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Abstract

In this paper, we tackle the problem of matching of objects in video in the framework of the rough indexing paradigm. In

this context, the video data are of very low spatial and temporal resolution because they come from partially decoded

MPEG compressed streams. This paradigm enables us to achieve our purpose in near real time due to the faster

computation on rough data than on original full spatial and temporal resolution video frames.

In this context, segmentation of rough video frames is inaccurate and the region features (texture, color, shape) are not

strongly relevant. The structure of the objects must be considered in order to improve the robustness of the matching of

regions. The problem of object matching can be expressed in terms of region adjacency graph (RAG) matching.

Here, we propose a directed acyclic graph (DAG) matching method based on a heuristic in order to approximate object

matching. The RAGs to compare are first transformed into DAGs by orienting edges. Then, we compute some

combinatoric metrics on nodes in order to classify them by similarity. At the end, a top-down process on DAGs aims to

match similar patterns that exist between the two DAGs.

The results are compared with those of a method based on relaxation matching.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The amount of multimedia information such as
images, audio and video has experienced a signifi-
cant growth during these last decades. Conse-
quently, efficient tools to search, retrieve and
index this content have become essential. In the
recent years, the problem of content-based retrieval
or indexing of multimedia and particularly content-

based image retrieval (CBIR) methods has attracted
the interest of many scientists. These methods aim
to describe images by extracting low-level features
such as color, texture or shape. Most of the CBIR
systems that have been developed (QBIC [12],
Photobook [22], VisualSeek [25], etc.) use features
that are evaluated on the whole image. The question
we could study here is how correlated are the
image descriptors and the image semantics. In the
SIMPLIcity system [28] the authors use a combina-
tion of a region-based image analysis and an
additional classification of the image database
(indoor/outdoor, textured/non-textured, city/land-
scape, etc.) in order to improve the retrieval.
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The use of global properties, computed on the
whole image is a classical approach in CBIR
systems. However, research trends in CBIR have
shifted to object-oriented techniques [9,17,19,20,24].
In this context, the retrieval only considers a local
region of interest, called object of interest, which
carries the most information about the image. Two
images that contain the same object in different
contexts only differ in their background: the main
semantic of both is the presence of the object itself.
In this perspective, two approaches may be con-
sidered:

� The objects of interest are manually specified by
the user.
� The objects of interest are automatically ex-

tracted from images.

In the case of a manual extraction of the objects
of interest, the user has to select the part of the
image which contains what he is interested in. In
[17], a segmentation process is performed in a
selected window and the user has to click on a set of
regions in order to define his object of interest. In
[24], so-called covariant regions are automatically
detected in the selected window (a detected region is
represented by an ellipse). A similar object-oriented
representation used in [19] is called blobworld [5]. In
this representation, each object may be represented
by a set of 2-D ellipses or blobs, each of which
possesses a number of attributes. The other type of
system concerns automatic extraction of objects of
interest [9,20]. The MPEG-4 video coding standard
supports the representation of arbitrarily shaped
video objects (VOs). In this case, the so-called VOs
are directly available because they are a component
of the video stream. In the two cases of automatic or
manual selection of objects, the object definition is
very dependent on the segmentation result. If the
segmentation fails to distinguish the object from the
background, the object extraction will not be
consistent.

This paper addresses the problem of object
retrieval in video, and more precisely, matching of
a moving object extracted from a prototype video
frame with objects extracted from other frames in a
video stream. Typical applications of our method
are the retrieval of objects in video-shot collections
or grouping of the shots that contain the same
protagonist into video scenes. In video, the shape,
the size and the structure of objects change mainly
due to camera motion, object motion and occlusion

phenomena. Thus, the structure of the same object
at different times in a video may present significant
differences.

Furthermore, our work is placed in the context of
the rough indexing paradigm [6,21,23]. The data
considered in this approach come from partially
decoded MPEG compressed streams. In most
current image and video standards, such as JPEG,
MPEG-1/2/4, and H.263, each frame is divided into
8� 8 blocks, followed by DCT, quantization, zig-
zag scan and run length coding. The quantized DC
coefficient of each 8� 8 block can be easily
extracted from the bit stream by partial decoding.
In the intra-coded frames, with a simple scaling, the
DC coefficient is equal to the mean value of the
corresponding block. Here, we only consider the
DC coefficients. This means that we take into
account the DC-images of the so-called intra frames

(I-frames) of the original video. In this way, the
analysis concerns images that are 64 times smaller
than the images in full resolution and at a temporal
resolution of less than 2 images per second. This
implies that the colorimetric and geometrical
information are strongly smoothed. This paradigm
is motivated by a fast indexing computation. DC-I-
frames are available without fully decoding of video
streams, and the analysis of these low-resolution
data leads us to reach the purpose in near real time.

