
Effective Preprocessing with Hyper-Resolution and
Equality Reduction

Fahiem Bacchus1 and Jonathan Winter1

Department of Computer Science, University Of Toronto,?

Toronto, Ontario, Canada
[fbacchus|winter]@cs.toronto.edu

Abstract. HypBinRes, a particular form of hyper-resolution, was firstemployed
in the SAT solver 2CLS+EQ. In 2CLS+EQ, HypBinRes and equality reduction
are used at every node of a DPLL search tree, pruning much of the search tree.
This allowed 2CLS+EQ to display the best all-around performance in the 2002
SAT solver competition. In particular, it was the only solver to qualify for the
second round of the competition in all three benchmark categories. In this paper
we investigate the use of HypBinRes and equality reduction in a preprocessor
that can be used to simplify a CNF formula prior to SAT solving. We present
empirical evidence demonstrating that such a preprocessoris extremely effec-
tive on large structured problems, including making some previously unsolvable
problems solvable. The preprocessor is also able to solve a number of non-trivial
instances by itself. Since the preprocessor does not have toworry about undoing
changes on backtrack, nor about keeping track of reasons forintelligent back-
tracking, we are able to develop a new algorithm for applyingHypBinRes that
can be orders of magnitude more efficient than the algorithm employed inside of
2CLS+EQ. The net result is a technique that improves our ability to solve hard
problems SAT problems.

1 Introduction

In this paper we investigate the use of a particular hyper-resolution rule, HypBinRes,
along with equality reduction to preprocess CNF encoded SATtheories. HypBinRes is
an inference rule that attempts to discover new binary clauses. These binary clauses are
in turn used to detect that a literal is either forced or must be equivalent to other literals.
In either case the input formula can then be reduced to one that does not contain that
literal.

The HypBinRes rule was developed as part of the SAT solver 2CLS+EQ [1]. This
solver was designed to further investigate the use of additional reasoning at every node
of a DPLL search tree in order to prune the search tree [2, 3]. In the 2002 SAT com-
petition 2CLS+EQ displayed the best all around performance, being the only solver to
qualify for the second round of the competition in all three benchmark categories: indus-
trial, handmade, and random problems. Furthermore, 2CLS+EQ was the top contributor
to the SOTA (state of the art) solver. That is, it solved 18 problems that were not solved

? This research was supported by the Canadian Government through their NSERC program.



2 Fahiem Bacchus and Jonathan Winter

by any other solver, (second was zchaff which was the sole solver of 15 problems) [4].
This performance demonstrated that the right kind of additional reasoning can be very
effective. Furthermore, in [2] empirical evidence was presented demonstrating that it is
the specific use of HypBinRes and equality reduction that is key to 2CLS+EQ’s perfor-
mance.

The competition results demonstrated two other things about the use of HypBinRes.
First, it can be quite expensive to utilize inside of the DPLLsearch, often resulting in a
significant slow down in the per-node search rate of the solver. On some problems, the
pruning produced is so dramatic that there is a significant net improvement in solution
times. However, on many problems the overheads are such thatstate of the art DPLL
SAT solvers, like zchaff [5], can solve the problem faster, even though they search many
more nodes. Second, there are a number of problems on which HypBinRes and equality
reduction is so effective that 2CLS+EQ can solve the problem without doing any search.

These two observations lead us to investigate the use of HypBinRes and equal-
ity reduction as a preprocessor for simplifying SAT problems prior to invoking a DPLL
search. First, much of the expense in the implementation of HypBinRes comes from the
fact that it was being used dynamically inside of a DPPL search. Using HypBinRes dy-
namically means that it must maintain sufficient information to allow all of the changes
it makes to the theory to be undone on backtrack. Furthermore, because 2CLS+EQ uti-
lizes intelligent backtracking, information also has to bemaintained so that the reasons
for failures can be computed. Since at each node HypBinRes and equality reduction
can produce huge changes to the theory, computing and maintaining all of this informa-
tion becomes quite expensive. All of that extra work can be avoided in a preprocessor.
Second, that HypBinRes with equality reduction was actually able to solve some hard
problems prior to search, gave us reason to believe that it could usefully simplify other
problems even if it was not able to solve them completely.

In this paper we report on the results of our investigation into the use of HypBinRes
and equality reduction as a preprocessor. A short summary being that such a prepro-
cessor is often extremely effective in improving net solution times, in contrast with the
mixed results about preprocessing reported in [6]. In the sequel we will first describe
HypBinRes and equality reduction in more detail. Then we will sketch a new algorithm
suitable for implementing it in a preprocessor. Empirical results from an implementa-
tion of this algorithm are presented next, followed by some conclusions.

2 HypBinRes+eq

HypBinRes is a rule of inference involving a hyper-resolution step (i.e., a resolution step
that involves more than two input clauses). It takes as inputa singlen-ary clause (n ≥ 2)
(l1, l2, ..., ln) andn − 1 binary clauses each of the form(l̄i, `) (i = 1, . . . , n − 1). It
produces as output the new binary clause(`, ln). For example, using HypBinRes hyper-
resolution on the inputs(a, b, c, d), (h, ā), (h, c̄), and(h, d̄), produces the new binary
clause(h, b).

HypBinRes is equivalent to a sequence of ordinary resolution steps (i.e., resolution
steps involving only two clauses). However, such a sequencewould generate clauses of
intermediate length while HypBinRes side-steps this, onlygenerating the final binary



Effective Preprocessing 3

clause. In a SAT solver it is generally counter productive toadd all of these intermediate
clauses to the theory.1 However, can be very useful to add the final binary clause.

