg by
performing URa).

In the sequel we will generally suppress mention of the ugioley CNF theory,F,
upon which the various the reasoning processes are being run

Effective Preprocessing 5

Theorem 2. UP is more powerful than a single HypBinRes resolution step, but not as
powerful as a sequence of HypBinRes resolution steps. More precisely:

1. If (a,b) can be produced by a single HypBinRes step, then either UP(a) + b or
UP(b) I- a.

2. There are theories from which a binary clauses (a, b) can be produced from a se-
quence of HypBinRes steps, but neither UP(a) F b, nor UP(b) | a.

3. Inatheorywith no unit clauses (we can remove all units by an initial unit propaga-

tion phase), if UP(a) I b then there is a sequence of HypBinRes steps that produce
(a,b).

Proof. (1) Any HypBinRes step is of the forf(ly,la, ..., 15), (¢,11), «.., (€, 1n—1)},
- (4,1,), and URY) I 1,,. Note that it need not be the case that/ L) - .

(2) An example is{(a,), (a,y), (Z,7,¢), (¢, h), (¢,i), (i,h,q), (b,m), (b,o0),
(m,0,q)}. The binary clause@:, ¢), (¢, ¢), and(g, b) can be produced by 3 HypBinRes
steps, after which two more resolution steps producé). However, URa) - {z, v,
¢, h, i, q}, but notb, and URD) - {m, o, ¢} but nota.

(3) We prove this result by induction. First we define an artgion the literals
entailed by URa). Stage 0 of URz) involves reducing the theory by removingrom
all clauses, and removing all clauses contairingll literals appearing in unit clauses
of the reduced theory are said to be entailed at step oneage gt the one step literals
are used to further reduce the clauses of the theory, anteadils appearing in new unit
clauses are said to be entailed at step two. In general ténels entailed at stepare
those appearing in unit clauses of the reduced theory pesbaicstage — 1. We prove
the theorem by induction on the stage at whidh produced.

If bis a step 1 literal then the clauge, b) must have appeared in the initial theory:
i.e., a zero length sequence of HypBinRes steps suffices.

Sayb is entailed at step, and that it was entailed by the clau@e, .. ., 1, b) be-
coming unit. Hence, the negation of each of thevas entailed at earlier steps, and by
induction for each there is a sequence of HypBinRes stehpiog the binary clause
(a,l;) foreachj € {1,...,k}. Hence, one more step of HypBinRes suffices to produce

(a,b).

2.2 Achieving HypBinRest+eg-closurewith UP

Achieving HypBinRes+eqg-closure involves repeatedly yimgl HypBinRes, UR, and
equality reduction until nothing new can be inferred. Tleaor2 shows that we can
achieve HypBinRes-closure by repeatedly applying UP ofitér@ls of the theory.
More precisely, we first reduce the theory by unit propaggatith unit clauses it
might contain. Then for each remaining litefalve can perform UR’), adding to the
theory a new binary claugé, a) for every literala such that URY) + a. By (1) above,
one pass over all of the literals ensures that we find all jidauses that can be inferred
by one HypBinRes step. Adding the entailed binary clauses éimsures that the second
pass can find all binary clauses inferable by two HypBinRepsstBy (2) we must
add the entailed binary clauses found in the first pass, efserild not be powerful
enough. Adding these clauses makes all of the inputs to ttendeHypBinRes step

6 Fahiem Bacchus and Jonathan Winter

available in the theory, and by (1) allows UP to capture tleosd HypBinRes step.
These passes are continued until we find no new binary clatigesly at this stage we
have achieved HypBinRes-closure: there is no instanceeoflifpBinRes rule that can
be applied.

Equality reduction and unit propagation can now added tomaathe HypBinRes+eq-
closure. One obvious way to see this is to consider the Reratocess were we wait
until HypBinRes closure is achieved, then perform all efuaéduction and unit prop-
agations, then iterate these steps again until we find nptiénv. By Theorem 1 this
particular sequence of operations will compute the HypBsHg-closure. In practice,
however, the flexibility ensured by Theorem 1 is very impotfar efficiency. For ex-
ample, it is always a good idea to perform UR immediately vaven we find a unit
clause.

