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Abstract—Linear subspace methods that provide sufficient reconstruction of the data, such as PCA, offer an efficient way of dealing

with missing pixels, outliers, and occlusions that often appear in the visual data. Discriminative methods, such as LDA, which, on the

other hand, are better suited for classification tasks, are highly sensitive to corrupted data. We present a theoretical framework for

achieving the best of both types of methods: An approach that combines the discrimination power of discriminative methods with the

reconstruction property of reconstructive methods which enables one to work on subsets of pixels in images to efficiently detect and

reject the outliers. The proposed approach is therefore capable of robust classification with a high-breakdown point. We also show that

subspace methods, such as CCA, which are used for solving regression tasks, can be treated in a similar manner. The theoretical

results are demonstrated on several computer vision tasks showing that the proposed approach significantly outperforms the standard

discriminative methods in the case of missing pixels and images containing occlusions and outliers.

Index Terms—Subspace methods, reconstructive methods, discriminative methods, robust classification, robust regression,

subsampling, PCA, LDA, CCA, high-breakdown point classification, outlier detection, occlusion.
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1 INTRODUCTION

SUBSPACE methods have become a standard tool in the
computer vision community for performing various types

of visual learning and recognition/classification. These
methods, which are based on principles originally used for
statistical pattern recognition, fall into two categories, the first
beingreconstructiveandtheseconddiscriminativemethods,both
of which exert distinct, yet equally important qualities. It is
known that the class of reconstructive methods, such as PCA
[25] (and, potentially, ICA [6] and NMF [17]), produce
representations that enable sufficient reconstruction, thus
being capable of dealing with the problem of missing pixels
and outliers (occluded pixels) [18]. On the other hand,
discriminative methods, such as LDA [10], enable the
construction of flexible decision boundaries needed for
classification. As both types of methods have been shown to
be effective for recognition, the latter ones have often proven
to yieldbetter results [1], [21].However, theirusage isseverely
limited due to their nonrobust nature, preventing them from
successfully coping with outliers and occlusions, which
commonly appear in the visual data. We encounter the same
problems when using subspace methods, such as CCA [4],
which are related to regression task.

To be widely applicable, a method should have the
ability to perform robust learning and robust classification/
regression. By robust, we mean the ability to detect outliers in
images and, consequently, work on uncorrupted subsets of

pixels, resulting in a high-breakdown point1 method.
Approaches to robust learning of discriminative models have
been explored in the literature, although mainly focusing on
detecting an image as a whole as a data outlier and
discarding it from the learning process. The vast majority
of these methods involve replacing the classical location and
scatter matrix estimators by their robust counterparts, such
as MVE estimators [5], MCD estimators [14], [16], [28],
S-estimators [7], [15], M-estimators [23], and by the
projection pursuit approach, as in [9], [27].

On the other hand, the problem of robust classification/
regression has rarely been addressed in the literature. This is
mainly due to a highly nonrobust nature of discriminative
methods (with the breakdown point zero) which contain too
little information to successfully deal with outliers and
occlusions appearing in the visual data. Specifically, the
discriminative methods provide decision hyperplanes de-
signed for optimal classification and do not, in general, offer
good reconstruction of images, which is necessary for
determining the pixels which are far away from their model
values (i.e., are outliers [22]).

In contrast to discriminative methods, the reconstructive
methods provide a principled way of performing robust
recognition exploiting the redundancy in the visual data.
These methods, which are known to produce good approx-
imations of the data, have been proven successful in cases
when images contain outliers, when the objects of interest in
the images are occluded or appear on different back-
grounds, and/or in the case where images are taken under
varying illumination conditions. Several different robust
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1. The breakdown point, as defined in statistics, is the worst-case
measure. It represents the smallest fraction of pixel outliers in an image that
can cause an estimator to produce arbitrarily bad results. Breakdown point
zero only means that changing the value of a single pixel in an image can
make an estimator fail. A high breakdown point refers to estimators that can
tolerate a large amount of outliers [22].

0162-8828/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society



versions of original methods have been developed, which
work well under such nonideal conditions. Some of these
approaches are based on substituting the standard least-
squares metric by a robust one [8], while the others calculate
the coefficients by utilizing a subsampling and hypothesize-
and-test approach [18].

It is therefore evident that an ideal classifier should be able
to combine the best of both, reconstructive and discrimina-
tive, approaches, contain information crucial for classifica-
tion/regression, and also enable a calculation of the necessary
coefficients by means of a robust subsampling approach. To
the best of our knowledge, robust classification/regression
by subsampling has not been tackled before.