It should also be noted that if the inputn-ary clause is itself binary, HypBinRes
reduces to the simple resolution of binary clauses. For example, HypBinRes on the
“n-ary” clause(a, b) and the clause(h, ā) yields the new binary clause(h, b).

HypBinRes could also be used to generate unit clauses, if we allow it to consider
one more binary clause. For example,(a, b, c, d), (h, ā), (h, b̄), (h, c̄), and(h, d̄), when
hyper resolved together produces the unit clause(h). Equivalently, one can do as we do
in our implementation. We can apply HypBinRes as specified above and then a separate
single step of ordinary resolution of binary clauses. In ourexample, the HypBinRes step
uses only the first 3 binary clauses would produce(h, d), then an ordinary resolution
step with clause(h, d̄) produces(h).

Once binary clauses are available equality reduction can performed. If the theoryF
contains(ā, b) as well as(a, b̄) (i.e,, a ⇒ b as well asb ⇒ a), then we can generate
a new formula EqReduce(F ) by equality reduction. Equality reduction involves (a)
replacing all instances ofb in F by a, (b) removing all clauses which now contain both
a andā, (c) removing all duplicate instances ofa (or ā) from all clauses. This process
might generate new binary clauses.

For example, EqReduce({(a, b̄), (ā, b), (a, b̄, c), (b, d̄), (a, b, d)}) = {(a, d̄), (a, d)}.
Clearly EqReduce(F ) will have a satisfying truth assignment if and only ifF does.
Furthermore, any truth assignment for EqReduce(F ) can be extended to one forF by
assigningb the same value asa.

Finally, we can apply the standard reduction of unit clauses. If we have a unit clause
(`) in the theory, we can remove all clauses containing`, and then removè̄ from all
remaining clauses. We use UR(`) to denote such an application of this inference rule.
The iterative application of UR until no more unit clauses remain is commonly known
as unit propagation UP.

We can apply unit reduction (UR), HypBinRes, and equality reduction to a CNF
theory until no more new inferences can be made with these rules. We call the resultant
theory theHypBinRes+eq-closure. A theory in which these three inference rules can
infer nothing new is called HypBinRes+eq-closed. Interestingly, a Church-Rosser result
holds for this collection of inference rules.

Theorem 1. The HypBinRes+eq-closure of a CNF theory F is unique up to renaming.
That is, the order in which the inference rules are applied is irrelevant, as long as we
continue until we cannot apply them anymore.

Proof. We show that these inference rules satisfy the Church-Rosser property. Namely,
if a CNF theoryT can be reduced toT1 or T2 by zero or more applications of the above
three inference rules, then there exists another expression that bothT1 andT2 can be
reduced to (up to renaming2). From this we immediately obtain the theorem.

First, we show that for any sequence of two rule applicationsr1 andr2, there is
some other sequence of rule applicationsf(r1, r2) such thatr2[r1[T ]] is equivalent to
f(r1, r2)[r2[T ]] up to renaming. This is shown by exhaustive case analysis. Each case

1 These clauses are not like conflict clauses. Adding conflict clauses does appear to be useful.
2 Renaming might be necessary because the EqReduce rules might be applied in different ways.



4 Fahiem Bacchus and Jonathan Winter

is easy, but there are many of cases. Hence, we only give a couple of examples. Say
thatr1 is {(a, x), (a, y), (x̄, ȳ, z)} ` (a, z), andr2 is {(a, z), (c, z), (c̄, ā, s̄)} ` (s, z).
r2 depends ofr1, and thus might not be applicable toT . In this case we viewr2[T ] as
being a null operation, i.e.,r2[T ] = T . Hence,r2[r1[T ]] is equivalent tor2[r1[r2[T ]]].
Another case is with the samer1 but withr2 being UR(x). Nowr2[r1[T ]]] is equivalent
to r′1[r2[T ]] wherer′1 is {(a, y), (ȳ, z)} ` (a, z). From this result it follows that for
any theoryr[π[T ]] whereπ is a sequence of rule applications, there exists an alternate
sequenceπ′ such thatr[π[T ]] is equivalent toπ′[r[T ]]: we simply pushr in one step at
a time.

Second, we observe that for any two theoriesT1 andT2 equivalent up to renaming,
and any inference ruler1, Church-Rosser holds forr1[T1] andT2. We simply rename
the literals inr1 according to the renaming function betweenT1 andT2 and apply the
renamedr1 to T2: r′1[T2]. The result is clearly equivalent tor1[T1]. That is, the empty
sequence andr′1 transformr1[T1] andT2 to equivalent theories.

Finally, we consider two theories,T1 andT2 for which Church-Rosser holds. We
show that for any rule applicationr Church-Rosser still holds forr[T1] andT2. Church-
Rosser means that there exists two sequencesπ1 andπ2 such thatπ1[T1] is equivalent to
π2[T2]. Hence,r[π1[T1]] is equivalent tor′[π2[T2]] wherer′ is r appropriately renamed.
By our first result, there are sequencesπ′

1 andπ′

2 such thatπ′

1[r[T1]] is equivalent to
r[π1[T1]], andπ′

2[r
′[T2]] is equivalent tor′[π2[T2]]. Thusπ1 applied tor[T1] andπ′

2; r
′

applied toT2 make these two theories equivalent. With the previous base case and this
inductive step we have shown that Church-Rosser holds.