Part (3) of Theorem 2 tells us that we do not achieve anythiegtgr than HypBinRes-
closure using multiple applications of UP: UP cannot inferthing more than HypBinRes.
Hence the process just described computes precisely thBirfgps+eq-closure.

2.3 A Real Algorithm

The process described in the previous section would makeeldéssly inefficient al-
gorithm. However, we can develop an efficient algorithm bpg&JP in a more refined
manner that tries to avoid consuming too much space and dvastek. The basic idea
is that we can often tell when UP for some literal? will not yield anything new. A
good example of this is when U) - ¢ and UR«) yields nothing new—UR) cannot
either. Space is also an issue with the previous procese #dd a binary clausé, a)
for everya such that URY) - a, we could end up storing the transitive closure of the
binary subtheory, which can be quadratic in the number eifdis. This would make it
impossible to deal with the large CNF theories that are nawrmonplace.

Our algorithm utilizes the implicit implication graph reggented by a set of binary
clauses [7]: the nodes are all of the literals in the theoy eexch binary clausg:, b)
represents the two edges=- b andb = a. In the following discussion we will in-
terchangeably refer to a set of binary clauses as an imigiicgraph and vice versa.
Our implementation actually works with sets of binary clesigerforming operations
on the implication graph (like traversing it) by correspomoperations on the binary
clauses.

First we remove all unit clauses from the input CNF by doingrétmal unit propa-
gation. Then all of the input binary clauses are collectad,sed to represent an impli-
cation graph. The aim of the algorithm is to generate an an¢gdamplication graph
(new set of binary clauses) that satisfies the following prop if (a, b) is present in
the HypBinRes+eqg-closure, then in the implication grap$ reachable frona anda
is reachable fromh. In particular, the clausg:, b) need not be in the final set of binary
clauses, but it must be derivable by resolution steps ifmglenly the computed set
of binary clauses. Thus we avoid materializing the travsitiosure of the implication
graph®

% The original ZLs+EqQ algorithm did explicitly represent the transitive closofehe implica-
tion graph as do the two other preprocessors that reasorthvéthinary clauses, 28pPLIFY

Effective Preprocessing 7

Table 1 Graph Search Algorithm for computing HypBinRes-closure
Visit(2)
if ¢ is MARKED return
Currentlnplicants := {}
foreach I s.t. (¢,1) is in the inplication graph
if € Currentlnplicants
del ete (¢4,1) fromthe inplication graph.
else
Visit(l)
Current | nplicants U= Descendant sCf (1)
UPImplicants := {l s.t. UP({)F [}
10. Newinplicants := UPInplicants - Currentlnplicants
11. foreach [€ New nplicants
12. if le Currentlnplicants

©RNoGOAWNE

13. conti nue

14. else B

15. add (¢,1) to inplication graph.

16. Visit(l)

17. Current | nplicants U= Descendant sCf (1)
18. MARK /¢

19. return

The basic algorithm is presented Table 2.3. It is based ompthdigst post-order
traversal of the implication grapgh. The traversal is started at the set of literals (nodes)
that have no parents i, i.e., they do not appear in any binary clauses, only their
negations do. When the search completes its visit of a liteaa literal is marked. The
mark indicates that unit propagating that literal will na &ble to discover anything
new (at least for now).

First the algorithm visits all current children of the lig¢¥, recursively achieving
a marked status for each child. As the children are visitedstt of literals currently
reachable frond are accumulated (line 8). It can be that a new edge is addbd traph
when recursively solving a child, and that new edge mightliesome other child of
¢. This means that there is now another pathftom ¢ rather than the direct edgé, 7).
To keep the graph small, the direct edge can be deleted (Ji&ter all of the current
children are marked, is unit propagated and all of the entailed literals accutedla
(line 9). Note that entails all of its childrersimultaneously, so its set of unitimplicants
will in general be larger than the union of its children’stiniplicants.

