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Overview

Tremendous gains have been achieved over the 
last 5 years in SAT solving technology.

Systematic backtracking based systems have 
become the best method for solving structured 
SAT instances.

New theoretical insights have been gained into 
the behaviour of backtracking SAT solvers via 
their close relationship with resolution proofs.

These insights have direct relevance to finite 
domain CSP solvers.
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Resolution Proofs

All (complete) backtracking algorithms 
for CSPs are implicitly generating 

resolution proofs.

On problems with solution, still have 
to backtrack out of failed subtrees.

Baker (1995), Mitchell (2002)
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Resolution (SAT)

A complete proof procedure for 
propositional logic that works on 
formulas expressed in conjunctive 
normal form. (Robinson 1965)

Conjunctive Normal Form (CNF)

Literal: a propositional variable p or its 
negation ¬p

Clause: a disjunction of literals (a set).

CNF theory: a conjunction of clauses. 
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Resolution

From two clauses (A, x) (B, ¬x) the 
resolution rule generates the new clause 
(A, B), where A and B are sets of literals.

(A,B) is the resolvant.

x is the variable resolved on

duplicate literals are removed from the 
resolvant

denote by C = RR(C1,C2)
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Resolution

A resolution refutation of a CNF theory is

a sequence of clauses C1, C2, …, Cm such that

each Ci is either a member of or

Ci is a resolvant of two previous clauses in the proof: 
Ci = R(Cj,Ck) j,k < I

Clauses arising from resolution are called the derived
clauses of .

Cm = () the empty clause.

is also called a resolution proof.

The SIZE of is the number of resolvants in it.
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Resolution DAG

Any resolution proof can be represented 
as a DAG.

nodes are clauses in the proof.

Every clause Ci that arises from a resolution 
step has two incoming edges. One from each 
of the clauses that were resolved together to 
obtain Ci.

The arcs are labeled by the variable that was 
resolved away to obtain Ci.

Clauses in have no incoming edges.
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Resolution Dag

()

¬X X

¬Y Y, ¬X

Z,¬X ¬Z,Y Q,¬Z,X ¬Q,X

Z

X

Y

Z

¬Z,X

Z

QY

[(¬Y), (Z,¬X),(¬Z,Y),(Y,¬X),

(¬X),(Z),(Q,¬Z,X),(¬Q,X),

(¬Z,X),(X),(¬X),()]
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Restrictions of Resolution

A number of restricted forms of 
resolution can be defined, where, e.g., 
we require the DAG to be a tree.

The reason the restricted forms have 
been developed is that the restrictions 
can make it easier to find a proof. 
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Tree Resolution

Tree resolution

The DAG is required to be a tree.

Clauses derived during the proof can only be 
used once.

Work must be duplicated to rederive clauses
that need to be used more than once.
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Tree Resolution

C4

C1

C4

C2 C3

C5

C2 C3

C5

C2
C1
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Ordered Resolution

The variables resolved on along any path 
in the DAG to the empty clause must 
respect some fixed ordering of the 
variables.
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Ordered Resolution

()

¬X X

¬Y Y, ¬X

Z,¬X ¬Z,Y Q,¬Z,X ¬Q,X

Z

X

Y

Z

¬Z,X

Z

QY

Not ordered
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Regular Resolution

Along any path in the DAG to the empty 
clause the sequence of variables resolved 
away cannot contain any duplicates. 
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Regular Resolution

Q,Z,Y,P

¬X,Z X,Q,Y,P

H,P,YQ,¬H,X

X

H

¬X,YP,H,X

X

Q,Z,Y,P

¬X,Z
H,P,Y

Q,¬H,X

X

H

¬X,YP,H,X

X

Z,Q,¬H,

Not Regular Regular
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Negative Resolution

One of the clauses in each resolution 
step must contain only negative literals. 
(a negative clause)

This is complete!

Note must contain at least one negative 
clause else the “all true” truth assignment is 
a satisfying model.
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Relative Power

A general formalism for comparing the 
power of different proof systems was 
developed by Cook and Reckhow 1997.

For our purposes we simply look at the 
minimal size refutation proof (the 
number of clauses in the proof). 
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Relative Power
#R(F)—the minimal size R-refutation of among all 

possible R-refutations of .

For a family of formulas i we look at how #R( i)
grows with i.