Now we can conclude that since no rules can be applied in the HypBinRes+eq-
closure it must be the case that we that any two sequences of rules reaching closure must
yield the same theory (to renaming). Church-Rosser holds between the two theories
obtained by these two sequences. Hence, if these theories were different, there would
be a non-empty sequence of rules applicable to at least one ofthem (to move them both
to an equivalent theory). That is, the theories could not both be HypBinRes+eq-closed.

The practical significance of Theorem 1 is that we are free to apply these inference
rules in any order; we are guaranteed to reach the same final result. We now turn our
attention to an algorithm for computing the HypBinRes+eq-closure. Our new algorithm
does not implement HypBinRes directly, rather it exploits the close relation between
HypBinRes and unit propagation.

2.1 UP and HypBinRes+eq

Unit propagation is the iterative procedure of applying allunit reduction rules until no
more unit clauses remain. Unit propagation can also be done on a trial basis. That is we
can choose a literal to set to be true and then perform unit propagation. We call thisunit
propagating a literal, and denote it UP(a), wherea is the literal that has been initially
set to true. When UP(a) causes another literal` to become true we use the notation
UP(a) ` `. If UP(a) ` ` as well as UP(a) ` ¯̀, we have detected thata is a failed
literal, and it must be the case that the original theoryF ` ā. We can then reduceF by
performing UP(ā).

In the sequel we will generally suppress mention of the underlying CNF theory,F ,
upon which the various the reasoning processes are being run.



Effective Preprocessing 5

Theorem 2. UP is more powerful than a single HypBinRes resolution step, but not as
powerful as a sequence of HypBinRes resolution steps. More precisely:

1. If (a, b) can be produced by a single HypBinRes step, then either UP(ā) ` b or
UP(b̄) ` a.

2. There are theories from which a binary clauses (a, b) can be produced from a se-
quence of HypBinRes steps, but neither UP(ā) ` b, nor UP(b̄) ` a.

3. In a theory with no unit clauses (we can remove all units by an initial unit propaga-
tion phase), if UP(ā) ` b then there is a sequence of HypBinRes steps that produce
(a, b).

Proof. (1) Any HypBinRes step is of the form{(l1, l2, ..., ln), (`, l̄1), . . . , (`, l̄n−1)},
` (`, ln), and UP(¯̀) ` ln. Note that it need not be the case that UP(l̄n) ` `.

(2) An example is{(a, x), (a, y), (x̄, ȳ, c), (c̄, h), (c̄, i), (̄i, h̄, q), (b, m), (b, o),
(m̄, ō, q̄)}. The binary clauses(a, c), (c̄, q), and(q̄, b) can be produced by 3 HypBinRes
steps, after which two more resolution steps produce(a, b). However, UP(ā) ` {x, y,
c, h, i, q}, but notb, and UP(b̄) ` {m, o, q̄} but nota.

(3) We prove this result by induction. First we define an ordering on the literals
entailed by UP(ā). Stage 0 of UP(ā) involves reducing the theory by removinga from
all clauses, and removing all clauses containingā. All literals appearing in unit clauses
of the reduced theory are said to be entailed at step one. At stage 1 the one step literals
are used to further reduce the clauses of the theory, and all literals appearing in new unit
clauses are said to be entailed at step two. In general, the literals entailed at stepi are
those appearing in unit clauses of the reduced theory produced at stagei− 1. We prove
the theorem by induction on the stage at whichb is produced.

If b is a step 1 literal then the clause(a, b) must have appeared in the initial theory:
i.e., a zero length sequence of HypBinRes steps suffices.

Sayb is entailed at stepi, and that it was entailed by the clause(l1, . . . , lk, b) be-
coming unit. Hence, the negation of each of theli was entailed at earlier steps, and by
induction for each there is a sequence of HypBinRes steps producing the binary clause
(a, l̄j) for eachj ∈ {1, . . . , k}. Hence, one more step of HypBinRes suffices to produce
(a, b).

2.2 Achieving HypBinRes+eq-closure with UP

Achieving HypBinRes+eq-closure involves repeatedly applying HypBinRes, UR, and
equality reduction until nothing new can be inferred. Theorem 2 shows that we can
achieve HypBinRes-closure by repeatedly applying UP on theliterals of the theory.

More precisely, we first reduce the theory by unit propagating all unit clauses it
might contain. Then for each remaining literal` we can perform UP(`), adding to the
theory a new binary clause(¯̀, a) for every literala such that UP(`) ` a. By (1) above,
one pass over all of the literals ensures that we find all binary clauses that can be inferred
by one HypBinRes step. Adding the entailed binary clauses then ensures that the second
pass can find all binary clauses inferable by two HypBinRes steps. By (2) we must
add the entailed binary clauses found in the first pass, else UP would not be powerful
enough. Adding these clauses makes all of the inputs to the second HypBinRes step



6 Fahiem Bacchus and Jonathan Winter

available in the theory, and by (1) allows UP to capture the second HypBinRes step.
These passes are continued until we find no new binary clauses; clearly at this stage we
have achieved HypBinRes-closure: there is no instance of the HypBinRes rule that can
be applied.

Equality reduction and unit propagation can now added to compute the HypBinRes+eq-
closure. One obvious way to see this is to consider the iterative process were we wait
until HypBinRes closure is achieved, then perform all equality reduction and unit prop-
agations, then iterate these steps again until we find nothing new. By Theorem 1 this
particular sequence of operations will compute the HypBinRes+eq-closure. In practice,
however, the flexibility ensured by Theorem 1 is very important for efficiency. For ex-
ample, it is always a good idea to perform UR immediately whenever we find a unit
clause.