Note that the proposed retrieval method is
generic and not specific to video. It can be applied
for static image retrieval because the temporal
dimension of the video data is only considered for
the automatic object extraction.

The comparison of objects is based on a region
analysis. An image partition is classically repre-
sented by a region adjacency graph (RAG). The
RAG modelling allows us to express the matching
of segmented objects in terms of graph matching. In
our context, the segmentation of the same object
may strongly differ with time in video due to its
motion, occlusions and down sampling discretiza-
tion. The corresponding RAGs may be strongly
different as well. Consequently, an exact graph
matching is not efficient [7].

Several techniques for error-tolerant graph
matching are frequently used in CBIR and are
more adequate for video context. Some of them
[27,29] only consider intrinsic metrics (adjacency
relations between vertices). Other methods consider
a similarity measure between the regions of objects
based on region characteristics [16,28]. These last
methods use sophisticated visual descriptors
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(color, texture, geometry) on regions, as for instance
MPEG7 descriptors or color histogram of regions.
In our context of rough data, these are not relevant.
Therefore, these methods produce matching errors
because of the loss of the global object’s topology
information.

Another kind of graph matching methods uses
relaxation techniques [13,18]. Based on a similarity
measure computed between pairs of regions, pro-
cesses of relaxation implicitly evaluate neighbor-
hood likeliness to adjust the similarity measure
between pairs of regions. In this way, the regions of
an object are recognizable even if small local
motions of the object or segmentation errors have
deformed them. In the rough indexing paradigm, we
have proposed a relaxation matching method [6].
The results of this method will be compared with
those provided by the method presented here.

In the problem of object matching in video,
natural objects are often articulated and even if
region characteristics vary with time, the structure
of a region neighborhood would remain stable. In
this paper, we propose a matching method that
takes into account the topology of objects. The
matching is based on object structure parts that are
quasi-similar in the sense of their RAGs. We also
consider the mean color of the regions and their
relative area in order to drive the matching process.

An overview of the method is presented in Fig. 1.
The first step consists of building a directed acyclic
graph (DAG) associated with each segmented
object. Starting from a partition of an object into
4-connected regions, we compute the induced RAG.
The vertices of the RAG represent the regions
belonging to the object and the edges encode the
neighborhood relations. These RAGs will be then
compared in order to find similarities. The compar-

ison of the RAGs involves comparing the vertices of
those. Since the RAG modelling only captures the
topology of objects in the sense of adjacency
relations, no information about the features of each
region is available without storing those as a vertex
feature. In order to improve the selection of the
vertices to compare during the comparison of
RAGs, we have chosen to introduce a notion of
hierarchy between the regions by orienting the edges
of the RAGs according to the relative area of the
regions. Indeed, considering that a region having a
large area is more significant than smaller ones, it
has to appear upper in the hierarchy. In this way, we
transform the RAG into a DAG by orienting its
edges according to relative area of the regions. The
edges are oriented from a region to its neighbor
regions with a smaller relative area. After this step,
each segmented object is associated with one DAG.

The second step (see matching process in Fig. 1) is
devoted to the search of a maximal quasi-similar
sub-DAG between the DAGs. Intrinsic combina-
toric metrics are computed for each vertex of the
DAG which allow us to define a distance between
the vertices. After that, we label the vertices of the
DAG, such that two vertices with a distance less
than a given threshold have the same label. Then, a
top-down process on the DAGs aims to propagate
the labels of vertices to the sets of their children if
those are quite similar in terms of labelling. The
more the parents are close in terms of color, the
more tolerant the top-down process is for compar-
ing the set of children. In this step of top-down
traversal of the graphs, the use of DAGs instead of
RAGs is justified: the vertices that correspond to
regions having same characteristics will be com-
pared first because the hierarchy induced by the
orientation of the edges leads us to consider first the
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Fig. 1. The overall scheme of the method.
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regions that are similarly positioned in the hierarchy
of the DAGs. Moreover, DAG modelling brings
another advantage: the regions that are on the top
of the hierarchy are the regions that have the biggest
area with regard to the whole object area. This way,
we first consider the most important regions of
each object for comparison. After this step, the
vertices belonging to similar sub-DAGs have the
same label.