Any unit implicant not in the set of currently reachabledils then needs to be
added to the graph (in order to converge on the HypBinResdcd). This is done at
lines 11-17. Each of these new children can then be visitezshswire that they are
properly marked. Again, the algorithm tries to minimize thember of new children
added, by skipping those that are already reachable frone speviously processed
child (line 13).

Note that the algorithm makes no attempt to minimize the sfziae implication
graph (although this is an option if space is very tight). Egample, it does not go

[8] and ZcL_sIMP[3]. All of these algorithms have difficulty dealing with fger formulas. The
preprocessor we report on here follows more the “lean” agg@rsuggested in [9, 10].

8 Fahiem Bacchus and Jonathan Winter

back to check whether previous children might be reachabla thildren processed
later—this would be too expensive.

Dealing with equivalence reduction and unit propagatiofooted literals is con-
ceptually straightforward. Equivalent literals can beedétd with a depth-first search
using Tarjan’s strongly connected components (SCC) dlyor[11] (or more modern
improvements). And forced literals (detected during thit¢ propagations of the algo-
rithm) can be unit propagated. The complexity lies with firgdivays to perform these
operations incrementally and in more efficient orders. kangple, we want to interrupt
the graph search to unit propagate forced literals as sotiregsre detected.

To make equivalent literal detection incremental we do @relir5CC and equality
reduction prior to invokingvisit. Subsequently, we restrict the SCC computation so
that it is only invoked when a new binary clause has been adtethermore we only
search in the neighborhood of the new edges for newly creategbonents (any new
SCC must include one of the new edges). In this way we avoichaiag the entire
graph for every small change.

For forced literals, whenever a failed literal is detectee jnterrupt the graph search
and immediately unit propagate the negation of the failetdl. This marks some of
the nodes in the graph as true or false, and can also genesatbinary clauses that
are immediately added to the graph. The graph search is tieimaed. To deal with
the changes in the graph we make it backtrack immediatehy &y true or false node,
otherwise it continues as before. Hence, it will only traesthe new edges in that part of
the graph it has not yet searched. We utilize the literal m#olensure that it eventually
goes back to consider the new edges in the part it has alreadyted

All of the inference rules utilize the literal marks to inforthe graph search of
any incremental work it still needs to do. The mark represéim¢ condition that unit
propagating the literal will not yield any new edges in thegr. So whenever one of
the rules is activated, it unmarks those literals that migiw generate something new
under unit propagation. There are only two cases:

(1) A new binary clauséa, b) is added to the theory. This happens whemaeaary
clause is reduced to binary. The new clause representsthedyesi = b andb = a.
This means that andb along with anything upstream of them could now potentially
generate new unit implicants. Hence, all these literalsuaraarked so that the graph
search can reconsider them.

(2) An n-ary claus€ly, . .., lx+1) is reduced in size to the clau, . .., [;). This
could happen from a unit propagation forcing ; or from1;; becoming equivalent
to one of the othet;. For any literal¢ such that URY) - [; for anyi € {1,...,k} it
could that UR¢) now makes this clause unit. For example, it could be that/WUP
{Iy,...,1x—1}. Previously, this would have only reduced the clause torigjriaut now
that the clause has been reduced in size we get th@)BH,,. Hence, we must unmark
¢. In general, we unmark all literals upstream of any ofithélote that (2) is simply a
generalization of (1).