Part (3) of Theorem 2 tells us that we do not achieve anything greater than HypBinRes-
closure using multiple applications of UP: UP cannot infer anything more than HypBinRes.
Hence the process just described computes precisely the HypBinRes+eq-closure.

2.3 A Real Algorithm

The process described in the previous section would make a hopelessly inefficient al-
gorithm. However, we can develop an efficient algorithm by using UP in a more refined
manner that tries to avoid consuming too much space and wasted work. The basic idea
is that we can often tell when UP(`) for some literal̀ will not yield anything new. A
good example of this is when UP(a) ` ` and UP(a) yields nothing new—UP(`) cannot
either. Space is also an issue with the previous process. If we add a binary clause(¯̀, a)
for everya such that UP(`) ` a, we could end up storing the transitive closure of the
binary subtheory, which can be quadratic in the number of literals. This would make it
impossible to deal with the large CNF theories that are now commonplace.

Our algorithm utilizes the implicit implication graph represented by a set of binary
clauses [7]: the nodes are all of the literals in the theory and each binary clause(a, b)
represents the two edgesā ⇒ b and b̄ ⇒ a. In the following discussion we will in-
terchangeably refer to a set of binary clauses as an implication graph and vice versa.
Our implementation actually works with sets of binary clauses, performing operations
on the implication graph (like traversing it) by corresponding operations on the binary
clauses.

First we remove all unit clauses from the input CNF by doing aninitial unit propa-
gation. Then all of the input binary clauses are collected, and used to represent an impli-
cation graph. The aim of the algorithm is to generate an augmented implication graph
(new set of binary clauses) that satisfies the following property: if (a, b) is present in
the HypBinRes+eq-closure, then in the implication graphb is reachable from̄a anda

is reachable from̄b. In particular, the clause(a, b) need not be in the final set of binary
clauses, but it must be derivable by resolution steps involving only the computed set
of binary clauses. Thus we avoid materializing the transitive closure of the implication
graph.3

3 The original 2CLS+EQ algorithm did explicitly represent the transitive closureof the implica-
tion graph as do the two other preprocessors that reason withthe binary clauses, 2SIMPLIFY



Effective Preprocessing 7

Table 1 Graph Search Algorithm for computing HypBinRes-closure
Visit(`)
1. if ` is MARKED return
2. CurrentImplicants := {}
3. foreach l s.t. (¯̀, l) is in the implication graph
4. if l ∈ CurrentImplicants
5. delete (¯̀, l) from the implication graph.
6. else
7. Visit(l)
8. CurrentImplicants ∪= DescendantsOf(l)
9. UPImplicants := {l s.t. UP(`) ` l}
10. NewImplicants := UPImplicants - CurrentImplicants
11. foreach l ∈ NewImplicants
12. if l ∈ CurrentImplicants
13. continue
14. else
15. add (¯̀, l) to implication graph.
16. Visit(l)
17. CurrentImplicants ∪= DescendantsOf(l)
18. MARK `

19. return

The basic algorithm is presented Table 2.3. It is based on a depth first post-order
traversal of the implication graphG. The traversal is started at the set of literals (nodes)
that have no parents inG, i.e., they do not appear in any binary clauses, only their
negations do. When the search completes its visit of a literal that literal is marked. The
mark indicates that unit propagating that literal will not be able to discover anything
new (at least for now).

First the algorithm visits all current children of the literal `, recursively achieving
a marked status for each child. As the children are visited the set of literals currently
reachable from̀ are accumulated (line 8). It can be that a new edge is added to the graph
when recursively solving a child, and that new edge might reach some other childl of
`. This means that there is now another path tol from ` rather than the direct edge(¯̀, l).
To keep the graph small, the direct edge can be deleted (line 5). After all of the current
children are marked,̀ is unit propagated and all of the entailed literals accumulated
(line 9). Note that̀ entails all of its childrensimultaneously, so its set of unit implicants
will in general be larger than the union of its children’s unit implicants.

Any unit implicant not in the set of currently reachable literals then needs to be
added to the graph (in order to converge on the HypBinRes-closure). This is done at
lines 11–17. Each of these new children can then be visited toensure that they are
properly marked. Again, the algorithm tries to minimize thenumber of new children
added, by skipping those that are already reachable from some previously processed
child (line 13).

Note that the algorithm makes no attempt to minimize the sizeof the implication
graph (although this is an option if space is very tight). Forexample, it does not go

[8] and 2CL SIMP [3]. All of these algorithms have difficulty dealing with larger formulas. The
preprocessor we report on here follows more the “lean” approach suggested in [9, 10].



8 Fahiem Bacchus and Jonathan Winter

back to check whether previous children might be reachable from children processed
later—this would be too expensive.

Dealing with equivalence reduction and unit propagation offorced literals is con-
ceptually straightforward. Equivalent literals can be detected with a depth-first search
using Tarjan’s strongly connected components (SCC) algorithm [11] (or more modern
improvements). And forced literals (detected during the unit propagations of the algo-
rithm) can be unit propagated. The complexity lies with finding ways to perform these
operations incrementally and in more efficient orders. For example, we want to interrupt
the graph search to unit propagate forced literals as soon asthey are detected.