In this paper, we present a method, novel in the field of
robust classification, which makes the recognition of objects
under nonideal conditions possible, i.e., in situations when
objects are occluded or they appear on a varying back-
ground, or when their images are corrupted by outliers. The
main idea behind the method is to combine the reconstruc-
tive and discriminative models by constructing a basis
which, on the one hand, contains the complete discriminative
information (of a particular discriminative model) neces-
sary for the classification and, on the other hand, enables us
to determine outliers in images and calculate the necessary
coefficients by means of a subsampling approach resulting
in a high breakdown point classification. The theoretical
results are evaluated on several computer vision problems,
showing that the proposed method significantly outper-
forms the standard discriminative and regression methods
in the case of corrupted images.

The paper is organized as follows: We begin with a
review of the related work in Section 2. In Section 3, we give
a theoretical background on reconstructive and discrimina-
tive models. We formulate the problem in Section 4. In
Section 5, we present our robust classification/regression
method. The effectiveness of the proposed method is
experimentally verified in Section 6 (in particular, we chose
LDA and CCA for demonstration purposes, although our
method is general and can be used with other linear
discriminative methods as well). Finally, in the last section,
we summarize the paper and give the conclusions.

2 RELATED WORK

A number of approaches that combine different subspace
methods already exist in the literature. The classical approach
is to use PCA as a preprocessing step to LDA or CCA to
overcome the singularity problems these two methods
encounter when dealing with high-dimensional data such
as images [1], [34], [33], [3], [31]. The fact that this can be done
without losing any discriminative information [33] will serve
us as an idea of how to combine both discriminative and
reconstructive methods to achieve robustness to image
degradations. The majority of other existing methods are
concerned with improving the classification power of
discriminative methods by incorporating the PCA informa-
tion in different ways: In [19] and [20], the authors propose to
add (or average) the output feature vectors obtained by PCA,
ICA, and LDA or concatenating them into a single one upon
which a designed RBF network returns the classification
results. As these methods might outperform the classical
discriminative methods under ideal conditions (when the
images are “clean”), they still rely on calculating the feature

vectors as a dot product between the different subspace bases
and the testing image vector and, thereby, fail when dealing
with images which contain outliers or are corrupted by noise.

An approach focusing on the classification of degraded
images has been proposed by Stainvas et al. [30] and is, in its
philosophy, closest to ours. The idea behind it is to improve
classification of discriminative methods, which do not
contain enough information to deal with corrupted data, by
using the reconstruction property of the reconstructive
methods. However, in their method, this combination is
already done in the learning stage by minimizing concur-
rently the mean squared error (MSE) of the reconstruction
and classification outputs resulting in an improved low-
dimensional representation, which represents a trade-off
between reconstruction and classification confidences. This
differs greatly from our approach, which offers robustness in
the classification stage by calculating the feature vectors on
subsets of pixels in images and is consequently very robust to
various image artifacts.

To the best of our knowledge, classification with linear
discriminative subspace methods of corrupted images have
not previously been done by the subsampling approach.
The closest to this is the robust PCA method of [18], which
makes use of the reconstruction property of PCA to
successfully detect outliers and calculate the coefficients
on the rest of the pixels. We will use this idea for the
discriminative methods, although due to the fact that
discriminative models do not approximate the data well,
the implementation is not as straightforward as suggested
in [13]. With this in mind, we will combine the discrimi-
native and reconstructive methods to achieve perfect
classification results (in the limits of each discriminative
method) and, on the other hand, have the reconstruction
abilities for detection of outliers and occlusions.

3 THEORETICAL BACKGROUND

The central problem when working with high-dimensional
data in a learning system is to find a suitable representation of
the data by means of an optimal transformation. The
definition of optimality varies from task to task, also
depending on the knowledge one has about the learning
database. In the case when little of such knowledge exists, the
transformation is usually defined in the sense of optimal
dimension reduction, statistical “interestingness,” positive-
ness, or simplicity of the transformation. The representation
has to be as informative as possible, thus mainly having the
property of approximating the original data well. These
methods are referred to as the reconstructive methods. On the
other hand, in the case when one has prior knowledge of the
class labels, hyperplanes that best separate the classes are
usually sought for. The representation obtained does not
usually provide good reconstruction of the data, is more task
dependent, but spatially and computationally much more
efficient and often gives superior classification results
compared to the reconstructive methods. These methods
are referred to as discriminative methods.