Let S and T be two restrictions of resolution. S 
p-simulates T if there exists a polytime computable
function f such that:

For any S-refutation of a formula , f( ) is a T-refutation 

of .
Note that this means that f( ) can’t be more than polynomially
longer than #T(F) no more than polynomially larger than 
#S(F) for any formula F.
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Relative Power Known Results

Buresh-Oppenhiem, Pitassi (2003) many 
new results and a summary of previously 
proved results.
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Relative Power Known Results
Regular Negative Ordered Tree

Regular No Yes Yes

Negative No No Yes

Ordered No No No

Tree No No No

Regular always yields shorter proofs than 
either Ordered or Tree

Negative and Regular are incomparable

Ordered and Tree are incomparable.
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Relative Power Known Results

It is also known that none of these 
restrictions can p-simulate general 
resolution.
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Solving Sat
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DP & DPLL (DLL)

Two earliest algorithms for solving SAT 
actually predate resolution.

DP: Davis-Putnam (1960) a variable 
elimination technique.

DPLL: Davis-Logemann-Loveland (1962) 
a backtracking search algorithm. 
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DP

Pick a variable ordering (one that has a low 
elimination width if possible): X1, X2, …, Xn

Starting with the original set of clauses 

At the i-th stage:
Add to all possible resolvants that can be 
generated by resolving on Xi.

Remove from all clauses containing Xi or ¬Xi.

If the empty clause is generated stop

The input set of clauses (the formula ) is 
UNSAT iff this process generates the 
empty clause. 
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DP

[a] [b] [c]

(a,b,c)
(¬a,b,c)
(¬b, c) 
(a,¬b,¬c)
(¬a,¬b,¬c)
(b,¬c)

(b,c)
(¬b, c) 
(¬b,¬c)
(b,¬c)

(c)
(¬c)

()
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DP

[a] [b] [c]

(a,b,c)
(¬a,b,c)
(¬b, c) 
(a,¬b,¬c)
(¬a,¬b,¬c)
(b,¬c)

(b,c)
(¬b, c)
(¬b,¬c)
(b,¬c)

(c)
(¬c)

()

Potentially many redundant clauses are 
generated, but an ordered resolution is 
contained in these clauses.
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DP

Every DP proof contains an ordered 
resolution, and thus it can never be shorter 
than an ordered resolution refutation.

Note lower bounds are wrt any possible ordered 
resolution (i.e., any ordering).

In practice, DP’s space requirements are 
prohibitive

Although some attempts using ZBDDs to represent 
the clauses compactly.

Still not competitive with current best techniques.
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DP Ordered Resolution

Note also that every ordered resolution 
can be found inside of a DP refutation:

just follow the same order.

Since DP generates all possible ordered 
refutations along that order, it might 
terminate before completing the specified 
ordered refutation (by finding a shorter 
ordered refutation).

DP can also waste a lot of time generating 
clauses that are not needed for the 
refutation.
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DPLL

Developed shortly after DP, DPLL is based 
on backtracking search. The connection 
to resolution was realized later.

One picks a literal (a true or false variable)

simplify the formula based on that literal

recursively solve the simplified formula.

if the simplified formula is UNSAT, try using 
the negation of the literal chosen.
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DPLL Simplification

Given a clausal theory , we can simplify 

it by a literal as follows:

| =

Remove from all clauses containing 

Remove from all of the remaining clauses.
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Unit Propagation

In addition DPLL employs unit propagation:

if | contains any unit clauses, e.g. (¬x) then 

further simplify | by the literal in the unit clause, 

i.e., generate ( | )|¬x

Unit propagation is the iterative application of this 
simplification until the resultant theory has no unit 
clauses (or contains the empty clause).

More powerful forms of propagation examined 
in Bacchus (2002)
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DPLL
(a,b,c)

(¬a,b,c),(¬b, c) 

(a,¬b,¬c)

(¬a,¬b,¬c)

(b,¬c)

C ¬C

(a,b,c)

(¬a,b,c),(¬b, c) 

(a,¬b,¬c)

(¬a,¬b,¬c)

(b,¬c)

(a,b,c)

(¬a,b,c),(¬b, c) 

(a,¬b,¬c)

(¬a,¬b,¬c)

(b,¬c)

b

a

¬b

a



9/15/2005 Fahiem Bacchus 33

DPLL(a,b,c)

(¬a,b,c),(¬b, c) 

(a,¬b,¬c)

(¬a,¬b,¬c)

(b,¬c)

b: (b,¬c) (¬b,¬c)

a: (a,¬b,¬c)

(¬a,¬b,¬c)

¬C (C)

¬b: (¬b, c) (b,c)

a: (a,b,c)

(¬a,b,c)

()

C (¬C)

A tree refutation is embedded in every DPPL 
proof of UNSAT.

every resolvant consists of literals negated by the 
prefix of assignments. 
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DPLL

Every DPLL proof contains an tree 
resolution, and thus it can never be 
shorter than an tree resolution 
refutation.