To make equivalent literal detection incremental we do an initial SCC and equality
reduction prior to invokingVisit. Subsequently, we restrict the SCC computation so
that it is only invoked when a new binary clause has been added. Furthermore we only
search in the neighborhood of the new edges for newly createdcomponents (any new
SCC must include one of the new edges). In this way we avoid examining the entire
graph for every small change.

For forced literals, whenever a failed literal is detected,we interrupt the graph search
and immediately unit propagate the negation of the failed literal. This marks some of
the nodes in the graph as true or false, and can also generate new binary clauses that
are immediately added to the graph. The graph search is then continued. To deal with
the changes in the graph we make it backtrack immediately from any true or false node,
otherwise it continues as before. Hence, it will only traverse the new edges in that part of
the graph it has not yet searched. We utilize the literal marks to ensure that it eventually
goes back to consider the new edges in the part it has already searched

All of the inference rules utilize the literal marks to inform the graph search of
any incremental work it still needs to do. The mark represents the condition that unit
propagating the literal will not yield any new edges in the graph. So whenever one of
the rules is activated, it unmarks those literals that mightnow generate something new
under unit propagation. There are only two cases:

(1) A new binary clause(a, b) is added to the theory. This happens when ann-ary
clause is reduced to binary. The new clause represents the new edges̄a ⇒ b andb̄ ⇒ a.
This means that̄a and b̄ along with anything upstream of them could now potentially
generate new unit implicants. Hence, all these literals areunmarked so that the graph
search can reconsider them.

(2) An n-ary clause(l1, . . . , lk+1) is reduced in size to the clause(l1, . . . , lk). This
could happen from a unit propagation forcingl̄k+1 or from l̄k+1 becoming equivalent
to one of the otherli. For any literal̀ such that UP(`) ` l̄i for any i ∈ {1, . . . , k} it
could that UP(`) now makes this clause unit. For example, it could be that UP(`) `
{l̄1, . . . , l̄k−1}. Previously, this would have only reduced the clause to binary, but now
that the clause has been reduced in size we get that UP(`) ` lk. Hence, we must unmark
`. In general, we unmark all literals upstream of any of thel̄i. Note that (2) is simply a
generalization of (1).



Effective Preprocessing 9

Table 2 The Hypre Preprocessing Algorithm
Hypre
1. Unit Propagate all unit clauses.
2. Find all SCC and perform all EqReduce steps
3. UNMARK all nodes in implication graph
4. while there is an UNMARKED node
5. foreach ` s.t. ` is marked, and has no parents
6. Visit(`)
7. Perform Incremental SCC
9. UNMARK all nodes according to the two cases above.
10. end.

Visit(`)
1. if ` is MARKED return
2. CurrentImplicants := {}
3. foreach l s.t. (¯̀, l) is in the implication graph
4. if l ∈ CurrentImplicants
5. delete (¯̀, l) from the implication graph.
6. else
7. Visit(l)
7.5 if ` is MARKED return
8. CurrentImplicants ∪= DescendantsOf(l)
9. UPImplicants := {l s.t. UP(`) ` l}
9.1 if contradiction detected
9.2 UP(¯̀)
9.3 MARK all literals whose truth value is set
9.4 UNMARK all nodes according to the two cases above.
10. NewImplicants := UPImplicants - CurrentImplicants
11. foreach l ∈ NewImplicants
12. if l ∈ CurrentImplicants
13. continue
14. else
14.5 Note that these new edges do not cause unmarking
15. add (¯̀, l) to implication graph.
15.5 Note that these visits cannot detect a contradiction
15.6 since line 9 didn’t.
16. Visit(l)
17. CurrentImplicants ∪= DescendantsOf(l)
18. MARK `
19. return

With this unmarking process, we run the graph search until there is no unmarked
literal (or a contradition is detected, or all clauses become satisfied). Unit propagations
of forced literals are done immediately, and strongly connected component detection
and equivalent literal reduction performed after the graphsearch is completed. Both the
unit propagations as well as the equality reductions might remove node marks, in which
case we may have to perform another iteration. Once no more changes can be made we
have achieved HypBinRes+eq-closure.

The final algorithm is presented in Table 2.3. The changes toVisit are indicated by
fractional line numbers.

3 Empirical Results

Perhaps the most dramatic demonstration of the power of HypBinRes+eq-closure comes
from the two problems c6288-s, and c6288 from João Marques-Silva’s MITERS test



10 Fahiem Bacchus and Jonathan Winter

Table 3 Performance on two “hard” MITERS problems.

ProblemHyPre Berkmin 2SIMPLIFY 2CL SIMP Zchaff 2SIMPLIFY

+Berkmin +Berkmin +Zchaff

c6288-s 1.05 > 604,800 > 30,000> 604,800> 604,800> 604,800.0
c6288 1.05 > 604,800 > 30,000> 604,800> 604,800> 604,800.0

suite. Both of these problems are detected to be UNSAT by the preprocessor. Table 3
shows the time required by the preprocessor and by the SAT solvers BerkMin 5.614, and
zchaff. All times reported are in CPU seconds on a 3GB, 2.4 GHxPentium-IV. These
two solvers were used in our tests are they are probably the most powerful current SAT
solvers.

It can be seen that although the preprocessor solves both problems is about a second,
the unsimplified problem is unsolvable by either of these state of the art SAT solvers.
We ran each problems for a week before aborting the run. We also tried two other
preprocessors (discussed in more detail in Section 4) 2SIMPLIFY [8] and 2CL SIMP

[3]. Both of these preprocessors do some form of binary clause reasoning, but as can be
seen from the table, neither are effective on this problem.