In the following, we will present a general theoretical
background for both the reconstructive and discriminative
methods and introduce the notation. We would like to
emphasize that we shall only consider linear subspace
methods.
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3.1 Notation

Let n be the number of images in the training data set, each
of them containing m pixels, and let c be the number of
classes the images belong to. We write images as vectors and
arrange them (according to the classes) in columns of a
matrix X ¼ ½x1; . . . ;xn�, xi 2 IRm. For a simpler notation, we
will assume X to be centered, i.e., having zero mean, unless
otherwise specified.

We will use the notation U for the basis of the

reconstructive methods and W for the basis of the

discriminative methods. With A, we will denote the feature

matrix composed of feature vectors ai expressed in the basis

of the reconstructive model. We will also frequently operate

with submatrices. For I and J , being nonempty subsets of

the set f1; 2; . . . ; ng, the symbol MI : will be used to denote

the submatrix of M containing only those rows of M whose

indices are in the set I , arranged in their natural order and,

similarly, M:J will stand for the submatrix of M containing

only those columns ofM whose indices are in the set J . For a

vector a, the symbol aI will be used to denote those elements

of a whose indices are in I . In our calculations, we will

mainly be operating with two sets, K ¼ f1; 2; . . . ; kg and

N �K ¼ fkþ 1; kþ 2; . . . ; ng. Thus, if a matrixM consists of

n columns, M can be written as M ¼ M:K;M:ðN�KÞ
� �

and, if it

consists of n rows,

M ¼ MK:

MðN�KÞ:

� �
:

3.2 Reconstructive Methods

The main goal of the reconstructive methods is to find a

linear representation

X ¼ UA ð1Þ
where U ¼½u1; . . . ;un� 2 IRm�n; A 2 IRn�n ð2Þ

that best describes the data subject to different criteria. Here,
U is called the basis matrix, while the matrix of coefficients,
A ¼ ðUTUÞ�1UTX, is referred to as the feature matrix. If U is
an orthonormal matrix, A simplifies to A ¼ UTX.

By far, most widely known and used method is Principal
Component Analysis (PCA) which seeks for a low-dimen-
sional representation of the data which minimizes the
squared reconstruction error [11]. PCA can also be inter-
preted as searching for a linear transformation that minimizes
the statistical dependencies of second order between the
transformed data, thus PCA finds a basis fuigni¼1 that yields
mutually uncorrelated coefficient vectors. This is in contrast
to Independent Component Analysis, which finds a basis of
mutually independent vectors by also minimizing higher-
order statistical dependencies [2], [6]. Another method that
recently gained attention is Nonnegative Matrix Factoriza-
tion (NMF), which seeks a representation that has all the
coefficients and the basis vectors nonnegative (here, the data
matrix X is obviously not centered) [17].

After the optimal basis is obtained, it can then be
reduced to U:K, where k :¼ jKj indicates that usually only k,
k� n, basis vectors (those that take up the most variance)
are needed to represent x to a sufficient degree of accuracy
as their linear combination

~xx ¼
Xk
j¼1

ajðxÞuj ¼ U:K UT
:KU:K

� ��1
UT

:Kx
� 	

: ð3Þ

Here, ~xx denotes the approximation to x and ajðxÞ are the
coefficients obtained by projecting x onto the selected
basis, aK :¼½a1; a2; . . . ; ak�T ¼ ðUT

:KU:KÞ�1UT
:Kx. If the basis U

is orthonormal, aK ¼ UT
:Kx.

In the theory to come, we will not choose any of the
mentioned methods in particular, but, rather, try to stay
general throughout the paper. It might, though, be worth
emphasizing that the most appealing of the stated methods
is PCA since it is optimal in reconstruction error and can
therefore detect outlying pixels and occlusions [18] to a
larger degree of accuracy than the other methods.

3.3 Discriminative Methods

Discriminative methods were designed particularly for
classification tasks. They assume that prior knowledge
about classes of the training data is available, which is then
integrated in the supervised learning process to produce a
small number of hyperplanes that are capable of separating
the training data with no (or little) error.

To be more specific, the objective of discriminative
methods is to find a linear function,

gðxÞ ¼ WTx;
where W ¼ ½w1; . . . ;wc� 2 IRm�c;

ð4Þ

which is used for transforming the data into a lower-
dimensional classification space upon which it is decided,
according to some chosen metric, to which class a given
sample x belongs.2 To find an optimal decision function, a
number of different criteria can be employed.

Probably the most widely used for classification is Linear
Discriminant Analysis, which, in the training stage, finds
the projection directions on which the intraclass scatter is
minimized while the interclass scatter is maximized.
Specifically, LDA maximizes the objective function, also
called the Fisher criterion function [12], which is defined as

JðwÞ ¼ wTSbw

wTSww
; ð5Þ

where Sb denotes the between-class and Sw the within-class
scatter matrix of the training data. In the classification stage,
the new image samples are projected onto these directions
to form feature vectors according to which samples are
classified to a certain class.

