
AutoComPaste:
Auto-Completing Text as an Alternative to Copy-Paste

Shengdong Zhao1 Fanny Chevalier2 Wei Tsang Ooi1 Chee Yuan Lee1 Arpit Agarwal1,3
zhaosd@comp.nus.edu.sg fchevalier@ocadu.ca ooiwt@comp.nus.edu.sg leeyl@comp.nus.edu.sg aagarwl8@illinois.edu

1 National University of Singapore 2 OCAD University 3 University of Illinois at Urbana-Champaign
Singapore Toronto, ON Canada Illinois, USA

ABSTRACT
The copy-paste command is a fundamental and widely used oper-
ation in daily computing. It is generally regarded as a simple task
but the process can become tedious when frequent window switch-
ing is required to copy-paste across different documents. Auto-
completion is another popular operation aimed at reducing users’
typing effort. It contrasts to copy-paste by allowing for text com-
pletion without switching windows. However, the available con-
tent for completion is predefined. We introduce AutoComPaste,
an enhanced autocompletion technique for cross-document copy-
paste. AutoComPaste allows users to copy-paste different granu-
larity of text from all opened documents without window switch-
ing. Our theoretical analysis and empirical study show that Au-
toComPaste nicely complements traditional copy-paste techniques
and outperforms the traditional copy-paste techniques when users
have knowledge of the content to be copied.

Categories and Subject Descriptors: H.5.2 [Information Inter-
faces and Presentation]: User Interfaces—Interaction Styles

General Terms: Design, Experimentation

Keywords: Copy-Paste, Autocompletion, Windows management

1. INTRODUCTION
Copy-paste data across documents is a common task [15]. Ex-

ample scenarios include the writing of a project progress bulletin,
filling out a grant report, literature review, trip planning, etc. In
such scenarios, a common practice is to open relevant documents
(e.g., previous reports, emails, finance spreadsheets, web pages,
etc.) in the background and copy-paste relevant information from
these source documents into a target document while editing.

While the basic operation of copy-paste (CP) is simple, the pro-
cess is often complicated by time-consuming and distracting win-
dow management tasks [4].

We propose AutoComPaste (ACP), an enhanced autocompletion
technique for cross-document copy-paste that nicely complements
the traditional CP techniques. By building a dictionary contain-
ing different granularity of text from any opened document, ACP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AVI’12, May 21-25, 2012, Capri Island, Italy
Copyright 2012 ACM 978-1-4503-1287-5/12/05 ...$10.00.

allows users to copy-paste text content across documents without
window switching. Using ACP, users just need to type the prefix of
the text to be copied, matching entries in the dictionary will be sug-
gested to the user in a pop up dialog. The user can then select the
desired entry and adjust its granularity (word, sentence, paragraph)
using assigned keys to paste it in the working document without
any highlighting and window switching (see Figure 1).

ACP is an effective complementary technique to traditional CP
techniques for cross-document copy-paste. Our theoretical analysis
and empirical studies showed that ACP and CP techniques perform
well in different scenarios. ACP has significant advantages over
traditional CP methods when users know the prefix of the text to
copy but not sure about its exact location. In those cases, ACP
eliminates the steps of switching windows, searching for and high-
lighting the source text (see Figure 1), thus significantly improve
the efficiency of copy-paste. In our qualitative study, our partici-
pants found ACP effective and useful, and preferred ACP over the
traditional CP method for a trip planning task.

2. RELATED WORK
AutoComPaste is a copy-paste technique based on autocomple-

tion. We survey previous work in both areas.

2.1 Copy-Paste (CP)
The basic procedure for cross-document CP typically relies on

the same workflow pattern where highlighting is a key step: (1)
select the source window (can also be a tab within the same appli-
cation), (2) highlight the content to copy, (3) issue copy command,
(4) select the target window, (5) place the cursor at the paste posi-
tion, and (6) issue paste command, as illustrated in Figure 1.

Copy-Paste Techniques. Depending on the operating systems
and applications, there are four popular CP techniques: keyboard
shortcuts, menu selection, drag-and-drop and the X Window method.
Keyboard shortcuts (Ctrl-C, Ctrl-V) and pop-up menus (typically
placed under the Edit menu, or contextually invoked by right click-
ing) allow separation of the six steps, permitting other computing
operations to be performed within the sequence of copy-paste steps.
Drag-and-drop, consisting of dragging the selected content and re-
leasing the button at the destination, perform copy-paste as one
chunked operation. Currently, the fastest cross-document CP tech-
nique is from the X Windows System, where the copy command is
automatically performed as the user highlights content [4].

Windows Management. All the CP techniques previously de-
scribed require the user to perform additional window management
operations when performing cross-document copy-paste. To facil-
itate CP between potentially overlapping windows, Chapuis et al.
[4] have proposed the Restack and Roll windows management tech-



Traditional Copy-Paste

Text
editing

Select the source 
    window
   

Select the content 
     to copy
  

Issue copy 
command

Select the target 
      window

Issue paste 
command

Place the 
     cursor
  

Background activity
List of suggestions pops up Validate Entail additional content

   

AutoComPaste

2 3

4 5 61 2 3

Select the content 
     to copy
  

1

Figure 1: The workflow of cross-document copy-paste for CP and ACP. Traditional CP: the user is required to explicitly switch
between windows (1) and eventually perform a visual search to find and select the content to copy (2,3) before switching back to the
target document (4,5) and issue the paste command (6). ACP: as the user types, AutoComPaste dynamically searches for matching
entries and pops up the list of candidates in place. The user can access details for each entry as she browses the list (1). After selecting
one entry for completion (2), the user can adjust the granularity of the copied text by using arrow keys (3).

niques that aim to reduce the cost of switching between the source
and the target document. Entity Quick Click [2] and Citrine [16]
rely on structured identifiable entries such as addresses and tele-
phone numbers and support fast simultaneous CP of multiple fields
in a single operation. Other techniques, as found in [6] allow for
retrieving previously selected, copied, or dragged content to en-
rich CP interactions in desktop environments. While these meth-
ods demonstrate different advantages, a common drawback is that
they all require users to switch attention to the source window to
perform text selection, which breaks the writing flow.