Similar results are achieved on the BMC2 test suite from the 2002 competition, Ta-
ble 4. Again all of these problems were solved by the preprocessor (all are SAT). These
problems were also solved by the original 2CLS+EQ solver without search. However,
as noted above the implementation of HypBinRes+eq-closurein 2CLS+EQ is much less
efficient. This is verified by the results of the table.

Table 4 Performance on the BMC2 suite
Problem HyPre 2CLS+EQ Berkmin Zchaff Problem HyPre 2CLS+EQ Berkmin Zchaff

BMC2-b1 0.01 0.03 0.00 0.02 BMC2-b4 2.33 7.44 10.56 36.81
BMC2-b2 0.05 0.16 0.05 0.13 BMC2-b5 28.31 321.60 520.92 3492.23
BMC2-b3 0.31 0.84 0.62 1.89 BMC2-b6 214 11,193 3,426>20,000

Table 5 shows some additional results summed over families of problems. Most of
these families came from the 2002 SAT competition. The families 03rule and 06rule
come from the IBM Formal Verification Benchmark suite (we didnot run Zchaff on
these families). The number in brackets after the family name is the number of problems
in the family. The time given is the total time to “solve” all problems in the family in
CPU seconds. In these experiments a single problem time-outof 20,000 CPU seconds
was imposed, and 20,000 was added to the total time to “solve”the family for each
failed problem. The number in brackets after the total time is the number of problems
the solver failed to solve. For the preprocessor “failure tosolve” means that the problem
was not resolved at preprocessing time. The first set of timesis the time required by the

4 The most recent public release.



Effective Preprocessing 11

Table 5 Performance on various families of problems. Time in CPU seconds. Bracketed
numbers indicate number of failures for that family. Numbers in bold face indicate
family/solver combinations where preprocessing reduced the net solution times (i.e.
preprocessing plus solving), or allowed more problems to besolved.

Family (#probs) HyPreBerkmin-OrigBerkmin-PreZchaff-Orig Zchaff-Pre
BMC (76) 18,819 (53) 41,751 (1) 29,254 (1) 48,225 (1) 30,009 (1)
BMCTA (2) 1,210 (2) 7,835 (0) 6,015 (0) 34,741 (1) 24,977 (1)
Cache (5) 23,620 (5) 61,771 (2) 42,327 (2) 30,725 (1) 43,932 (2)
w10 (4) 1,377 (4) 516 (0) 65 (0) 1,603 (0) 615 (0)
Checker (4) 8 (4) 4,092 (0) 3,191 (0) 1,763 (0) 2,318 (0)
Comb (3) 352 (3) 22,017 (1) 21,196 (1) 60,000 (3) 36,845 (1)
IBM-Easy (2) 1,454 (2) 1,092 (0) 61 (0) 678 (0) 2 (0)
IBM-Med (2) 47,880 (2) 5,075 (0) 6 (0) 13,342 (0) 6 (0)
IBM-Hard (3) 1,767 (3) 38,997 (1) 3,560 (0) 47,581 (2) 28,920 (0)
Lisa (29) 16 (29) 107,379 (2) 135,612 (3)185,091 (7)111,482 (2)
f2clk (3) 674 (3) 22,663 (1) 19,451 (0) 40,662 (2) 28,687 (1)
fifo (4) 875 (3) 56,014 (2) 1,015 (0) 29,040 (1) 8,929 (0)
ip (4) 735 (4) 1,466 (0) 145 (0) 30,667 (1) 1,687 (0)
w08 (3) 8,672 (2) 8,542 (0) 151 (0) 27,670 (1) 309 (0)
rule 03 (20) 4,409 (14) 134,258 (6) 10,501 (0)
rule 06 (20 15,509 (5) 113,360 (4) 5,587.62 (0)

preprocessor, then for each of the two SAT solvers we give thetime require to solve the
original problems, then the time require to solve the preprocessed problems (i.e., those
that had not be resolved by the preprocessor).

The data shows that HypBinRes+eq-closure almost always makes the problems eas-
ier to solve. Only for Cache with Zchaff, and Lisa with Berkmin does the time to process
the family increase. The preprocessor also allows Berkmin to solve one more problem
from the IBM-Hard family, one more from the f2clk, two more from the fifo family, 6
more from the 03rule family, and 4 more from the 06rule family. It improves Zchaff
even more, allowing Zchaff to solve 2 more from Comb, 2 more from IBM-Hard, five
more from Lisa, one more from f2clk, fifo, ip, and w08. Preprocessing on rare occasion
makes a problem harder as in the case for one problem in the Lisa family for Berkmin,
and one problem in the Cache family for Zchaff. Interestingly, for the Lisa family and
Berkmin, the preprocessing allowed Berkmin to solve one problem it could not solve
before, and stopped it from solving one that it could solve before.

Frequently, especially for Berkmin, once we add the time to perform the prepro-
cessing the gains in total solution time are minimal, or evennegative. The net gains
for Zchaff are better. Nevertheless, the preprocessor almost always makes the problem
easier, so only in the case of IBM-Med does it cause a serious slow down in the total
solution time. We feel that this is acceptable given that it also allows some problems to
be solved that previously could not be solved.