The subspace methods, such as Canonical Correlation
Analysis (CCA) [24], [4], which are used for regression tasks,
mathematically follow similar concepts and can therefore be
addressed by our proposed approach in a similar fashion, as
we will demonstrate in Section 6. Here, we briefly review the
theory of CCA, which is a supervised method relating two
sets of observations, one set being composed of training
images and the other set of the corresponding measurements
(e.g., orientations or positions of an object). In the training
stage, CCA finds pairs of directions (canonical correlation
vectors) that yield maximum correlation between the projec-
tions of input vectors. This can be followed by performing
linear regression on the obtained projections (canonical
correlation coefficients). More specifically, given n pairs of
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mean-centered observations ðxi 2 IRp;yi 2 IRqÞ; i ¼ 1; . . . ; n,
aligned in the data matrices X ¼ ½x1; . . . ;xn� 2 IRp�n and
Y ¼ ½y1; . . . ;yn� 2 IRq�n, CCA finds c ¼ minðp; qÞ pairs of
directions wx 2 IRp and wy 2 IRq that maximize the correla-
tion between the projections wT

xxi and wT
yyi. CCA maximizes

the function

�ðwx;wyÞ ¼
wT

xCxywyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT

xCxxwxwT
yCyywy

q ; ð6Þ

where Cxx, Cyy, and Cxy are within-set and between-set
covariance matrices of the input data. In the regression stage,
the orientation (or position) of the object is estimated by
using canonical correlation coefficients obtained from a
novel image of the object.

4 DEFINING THE PROBLEM

The comparison between discriminative and reconstructive
methods for classification tasks has been a subject of
extensive research and testing [1], [21]. The general
conclusion was that, under ideal circumstances (when
images do not contain artifacts such as noise or outliers),
discriminative methods outperform the reconstructive
methods. The explanation for this is rather obvious: The
discriminative methods focus more on specific prior knowl-
edge, which can thus be more efficiently integrated into the
learning process. These methods, in most cases, offer linear
transformations of much lower dimensions than the
reconstructive methods. But, there is a trade-off to this: By
having fewer basis vectors, these methods do not usually
provide good approximation of the data which is necessary
for successful detection of outliers and occlusions.

Images often contain noise or outliers, that is, pixels that do
not belong to objects being depicted. Therefore, tools must
exist that enable us to extract reliable information based on
only uncorrupted subsets of pixels. Since both reconstructive
as well as discriminative methods rely on calculating the dot
product UTx (appearing in the calculation of coefficients in
(3)) and WTx (needed in a linear classifier g in (4)),
respectively, they obviously take into account all pixels in
an image x. The results can therefore be unreliable when x
contains even a small amount of outlying pixels.

However, this undesirable property of linear methods
has been successfully overcome for reconstructive methods
(in particular PCA) by employing the robust coefficient
estimation procedure [18]. The basic idea behind the approach
is to translate the original dot product calculation into
solving an overdetermined linear system using only subsets
of pixels. The obtained coefficients are used for back-
projection and the pixels that deviate the most from the
expected approximation error are pronounced to be out-
liers. The better the reconstruction the given basis provides,
the more reliable the detection of outliers is and, conse-
quently, the more exact the obtained coefficients are. The
details of the approach are given in the Appendix.

As was already mentioned, the discriminative methods
usually give only a small number of basis vectors which do
not offer a satisfactory reconstruction property that would
enable a correct detection of outlying pixels in an image
and, consequently, a reliable calculation of the linear
classifier g. In this paper, we will present a method which

shows how to construct a basis that, on one hand, contains
sufficient reconstructive information to enable the use of the
subsampling approach [18] and, on the other hand, contains
all of the discriminative information for classification.

We would like to emphasize that our aim is not to improve
classification power of the standard discriminative methods
in the case of ideal data, but to also achieve similar results in
the case of corrupted data. We will also not deal with
robustness in the training stage and presume that the training
stage of each method used was already performed. Our main
concern is robustness in the classification or regression stage. By
robust, we mean the ability to correctly classify a novel image
which contains a large number of corrupted pixels (outliers).

5 ROBUST CLASSIFICATION/REGRESSION

APPROACH

The classification of discriminative models is based on a
linear function

gðxÞ ¼WTx; ð7Þ

which is used for transforming the data into a lower-
dimensional classification space upon which it is decided,
according to some chosen metric, to which class a novel
image x belongs.