Ethnographic Studies. Stolee et al. have studied users behav-
ior on performing general purpose cross-document CP activities
in [15]. This work, however, focuses on how data is transferred
(i.e. clipboard patterns) more than the nature of the copied con-
tent, an important factor when considering autocompletion. Other
ethnographical studies include [9] that focuses on code developers,
and [8] but no results are reported.

2.2 Auto-Completion (AC)
AC is a widely adopted feature in many applications. It suggests

a list of appropriate completions as the user writes to reduce typing
and prevent misspelling. AC can also act as a retrieval tool (e.g.,
Apple’s Spotlight allows for retrieving a document or an applica-
tion with little knowledge of its exact name) and a suggestion tool
(e.g., Eclipse lists all matching methods of a class by only guessing
a method’s prefix).

AC Techniques. AC systems are often restricted to single-word
completion. Examples include the bash shell, where the dictio-
nary contains executable commands and file names; and text ed-
itors such as OpenOffice, Emacs, and Vim, where the dictionary
contains words in the opened documents. Several AC techniques
supporting multi-word completion. The most widely used is prob-

ably Google Suggest, where completion candidates are taken from
popular search queries. Other examples include phrase prediction
[11], and sentence completion [7]. These techniques, however, are
limited to a small set of frequently used phrases or sentences and
are not capable of general purpose copy-paste.

Context-based Completion. Most AC techniques rely on a dic-
tionary built from text input history. Suggestions are picked in a
global database that contains content from previous documents that
are hence not necessarily relevant to the current user’s context. A
notable exception is the predictive text input method [10] where
candidate words are selected based on the context of the text com-
position task. Other related work includes Remembrance Agent
that exploits the context of the currently edited document as to sug-
gest related files [13].

Other AC Techniques. Holger and Igmar proposed an AC search
method that queries based on the possible completion of the search,
and returns the results instantaneously with the highest hits [1]. AC
has also been extended so as to tolerate erroneous input [5] and to
list out the possible completion of users’ queries if they mistype.

In summary, while there has been extensive work in both CP and
AC techniques, no prior work has attempted to effectively com-
bined both techniques for cross-document copy-paste as demon-
strated by AutoComPaste.

3. PRELIMINARY STUDY
Designing the ACP technique requires an understanding of how

CP is typically performed. Although the study of Stolee et al. [15]
provides most of the answers, the nature of the content that is
copied, which is crucial when considering using autocompletion,
remains a question. Therefore, we conducted a study to capture the
missing information while performing cross-document CP.



3.1 Procedure
22 participants (9 female, 13 male, aged 21-27, mean 23.14) took

part in the 2-week study. All are university students in Computer
Science or Computer Engineering. Each participant was rewarded
1% course credit after completing the study.

We developed a logging mechanism that collects CP activities
running on the Windows XP/Vista/7 OS. Participants were asked
to install the logger on their primary computer for a period of 14
days. The logger was automatically turned on without any extra
operation from the user, and therefore was constantly running on
the background. Logs were periodically sent to our server.

For each CP event, the logger logs its type (copy or paste), the
host window and application, the timestamp, and the content copied.
We also record the time difference to the nearest typing event when
it applies (duration between a CP event and the latest typing event
performed before, and the earliest typing event performed after).

For each text object copied, we log its content by masking al-
phabetic characters and numerical digits to protect the user’s pri-
vacy (e.g. “joe12@gmail.com” is stored as “xxx00@xxxxx.xxx”).
Punctuation and whitespace are preserved to retain structural infor-
mation such as the number of words, sentences, and paragraphs.

3.2 Results
A total of 34.1 MB of text logs were collected. Among the 8168

events, 3481 (43%) were copies and 4687 (57%) were pastes. A
similar distribution was observed in [15].

Windows management. We found that 83% of the time, users
have 6-20 concurrently opened windows (average 12) when per-
forming CP. Moreover, among all the 4687 pastes, cross-document
CP happened more often (2672 times, 57%) than within-document
CP (2015 times, 43%). This finding concurs with previous work
(only 35% of the CP events were within-document in [15]), making
a strong case for the importance of cross-document CP techniques.

Units of text copied. Understanding the granularity and amount
of text copied is important for designing AutoComPaste. Such in-
formation, however, has not been reported in literature. We empir-
ically categorized the copy events into phrases (groups of 8 or less
words), single sentences (groups of 8 or more words ending with
a period), multiple sentences (at least one sentence without a new-
line), and paragraphs (one or more paragraphs, each ending with a
newline).

Surprisingly, while CP of phrases is common (39%), CP of one
or more sentences (33%) and paragraphs (28%) are also frequent.
This finding suggests that a CP technique based on AC should sup-
port different granularity of text.