Note it need not be ordered. So the 
minimal size DPLL tree can be bigger or 
smaller than the minimal size DP proof.

9/15/2005 Fahiem Bacchus 35

DPLL Tree Resolution

Note also that every tree resolution can 
be found inside of a DPLL refutation:

Make the DPLL search mimic a depth first 
search of the tree refutation.

always instantiate the negation of the literal that 
was resolved on in the child node. 
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DPLL Tree Resolution

(a,b,¬c,¬d)

(a,b,x,¬c) (¬x,¬d)

X

¬x x

Corresponding node of 

DPLL search
Node of tree resolution
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DPLL Tree Resolution

In general DPLL search will also do a lot 
of extra work not required for the tree 
resolution since it did not employ 
intelligent backtracking.
Hence, DPLL in its original form is a 
pretty poor algorithm. Although is 
“reasonable” for proving UNSAT for 
random problems. 
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Resolution and Intelligent 
Backtracking

If we keep track of the refutation being 
generated, we can use the derived 
clauses to perform intelligent 
backtracking.
Keeping track of the resolution 
refutation is precisely what CBF (conflict 
directed backjumping) does.
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DPLL(a,b,c)

(¬a,b,c),(¬b, c) 

(a,¬b,¬c)

(¬a,¬b,¬c)

(b,¬c,x,f)

b: (b,¬c,x,f) (¬b,¬c)

a: (a,¬b,¬c)

(¬a,¬b,¬c)

¬c (c)

¬b: (¬b, c) (b,c)

a: (a,b,c)

(¬a,b,c)

(x,f)

c (¬c,x,f)

¬f

¬x
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Resolution and Intelligent 
Backtracking

If instrumented to keep track of the 
resolution refutation and thus perform 
“intelligent backtracking” (non-moronic 
backtracking), it can find tree 
resolutions fairly effectively.
Still some inefficiencies

can spend time in subtrees that don’t 
contribute to final refutation. 

Still limited to relatively weak tree 
resolution.
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Resolution and Intelligent 
Backtracking

Modern Techniques move DPLL beyond 
the limited power of tree resolution.
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Solving Finite Domain CSPs
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Translation to Propositonal Logic

Set of variables Vi and constraints Cj

Each variable has a domain of values 
Dom[Vi] = {d1, …, dm}.

Consider the set of propositions Vi=dj

one for each value of each variable.

Vi=dj means that Vi has been assigned 
the value dj.
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Translation to Propositonal Logic

¬ Vi=dj means that Vi has not been 
assigned the value dj

perhaps not been assigned any value, or has been 
assigned a different value. 

True when dj has been pruned from Vi’s domain.
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Translation to Propositonal Logic

For simplicity

Write Vi=dj instead of Vi=dj

Vi dj instead of ¬ Vi=dj

But be aware that these are actually 
propositional variables that can be assigned 
true or false. 
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Translation to Propositonal Logic

Each constraint C is over some set of 
variables X1,…,Xk: C(X1,…,Xk)

Typically a constraint is defined to be a 
set of tuples of assignments to its 
variables that satisfy the constraint.

Equivalently, we look at the complement

The set of tuples of assignments that falsify 
the constraint.

E.g., (X1=a,X2=b,…,Xk=h) falsifies C(X1,…,Xk)
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Translation to Propositonal Logic

A falsifying tuple is typically called a 
nogood: a set of assignments that cannot 
be extended to a solution of the CSP.

If the tuple falsifies a constraint of the CSP, it 
can’t be extended to a solution of the CSP.

Nogoods are clauses.

A nogood (X1=a,X2=b,…,Xk=h) asserts

¬(X1=a X2=b … Xk=h)

(X1 a X2 b … Xk h) (a clause).
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Translation to Propositonal Logic

So each constraint is a set of clauses.