At the end, in order to decide if the objects match
each other, we use a similarity measure of objects
based on the relative area of the sets of regions
associated to the nodes of the similar sub-DAGs.

The paper is organized as follows. In Section 2,
we briefly introduce segmentation of objects in the
rough indexing paradigm and describe how
DAGs are built from RAGs. In Section 3, we
introduce the intrinsic metrics associated with DAG
vertices. Section 4 describes the finding of similar
sub-DAGs. The object matching algorithm is
described in Section 5. Results on natural video
are presented in Section 6 and a conclusion is given
in Section 7.

2. Segmentation and RAG-building of objects from

‘‘rough’’ video

In this paper, the objects that we consider are
obtained as follows: first, for each DC-I-frame, a
zone of interest that corresponds to forground
objects is extracted from by the computation of a
binary motion mask [21]. The MPEG-1/2/4 stan-
dard compression is partially based on the reducing
of the temporal redundancy by the use of motion
compensation techniques. In the compressed
stream, the so-called predictive frames (P-frames)
are the result of the composition of blocks of the
previous I-frame. Assuming that a frame is very
similar to previous frame, the encoding process aims
to find, for each block of a P-frame, a block in the
previous I-frame that may correspond. There results
a motion vector if such a corresponding block is
found. A P-frame is then represented by a combina-
tion of a field of motion vectors and fully encoded
blocks. By the analysis of these motion vectors, we
can estimate a global camera motion. The blocks
(represented by pixels in the DC-image) that have a
local motion different from the global camera
motion are considered to belong to the motion
mask. The I-frames motion mask is obtained by an
interpolation between the previous and the next
P-frame motion mask. Note that the zone of interest

is not necessary a connected component. Then, we
partition this zone of interest by applying a
segmentation process developed in [21].

The pixels of DC-images considered here are the
mean color of 8� 8 squared blocks in original video
frames. In DC-images the details of initial images
are smoothed by this down-sampling. The segmen-
tation process used in this work is based on a region
growing algorithm performed with a modified
watershed [21] and is applied only on the region of
interest (binary motion mask).

The segmentation process produces a partition P
of the zone of interest into a set fr1; . . . ; rng of 4
adjacent regions that represents a segmented object.
Each region is homogeneous according to a colori-
metric homogeneity criterion which expresses the
difference of color vectors of pixels in a region and
the mean color vector of a region compared to a
region adaptive threshold [21]. In Fig. 2(a), two
video frames at different times are shown. The
same object (an old man) appears in both frames
and the results of the foreground object extraction
(binary mask) and the segmentations (partition
into regions) are displayed on the right of the
original corresponding frames, in Fig. 2(b). One can
see that many differences exist due to scale
deformation, local motions (e.g. the man’s arm),
partial occlusion and additional background pixels.
The consistency between the semantic object
of the frame and the obtained zone of interest is
very dependent on the segmentation process and
the motion mask extraction. It is frequent that
additional background pixels are identified as
belonging to foreground object and on the contrary,
ignored pixels correspond to parts of objects. In this
way, evaluation of the precision of our retrieval
method is not possible because it is hard to
determine how strongly correlated are the auto-
matically extracted object of interest and the image
semantic objects.

In a classical way, we associate a RAG GðV G;EGÞ

(where VG is the set of vertices and EG are the edges
of the RAG), to a partition P ¼ fr1; . . . ; rng. Each
region ri 2 P is considered as a vertex si of VG. We
denote by RðsÞ the region r that is represented by the
vertex s in the RAG. By extension, if S is a set of
vertices, RðSÞ corresponds to the union of the
regions associated to each vertex of S. There exists
an edge e ¼ ðsi; sjÞ between two vertices if the
corresponding regions RðsiÞ and RðsjÞ are 4-adja-
cent. Due to the previous remark, the RAG
associated to an object may have more than one
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connected component. The corresponding RAGs of
objects of Fig. 2(a) are displayed1 in Fig. 2(c). Here,
each vertex of an RAG is represented by a squared
box centered at a region’s center of gravity. The
boxes are filled in with the mean color of
corresponding regions in image plane. The edges
depict regions’ adjacency.