Working context. Stolee et al. [15] found that word processors
were the most popular type of application while performing CP. We
extended the analysis a step further by analyzing the time interval
between CP events and typing in order to identify if CP occurs with
text editing. Empirically taking 30s as a threshold, we found that
42% of all copy events were performed after a typing event, and
54% of all paste events were followed by a typing event. These
results show that CP often occurs together with text editing.

4. DESIGN GUIDELINES
Based on prior related work and the results of our preliminary

study, we propose the following design guidelines for AutoCom-
Paste and future copy-paste techniques:

G1 Minimize window management operations (e.g. [4]): window
management operations can significantly interfere with the pri-
mary CP task, therefore breaking the user’s working flow. An
enhanced CP technique should minimize such distractions.

G2 Facilitate content selection: retrieving and acquiring the con-
tent of interest within the source document can be affected by
(1) a potential visual search to retrieve the text to copy and (2)
potential errors due to the required explicit selection when high-
lighting (e.g. unwanted or missing content in the selection, or
unintended actions, such as clicking on a hyper-link while se-
lecting, etc.). A technique that aids content retrieval (e.g. [6])
while allowing dynamic adjustments of the selection at different
granularities could benefit the users.

G3 Reduce visual search distraction for source text: the two guide-
lines above could partially be addressed by reducing the amount
of distracting information presented to the user. Ideally, a CP
technique should take into account the working context that is
relevant to the current editing task [13] by prioritizing or even
strictly narrowing down the access to the only relevant content,
therefore facilitating the visual search.

5. AUTOCOMPASTE
ACP is a hybrid technique combining copy-paste and autocom-

pletion for cross-document copy-paste, that we designed based on
the guidelines of Section 4. As a CP technique, ACP allows content
duplication of text in any granularity. Instead of requiring high-
lighting text in the source document, however, it behaves like an
AC technique by dynamically suggesting possible completions to
the currently entered word as the user types, based on the content
from all opened source documents. Figure 1 shows the general
worflow of ACP.

By using autocompletion, ACP inherently addresses (G1) since
it spares the trouble of leaving the working document while editing.
In this section, we first describe the building of the ACP dictionary
and how it is tied to working context question (G3), then we detail
the user interface of our ACP prototype to support dynamic adjust-
ment of the selection text at different granularities (G2).

5.1 Building up the dictionary
An ACP-enabled environment stores in a database all the text

from the current working context of the user (e.g., web pages from
the browser, documents from word processors, PDF files, etc.).
Text content is parsed into sentences and paragraphs using a back-
ground process that grabs and indexes content from every newly
opened document. In our implementation, the working context is
defined as all the currently opened documents in their entirety (in-
cluding documents in minimized windows and tabs). Entries cor-
responding to a document are removed from the database when the
document (in a window or tab) is closed.

Restraining the dictionary to only the opened documents aims to
mimic the traditional AC environment where text to be copied can
only come from such documents. Since the database only considers
documents in the immediate context that the user can dynamically
adjust, risks for triggering the pop up window with irrelevant con-
tent is limited (G3). The database, however, is still prone to contain
irrelevant information as the user keeps opened documents that are
not directly related to the task. Alternative designs for defining the
dictionary to address this issue are discussed in Section 10.

5.2 User Interface
Figure 1 depicts the general worflow of ACP. We detail each step

as follows.
Background process for autocompletion. ACP acts as a tradi-

tional autocomplete in that it constantly keeps track of the user’s
keystrokes and identifies matches between the prefix the user types
and the text in the database. Whenever ACP detects a match be-
tween the typed prefix and at least one entry in the dictionary, a



drop-down list pops up close to the caret, showing the potential
sentence candidates for completion. To limit distraction that may
be caused by frequent appearances of the popup, the list appears
only if the number of candidates does not exceed n entries at the
time. Currently, when more than 10 matches are found, we con-
sider the prefix not to be specific enough and therefore not trigger
the drop-down list to prevent the user wasting time browsing a long
list. Other alternatives are discussed in Section 10.

Browse the candidates. The user can browse the list using the
arrow keys, and access more details before validation: a tooltip
showing the complete sentence of the selected entry and the docu-
ment it belongs to is triggered so as to provide the user with poten-
tially useful contextual information on the source of the entry while
in an in-place and unobtrusive manner.

Validate selection. At any time, the user can decide to continue
typing, thereby ignoring or refining the suggested completions as
with traditional AC. To paste the selected entry, she can press Enter.
The typed prefix is then replaced by the complete sentence.

Adjust the content to copy. One of the main feature of ACP is
its tailing mechanism. After selecting a completion, the user is of-
fered the possibility of tailing more content from the document the
copied sentence belongs to. The sentence that follows the copied
text is automatically added after the copied sentence to give a pre-
view of what additional content is available. The user can then dy-
namically adjust the content to paste, by adding or removing word
by word (< and > keys), full sentences (← and→ keys) or whole
paragraphs (↑ and ↓ keys). An instruction widget is also displayed
to help the user learn the editing comments.

The user can press Enter to paste the additional content if satis-
fied with the text to copy, or ignore the tailing option by continuing
to type. Both cases result in leaving the ACP edition mode.

ACP therefore enriches the traditional AC technique by allowing
the user to interactively explore and extend the completion (G2).
The in-place widget facilitates access to content in the immediate
working context (G3) while sparing the user the trouble of perform-
ing tedious window management operations (G1).