Table 6 provides some data about typical reductions in size in the CNF formulas
produced by the preprocessor (these are of course formulas that are unresolved by pre-



12 Fahiem Bacchus and Jonathan Winter

Table 6 Size reduction on various problems instances. #Vars is the number of variables,
#N-ary is the number of non binary clauses, and #Bin is the number of binary clauses

Problem Original After Processing
#Vars #N-ary #Bin #Vars #N-ary #Bin

BMC-b10 42,405 42,327 98,804 10,229 14,978 35,263
BMC-b74 209,211208,117 501,283181,057182,006 472,656
BMCTA-b1 64,909 87,909 108,066 40,705 73,866 158,966
BMCTA-b2 87,029118,197 144,802 55,871100,978 215,793
Cache-b1-s1-0113,080 96,120 326,995 63,872 70,160 191,079
Cache-b2-s2-0227,210195,260 666,835117,991131,310 377,647
w10-b3 32,745 21,123 82,290 12,059 13,995 46,922
w10-b4 36,291 23,499 91,621 13,657 15,856 53,158
Checker-b3 1,155 33,740 5,528 1,029 30,158 4,903
Checker-b4 1,188 34,732 5,688 1,062 31,150 5,069
Comb-b2 31,933 21,364 91,097 15,707 17,517 84,952
Comb-b3 4,774 3,342 12,988 2,405 2,806 9,552
IBM-Easy-b2 29,605 35,046 115,506 15,276 29,297 59,389
IBM-Easy-b3 48,109 58,023 156,958 17,967 34,014 94,779
IBM-Med-b1 212,091207,2432,313,020 64,779133,8051,204,190
IBM-Med-b2 125,646122,4541,378,757 29,165 69,545 339,252
IBM-Hard-b2 22,984 27,508 90,298 11,788 21,803 49,480
IBM-Hard-b3 33,385 41,040 121,986 14,757 26,583 72,340
Lisa-b28 1,453 6,954 968 1,347 6,494 1,439
Lisa-b21 2,125 10,464 1,576 1,447 6,724 1,260
f2clk-b2 27,568 20,352 58,761 10,395 11,478 56,342
f2clk 34,678 25,662 74,001 14,895 16,388 84,901
fifo-b3 194,762118,508 407,666 29,724 52,026 87,117
fifo-b4 259,762158,108 543,766 41,574 72,826 122,374
ip-b3 49,967 36,407 124,732 14,042 15,592 48,462
ip-b4 66,131 48,275 165,208 19,226 21,352 65,791
w08-b2 120,367 81,080 344,201 34,861 40,515 211,796
w08-b3 132,555 89,489 379,993 40,856 47,091 243,426

processing). The data shows that for the most part the preprocessor is able to achieve
a significant reduction in the number of variables in the theory. Furthermore, it is clear
that for problems like IBM-Med-b1, which contains more than2 million binary clauses,
it would be impossible to maintain the transitive closure ofthe binary clauses. (In fact,
2CLS+EQ, whose algorithm for achieving HypBinRes+eq-closure involves realizing the
transitive closure, is unable to complete the preprocessing of the larger problems.) The
implicit representation of these clauses in an implicationgraph used in our implemen-
tation avoids this blowup. In fact, we see that generally thefinal theory has a reduced
number of binary clauses, even though the outputed set of clauses contains within its
transitive closure all implications of HypBinRes+eq.



Effective Preprocessing 13

On a number of families, e.g., Bart, Homer, GridMN, Matrix, Polynomial, sha, and
fpga-routing-2 the preprocessor had no effect. In these problems there are no useful
binary clauses in the original theory.

It can be noted however, that at least for the Bart family using HypBinRes+eq dy-
namically during the search had dramatic benefits even though it was useless as a pre-
processor. In particular, from data gathered during the SAT-2002 competition 2CLS+EQ

was able to solve all 21 instances of the Bart family in 1.1 seconds with an average of
only 25 nodes expanded during the search. Berkmin on the other hand took 77.6 sec-
onds to solve the family and zchaff required 39,708 seconds and still was only to solve
5 of the 21 problems.

4 Previous Work

Some of the processing done in our preprocessor is similar totechniques used in pre-
vious preprocessors, e.g., COMPACT [12], 2SIMPLIFY [8], 2CL SIMP [3], and COM-
PRESSL ITE[14].

COMPACT, and COMPRESSL ITE both try to detect failed literals, with COMPRESSL ITE

doing a more elaborate test including finding literals forced by both` and ¯̀. Both of
these preprocessors use unit propagation to do their work. However, the inferences per-
formed are not as powerful. In particular, COMPACT employs only the failed literal rule:
if UP(a) ` FALSE then forcēa. By Theorem 2, HypBinRes will also detect all failed
literals. COMPRESSL ITE on the other hand employs two inference rules

1. If UP(`) ` a and UP(¯̀) ` a, then forcea.
2. If UP(`) ` a and UP(¯̀) ` ā then perform EqReduce replacinga by `.

HypBinRes+eq captures both rules. For (1) HypBinRes will conclude(¯̀, a) and(`, a)
from whicha can be inferred. For (2) HypBinRes will conclude(¯̀, a) and(`, ā), from
which EqReduce can make the equality reduction. HypBinRes+eq-closure is in fact
more powerful that these two rules. For example, COMPRESSL ITE is only able to re-
move 3.3% of the literals from the two Miters problems c6288-s and c6288, whereas
our HypBinRes+eq preprocessor can completely solve these problems. Judging from
the times quoted in [14] COMPRESSL ITE is also currently much less efficient than our
implementation.