Effective Preprocessing 9

Table 2 The Hypre Preprocessing Algorithm
Hypre

1. Unit Propagate all unit clauses.

2. Find all SCC and performall EqReduce steps

3. UNMARK all nodes in inplication graph

4. while there is an UNMARKED node

5. foreach ¢ s.t. £ is marked, and has no parents
6. Visit(4)

7. Perform I ncrenental SCC

9. UNMARK al | nodes according to the two cases above.
10. end.

Visit(¢)

1. if £ is MARKED return

2. Currentlnplicants := {}

3. foreach I s.t. (4,1) is in the inplication graph
4. if le Currentlnplicants

5. delete (¢,1) fromthe inplication graph.
6. else

7. Visit(l)

7.5 if £ is MARKED return

8. Currentlnplicants U= DescendantsCOf (1)

9. UPImplicants := {l s.t. UP()+ I}

9.1 if contradiction detected

9.2 UP(£)

9.3 MARK all literals whose truth value is set
9.4 UNMARK al | nodes according to the two cases above.

10. Newinplicants := UPInplicants - Currentlnplicants
11. foreach I € Newinplicants

12. if le Currentlnplicants

13. conti nue

14. else

14.5 Note that these new edges do not cause unmarking
15. add (¢,1) to inplication graph.

15.5 Note that these visits cannot detect a contradiction
15.6 since line 9 didn't.

16. Visit(l)

17. Currentlnplicants U= DescendantsCOf (1)

18. MARK ¢

19. return

With this unmarking process, we run the graph search urdiletlis no unmarked
literal (or a contradition is detected, or all clauses beeaatisfied). Unit propagations
of forced literals are done immediately, and strongly cate@ component detection
and equivalent literal reduction performed after the gregdrch is completed. Both the
unit propagations as well as the equality reductions migimave node marks, in which
case we may have to perform another iteration. Once no marggels can be made we
have achieved HypBinRes+eq-closure.

The final algorithm is presented in Table 2.3. The chang&8dio are indicated by
fractional line numbers.

3 Empirical Results

Perhaps the most dramatic demonstration of the power of liypds+eqg-closure comes
from the two problems c6288-s, and c6288 from Jodo Mar@iks's MITERS test

10 Fahiem Bacchus and Jonathan Winter

Table 3 Performance on two “hard” MITERS problems.
ProblemHyPreg Berkmin|2SIMPLIFY | 2CL_SIMP Zchaff| 2SIMPLIFY
+Berkmin| +Berkmin +Zchaff

€6288-s 1.05> 604,800 > 30,000> 604,800> 604,800> 604,800.
c6288 1.05> 604,800 > 30,00Q> 604,800> 604,800> 604,800.(

suite. Both of these problems are detected to be UNSAT by riagrpcessor. Table 3
shows the time required by the preprocessor and by the SA&rsdBerkMin 5.61, and
zchaff. All times reported are in CPU seconds on a 3GB, 2.4 Beixtium-1V. These
two solvers were used in our tests are they are probably tis¢ posverful current SAT
solvers.

It can be seen that although the preprocessor solves bdileprs is about a second,
the unsimplified problem is unsolvable by either of thestestéthe art SAT solvers.
We ran each problems for a week before aborting the run. We taksd two other
preprocessors (discussed in more detail in Section 4¥2SFy [8] and 2 L_SIMP
[3]. Both of these preprocessors do some form of binary elaeasoning, but as can be
seen from the table, neither are effective on this problem.

Similar results are achieved on the BMC2 test suite from 8@2Zompetition, Ta-
ble 4. Again all of these problems were solved by the premsme(all are SAT). These
problems were also solved by the origina3+EQ solver without search. However,
as noted above the implementation of HypBinRes+eg-claalZeLs+EQis much less
efficient. This is verified by the results of the table.