6. THEORETICAL ANALYSIS
Cross-document CP may seem like a simple task; however, dif-

ferent scenarios exist in practice and the operation steps involved
can differ significantly according to the user’s knowledge of the
copy content and the working context. This theoretical analysis
aims to investigate how ACP compares with traditional CP under
different scenarios.

6.1 Scenarios classification
Based on the knowledge we gained through our preliminary study

and literature review, we have identified four main factors that can
affect users’ performance for cross-document CP. Related to the
user’s knowledge about the copy content, the text content (Fc) and
its location (Fl) have an impact on the time required to acquire the
copy text. Other conditions, such as the current working context,
including the visibility of the copy text (Fv) and the user’s activity
before copy and after paste (Fa) can also affect the user’s perfor-
mance.

Figure 3 summarizes how the four different factors interact with
each other to form a matrix. The two factors (Fc,l) regarding the
user’s knowledge of the copy text form the high level categories
(CA−D). Each category is further divided into four cells based on
visibility (Fv) and pre-copy activity (Fa). In total, there are 16
copy-paste scenarios that we label (S1−16) in the rest of the paper.

Fc KNOWLEDGE OF CONTENT PREFIX

 F
l  

LO
C

AT
IO

N

Known Unknown

   
 K

no
w

n
U

nk
no

w
n

Content is
visible

Content is
invisible

Content is
invisible

Content is
visible

Isolated
Copy

Interleave
Typing

Isolated
Copy

Interleave
Typing

S1

S2

S3 S9 S11

S4 S10 S12
S5 S7 S13 S15

S6 S8 S14 S16

Visible
Isolated

Visible
Typing
Visible

Isolated

Visible
Typing

Invisible
Isolated

Invisible
Typing

Invisible
Isolated

Invisible
Typing

Visible
Isolated

Visible
Typing
Visible

Isolated

Visible
Typing

Invisible
Isolated

Invisible
Typing

Invisible
Isolated

Invisible
Typing

CA

CC

CB

CD

Prefix known
     Location known

Prefix known
Location unknown

Prefix unknown

Prefix unknown

     Location known

Location unknown

Fv 
Fa 

Figure 3: Overview of the different CP scenarios.

6.2 Time Cost Analysis
Depending on the scenario, the user may need to perform more

or fewer operations to duplicate content. The required operations
depend on the aforementioned factors and incurred time cost. In
addition to the time cost incurred by the base case scenario where
no extra operation is required, there are other operations that can
slow down the user in her task: context-switching, when the user
has to change her context to perform the task; homing, when the
user has to switch her device; window management, when the user
has to access a different window; and visual search, when the user
has to visually search on the screen for the required content.

Figure 2 surveys a synthesis of time implications of the different
scenarios for both CP and ACP. For simplification, the following
analysis considers ideal conditions for the base case of each tech-
nique. It is important to mention, however, that the browsing of
the autocompletion list of candidates may incur additional time,
especially in the case of false positive suggestion lists. We discuss
these limitations and design directions to address these issues in
Section 10. Currently, the maximum number of items in the list is
limited to 10.

CP Time Cost. The user’s knowledge of the exact location of the
text to copy significantly affects traditional CP performance. When
location is unknown, visual search is unavoidable and will increase
the overall CP time. The visibility of the content is also important.
Content hidden in an occluded window requires additional window
management and visual search. Moreover, pre-copy activities such
as typing also affect overall performances due to context-switching
and homing time, but likely not as much as window management
and visual search. In contrast, the knowledge of the prefix does not
affect the user’s performance at all.

ACP Time Cost. ACP is highly dependent on the user’s knowl-
edge of the prefix of the text to copy. If the prefix is known, the
user can avoid window management, visual search and highlight-
ing, which represents significant performance benefits. If the prefix
is unknown, visual search for its location will also be required. Lo-
cation knowledge and visibility are also important for AutoCom-
Paste, but only when the prefix is unknown, so that the user can
quickly identify the text to copy and type its prefix. Pre-copy typ-
ing will reduce homing time, but may have a minor influence as
compared to other factors.

7. QUANTITATIVE EXPERIMENT
To measure the actual performance in (S1−16) and to validate

our analysis, we conducted an experiment, comparing ACP with
the CP technique used in X Window Systems (XWin).



Figure 2: Theoretical analysis of the time cost to duplicate content with a traditional CP method (X-Windows) vs. ACP under the 16
scenarios of Fig. 3. The performance difference is calculated by subtracting items in column 2 (ACP) from items in column 1 (CP),
where we assume the base cases of the two scenarios take roughly same amount of time. The last column shows which technique is
faster based on our theoretical analysis.

7.1 Experimental setting
12 university students (7 male, 5 female, aged 22-28, mean 24)

participated in this study. All were familiar with word processors,
common CP techniques, and AC elements found in other software.

The experiment was conducted on two desktop computers run-
ning Windows Vista, equipped with 20-inch LCD monitor at screen
resolution of 1024×768.

7.2 Task and Stimuli
All participants were asked to copy from a source document the

answer of a question and paste it into a destination document for the
two XWin and ACP techniques, under the 16 scenarios described
in Section 6.1. We simulate these scenarios by varying the four
prefix, location, visibility and pre-activity control conditions.

We collected 860 questions and answers from Answers.com and
split them into 86 ten-question articles. Sentences, paragraphs, and
common phrases for the articles were pre-processed and indexed
in a database. We randomly selected 6 articles to present to the
participant in each trial.