All of the constraints of the CSP thus 
form a set of clauses. 
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Translation to Propositonal Logic

Finally, we must deal with the fact that 
the variables have non-binary domains.

For each variable V with 
Dom[V]={d1,…,dk} we obtain the 
following clauses:

(V=d1,V=d2,…,V=dk)
(must have a value)

(V d1,V d2), (V d1,V d3), …, (V d1,V dk)
,…, (V d2,V d3), …, (V dk-1,V dk)
(must have a unique value)
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FC

For simplicity look at Forward Checking, 
and we will see that 

embedded in a failed FC search tree is a tree 
resolution.

Keeping track of the resolution refutation 
gives us CBJ. 

The resolution also makes the improvement 
of backpruning (Bacchus 2000) obvious.
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FC

FC maintains node consistency.

when a constraint becomes unary (all but 
one of its variables have been instantiated), 
we enforce node consistency on that
constraint to prune the domain of the sole 
remaining variable. 

This definition works with both binary and 
n-ary constraints.
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FC
X=a

Z=b

Q=c

R=a

Each value of V was removed 
because it falsified some 
nogood from some constraint.

Domain

wipe-out of 

V
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FC
X=a

Z=b

Q=c

R=a

Domain

wipe-out of 

V

Dom[V] = {a, b, c}

(V a,X a)

(V b,R a,X a)

(V c,R a,X a)

Resolving these against 
(V=a,V=b,V=c), we obtain the new 
clause (X a,R a): a clause 
containing the current value of R.

FC now backtracks and tries a 
different value for R.
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FC
X=a

Z=b

Q=c

R=b

Domain

wipe-out of 

Y

Dom[Y] = {a,b,c}

(Y a,X a,Z b)

(Y b,R b)

(Y c, X a,R a)

Resolving these against 
(Y=a,Y=b,Y=c), we obtain the 
new clause (X a,Z b,R b)

Again we backtrack and try a 
different value for R.
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FC
X=a

Z=b

Q=c

R c

Perhaps R=c has already been pruned 
by FC before we reached this node.

Then there is a clause forcing by R c,
e.g.

(Z b,R c)

Now we have a clause forcing the 
removal of each of R’s values

Either computed via resolution from the 
subtree below that assignment.

Or from forward checking above. 
Domain

wipe-out of 

Y
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FC
X=a

Z=b

Q=c

R c

Now we have a clause for each 
value of R:

(X a,R a)

(X a,Z b,R b)

(Z b,R c)

Resolve these against 
(R=a,R=b,R=c) to obtain

(X a,Z b)Domain

wipe-out of 

Y
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FC-CBJ
X=a

Z=b

Q=c

R c

Ordinary FC would then contine
with the next value of Q.

But embedded in each failed 
subtree of the FC search tree a 
is a tree resolution.

FC-CBJ simply keeps track of 
the resolution refutation, and 
uses the clause produced 

(X a,Z b)

to backtrack to undo Z=b.

Domain

wipe-out of 

Y
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Extended FC
X=a

Z=b

Q=c

R c

Domain

wipe-out of 

Y

The clause (X a,Z b) tells us that we 
can soundly backtrack to undo Z=b. 
The clauses we learned for the values 
of R

(X a,R a)
(X a,Z b,R b)
(Z b,R c)

Tell us that we also need not try the 
value R=a again until we backtrack 
even further to undo X=a.
Keeping track of this information 
allows us to “backprune” values. 
Bacchus (2000)
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Negative Resolution
Notice the resolution steps involved

(R=a,R=b,R=c),(X a,R a) (X a,R=b,R=c)

(X a,R=b,R=c),(X a,Z b,R b)
(X a,R=c,Z b)

(X a,R=c,Z b),(Z b,R c) (X a,Z b)

Negative resolution steps. (One of the 
clauses in always negative).

I.e., FCCBJ actually embeds a negative
tree resolution. Even more limited in 
power. Mitchell (2003)

9/15/2005 Fahiem Bacchus 60

Negative Resolution
In fact in the standard techniques all 
clauses (nogoods)

In the original constraints are negative.

Learned during search are negative.

Return to this later.



9/15/2005 Fahiem Bacchus 61

Modern Sat Solvers
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Clause Learning (CL)

The main feature of modern SAT solvers 
is the development of new techniques to 
support effective clause learning

Without clause learning DPLL and CSP 
backtracking algorithms are both limited to 
tree resolution, (negative tree resolution in 
the case of CSPs).