Table 4 Performance on the BMC2 suite
[Problem [HyPre2cLs+EQ|Berkmin|Zchaff[Problem [HyPref2cLs+EQ|Berkmin| Zchaff
BMC2-b1| 0.01 0.03 0.00 0.02|BMC2-b4 2.33 7.44 10.5 36.8]
BMC2-b2| 0.05 0.16 0.05 0.13|BMC2-b5 28.31 321.6Q 520.92 3492.2
BMC2-b3| 0.31 0.84 0.62 1.89|BMC2-b6| 214 11,193 3,426>20,000

Table 5 shows some additional results summed over famifipsodblems. Most of
these families came from the 2002 SAT competition. The fasid3rule and O6rule
come from the IBM Formal Verification Benchmark suite (we diat run Zchaff on
these families). The number in brackets after the family@é&nthe number of problems
in the family. The time given is the total time to “solve” altgblems in the family in
CPU seconds. In these experiments a single problem timef@@,000 CPU seconds
was imposed, and 20,000 was added to the total time to “sahefamily for each
failed problem. The number in brackets after the total timthe number of problems
the solver failed to solve. For the preprocessor “failuredlye” means that the problem
was not resolved at preprocessing time. The first set of tis® time required by the

4 The most recent public release.

Effective Preprocessing 11

Table 5 Performance on various families of problems. Time in CPlbgeds. Bracketed
numbers indicate number of failures for that family. Nuntbir bold face indicate
family/solver combinations where preprocessing redubednet solution times (i.e.
preprocessing plus solving), or allowed more problems tedbed.

Family (#probs HyPre Berkmin-Orig Berkmin-PreZchaff-Orig| Zchaff-Pre
BMC (76) 18,819 (53) 41,751 (1) 29,254 (1) 48,225 (1) 30,009 (1
BMCTA (2) 1,210 (2 7,835 (0 6,015 (0)| 34,741 (1) 24,977 (1)
Cache (5) 23,620 (5) 61,771 (2) 42,327 (2) 30,725 (1) 43,932 (2
w10 (4) 1,377 (4 516 (0 65 (0) 1,603 (0 615 (0
Checker (4) 8 (4) 4,092 (0 3,191 (0)] 1,763 (0) 2,318 (0
Comb (3) 352 (3 22,017 (1) 21,196 (1)| 60,000 (3) 36,845 (1)
IBM-Easy (2) 1,454 (2 1,092 (0 61 (0) 678 (0 2(0)
IBM-Med (2) | 47,880 (2 5,075 (0 6 (0)| 13,342 (0 6 (0)
IBM-Hard (3) 1,767 (3 38,997 (1) 3,560 (0)| 47,581 (2) 28,920 (0)
Lisa (29) 16 (29) 107,379 (2) 135,612 (3)185,091 (7)111,482 (2)
f2clk (3) 674 (3 22,663 (1) 19,451 (0)| 40,662 (2) 28,687 (1)
fifo (4) 875 (3 56,014 (2) 1,015 (0)| 29,040 (1) 8,929 (0)
ip (4) 735 (4 1,466 (0 145 (0)| 30,667 (1) 1,687 (0)
w08 (3) 8,672 (2 8,542 (0 151 (0) 27,670 (1 309 (0)
rule.03 (20) 4,409 (14) 134,258 (6) 10,501 (0)

rule.06 (20 15,509 (5) 113,360 (4) 5,587.62 (0)

preprocessor, then for each of the two SAT solvers we givérerequire to solve the
original problems, then the time require to solve the pregssed problems (i.e., those
that had not be resolved by the preprocessor).

The data shows that HypBinRes+eg-closure almost alwayssthk problems eas-
ier to solve. Only for Cache with Zchaff, and Lisa with Berkndioes the time to process
the family increase. The preprocessor also allows Berkmgotve one more problem
from the IBM-Hard family, one more from the f2clk, two morefm the fifo family, 6
more from the 03ule family, and 4 more from the Qfule family. It improves Zchaff
even more, allowing Zchaff to solve 2 more from Comb, 2 mooafiBM-Hard, five
more from Lisa, one more from f2clk, fifo, ip, and w08. Prepsging on rare occasion
makes a problem harder as in the case for one problem in thdansily for Berkmin,
and one problem in the Cache family for Zchaff. Interesynfgr the Lisa family and
Berkmin, the preprocessing allowed Berkmin to solve ondler it could not solve
before, and stopped it from solving one that it could solVietse

Frequently, especially for Berkmin, once we add the timeddgrm the prepro-
cessing the gains in total solution time are minimal, or emegative. The net gains
for Zchaff are better. Nevertheless, the preprocessorstlalvays makes the problem
easier, so only in the case of IBM-Med does it cause a seriousdown in the total
solution time. We feel that this is acceptable given thalsib @allows some problems to
be solved that previously could not be solved.