Prefix Knowledge. To simulate the known prefix condition, the
participants were asked to read the copy text before starting the
trial. Simulating the condition when participants only have par-
tial knowledge of the text, but do not know or remember its prefix
is more challenging. In real life, we sometimes need to copy the

definition of a particular term or the answer of a specific question
where we only know the terms or questions, but do not know the
exact prefix of the definition or answer itself. For instance, users
may want to copy the definition of “Sonic”, but do not know the
prefix of its definition (“Pertaining to sound.”) is ”Pertaining”. We
replicate such a scenario by collecting definitions about engineer-
ing terms and asking the users to find the definition for a particular
question.

Location Knowledge. When users know the location of a piece
of text, they can find it immediately. To simulate such scenario,
we highlight the target text in yellow. If the highlighted text is oc-
cluded, the window’s name is also provided in the stimulus so that
participants know where to find the window. Location unknown
condition is simulated by simply removing the highlight.

Visibility. We enforce text visibility by bringing the containing
window to the foremost position. On the contrary, invisible text is
occluded by one or more windows.

Pre-copy Activities. We control the pre-copy activity as follow:
(i) isolated CP – the stimulus only contains instructions about the
text to copy, and (ii) typing something before CP – the stimulus
also contains instructions to first type a short word.

Text Unit. In addition to the above factors, another factor of
interest is whether the text to copy is a phrase, sentence, or para-
graph. To access the difference, we include text granularity as a
control condition. For each of the 16 scenarios, participants com-



Figure 4: Screen-shot from the experiment environment of the
quantitative study, showing the stimuli (on top) the AutoCom-
Paste editor and opened articles.

plete 2 phrases, 2 sentences, and 2 paragraphs which are randomly
selected without replacement from the data store.

Dependant Variables. Dependent variables are accuracy (ratio
of successful trials to total trials) and completion time (the interval
between clicking the start trial button and the completion of pasting
the text to copy). Time incurred by additional typing task is not part
of response time.

7.3 Procedure
Before the experiment, we first collected the participant’s demo-

graphic information, followed by a short practice session to let her
familiarize with each of the two techniques. Once the experiment
started, for each trial, the screen showed a blank window with the
only textual stimuli displayed on the top.

Participants were told to read the instruction before clicking the
“start trial” button, upon which, six overlapping windows with tex-
tual content and a text-editing window for typing and pasting were
loaded. We used six windows to balance between simulating real
workspace environments with multiple windows opened (average
is 12, see Sec. 3.2) and to keep the complexity of the experiment
manageable while not favouring our technique. Figure 4 shows a
screenshot from the experiment during a trial.

Upon completion of the task, the system checked if the typed text
(if it applies) and the copied content matches the original content.
In the case of a mismatch, an error was counted and the partici-
pant was prompted to redo this trial; otherwise, the participant pro-
ceeded to the next trial or took a break. Once all trials were finished,
the participant was asked to fill out a post-experiment questionnaire
about her overall experience on the techniques and conditions. The
whole experiment took about 90 minutes.

Experimental Design. We used a within-subject factorial de-
sign with five counter-balanced factors. Our design counts a to-
tal of 2304 trials: 12 subjects × 2 techniques (XWin, ACP) × 2
types of content knowledge (known, unknown) × 2 types of loca-
tion knowledge (known, unknown) × 2 types of visibility (visible,
invisible) × 2 types of pre-copy activity (isolated, typing) × 6 trials
of 3 different units of text (2 phrases + 2 sentences + 2 paragraphs).

7.4 Empirical vs. Theoretical
Table 1 summarizes the response time and accuracy results for

each scenario for both techniques. Pairwise t-tests were performed
on every scenario pair between XWin and ACP. Differences (third
column) that are significant (p < .05) are shown in bold.

Base Case Comparison. No significant difference was found
between techniques in (S1). Since the homing time is small (about
0.4s [3]), this result indicates that both techniques’ base cases re-
quire about 3s, suggesting that CP and ACP’s base cases (i.e. ideal
conditions) are comparable.

XWin (tX ) ACP (tA) tX − tA tX/tA

(CA)

(S1) 2.93 (98.6%) 3.22 (98.6%) -0.29 0.91
(S2) 4.04 (95.8%) 4.35 (94.4%) -0.31 0.93
(S3) 4.96 (97.2%) 3.21 (95.8%) 1.75 1.55
(S4) 6.82 (94.4%) 3.73 (94.4%) 3.09 1.83

Average 4.69 (96.5%) 3.63 (95.8%) 1.06 1.29

(CB)

(S5) 3.39 (97.2%) 5.19 (97.2%) -1.8 0.65
(S6) 4.25 (97.2%) 5.60 (95.8%) -1.35 0.76
(S7) 4.96 (100%) 8.49 (100%) -3.53 0.58
(S8) 7.87 (95.8%) 9.68 (93.1%) -1.81 0.81

Average 5.12 (97.6%) 7.24 (96.5%) -2.12 0.71

(CC )

(S9) 8.09 (100%) 4.06 (97.2%) 4.03 1.99
(S10) 10.35 (94.4%) 4.80 (97.2%) 5.55 2.16
(S11) 10.44 (93.1%) 3.73 (100%) 6.71 2.80
(S12) 12.69 (97.2%) 4.74 (94.4%) 7.95 2.68

Average 10.39 (96.2%) 4.33 (97.2%) 6.06 2.40

(CD)

(S13) 6.69 (97.2%) 10.36 (97.2%) -3.67 0.65
(S14) 9.18 (90.3%) 12.16 (88.9%) -2.98 0.76
(S15) 8.42 (94.4%) 14.38 (94.4%) -5.96 0.59
(S16) 10.95 (95.8%) 14.50 (87.5%) -3.55 0.76

Average 8.81 (94.4%) 12.85 (92.0%) -4.04 0.69
Total 7.25 (96.2%) 7.01 (95.4%) 0.24 103.4%

Table 1: Completion time (in seconds) and accuracy of the
quantitative study. The differences in bold are statistically sig-
nificant.