What we will do is rewrite the dot product in (7) into a
form that will enable robust estimation. This will be done by
incorporating the basis of a reconstructive model into this
classification function by employing a few linear algebra
operations.

To begin with, let U 2 IRm�n denote the complete basis of
a reconstructive model. Let us first point out that our robust
method will not need the complete reconstructive basis; this
is meant exclusively to give a justification to our final
calculations. For the purpose of clarity, let us also assume
that the reconstructive basis is orthonormal with the
extension to a nonorthogonal basis being just a matter of
matrix manipulation.

To rewrite the expression in (7), we will use the fact that
both bases, U and W , lie in the span of the training data
vectors. Since X ¼ UA (by definition in (1)), this obviously
holds for the reconstructive models. Moreover, because U
has rank n, it spans exactly the same space as the training
data.3 As it might be intuitively obvious that the discrimi-
native basis also “lives” in the learning data space, there is
no proof to cover all the discriminative models; therefore,
each of them has to be dealt with separately.4 Since U spans
the same space as X and W is a subspace of this space, the
immediate consequence is that the discriminative basis can
be written in the basis of the reconstructive model, i.e.,
W ¼ UV , where V 2 IRn�c. Note that V is a matrix that can
be already calculated in the training stage as a projection of
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linear space as the learning data, which concludes our argument. For the
CCA, it was also shown that the CCA vectors lie in the span of the training
data [3], [24].



W onto U . If U is orthogonal, then V ¼ UTW ; otherwise,
V ¼ ðUTUÞ�1UTW .

Similarly, assuming a novel image x (which we want to
classify) follows a distribution of one of the classes in the
training set, it can therefore be well approximated with a
linear combination of the basis vectors of the reconstructive
model, x � a1u1 þ � � � þ anun ¼ Ua. The classification func-
tion now takes the following form:

gðxÞ ¼WTx ¼ V TUT
� �

ðUaÞ ¼ V Ta: ð8Þ

We have rewritten the function into an expression that
uses the feature vectors corresponding to the reconstructive
model. This is a promising start since an efficient algorithm
already exists for robust calculation of the coefficient vector a

of the reconstructive model in cases when the data contains
outliers, occlusion, or non-Gaussian noise [18]. We will
employ this method, but not just yet. Notice that the
expression in (8) demands all n coefficients for its calculation.
Since, in most computer vision applications, the number of
training images n is large, the computational complexity of
the robust estimation of all the coefficients would be too
prohibitive to make this method applicable in practice. The
idea is to use only a truncated basisU:K of k� n basis vectors,
which is usually used for calculations involving reconstruc-
tive methods. The number k is chosen so that the truncated
basis approximates the data to a good degree of accuracy.

However, this truncated reconstructive basis is not suffi-
cient for our classification task. In particular, it provides only
k coefficients, aK ¼ ½a1; . . . ; ak�T , which makes the calculation
of (8) impossible. To see this, we rewrite the expression in (8):

gðxÞ ¼ V Ta ¼ V T
K:; V

T
ðN�KÞ:

h i aK

aðN�KÞ

" #
¼

¼ V T
K:aK þ V T

ðN�KÞ:aðN�KÞ:

ð9Þ

The function g could, in principle, be estimated only
according to the truncated coefficient vector (by calculating
only the first term in the sum), but by doing so we would
very likely be losing valuable discriminative information
contained in the last n� k coefficients. While the first
k coefficients contain most of the reconstructive information,
there is no guarantee that most of the discriminative
information is present in the first k of them as well. This is
demonstrated in the first experiment in Section 6.

Obviously, some extra information needs to be added to
the truncated reconstructive basis U:K to retain the complete
discrimination power of g (i.e., also enable the calculation of
the second term of the sum in (9)). These will be done by
augmenting the truncated reconstructive basis with a small
number of additional vectors.

Let us define ~WW :¼ U:ðN�KÞVðN�KÞ: 2 IRm�c. The matrix ~WW
is composed of c vectors arranged in its columns which are
linear combinations of the last n� k basis vectors of a
reconstructive model. Each of them is orthogonal to all of
the firstkvectors of the reconstructive basis;however, theyare
not mutually orthogonal. In order to enable easier calculations
later on, the matrix ~WW can be orthogonalized adequately:

~WW? ¼ ~WW ð ~WWT ~WWÞ�1=2: ð10Þ

Next, let us define bUU and bVV as:

bUU ¼ U:K; ~WW?
� �

¼ U:K; ~WW ð ~WWT ~WWÞ�1=2
h i

2 IRm�ðkþcÞ

bVV ¼ VK:

ð ~WWT ~WW Þ1=2

� �
2 IRðkþcÞ�c:

ð11Þ

The new basis bUU is the basis U:K extended by c� n
additional vectors, while bVV is the matrix VK: also extended
by c row vectors.