Table 6 provides some data about typical reductions in sizee CNF formulas
produced by the preprocessor (these are of course fornnaaare unresolved by pre-

12 Fahiem Bacchus and Jonathan Winter

Table 6 Size reduction on various problems instances. #Vars isuh@er of variables,
#N-ary is the number of non binary clauses, and #Bin is thebmirof binary clauses

Problem Original After Processing

#Varg #N-ary| #Bin| #Varg #N-ary #Bin
BMC-b10 42,408 42,321 98,804 10,229 14,978 35,263
BMC-b74 209,211208,117 501,283181,057182,006 472,654
BMCTA-bl 64,909 87,909 108,066 40,708 73,866 158,966
BMCTA-b2 87,029118,197 144,802 55,871100,97§ 215,793
Cache-b1-s1113,080 96,120 326,995 63,872 70,160 191,074
Cache-b2-s24227,210195,260 666,835117,991131,310 377,647
w10-b3 32,748 21,123 82,290 12,059 13,995 46,922
w10-b4 36,291 23,499 91,621 13,6571 15,856 53,158
Checker-b3 1,155 33,74Q 5,528 1,029 30,158 4,903
Checker-b4 1,188 34,732 5,688 1,062 31,150 5,069
Comb-b2 31,933 21,364 91,097 15,7071 17,511 84,952
Comb-b3 4,774 3,342 12,988 2,405 2,806 9,552
IBM-Easy-b2| 29,603 35,044 115,506 15,276 29,297 59,389
IBM-Easy-b3| 48,109 58,023 156,958 17,967 34,014 94,779
IBM-Med-bl |212,091207,2432,313,020 64,779133,8051,204,19
IBM-Med-b2 |125,646122,4541,378,757 29,164 69,548 339,257
IBM-Hard-b2 | 22,984 27,504 90,298 11,784 21,803 49,480
IBM-Hard-b3| 33,383 41,040 121,986 14,7571 26,583 72,34Q

Lisa-b28 1,453 6,954 968 1,347 6,494 1,439
Lisa-b21 2,125 10,464 1,576 1,447 6,724 1,260
f2clk-b2 27,568 20,354 58,761 10,395 11,478 56,342
f2clk 34,678 25,6627 74,001 14,895 16,38§ 84,901
fifo-b3 194,762118,508 407,666 29,724 52,026 87,117
fifo-b4 259,762158,108 543,766 41,574 72,826 122,374
ip-b3 49,967 36,407 124,732 14,042 15,597 48,462
ip-b4 66,131 48,275 165,208 19,224 21,353 65,791
wO08-b2 120,367 81,080 344,201 34,861 40,513 211,796
wO08-b3 132,555 89,489 379,993 40,854 47,091 243,424

processing). The data shows that for the most part the prepsor is able to achieve
a significant reduction in the number of variables in the theleurthermore, it is clear
that for problems like IBM-Med-b1, which contains more ttzamillion binary clauses,
it would be impossible to maintain the transitive closuréhaf binary clauses. (In fact,
2cLs+EQ, whose algorithm for achieving HypBinRes+eg-closure ings realizing the
transitive closure, is unable to complete the preprocgssithe larger problems.) The
implicit representation of these clauses in an implicagicemph used in our implemen-
tation avoids this blowup. In fact, we see that generallyfihal theory has a reduced
number of binary clauses, even though the outputed set néetacontains within its
transitive closure all implications of HypBinRes+eq.

Effective Preprocessing 13

On a number of families, e.g., Bart, Homer, GridMN, Matrixlyhomial, sha, and
fpga-routing-2 the preprocessor had no effect. In thesélenas there are no useful
binary clauses in the original theory.