Modern solvers are N-orders of magnitude 
faster than the best implementations of 
standard DPLL on many problems. Where N 
is probably >6.
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DPLL+CL

DPLL

picks a literal

reduces the theory with that literal

this perhaps induces some sequence of 
further literals all forced by unit propagation.

Stops and backtracks when some clause 
becomes falsified.
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Failed PathX
A
¬B
C

¬Y
D
¬E
F

Z
H
I
¬J
¬K

(K,¬I,¬H, ¬F,E, ¬D,B)

• X,Y,Z: Decision Variables.

• A,¬B,C,D,¬E,F,H,I,¬J,¬K: forced by unit 

propagation

• (K,¬I,¬H, ¬F,E, ¬D,B): Falsified clause.

This clause is called a conflict clause:

it is falsified by the current path.
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Forced LiteralsX
A …

¬B …

C …

¬Y
D (D,B,Y)

¬E …

F …

Z
H (H,B,E,¬Z)

I (I,¬H,¬D,¬X)

¬J (¬J,¬H,B)

¬K (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• Each forced literal was forced 

by some clause becoming 

unit.

• We keep track of the forcing 

clause as part of the unit 

propagation process.
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Forced LiteralsX
A …

¬B …

C …

¬Y
D (D,B,Y)

¬E …

F …

Z
H (H,B,E,¬Z)

I (I,¬H,¬D,¬X)

¬J (¬J,¬H,B)

¬K (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• Each clause reason contains

• One true literal on the 

path (the literal it forced)

• Literals falsified higher up

on the path.
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Forced LiteralsX
A …

¬B …

C …

¬Y
D (D,B,Y)

¬E …

F …

Z
H (H,B,E,¬Z)

I (I,¬H,¬D,¬X)

¬J (¬J,¬H,B)

¬K (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• Hence we can resolve away 

any forced literal in the 

conflict clause.

• This will yield a new conflict 

clause.

1. (K,¬I,¬H, ¬F,E, ¬D,B), (D,B,Y)

(K,¬I,¬H, ¬F,E,B,Y)

2. (K,¬I,¬H, ¬F,E, ¬D,B), (¬K,¬I,¬H,E,B)

(¬I,¬H, ¬F,E, ¬D,B)

3. (K,¬I,¬H, ¬F,E, ¬D,B), (H,B,E,¬Z)

(K,¬I,¬F,E, ¬D,B,¬Z)

4. …
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Conflict Clauses

Any forced literal in any conflict clause can be 
resolved on to generate a new conflict clause.

If we continued this process until all forced 
literals were resolves away we would end up 
with a clause containing decision literals only 
(All-decision clause).

But empirically the all-decision clause tends 
not be very effective.

Too specific to this particular part of the search to 
be useful later on.
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Conflict Clauses

Various choices exist as to how to 
generate a conflict clause on failure.

The most popular form of clause learning 
is 1-UIP learning (Zchaff). (Now almost 
the standard).
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1-UIP Clauses

Start with C equal to the original conflict 
clause

1. Let n be the number of literals in C at or 
below the last decision variable.

2. If n > 1

Let C be equal to the result of resolving away the 
deepest forced literal.

Goto 1

3. Else store C for future use and use it for 
backtracking.
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1-UIP Clauses

This process must terminate. As when we 
resolve away a literal can only introduce 
literals above it on the path.

The last remaining literal from the 
deepest level in the 1-UIP clause may or 
may not be the decision literal. 
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1-UIPX
A …

¬B …

C …

¬Y
D (D,B,Y)

¬E …

F …

Z
H (H,B,E,¬Z)

I (I,¬H,¬D,¬X)

¬J (¬J,¬H,B)

¬K (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

1. (K,¬I,¬H, ¬F,E, ¬D,B), (¬K,¬I,¬H,E,B)

(¬I,¬H, ¬F,E, ¬D,B)

2. (¬I,¬H, ¬F,E, ¬D,B), (I,¬H,¬D,¬X)

(¬H, ¬F,E, ¬D,B,¬X)
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Backtracking

The advantage of a 1-UIP clause (or any 
unique implication point clause) is that it 
forces the single literal from the deepest 
level.