Now, it is easy to show that bUU and bVV contain all of the
discriminative information contained in W . The new
classification function bggðxÞ :¼ ð bUU bVV ÞTx can be expressed as

bggðxÞ ¼ ð bUU bVV ÞTx ¼

¼ U:K; ~WWð ~WWT ~WWÞ�1=2
h i VK:

ð ~WWT ~WW Þ1=2

� �� �T
x ¼

¼ ðU:KVK: þ ~WWÞTx ¼
¼ ðU:KVK: þ U:ðN�KÞVðN�KÞ:ÞTx ¼

¼ U:K; U:ðN�KÞ
� � VK:

VðN�KÞ:

" # !T

x ¼

¼ ðUV ÞTx ¼WTx ¼ gðxÞ

ð12Þ

and is thus equivalent to the original classification function
gðxÞ. This concludes our argument.

Since the new basis bUU :¼ ½buu1; buu2; . . . ; buukþc�T contains the
truncated reconstructive basis U:K and, thus, offers a good
reconstruction of images, the image x can be well
approximated5 in this extended basis:

x � baa1buu1 þ � � � þ baakbuuk þ � � � þ baakþcbuukþc :¼ bUUbaa: ð13Þ

As the matrix bUU is orthogonal, the coefficients can be
obtained in the least square sense as:

baa ¼ bUUTx: ð14Þ

But, when the image x is corrupted by outliers, the
reconstructive property of bUU in (13) enables us to employ
the method of [18] to successfully detect outliers of x and
calculate the coefficient vector baa ¼ ½baa1; . . . ; baakþc�T robustly
using only the nonoccluded pixels in the image x, as
described in the Appendix. We have thus reduced the
estimation of the n-dimensional coefficient vector a in (8)
down to calculating a ðkþ cÞ-dimensional vector baa, where c
is, in most applications, much smaller than n.

Since the robust estimation of baa is a good approximation
to (14) and the following holds,

gðxÞ ¼ bVV T ð bUUTxÞ ¼ bVV Tbaa; ð15Þ

the classification function g can therefore be calculated as the
dot product of the extended matrix bVV and baa, but since the
coefficient vector baa can be obtained in a robust manner, the
new calculation of g is also robust to outliers and occlusions.

To summarize, we constructed a basis bUU of kþ c vectors
(where kþ c is usually far smaller than n) which carries the
complete discriminative information (in the limits of a chosen
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k reconstructive basis vectors since the new basis contains a few more
extra vectors (linear combinations of the last n� k reconstructive basis
vectors) carrying some additional variance.



discriminative method), enables the detection of outliers
and occlusions, and offers the calculation of the coefficient
vector baa on the uncorrupted pixels. Once the coefficients are
obtained, the classification function g can be calculated with
(15), as a dot product of the coefficient vector baa and the
extended matrix bVV . We must emphasize that both bUU and bVV
are already calculated in the training stage and need no
further calculations in the classification stage. These
procedures are summarized in Algorithms 1 and 2.

6 EXPERIMENTAL RESULTS

In this section, empirical evaluation of the proposed approach
is presented to demonstrate its advantages over the standard
discriminative methods for robust classification. Specifically,
we chose to evaluate our extended basis principle for LDA
and CCA, but, as emphasized in the theoretical part of the
paper, the framework is general and can be applied to any
other linear subspace method to give similar results as will be
presented here. We tested our proposed robust technique on
three traditional computer vision tasks: object and face
recognition, for which we used the extended LDA basis
approach, and estimation of objects’ orientation, which is a
regression task and is addressed using the extended CCA
approach. These problems were selected because they clearly
show the sensitivity of the standard subspace approaches to
non-Gaussian noise (occlusions) and demonstrate the ability
of the proposed method to overcome this shortcoming on
different image domains.

6.1 Robust Estimation of LDA Coefficients

6.1.1 Object Recognition

We first demonstrate the performance of the extended LDA
approach on a simple two-class problem, where the task is
to correctly classify a novel image to one of two classes. We
performed the experiment on two objects from the COIL
database [26]. In the training stage, 12 images of each object
were used (altogether, 24 images of size 32� 32, some of
them are shown in Fig. 1a), while the remaining 60 were
used for testing. In the first part of the experiment, the
nonoccluded test images were used, while, in the second
part, when we evaluated the robustness of the proposed
approach, each test image was occluded with a square of a
random intensity at a randomly chosen position (Fig. 1b).