It can be noted however, that at least for the Bart family gisitypBinRes+eq dy-
namically during the search had dramatic benefits even thdwgas useless as a pre-
processor. In particular, from data gathered during the-3202 competition 2LS+EQ
was able to solve all 21 instances of the Bart family in 1.Josds with an average of
only 25 nodes expanded during the search. Berkmin on the b#rel took 77.6 sec-
onds to solve the family and zchaff required 39,708 secondstll was only to solve
5 of the 21 problems.

4 PreviousWork

Some of the processing done in our preprocessor is simil@ctmiques used in pre-
vious preprocessors, e.g.0®@PACT [12], 2SMPLIFY [8], 2cL_SIMP [3], and COM-
PRES4 ITE[14].

ComPACT, and @MPRESS. ITE both try to detect failed literals, with@PRESS ITE
doing a more elaborate test including finding literals forbg both¢ and¢. Both of
these preprocessors use unit propagation to do their wankeker, the inferences per-
formed are not as powerful. In particularp@pPACT employs only the failed literal rule:
if UP(a) - FALSE then forcea. By Theorem 2, HypBinRes will also detect all failed
literals. COMPRESS. ITE on the other hand employs two inference rules

1. IfUP(¢) F a and URY) | a, then forcen.

2. IfUP(¢) F a and URY) + a then perform EqReduce replacindy /.

HypBinRes+eq captures both rules. For (1) HypBinRes wiliddode(, a) and (¢, a)
from whicha can be inferred. For (2) HypBinRes will conclu@& a) and (¢, @), from
which EqReduce can make the equality reduction. HypBinBgs:tosure is in fact
more powerful that these two rules. For exampleMPRESS ITE is only able to re-
move 3.3% of the literals from the two Miters problems c62381d c6288, whereas
our HypBinRes+eq preprocessor can completely solve thes@gms. Judging from
the times quoted in [14] GMPRESS.ITE is also currently much less efficient than our
implementation.

2SIMPLIFY and ZL_siMP are much closer to our work in that both try to do exten-
sive reasoning with binary clausex12siMP does not employ a HypBinRes rule, but
it does more extensive subsumption reasoningM28IFY on the other hand employs
the implication graph and also implements a rule that onetlosspection turns out to
be equivalent to HypBinRes. This rule is called the derivaretl implications [8]. The
rule is as follows: from a-ary clausgly, . . .,[,) the set of literals reachable from
(in the implication graph) is computed for alle {1,...,n}. All literals in the inter-
section of these sets is detected to be forced. For a litei@be in each of these sets,
it means that; = a for all i. That is, we have the binary clause$l,, a), ..., (I, a),
and then-ary clausdly, ..., [,). Thisis clearly a restricted case of HypBinRes. In fact,
2SIMPLIFY searches in a very limited way for literals in all but one afgh sets, and

14 Fahiem Bacchus and Jonathan Winter

from them learns new binary clauses (this version is prcidgpBinRes). 28vPLIFY
also performs equality reduction.

However, 28vpPLIFY does not compute the closure (in fact it does not even de-
tect all single applications of HypBinRes). Nor was any tletical analysis of the
HypBinRes rule provided. Furthermore, like2.siMP it computes the transitive clo-
sure of the implication graph (binary subtheory). Thus omynaxamples these two
programs fail to run. For example, on the BMC family of 76 desbhs, 23uPLIFY
aborts on 68 of the problems, an¢2simP on 45 problems. Even when these pro-
grams run they seem to be ineffective on industrial benchsar at least much less
effective than the HypBinRes+eq preprocessor. Table 3igeohsome evidence of this.
Table 7 provides some more.

Table7 2SIMPLIFY and ZL_sIMP Performance on the BMC2 suite. Total solution time
(preprocessor + solver) shown.