We can backtrack to the point that literal 
is forced and augment the set of forced 
literals at that level by the new unit prop. 
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1-UIP
X

A …

¬B …

C …

¬Y
D (D,B,Y)

¬E …

F …

Z
H (H,B,E,¬Z)

I (I,¬H,¬D,¬X)

¬J (¬J,¬H,B)

¬K (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)
(¬H, ¬F,E, ¬D,B,¬X)

X
A …

¬B …

C …

¬Y
D (D,B,Y)

¬E …

F …

¬H (¬H,¬F,E, ¬D,B,¬X)

More unit 

propagation
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Backtracking

Note that the decision literal has not 
been exhausted. We don’t know if the 
current prefix with ¬Z instead of Z might 
have a solution. 
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Far Backtracking

“Far Backtracking”, i.e., backtracking to the 
point we have the new unit implicant instead of 
backtracking to undo the deepest decision. has 
two motivations:

¬H is implied at this higher level, so undoing all of 
the work and starting again is the easiest way to 
take this constraint into account. (See Bacchus 2000 
for an alternate approach to back forcing of 
backpruning values).

Perhaps heuristically it might be better to start the 
search under the newly discovered implication all 
over again. 
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Far Backtracking

E.g., with far backtracking whenever a 
unit conflict is discovered, the search 
returns to the root: a complete restart.

Unclear if there is any real empirical evidence 
about whether or not this is more efficient. 
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Managing Large number of 
Clauses

Once we start learning a clause at every 
backtrack point, we soon have the 
problem of having to deal with lots of 
new clauses.

The learned clauses often are far more 
numerous than the input clauses. 
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Watch Literals

Some other techniques have been developed in 
the SAT literature that have made clause 
learning feasible. 

More efficient unit propagation by the technique of 
watch literals.

in order for a clause to be come unit all but one of its 
literals must become false.

Assign two watch literals per clause. Only when the watch 
literal becomes false do we check the clause.

Try to find another watch, or determine that the clause has 
become unit or empty.
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Watch Literals

Like ideas in current GAC algorithms where only a 
single support is maintained. But no reliance on 
lexographic ordering. Thus watches have an 
important benefit of requiring no work on 
backtrack.

Also clever empirically tuned techniques for 
where to locate the watches and how to store 
clauses in memory designed to maximize cache 
hits.
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VSIDs Heuristics

Additional success has been obtained 
from dynamic variable ordering heuristics 
that are very quick to compute: don’t 
require examining all unassigned 
variables.

These heuristics favor literals that have 
appeared in recently learned clauses.

Intuition is claimed to be: learning new 
clauses that can be resolved against recent 
clauses.
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The Power of Clause Learning

Beame, Kautz, and Sabharwal (2003) showed 
that regular resolution cannot p-simulate 
clause learning.

I.e., there exists formulas with short CL proofs but 
long regular resolution proofs.

Recently (Pitassi & Hertel, not yet published) 
have shown that CL can p-simulate regular 
resolution.

I.e., with clause learning DPLL becomes strictly more 
powerful than regular resolution, and thus a major 
advance over standard tree-resolution limited DPLL.
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The Power of Clause Learning

We are still working on the question of 
whether or not CL is as powerful as 
general resolution.
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Improving CSP solvers
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Improving CSP Solvers

FCCBJ no more powerful than tree 
resolution, also bounded by negative 
resolution.

How do we gain from advances in SAT?

Ideas along this line have been pursued 
by my PhD student George Katsirelos
who has written a general CSP solver 
toolkit called EFC based on our ideas.

http://www.cs.toronto.edu/~gkatsi/efc/
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Improving CSP Solvers

A. Unrestricted Clause (nogood) learning.

B. Learning non-negative clauses.

C. Improving the input clauses.

D. Better clauses (nogoods) from GAC.

E. Better clauses (nogoods) from 
propagators.
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A. Unrestricted NoGood Learning

Standard works on clause (nogood) learning 
has concentrated on various restricted forms, 
e.g., k-relevance bounded, length bounded, 
etc.
Our first attempt was to utilize SAT techniques 
for the efficient handling of large numbers of 
clauses (watch literals, clause databases) to 
allow storing as many nogoods as can fit into 
main memory.
With standard techniques are used to learn the 
nogoods the results were occasionally very 
good, however often the results were not great.
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Negative Resolution
FC (reminder)X=a

Z=b

Q=c

R c

With clause for each value of R:

(X a,R a)

(X a,Z b,R b)

(Z b,R c)

Resolve these against 
(R=a,R=b,R=c) to obtain

(X a,Z b)
Domain

wipe-out of 

Y
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Negative Resolution

Each resolution step is a negative 
resolution.