Category-by-Category Comparison. ACP is significantly faster
than XWin in (CC ) by 2-3 times in performance, but for scenarios
in (CB) and (CD), XWin outperforms ACP. Although the absolute
difference in time performance for (CD) is larger than that of (CB),
the relative difference in terms of percentage is similar. While the
analysis only discloses the difference between homing times, in
reality, the cost includes additional context switching time. This
result largely matches our estimates from the theoretical analysis
(see last column of Figure 2).

Usage Recommendation. The 4 two-way interactions related
to method reveal important insights – when prefix is known, ACP
has a clear advantage over XWin (technique × prefix interaction).
Further, ACP is either comparable with (in (S1) and (S2)) or faster
than XWin (in (S3−4) and (S9−12)). If the location is unknown,
ACP results in 2-3 times performance benefit.

When prefix is unknown, XWin is significantly faster than ACP
in the scenarios (S5−8,13,15,16). XWin is also faster in (S14), but
not statistically significant. XWin is recommended in this case. In
addition, the interaction effects on technique × location, technique
× pre-copy activity, and technique × text unit show that ACP is
advantageous when the location is unknown, interleaving with typ-
ing, and to copy phrases while XWin is better for isolated, known
location copy-pastes, as shown by Table 1. These effects, however,
are secondary as compared with prefix.

8. QUALITATIVE EXPERIMENT
The quantitative experiment above has demonstrated how our

ACP prototype fare with the state-of-the-art CP technique across
different experimental conditions. To further understand natural
users’ behavior when using an ACP-enabled environment with a
more realistic task and to evaluate users’ acceptance of the tech-
nique, we also conducted a qualitative evaluation.

We chose to evaluate ACP using trip planning task. Trip plan-
ning is an activity commonly carried out by travellers before visit-
ing new places. For Internet savvy users, it typically involves iden-
tifying relevant travel resources via Web research, then collecting
and compiling useful information from these resources into a docu-
ment. During this process, many CP activities are likely be carried
out, offering an ideal opportunity to run our study.



We are interested in investigating the following questions:
Q1 Is ACP useful in this task, and what are the usage patterns?
Q2 How users feel about ACP after the task?
Q3 What are the practical problems and flaws of ACP?

8.1 Experimental setting
6 participants (3 female, 3 male; aged 22-25, mean 23.8) were

recruited from the University community for the study. All are stu-
dents familiar with computers and received a $16 USD reward.

The study was conducted on a Dell desktop computer running
Windows 7, equipped with 19 inch LCD monitor display at a screen
resolution of 1024×768. The 10 travel-related webpages were loaded
on Google Chrome browser (v10). The arrangement of these doc-
uments and the text editor was determined by the participant.

8.2 Procedure
After filling out a pre-study questionnaire collecting background

information, participants were instructed for the practice session.
Participants were asked to open 3 Wikipedia pages and take notes in
an ACP-capable text editor using a number of supplied keywords.
ACP naturally triggered, but we left to the participants to discover
the technique on their own (at this stage, no mention of ACP was
made at all). After 10 minutes of exploration, participants were
asked to study a 2-page manual about how to use ACP and answer
some questions to test their understanding of the technique.

Once participants were familiar with ACP, they were asked to
plan a 5-day trip in a text document for visiting a North American
city by gathering relevant information from 10 given webpages.
Participants were asked to include at least one outdoor activity, one
indoor activity, and one restaurant for each day of the trip. A sam-
ple trip planning document for Paris was provided as guidance.
This step investigates the usage of ACP in a realistic task setting
and assesses how users perform copy-paste when given the choice
of the technique to use. No time limit was imposed.

We collected overall comments and feedback about the tech-
niques and the study through a post-study questionnaire. The entire
study was conducted in one-sitting, in 75 to 130 minutes (including
breaks) depending on participants.

8.3 Results
Q1. Users found ACP useful in this task. Despite the explicit

instruction that traditional CP technique can be used, all partici-
pants primarily used ACP during the study. One participant even
used ACP exclusively, while the rest occasionally used traditional
CP techniques in addition to ACP.

Participants stated that using ACP feels more comfortable while
typing, as “it allows me to stay focused on my current task” with-
out the need of switching windows. However, most of them noticed
that ACP sometimes behaved differently from their expectations;
in which case they switched to traditional CP. For instance, partic-
ipants tend to expect a drop-down list after typing keywords such
as “art”, “restaurant”, “hotel”, etc. Since the latter appeared fre-
quently in the documents (more than 10 times), ACP will not bring
up the suggestion list. Participants switched back to traditional CP
in such situations, thinking of a dysfunction of the program.