The segmentation process may produce some
noisy regions due to the motion mask or to the
down-sampling. These regions have small area and
are less relevant than regions with a high area. A
consistent order of matching should consider the
biggest regions first because they represent more
significant parts of the objects. Because the RAG
does not capture the area of the regions, we choose
to transform the RAG GðV G;EGÞ associated to a
partition P into a DAG denoted by DðV D;EDÞ by
ordering the neighbor relations from regions with a
high area to smaller regions. Since the area of the
regions is closely linked to the number of their
neighbors, the hierarchy that we obtain with this
orientation is consistent with regard to the impor-
tance of the regions in the objects. Experiments have

shown that considering other orders does not
improve the matching. Thus, we have VD ¼ V G

and ED ¼ EG where the edges of EG are directed
edged. In a first step, each connected component of
the RAG is associated with a connected component
of the DAG. Let s be a vertex of DðVD;EDÞ, we
denote by AðsÞ the relative area of its corresponding
region RðsÞ. We define AðsÞ as follows: AðsÞ ¼

jRðsÞj=jPj, where jRðsÞj (resp., jPj) corresponds to
the number of pixels of RðsÞ (resp., P). The inner
vertices of the DAGs are the regions that have
higher area than all of their neighbors. Let eðs; s0Þ be
an edge of GðV G;EGÞ, the corresponding directed
edge eðs; s0Þ in DðV D;EDÞ is oriented from s to s0 iff
AðsÞ4Aðs0Þ.

In order to have only one connected DAG for
each object, we add a dummy vertex sroot as the root
of the DAG DðV D;EDÞ. We add an edge from the
dummy vertex to each vertex of V D with a null inner
degree. In this way, the children vertices of sroot are
the regions with high relative area, the leaves of this
DAG are regions with the smallest areas. Note that
frequently, the nearer to the root the vertex is, the
higher its arity is, due to the high area of the
associated regions. Now, there exists a path from
the dummy vertex to all of the vertices of the DAG.
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Fig. 2. (a) Original video frames with corresponding (b) segmented objects, (c) RAGs and (d) DAGs.

1The RAGs are drawn with the graph visualization framework

Tulip [1].
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In Fig. 2(d) we show the DAGs built from the
RAGs displayed in Fig. 2(c). The object associated
to the top DAG is made of two connected
components. Thus, the dummy vertex is connected
to the vertices corresponding to the highest region
of each component (the right and the left out edges).
The third edge (middle edge) links the dummy
vertex to a big region that has only smaller regions
as neighbors (null inner degree).

3. Metrics associated to vertices

In this section, we describe several extrinsic and
intrinsic metrics that will be helpful for predicting
quasi-similar parts between DAGs. We associate
with each vertex s a metric vector which is based on
the structural aspects. We compute the three
following intrinsic metrics:

� the degree of the vertex denoted by dðsÞ,
� the number of vertices of the sub-DAG with root

s denoted by mðsÞ,
� the so-called Strahler number of a vertex denoted

by sðsÞ.

We briefly explain this last metric. The Strahler
number was first been introduced on binary trees in
some works about the morphological structure of
rivers [15,26]. A generalization to planar trees has
been set up [3] using a nice interpretation by Ershov
[10]. He proved that the Strahler number of the root
of the binary tree incremented by one is exactly the
minimal number of registers needed to compute an
arithmetical expression whose syntactical structure
(parentheses) is encoded by the tree. Following this
interpretation, for each internal vertex s having k þ 1
children whose roots are fsig0pipk such that if ipj

then sðsiÞXsðsjÞ, the Strahler number sðsÞ is given by

sðsÞ ¼
1 if s has no child;

max
0pipk

ðsðsiÞ þ iÞ if s has k þ 1 children si:

8<
:

The degree dðsÞ measures the local ramification of
the vertex, and by this way if the region RðsÞ is
adjacent to many regions, the degree will be high.
The number of vertices mðsÞ captures the number of
regions which are not directly adjacent to RðsÞ but
can be reached from RðsÞ using a sequence of
adjacent regions, with respect to the orientation of
the DAG. A high Strahler number sðsÞ means that
the DAG reached from s is highly ramified. Thus in

a certain sense, how the regions reachable from RðsÞ

are spread.
Note that d; s and m are not in the same interval.