In this experiment, we show two major issues that we want
to emphasize in this paper. First, it is demonstrated that, by
performing LDA classification in a truncated PCA space
(using only the first term in the classification function (9) and
thereby discarding the discriminative information contained
in the second term), the results are very unreliable. This
clearly indicates that the proposed extended basis is crucial to
obtain quality results. Second, we show how well the
proposed representation, which holds discriminative and
reconstructive information, can deal with occlusions. When
evaluating robustness we will also show that the straightfor-
ward application of the robust method of [18] to the standard
LDA basis does not give satisfactory results since the LDA
basis does not provide enough information for reconstruction
to successfully deal with outliers. This again leads to a
conclusion that the extended LDA representation is necessary
for a reliable robust classification.

To demonstrate these issues, three different approaches
were tested and compared: The standard LDA (denoted as
LDA in the tables and figures to follow), the LDA classifica-
tion performed in the truncated PCA basis (denoted as
LDAonK), and classification using the extended LDA basis
(referred to as LDAaPCA). The results for the three different
approaches are shown in Table 1 and Fig. 2. In the first row of
Table 1 and Fig. 2 (denoted as LDA), the results for the
standard LDA approach are displayed. The second row
(LDAonK) shows the results of the estimation of LDA
coefficients in the truncated PCA subspace (where only the
first 12 principal vectors and components were retained).
Finally, the results in the third row (LDAaPCA) were obtained
using the proposed method; in this case, the 11-dimensional
principal subspace was augmented with one additional basis
vector holding discriminative information contained in the
discarded principal vectors (yielding a 12-dimensional
subspace—a subspace of the same dimensionality as in the
LDAonK case to enable a fair comparison of the two methods).
The estimation of LDA coefficients was then performed in
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Fig. 1. (a) A few training images and (b) a few occluded test images of

two COIL objects.

TABLE 1
Results on Two COIL Objects



this augmented subspace. Table 1 displays quantitative
results—the values of the Fisher criterion (5) calculated for
the test images, while, in Fig. 2, the values of the LDA
coefficient are presented in a graphical form. The projections
of the images of the first object are depicted as squares (empty
squares for training images and filled squares for test images),
while the projections of the images of the second object are
denoted as circles.

The first column of Table 1 and Fig. 2 (denoted as ground
truth) shows the results of the three approaches applied to the
nonoccluded test images. Since the test images were “clean,”
the standard LDA approach performed very well. The
projections of training images of two objects are perfectly
separated and the generalization to test images is rather good
as well; the recognition rate is 100 percent and the values of
the Fisher criterion are very high. When the estimation of LDA
coefficients was performed in the truncated PCA subspace,
the projections of training images were still separated for the
two classes (depicted in the leftmost plot in Fig. 2b), but not as
well as in the standard LDA case and the value of the Fisher
criterionwasalsosignificantlysmaller(secondrowinTable1).
This indicates that, by truncating the full principal subspace,
some significant information which is necessary for the
optimal calculation of LDA coefficients is lost. This is

even more evident in Fig. 3, which depicts the results of
LDA classification performed in different dimensions of
the truncated PCA space. By increasing the subspace
dimension (k), the discarded discriminative information
decreases and the results of the LDAonK approach converge
to the optimal ones. The optimal results were also achieved
when the truncated principal subspace was extended with the
additional vector as proposed in the paper. The LDA and
LDAaPCA approaches produced equivalent results. This
clearly shows that the appended basis vector captures all the
LDA-relevant information, which is contained in the dis-
carded principal vectors and which is disregarded by
LDAonK.

In the second to fourth columns of Table 1 and Fig. 2, the
results of robustness performance of the different ap-
proaches on the occluded test images are presented.
Specifically, the second column (indicated as nonrobust)
shows the poor performance of the standard nonrobust way
of calculating the LDA coefficients (using the dot product as
stated in (4)) for all three approaches. The occlusions on the
test images seriously affected the calculation of the LDA
coefficients, thus the recognition of the objects was very
unreliable. For the next two columns, the robust procedure as
described in the Appendix was used for estimation of the
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Fig. 2. Results on two COIL objects. (a) LDA, (b) LDAonK, and (c) LDAaPCA.