Q2. Participants were asked their opinions concerning useful-
ness, ease of use, ease of learning, satisfaction, and how likely they
will recommend ACP to their friends on a 5-point Likert scale rang-
ing from strongly disagree to strongly agree. The results of the
post-study questionnaire is summarized in Figure 5.

Overall, we found the majority of the participants liked ACP and
found it useful for the trip planning task, except one participant,
who was negative and unsatisfied with the technique. We further
elaborate his case when answering the third question.

1 2 3 4 5
strongly disagree strongly agree

ACP is useful

ACP is easy to use

ACP is easy to learn

I am satisfied with ACP

I would recommend ACP

Figure 5: Results of our post-study questionnaire. The box-
plot shows, for each question, the 10, 25, 75, and 90 percentile
values, as well as the average score.

Q3. Testing ACP on a realistic task helped us point at potential
flaws of ACP that warrant future improvement or investigation. As
mentioned earlier, one issue is when ACP is expected to show the
suggestion list. The current implementation brings up the sugges-
tion list when there are 10 matches or less. This threshold seems
to work well most of the time; it does not, however, always match
participants’ expectations.

Furthermore, we found that the proficiency of English language
and typing skills also affect user experience. One participant ex-
perienced tremendous problems with spelling. Hence, many of the
expected CP events were not triggered due to misspelling. To this
end, the participant found ACP less useful as compared to the tra-
ditional CP, and rated it negatively.

While the preference and usage situation differ among users,
most of the participants reported they like ACP and would like to
integrate ACP into their text editor as a complement to CP.

9. DISCUSSION
Overall, the results of the studies we conducted on our proto-

type are encouraging for the ACP technique. In some cases, ACP
is faster than traditional CP, and the technique has been preferred
by our participants. A longitudinal study with a refined implemen-
tation of ACP is however necessary to evaluate the adoption and
usefulness of the technique on daily computing activity. In partic-
ular, we learnt from our studies that future ACP implementations
should address the following issues:

Appropriate mapping and consistency. To limit potential dis-
traction and frustration due to ill-timed pop up of the suggestion
list, we decided not to show the list when too many matches. This
however interferes with the mapping and consistency design prin-
ciples as described in [12]. Participants can be disoriented as they
coped with the violation of their expectations. Future implementa-
tion of ACP can benefit from a more adaptive algorithm to better
fit users’ needs. An explicit feedback when too many matches are
found would also help users understand better the behaviour.

Support fuzzy typing. Another serious issue of the current im-
plementation of ACP is in its incapability of supporting fuzzy typ-
ing. ACP also requires to know the exact prefix of a word in order
to trigger the suggestions. A possible solution will be to use a fuzzy
dictionary so that relevant entries can be suggested even when mis-
spelled. However, here again there is a tradeoff to be found between
the frustration due to non-useful popups and the frustration due to
the list that fails to trigger.

10. DESIGN ALTERNATIVES
While our current implementation of ACP chose one design,

many other alternatives exist. We discuss those options along three
dimensions that characterize AC techniques: (1) a dictionary of the
possible completions, (2) a ranking function for proposing the best
matches, and (3) an interactive visualization mechanism to present
and browse the different suggestions. Some of these alternatives
raise interesting UI design questions and point to future research
directions for ACP.



10.1 Dictionary
ACP builds its dictionary based on all opened documents on the

users’ desktop only. The indexing scope, from which the dictionary
is built, trades off between distracting the users (too many irrele-
vant matches) and helping the users (finding the right AC match).
Speier et al. [14] have shown that one does not want to be more
distracted than helped. By building a dictionary based only on cur-
rently opened documents, ACP reduces the space of possibilities
and provides current-context relevant information.

Other alternatives include building a dictionary based on the cur-
rent document (e.g., emacs de-abbreviation), history in the tool
(e.g., OpenOffice), a predefined set (e.g., APIs in IDE), all user’s
documents (e.g., Remembrance Agent [13]), and to an extreme, all
popular phrases and words on the Internet (e.g, Google Scribe).

One can also imagine a customizable dictionary with the appro-
priate interface where the user is allowed to add/discard documents
to be taken into account associated to a specific editable document.
Users can pin documents to keep the text from these documents in
the dictionary even after closing them.

Another possible design is to build a dictionary based on re-
cently opened documents. The set of recently opened documents
can be limited based on the number of documents or based on time.
The recency could provide the current-context relevant information
without users having to explicitly keep the documents opened.

10.2 Ranking
The user is usually provided with a list of possible completions,

which are typically ordered based on “good hits suggestions” (see
[13]), or frequency (e.g., Google). There is no notion of frequency
or good hit in our prototype – the list is ordered from the most
recently added documents first, and linear order of the text.

Besides ranking by hit and frequency, one can organize the re-
sults based on the documents that the autocompletion matches ap-
pear in. Per-document ranking can be done, e.g., documents in
opened windows are ranked higher than minimized windows.

10.3 Interaction
In our current design, the ACP feature is always on. One can

easily use an alternative that allows user to turn on and off ACP
(e.g., in Google Scribe) or invoke ACP with a combination of key-
strokes (e.g., Ctrl-P in Vim) to limit distraction.

ACP currently displays the matches only if no more than n matches
are found. Ideally, this threshold should be dynamically deter-
mined, perhaps depending on the number of opened documents and
the frequency of use of autocompletion from the suggested list. An-
other option is to leave it to the user to decide on the threshold, and
allow for an on demand drill-down of the list even when too many
matches are found.