Thus, we apply a min–max normalization: let n be a
metric, the normalized value ~nðsÞ of a vertex s is a
min–max normalization of nðsÞ where the min nmin

and the max nmax are defined as nmin ¼ mins2VD
nðnÞ

and nmax ¼ maxs2VD
nðsÞ.

Due to the structure of a DAG which is ‘‘tree-
like’’, these definitions are also valid on DAGs.

Fig. 3 shows an example of the valuation of each
metrics on a sample DAG. The same color on
vertices represents the same value.

Note that, all the parameters used in this paper
are invariant to the usual transformations of object
such as rotation, translation and scaling if the
segmentation is stable to those. Consequently, the
heuristic that is based on these features is robust to
such transformations.

Moreover, the intrinsic parameters described
above do not fully capture the complexity of the
objects. Indeed, the larger the region is, the more
relevant these metrics are. Since our goal is to
recognize quasi-similar object extracted from
images, extrinsic parameters such as the color or
the surface of the regions will be helpful information
to improve the recognition based on structural data.
In the Section 4.2, we describe how extrinsic
parameters are used to guide the recognition
process.

4. Finding similar sub-DAG

At the Infovis’03 Conference contest [11] on
pairwise comparison of trees, an assigned task was
to find similar sub-trees that have moved:

� The sub-trees are not in the same place in the
hierarchy.
� Slight changes occur between the two sub-trees.
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We call them quasi-similar sub-trees. Due to the
property of DAGs (no cycle), finding ‘‘similar sub-
trees in a tree’’ is not far away from finding ‘‘similar
sub-DAGs in a DAG’’. Moreover finding ‘‘similar
sub-DAGs in a DAG’’ or ‘‘similar DAGs in several
DAGs’’ are one and the same task. In the last case,
one just needs to build a DAG with a dummy vertex
(its root), which has sub-DAGs that are the DAGs
to be compared. In the case of trees, works have
already been done based on vertices’ degree by
Zemlyachenko [29] and then by Dinitz et al. [8].
However, these algorithms only detect isomorphism
and do not provide a measure of similarity for sub-
trees. More recently, Gupta and Nishimura [14]
gave a nice algorithm for determining the largest
tree embeddable in two trees but the complexity
of their algorithm is Oðn2Þ (where n is the whole
number of vertices of the two trees). In order to
give a response to the Infovis’03 task, we have
designed a heuristic [2] that can suggest, by
labelling, similar parts in a tree (similar sub-trees
have a same label).

Here, we adapt this heuristic in order to capture
objects in the video content. In the following, we
will denote by DðVD;EDÞ and D0ðV D0 ;ED0 Þ the two
DAGs to be compared. The algorithm assigns labels
to vertices of the two DAGs so that if vertices of
two subsets S included in V D and S0 included in V D0

are identically labelled, then the associated regions
RðSÞ and RðS0Þ correspond to the same part of the
same object.

The algorithm is in three steps:

� Compute normalized intrinsic metrics for each
DAG (see Section 3).
� Roughly classify the vertices, i.e. if two vertices in

D and D0 have close intrinsic metric values, label
them by the same integer (Section 4.1).
� Compute the final labelling l by a propagation

process (Section 4.2).

4.1. Classification of the vertices by structural

similarity computation

Let s and s0 be, respectively, in V D and VD0 then,
we label them by the same integer if

ð~dðsÞ � ~dðs0ÞÞ2 þ ð ~sðsÞ � ~sðs0ÞÞ2 þ ð ~mðsÞ � ~mðs0ÞÞ2p�.

where � is a given threshold that defines how
tolerant the classification is according to the
structural metrics. Note that a null value for �

induces an isomorphic sub-DAGs searching. Ex-
periments have shown that the value � ¼ 1=n,
where n is the total number of the vertices of VD

and V D0 , provides good results. A vertex s of V D is
not compared with all of the vertices of VD0 to find
its label. In our method, we use the so-called cover

tree data structure in order to improve the
computational complexity. The insertion of a new
element s in this cover tree (that corresponds to the
finding of its label) is in OðlogðnÞÞ. We refer the
reader to [4] for more details about this data
structure.