All learned nogoods are negative clauses.

Restricts the power of the search to negative 
resolution.
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No Unit Propagation

Unit propagation over the learned clauses 
never propagates!

(X a,Z b) when X=a this becomes unit forcing 
Z b (the pruning of b from Z’s domain)

But now Z b can only make other learned clauses 
true, it cannot make any of them unit.

So one never gets very much further than the 
original clauses.

In contrast unit propagation in SAT can often 
value hundreds of literals after each decision.
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B. Learning Non-Negative Clauses

Idea is simple, when learning a new clause 
simply don’t resolve away all of the positive 
literals!

With clause for each value of R:
(X a,R a)

(X a,Z b,R b)

(Z b,R c)

Resolve these against (R=a,R=b,R=c) to obtain
(X a,R=b,R=c)

or (Z b,R=a,R=c)

instead of doing all of the resolution steps.
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B. Learning Non-Negative Clauses

We developed a first-decision clause 
learning scheme, where we replace all 
literals (assignments/non-assignments) 
in the clause until we have only the 
decision literal at the deepest level.

This allows us to learn non-negative 
clauses, perform intelligent backtracking, 
and it seems to work better than the 1-
UIP scheme in CSPs.
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Unit Propagtion

(Z b,R=a,R=c), now if we prune a from 
R’s domain and assign Z=b, this mixed 
clause forces us to assign R=c.

That assignment can make other clauses 
unit, pruning other values or forcing 
other assignments.
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B. Learning Non-Negative Clauses

“Generalized Nogood” learning often gives 
dramatic performance improvements over 
FCCBJ+learning standard nogoods (negative
clauses), which in turn is better than FCCBJ 
without any learning.

Also provably adds power over standard 
negative clauses (Katsirelos & Bacchus 2005)

See also Hwang & Mitchell (2005) on how 2-way 
branching also has the potential to get around 
negative resolution. 
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C. Improving Input Clauses

The input clauses are all negative 
clauses. This also limits the effectiveness 
of resolution. 

One can generalize these clauses, e.g., 
say the constraint C(X,Y,Z) with 
Dom={a,b,c} contains the clauses

(X a,Y a,Z a),

(X b,Y a,Z a),

these two clauses can be replaced by the 
single clause (X=c,Y a,Z a)
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C. Improving Input Clauses

Constraints can be optimized (and 
converted from negative clauses) using, 
e.g., information theory based decision 
tree algorithms.

We haven’t as yet completed an empirical 
evaluation of this idea.

Note same idea can be used to make GAC-
schema checking faster.
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GAC

Most CSP solvers use GAC, and GAC is 
empirically much more effective than FC.

How do we use clause learning ideas to 
improve GAC?
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Standard Technique

Inductively assume that every pruned 
value is labeled by a (negative) clause 
that caused the pruning.

How do we compute a clause to label a 
value newly pruned by GAC on a 
constraint C?

9/15/2005 Fahiem Bacchus 99

Standard Technique

The standard technique is to use the 
union of the clauses that pruned any
value of any of the variables of the 
constraint. [Chen 2000].
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Standard Technique

GAC on

C(X,Y,Z)

X a

Y b

Z c

Z a

X b

(H=a & I=b &J=a) Logically

implies

(E=a & F=b &G=a)

(Z=b)

(Z=b)

Therefore
H=a & I=b &J=a & E=a & F=b &G=a & Z=b X b

In clause form 
(H a,I b,J a,E a,F b,G a,Z b,X b)
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Standard Technique

We obtain only negative clauses.

The resulting clause is very specific to 
this particular part of the search space, 
and can be quite long (not as powerful).
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D. Better clauses from GAC

GAC on

C(X,Y,Z)

X a

Y b

Z c

Z a

X b

(H=a & I=b &J=a) Logically

implies
(E=a & F=b &G=a)

(Z=b)

(Z=b)

An immediate and computationally inexpensive clause 
we can obtain is simply the set of pruned values that 
caused the new pruning.