It would be helpful to show more contextual information too, in
addition to the document that the suggested text is taken from, such
as whether the window corresponding to the document is currently
opened, how many additional sentences or paragraphs are available.
A small counter showing the number of matching suggestions as
the user types would also be helpful.

11. CONCLUSION
ACP is a complementary technique to perform copy-paste using

autocompletion. Derived from traditional autocompletion mecha-
nisms, ACP builds a dictionary using opened documents from dif-
ferent applications and provides a unique trailing mechanism to al-
low users to adjust the granularity of text to be replicated.

The design of our prototype of ACP relies on design principles
derived from studies of CP behavior, which reveals CP is mostly

performed on sentences and paragraphs. We tested the prototype on
a quantitative study, showing that ACP can be faster than traditional
CP technique in a number of cases; and a qualitative study on a
realistic task that revealed a positive welcome of the technique from
participants, indicating that the technique is helpful and easy to use.

Future research can explore some of the design alternatives of
ACP. One important issue is to fine tune the triggering threshold of
the suggestion list, to avoid distracting the users without sacrific-
ing any convenience to the users. It will also be useful to deploy
an improved ACP in real life use and further study the ecological
validity of the technique in a longitudinal study.

12. ACKNOWLEDGEMENTS
The authors would like to thank Shi Xiaoming for programming

the logging software for the field study, Guia Gali and Symon Oliver
for contributing to the accompanying video, participants who took
part of the studies, and members in the NUS-HCI lab for their help
and support. This research is supported by National University of
Singapore Academic Research Fund R-252-000-464-112.

13. REFERENCES
[1] Holger Bast and Ingmar Weber. Type less, find more: fast

autocompletion search with a succinct index. In Proceedings of ACM
SIGIR ’06, pages 364–371, 2006.

[2] E. A. Bier, E. W. Ishak, and E. Chi. Entity quick click: rapid text
copying based on automatic entity extraction. In Extended abstracts
of CHI ’06, pages 562–567, 2006.

[3] Stuart K. Card, Thomas P. Moran, and Allen Newell. The
keystroke-level model for user performance time with interactive
systems. Communications of the ACM, 23:396–410, July 1980.

[4] O. Chapuis and N. Roussel. Copy-and-paste between overlapping
windows. In Proceedings of CHI ’07, pages 201–210, 2007.

[5] S. Chaudhuri and R. Kaushik. Extending autocompletion to tolerate
errors. In Proceedings of ACM SIGMOD ’09, pages 707–718, 2009.

[6] Guillaume Faure, Olivier Chapuis, and Nicolas Roussel. Power tools
for copying and moving: useful stuff for your desktop. In
Proceedings of CHI ’09, pages 1675–1678, 2009.

[7] Korinna Grabski and Tobias Scheffer. Sentence completion. In
Proceedings of ACM SIGIR ’04, pages 433–439, 2004.

[8] S. Iqbal and E. Horvitz. Disruption and recovery of computing tasks:
Field study, analysis, and directions. In Proceedings of CHI ’07,
pages 677–686, 2007.

[9] Miryung Kim, Lawrence Bergman, Tessa Lau, and David Notkin. An
ethnographic study of copy and paste programming practices in
OOPL. In Proceedings of the International Symposium on Empirical
Software Engineering, pages 83–92, 2004.

[10] H. Komatsu, S. Takabayashi, and T. Masui. Corpus-based predictive
text input. In Proceedings of AMT ’05, pages 75–80, 2005.

[11] Arnab Nandi and H. V. Jagadish. Effective phrase prediction. In
Proceedings of VLDB ’07, pages 219–230. VLDB Endowment, 2007.

[12] Donald Norman. The design of everyday things. Doubleday, New
York, 1990.

[13] Bradley Rhodes and Thad Starner. The remembrance agent: A
continuously running automated information retrieval system. In
Proceedings of PAAM ’96, pages 487–495, 1996.

[14] Cheri Speier, Iris Vessey, and Joseph S. Valacich. The effects of
interruptions, task complexity, and information presentation on
computer-supported decision-making performance. Decision
Sciences, 34(4):771–797, 2003.

[15] Kathryn T. Stolee, Sebastian G. Elbaum, and Gregg Rothermel.
Revealing the copy and paste habits of end users. In Proceedings of
VL/HCC ’09, pages 59–66, 2009.

[16] J. Stylos, B. A. Myers, and A. Faulring. Citrine: providing intelligent
copy-and-paste. In Proceedings of UIST ’04, pages 185–188, 2004.


	1 INTRODUCTION
	2 RELATED WORK
	2.1 Copy-Paste (CP)
	2.2 Auto-Completion (AC)

	3 PRELIMINARY STUDY
	3.1 Procedure
	3.2 Results

	4 Design guidelines
	5 AUTOCOMPASTE
	5.1 Building up the dictionary
	5.2 User Interface

	6 THEORETICAL ANALYSIS
	6.1 Scenarios classification
	6.2 Time Cost Analysis

	7 QUANTITATIVE EXPERIMENT
	7.1 Experimental setting
	7.2 Task and Stimuli
	7.3 Procedure
	7.4 Empirical vs. Theoretical

	8 QUALITATIVE EXPERIMENT
	8.1 Experimental setting
	8.2 Procedure
	8.3 Results

	9 Discussion
	10 DESIGN ALTERNATIVES
	10.1 Dictionary
	10.2 Ranking
	10.3 Interaction

	11 CONCLUSION
	12 Acknowledgements
	13 References