Let lðsÞ be the label of a vertex s. By the
classification process, we get lðsÞ in ½1; . . . ; lmax�.
The value 1 is associated to the DAGs’ leaves
and the value lmax is associated to the vertices with
the highest Strahler value. Note that l depends on
the visit order of the vertices. Because Strahler
numbers express the reachability of vertices from
a vertex, we have chosen to visit the vertices
in the reverse order of their Strahler numbers, that
is first the vertex which has the highest associated
value.

Let S be a set of vertices. In the following, we will
denote by FSðnÞ the vertices family of S labelled by
a same value n. We have

FSðnÞ ¼ fs 2 SjlðsÞ ¼ ng.

In order to simplify the notations, we will denote in
the following by FðnÞ the vertices family
FVD[VD0

ðnÞ.
Fig. 4(b) shows the result of the vertices

classification by structural metrics similarity on the
DAGs of Fig. (a). The same color is used for the
same label value.

4.2. Matching process by propagation

In this last step, we identify patterns by incorpor-
ating children of parent vertices into the family of
these parents if the children are almost similar.

After the classification step described in the
previous section, if for two vertices s and s0 taken
from two different DAGs, the intrinsic parameters
computed for s and s0 are close, they have the same
label l. We then infer that the associated regions
RðsÞ and Rðs0Þ represent the same part of the same
object. We propose here to compare the composi-
tion of the descent of s and s0 in order to identify a
quasi-similar pattern. Let CðsÞ (resp., Cðs0Þ) be the
set of children of s (resp., s0). If the labels of CðsÞ

and Cðs0Þ are almost identical, we extend the label
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value of the parents to their children: a quasi-similar
part has been identified.

However, we do not only rely on the topology.
We propose to consider an extrinsic parameter
(the mean color of the regions) in order to reinforce
the first supposition given by structural similarity
of the vertices. The mean color of a region RðsÞ

associated to a vertex s is defined in the RGB
space by:

ðR̄RðsÞ; ḠRðsÞ; B̄RðsÞÞ
T,

where R̄RðsÞ, ḠRðsÞ and B̄RðsÞ correspond to the red,
the green and the blue component values of the
mean color of the region RðsÞ. Experiments have
shown that a more adequate color space such as
YUV space does not improve the results.

The closer the regions are in terms of color
(euclidean distance), the more tolerant the propaga-
tion process is. This means that we adjust the
tolerance to the differences there exist between the

labels of CðsÞ and Cðs0Þ by the color similarity
rcolðs; s

0Þ defined as follows:

rcolðs; s
0Þ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
C2fR;G;Bg

ðC̄RðsÞ � C̄Rðs0ÞÞ
2

s
.

More formally, let us build a new labelling l on
the vertices. At the initial step, l is set to l. Let s and
s0 be in a same family FðnÞ. Let t be a real, tX1.
Then, if, for each integer n0 which labels a vertex of
CðsÞ [ Cðs0Þ

jcardðFCðsÞðn
0ÞÞ � cardðFCðs0Þðn

0ÞÞjpt � rcolðs; s
0Þ

then for each v 2FCðsÞ [FCðs0Þ we fix lðvÞ ¼ n.
Here, the parameter t fixes the structural toler-

ance between the children for the pattern retrieval.
It defines the notion of quasi-similarity of the
descent in the structural point of view.

This process is done in a top-down traversal on
sub-DAGs and stops as soon as s or s0 is a well and

ARTICLE IN PRESS

Fig. 4. (a) Original DAGs of the Fig. 2 (b) Vertices classification by structural similarity. The label values of the vertices are mapped on a

color palette. A same value corresponds to a same label. (c) Matching of vertices by label propagation.
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all vertices have been visited. There is no backtrack
that is, as soon as the label has been propagated to
children, they are included in the pattern and their
label will not change anymore. Of course, the visit
order influences the computation. Choosing the best
pair of vertices would drastically increase the
complexity of the algorithm. Thus, in each DAG,
the vertices are visited in a decreasing order
according to the relative area A of their associated
regions (see Section 2 for the definition of A).

The dummy vertices are not used in the classifica-
tion process described in the previous section. Thus
we label them by lmax þ 1. In this way, the
propagation process begins with the two dummy
vertices which represent the two objects to be
compared. When all of the vertices of a family of
label n have been visited (and recursively the
children in the case of matching), the process
continues by considering unmarked vertices of the
next family (label n� 1) until all vertices have been
visited for matching.