2SIMPLIFY and 2CL SIMP are much closer to our work in that both try to do exten-
sive reasoning with binary clauses. 2CL SIMP does not employ a HypBinRes rule, but
it does more extensive subsumption reasoning. 2SIMPLIFY on the other hand employs
the implication graph and also implements a rule that on closer inspection turns out to
be equivalent to HypBinRes. This rule is called the derive shared implications [8]. The
rule is as follows: from an-ary clause(l1, . . . , ln) the set of literals reachable fromli
(in the implication graph) is computed for alli ∈ {1, . . . , n}. All literals in the inter-
section of these sets is detected to be forced. For a literala to be in each of these sets,
it means thatli ⇒ a for all i. That is, we have then binary clauses(l̄1, a), . . . , (l̄n, a),
and then-ary clause(l1, . . . , ln). This is clearly a restricted case of HypBinRes. In fact,
2SIMPLIFY searches in a very limited way for literals in all but one of these sets, and



14 Fahiem Bacchus and Jonathan Winter

from them learns new binary clauses (this version is precisely HypBinRes). 2SIMPLIFY

also performs equality reduction.
However, 2SIMPLIFY does not compute the closure (in fact it does not even de-

tect all single applications of HypBinRes). Nor was any theoretical analysis of the
HypBinRes rule provided. Furthermore, like 2CL SIMP it computes the transitive clo-
sure of the implication graph (binary subtheory). Thus on many examples these two
programs fail to run. For example, on the BMC family of 76 problems, 2SIMPLIFY

aborts on 68 of the problems, and 2CL SIMP on 45 problems. Even when these pro-
grams run they seem to be ineffective on industrial benchmarks, or at least much less
effective than the HypBinRes+eq preprocessor. Table 3 provided some evidence of this.
Table 7 provides some more.

Table 7 2SIMPLIFY and 2CL SIMP Performance on the BMC2 suite. Total solution time
(preprocessor + solver) shown.

Problem 2CL SIMP 2SIMPLIFY Berkmin Problem 2CL SIMP 2SIMPLIFY Berkmin
+ Berkmin + Berkmin + Berkmin + Berkmin

BMC2-b1 0.01 0.01 0.00 BMC2-b4 16.58 0.47 10.56
BMC2-b2 0.08 0.05 0.05 BMC2-b5 226.88 251.55 520.92
BMC2-b3 0.83 0.40 0.62 BMC2-b6 3,751.03 3,849.223,426.58

5 Conclusion

We have presented a new preprocessor for CNF encoded SAT problems. The empirical
evidence demonstrates that although it can sometimes take alot of time to do its work,
it generally produces a significant simplification in the theory. This simplification is
sometimes the difference between being able to solve the problem and not being to
solve the problem. Hence, it is fair to say that it improves our ability to solve hard SAT
problems.

6 Acknowledgements

We thank the referees for very useful comments and for pointing out that the binary
clause reasoning employed in [3] had also been implemented as a preprocessor.

References

1. Bacchus, F.: Enhancing davis putnam with extended binaryclause reasoning. In: Proceedings
of the AAAI National Conference. (2002) 613–619

2. Bacchus, F.: Exploring the computational tradeoff of more reasoning and less searching. In:
Fifth International Symposium on Theory and Applications of Satisfiability Testing (SAT-
2002). (2002) 7–16 Available from www.cs.toronto.edu/˜fbacchus/2clseq.html.



Effective Preprocessing 15

3. Van Gelder, A., Tsuji, Y.K.: Satisfiability testing with more reasoning and less guessing. In
Johnson, D., Trick, M., eds.: Cliques, Coloring and Satisfiability. Volume 26 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical
Society (1996) 559–586

4. Simon, L., Berre, D.L., Hirsch, E.A.: The sat2002 competition. Technical report,
www.satlive.org (2002) available on line at www.satlive.org/SATCompetition/.

5. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient
sat solver. In: Proc. of the Design Automation Conference (DAC). (2001)

6. Lynce, I., Marques-Silva, J.P.: The puzzling role of simplification in propositional
satisfiability. In: EPIA’01 Workshop on Constraint Satisfaction and Operational Re-
search Techniques for Problem Solving (EPIA-CSOR). (2001)available on line at
sat.inesc.pt/˜jpms/research/publications.html.

7. Aspvall, B., Plass, M., Tarjan, R.: A linear-time algorithms for testing the truth of certain
quantified boolean formulas. Information Processing Letters8 (1979) 121–123

8. Brafman, R.I.: A simplifier for propositional formulas with many binary clauses. In: Pro-
ceedings of the International Joint Conference on ArtificalIntelligence (IJCAI). (2001) 515–
522

9. Morrisette, T.: Incremental reasoning in less time and space. submitted manuscript (2002)
available from the author e-mail threesat2000@yahoo.com.

10. Van Gelder, A.: Toward leaner binary-clause reasoning in a satisfiability
solver. In: Fifth International Symposium on the Theory andApplications
of Satisfiability Testing (SAT 2002). (2002) on line pre-prints available at
gauss.ececs.uc.edu/Conferences/SAT2002/sat2002list.html.

11. Tarjan, R.: Depth first search and linear graph algorithms. SIAM Journal on Computing1
(1972) 146–160

12. Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in random 3-sat.
Artificial Intelligence81 (1996) 31–57

13. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In:
Proceedings of the International Joint Conference on Artifical Intelligence (IJCAI). (1997)
366–371

14. Berre, D.L.: Exploiting the real power of unit propagation lookahead. In: LICS Workshop
on Theory and Applications of Satisfiablity Testing. (2001)