X a & Y b & Z c & Z a  X b
(X=a,Y=b,Z=c,Z=a,X b) (Y=b,Z=c,Z=a,X b)
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D. Better clauses from GAC

This “all of the values pruned” clause is actually 
already captured by GAC processing itself.

(Y=b,Z=c,Z=a,X b)

Under any situation where we make all but one of 
these literals true GAC will infer the remaining 
literal.

E.g., if we prune b from Y’s domain, c and a from Z’s 
domain, GAC will detect that b must be pruned from X’s 
domain.

Similarly if X=b, a and c have been pruned from Z’s domain, 
GAC will prune b from Y’s domain.
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D. Better clauses from GAC

However, even though this clause is in 
some sense “redundant” it can still be 
resolved against other clauses to produce 
powerful new clauses.

Increases the power of the search.

In some sense this method is 
“converting” GAC inferences to clauses 
on the fly, and these clauses can then be 
used as inputs to more powerful 
resolution refutations.
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D. Better clauses from GAC

We can also resolve away various literals 
from this clause, to yield a variety of 
different clauses.

(Y=b,Z=c,Z=a,X b) (Y=b,Z b,X b)

GAC on

C(X,Y,Z)

X a

Y b

Z c

Z a

X b

(H=a & I=b &J=a)

(E=a & F=b &G=a)

(Z=b)

(Z=b)
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D. Better clauses from GAC

The “all values pruned” clause empirically 
is often quite useful.

Empirical analysis of the other possible 
clauses one could generate remains 
open.
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Exploiting Constraint Structure
The “all values pruned” clause fails to exploit 
information about the constraint.
It could be that from the structure of the constraint 
only a subset of the currently pruned values 
contributed to the newly pruned value.

GAC on

C(X,Y,Z)

X a

Y b

Z c

Z a

X b

E.g., perhaps X b
follows from just Y b
and Z c.

If we can detect this 
efficiently, we could 
learn even better 
clauses from GAC.
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Exploiting Constraint Structure

In general, any set of pruned values that 
suffices to remove all of the supports of 
X=b is a minimal reason for the pruning.

It is feasible to find such sets when the 
constraint relatively small (e.g., small 
enough to perform GAC-Schema)

In this case such clauses can be more 
effective than the “all values pruned” 
constraint.
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E. Better clauses from 
propagators

Another critical technique in CSPs is the 
recognition that some constraints have a 
specialized structure, and thus specialized 
algorithms can be used to achieve GAC. 

These specialized algorithms can work even 
when the constraint is too large to be 
represented as a set of clauses.

In these cases it should be feasible to 
additionally exploit this structure to obtain 
better clause reasons for the values pruned. 
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E. Better clauses from 
propagators

E.g., all-diff.

The propagator (Regin 1994) works by 
identifying sets of variables S that consume 
all of the values in their domain.

E.g., a set of 3 variables all of which have the 
same 3 values remaining in their domain. 

In this case these values are consumed, they 
cannot be used by any other variable in the all-
diff.
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E. Better clauses from 
propagators

E.g., all-diff.

Say that X=b, Y=b, Z=b are all pruned because we 
have that b must be consumed by one of the 
variables in the set {V,W}.

Then a shorter, structure specific, clause explaining 
each of these pruned values is simply the set of 
values already pruned from the domain of V and W.

“b” is consumed by V and W because these other values are 
no longer available.

Other values pruned from the domains of other variables 
are irrelevant.
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E. Better clauses from 
propagators

In general, getting better clauses by 
exploiting structure specific to particular 
constraints remains an area where much 
additional work needs to be done.
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Conclusions
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Social Golfer
From Katsirelos & Bacchus 2005. 

Note: no sophisticated symmetry breaking 
techniques being used!

w,g,s GAC GAC+S GAC+G

2-7-5 1586.0s 218.0s 4.4s

2-8-5 >2000.0s 1211.9s 5.5s

3-6-4 >2000.0s 869.7s 5.0s

3-7-4 >2000.0s 549.6s 1.6s

4-7-3 843.4s 91.5s 0.3s
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Conclusions

These techniques can yield a significant 
improvement in CSP solvers.

Many other issues remain to be explored

The impact of learning different kinds of clauses 
from GAC.

Heuristics based on recently learned clauses-very 
successful in SAT, seemingly less so in CSPs.

Theoretical power in the presence of propagators.

Extending specialized constraints to be able to 
extract better clauses. 