Note that the retrieval is not based on the
matching of the dummy vertices of the DAGs.
The process aims to recognize patterns (sub-DAGs)
into the DAGs. When two similar parents propa-
gate their label to their children, both parents and
children are marked as matched vertices.

The Fig. 4(c) illustrates the result of the propaga-
tion process applied on the DAGs displayed on
Fig. 4(b). Colors represent the different families of
nodes (the color of the parents has been propagated to
the children). The red colored parts of the DAGs
corresponds to the quasi-similar pattern that has been
identified between the two sample DAGs of Fig. 4(b).

5. Similarity measure of objects

The similarity measure we use in this paper
corresponds to a size evaluation of the part of
objects that have been identified as quasi-similar.
Let D and D0 be two DAGs that represent objects to
be compared. Let S and S0 be the vertices of D and
D0, respectively, corresponding to the marked
vertices (vertices identified as belonging to similar
pattern). Recall that a vertex is marked when,
during the label propagation process, it is consid-
ered in a label propagation (as a parent if it
propagates his label to children or as a child if it
takes the label of its parent).

The similarity measure yðD;D0Þ between the
objects represented by the DAGs D and D0 is
defined as follows:

yðD;D0Þ ¼ 1
2

X
s2S

AðsÞ þ
X
s02S0

Aðs0Þ

 !
.

We recall that AðsÞ (introduced in Section 2)
corresponds to the relative area of the region RðsÞ

associated to the vertex s according to the whole
area of the object partition.

The similarity measure y evaluates the area of
objects that has been matched. This means that we
first compute the whole relative area of matched
regions for each set S and S0. The object similarity
measure then corresponds to the mean of these two
values.

This measure is used to order the objects
contained in the video database by similarity with
a query object request.
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Fig. 5. Our heuristic 5 best retrievals.
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6. Results

We have tested our method for two different
applications. First, we have compared our method
for the retrieval of objects in video at a very low
resolution. The second application concerns the
retrieval of images in a database by query by
example.

6.1. Retrieval of objects in video

We have tested our method for object retrieval in
sequences at DC-resolution taken from CERIMES
r MPEG2 compressed documentaries. The seg-
mented objects are extracted from DC-frames of
size 76� 92 pixels and at the temporal resolution of
two frames per second.

The sequences are taken from CERIMES r

documentary videos Aquaculture en méditerranée,
De l’arbre àl’ouvrage, Le chancre and Hiragasy and
contain about 5000 frames from which objects have
been extracted. At a temporal resolution of less than
2 images per second, the database correspond to
52min of video. For the experiments, 100 objects
corresponding to people have systematically been
chosen randomly from the 10 database.

We have evaluated the performance of our
method in the context of query by example.
Retrieval systems often present query by example
results in terms of k best matches [12,28]. A match is
correct if the object represents the query. Two
examples of objects retrivel using our heuristic are
shown in Fig. 5. The results for the same examples
provided by the method based on relaxation
techniques [6] are displayed in Fig. 6. The scores

under frames correspond to the object similarity
measure y as defined in Section 5. The example (a)
illustrates the ability of our method to retrieve the
same object under different conditions: the similar-
ity measures are good even if the same old man
appears in two different shots. We can observe that
the best match comes from another shot than the
query. Although they are in the same shot than the
query, the other objects returned here are evaluated
as less similar. This is due to the quality of the
motion mask that defines the region of interest. The
zone of interest is automatically computed by a
motion analysis [21] and does not exactly corre-
spond to the foreground object contained in the
frame (static parts of objects may be not detected by
the motion detection and small background regions
that was occluded in the previous frames are often
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Fig. 6. Method based on relaxation 5 best retrievals.
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included into the motion mask). In this way, the
recognition method will not be able to correctly
recognize objects because of the inaccuracy of the
motion mask. In the example (b), the four best
responses are relevant. The fifth does not represent
the same object. However, the structures of the two
objects considered (standing men with dark trousers
and bright shirt) are very close to each other. The
topology of the objects are similar enough not to be
disturbed by the color tolerance coefficient used in
this article.