Problem | 2cL_sIMP|2SIMPLIFY |Berkmin||Problem | 2cL_SIMP|2SIMPLIFY |Berkmin|
+ Berkmin + Berkmin + Berkmin + Berkmin
BMC2-b1 0.01] 0.01 0.00(BMC2-b4 16.58 0.47, 10.54
BMC2-b2| 0.08 0.05 0.05/|BMC2-b5 226.88 251.55 520.97
BMC2-b3| 0.83 0.40 0.62/|BMC2-b6 3,751.03 3,849.223,426.58

5 Conclusion

We have presented a new preprocessor for CNF encoded SAEprablhe empirical
evidence demonstrates that although it can sometimes take@ftime to do its work,

it generally produces a significant simplification in thedhe This simplification is

sometimes the difference between being able to solve thiglgsmoand not being to
solve the problem. Hence, it is fair to say that it improvesahility to solve hard SAT
problems.

6 Acknowledgements

We thank the referees for very useful comments and for pmntuut that the binary
clause reasoning employed in [3] had also been implemestageeprocessor.

References

1. Bacchus, F.: Enhancing davis putnam with extended bitlangse reasoning. In: Proceedings
of the AAAI National Conference. (2002) 613-619

2. Bacchus, F.: Exploring the computational tradeoff of en@asoning and less searching. In:
Fifth International Symposium on Theory and ApplicatiorisSatisfiability Testing (SAT-
2002). (2002) 7-16 Available from www.cs.toronto.edud@dbhus/2clseq.html.

10.

11.

12.

13.

14.

Effective Preprocessing 15

. Van Gelder, A., Tsuji, Y.K.: Satisfiability testing withare reasoning and less guessing. In

Johnson, D., Trick, M., eds.: Cliques, Coloring and Satisfiig. Volume 26 of DIMACS
Series in Discrete Mathematics and Theoretical Computen8e. American Mathematical
Society (1996) 559-586

. Simon, L., Berre, D.L., Hirsch, E.A.: The sat2002 conipati Technical report,

www.satlive.org (2002) available on line at www.satlivg/S AT Competition/.

. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik; Ehaff: Engineering an efficient

sat solver. In: Proc. of the Design Automation Conferenc&GpD (2001)

. Lynce, I., Marques-Silva, J.P.. The puzzling role of difigation in propositional

satisfiability. In: EPIAO1 Workshop on Constraint Satistian and Operational Re-
search Techniques for Problem Solving (EPIA-CSOR). (208%ilable on line at
sat.inesc.pt/jpms/research/publications.html.

. Aspvall, B., Plass, M., Tarjan, R.: A linear-time algbrits for testing the truth of certain

quantified boolean formulas. Information Processing lreB8¢1979) 121-123

. Brafman, R.I.: A simplifier for propositional formulas twimany binary clauses. In: Pro-

ceedings of the International Joint Conference on Artifictdlligence (IJCAI). (2001) 515—
522

. Morrisette, T.: Incremental reasoning in less time aratep submitted manuscript (2002)

available from the author e-mail threesat2000@yahoo.com.

Van Gelder, A.: Toward leaner binary-clause reasonimg a satisfiability
solver. In: Fifth International Symposium on the Theory amtpplications
of Satisfiability Testing (SAT 2002). (2002) on line prems available at
gauss.ececs.uc.edu/Conferences/SAT2002/sat20l0@fikt.

Tarjan, R.: Depth first search and linear graph algosth®AM Journal on Computing
(1972) 146-160

Crawford, J.M., Auton, L.D.: Experimental results oe ttrossover point in random 3-sat.
Artificial Intelligence81 (1996) 31-57

Li, C.M., Anbulagan: Heuristics based on unit propagafor satisfiability problems. In:
Proceedings of the International Joint Conference on Adiifintelligence (IJCAI). (1997)
366-371

Berre, D.L.: Exploiting the real power of unit propagatiookahead. In: LICS Workshop
on Theory and Applications of Satisfiablity Testing. (2001)