The interest of considering local neighborhoods
for region matching process has been shown in our
previous work that uses relaxation techniques [6]. In
the paper, starting from an initial similarity measure
between pairs of vertices, we iteratively update by
increasing or decreasing the similarity value accord-
ing to the likeness of their neighborhoods.

In [6], the strategy consists of the use of the local
structure of the objects to refine a similarity measure
based on regions features. The heuristic defined here
proposes to reverse the problem. It begins by
capturing a structure similarity and it drives the
propagation process using the regions’ visual
features.

We have compared the method based on relaxa-
tion techniques [6] with the approach proposed in
this paper. The precision figures for different values
of the number of best matches k for both methods

are plotted in Fig. 7. Precision is computed as being
the ratio between the number of correct matches
and k.

The two approaches provide comparable results.
The heuristic is more precise for the first three
responses whereas the relaxation offers a better
precision for more than 8 responses. In [6], the
whole topology of objects is not taken into account
and two large regions that are close enough to be
matched can imply a high object similarity. These
problems are avoided in the heuristic approach
because the global topology of the object, local
neighborhood and color features of the regions are
combined to identify common patterns between the
two objects we compare.

6.2. Image retrieval by query by example

The method has also been tested for the task of
image retrieval by query by example. The database
used is the Corel image database that contains
about 60,000 images at a spatial resolution of 96�
64 pixels. The method has been compared with the
CBIR system SIMPLIcity [28]. The segmentation
used here is the same segmentation as in the
SIMPLIcity system.

Fig. 8 shows the results of two examples of
requests. On the left of the figure ((a) and (c)) the
best 15 retrievals (except from the query itself) using
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Fig. 8. (a), (c) Best 15 retrievals using the SIMPLIcity method and (b), (d) results with our heuristic.
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the SIMPLIcity method are displayed. On the right
of the figure, we show the results provided by our
heuristic. Query images are red-bordered.

We can see in these examples that the heuristic
method provides good results. On the first example
of horses, the SIMPLIcity method based on visual
features of the images returns images that are
visually close, but the sementic content is different.
Our approach that takes into account the structure
of images is able to retrieve images of similar
content. On the second example, we can see that 8
of the best 15 matches of our heuristic represent
almost the same content whereas the only 2 best
matches of the SIMPLIcity retrieval correspond to
the query. In this second example, ‘‘bad matches’’
can be explained as follows: in this application, we
consider whole images, including the background,
and not only objects. One can see that most of the
matches here are mainly composed of a large green
grass region and a large blue sky region and smaller
other white regions.

6.3. Conclusion

We have seen in this section that the results
provided by the heuristic presented are very
promising for the retrieval of objects on video at a
low resolution. Unfortunately, the extraction of VO
is hard, so the difficulty of obtaining a large
database of VO that are consistent for the retrieval
has prevented us from providing more results on
video.

As we have shown in this section, the heuristic is
generic and can be applied for the retrieval of static
images at a low resolution. The results are very
promising with regard to those provided by the well-
known SIMPLIcity method.

The heuristic is not altered by the usual deforma-
tions such as rotation, translation and scaling
because the structure of objects is invariant to
these. It is also robust to image alteration (contrast
and luminosity variation, blur, noise) because only
the color similarity parameter is altered by these
changes.

7. Conclusion

In this paper, we have presented a new approach
to the problem of object matching recognition in
video in the context of the rough indexing para-
digm. In this context, classical methods mainly
based on region features are inefficient because

image data are scarce due to the down-sampling.
This lack of information requires us to consider the
structure of the object as the most relevant
information. Therefore, we use intrinsic parameters
in order to compare the structure of the DAGs
associated with segmented objects. Vertices with the
same label in the classification process have a quasi-
similar structure. The prolongation of the labelling
function is driven by color similarity between
regions associated to vertices. In this way, the visual
similarity between regions allows us to be more
tolerant to structural differences.

This approach offers good results in the rough
indexing paradigm. The domain of application of this
method may be retrieval of video shots that contain a
given object, semantic inventory of video shots into
video chapters or scenes. The results provided in the
context of image retrieval at a low resolution by query
by example are very promising too.

Next, we plan to investigate our method for
image in full resolution. The scheme of algorithm
will stay the same for the structural labelling,
concerning the prolongation we have to define the
visual feature vector that will be more complete
than the one used for rough data. Moreover, we
have to tune the threshold t to adapt the heuristic to
a such resolution.
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