necessary coefficients for all three approaches. First, outliers
were treated as missing pixels and were omitted during the
robust computation of the subspace coefficients giving the
results shown in the third column (denoted as missing pixels)
of Table 1 and Fig. 2. The values of the Fisher criterion and
the plots in Fig. 2 of the LDA coefficients show that LDAonK
and LDAaPCA produced more reliable results than the LDA
approach. This is due to the fact that both bases, LDAonK and
LDAaPCA, carry more variance than the standard LDA basis,
which is a prerequisite for the robust procedure to perform
well. Furthermore, it is also evident that LDAaPCA approach
outperformed LDAonK approach due to an even richer
representation. Finally, the fourth column (denoted as robust)
presents the results of the robust method run for all three
approaches where no information about the occlusions were
presumed to be known with the robust procedure detecting
the outliers as described in the Appendix. Since the outlier
detection largely depends on the reconstruction error (which
is shown in the last column of Table 1 in terms of mean
absolute reconstruction error (MARE)), the robust approach
for the standard LDA basis produced inferior results. In the
case of two-class classification, a linear discriminant vector
spans only a one-dimensional subspace, which does not
enable sufficient reconstruction of images and, consequently,
a reliable detection of outliers. The robust procedure using
the basis of LDAonK and LDAaPCA yielded significantly
better results utilizing reconstructive properties of the PCA
method performed on a 12-dimensional subspace. It is
therefore evident that, for a successful detection of outliers,
the reconstructive property of the basis is crucial and is
usually not provided by the discriminative methods.

6.1.2 Face Recognition

With this experiment, our goal was three-fold: 1) to
demonstrate the performance of the robust procedure in
the classification task for various amounts of degraded
pixels, 2) to show how the chosen value for k in the
ðkþ cÞ-dimensiona extended (LDA) basis influences the
performance of the robust method for classification in the
presence of occlusion, and 3) to give a visual idea of how
well the robust procedure selects the “good” pixels and
discards the occluded ones from the calculation process.

The face recognition experiment was performed on two
testbeds: ORL database and AR face database.

In the first experiment, the robustness of the method was
tested on the ORL face database from Olivetti Research
Laboratory in Cambridge, United Kingdom [29]. The
database contains 10 different images of 40 distinct subjects.
One half of the images, resized to 64� 64 pixels, was used for
training (five images per person, see Figs. 4a and 4b), while

the other half was occluded with varying amount of
occlusion (Fig. 4c) and used for testing.

Fig. 5 shows the results obtained by performing the LDA
classification on the ORL test images with different amount of
occlusions (0-95 percent) in three different ways: using the
standard nonrobust approach (indicated as nonrobust), and
by the proposed robust approach with known (miss.pix.), and
unknown (robust) positions of outliers. In the first part of the
experiment, five-dimensional principal subspace (k ¼ 5) was
augmented with additional basis vectors. One can observe
that the standard nonrobust approach was considerably
affected by the occlusions and its efficiency rapidly decreased
with the increase of the percentage of outliers. In contrast, the
proposed robust method performed very well. When the
positions of the outliers were known, the nonmissing pixels
contained information sufficient for reliable discrimination
between the 40 subjects for almost all levels of occlusion. Even
when the robust method had to automatically detect outliers,
the results were degraded only after the occlusion reached
more than 50 percent, which demonstrates the high break-
down point of the proposed method.

In the second part of the experiment, we tested how
different dimensionalities of the PCA subspace used in the
extended LDA basis influence the results. The results are
depicted in Fig. 6. The values of the Fisher criterion and
recognition rates obtained on the test images with
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Fig. 3. Results on ground truth images of two COIL objects: (a) for various k, (b) LDAonK approach for k ¼ 3, (c) for k ¼ 13, and (d) for k ¼ 23.

Fig. 4. Images from the ORL face database. (a) and (b) Training images.
(c) Test image occluded with 10 percent, 20 percent, 30 percent,
50 percent, and 70 percent occlusion.



10 percent (filled circles) and 50 percent (empty circles) of
occlusion are presented for known (dotted line) and
unknown (solid line) positions of outliers. As expected,
the nonrobust method (indicated as NR) did not perform
well. When we applied the method for robust estimation of
coefficients in the subspace spanned by the LDA vectors
only (k ¼ 0), the results improved, but they were still
significantly inferior to the results of the proposed method.
By also having the reconstructive basis (augmented with
additional vectors), the reconstructive power of the method
increased and the detection of the outliers became more
reliable. The results improved as the value of k increased.
This indicates that, by improving the reconstruction power
of the extended LDA basis, the robust method is better able
to correctly detect the outliers and is consequently capable
of a more exact estimation of the LDA coefficients, resulting
in a reliable classification on highly occluded images. It is
worth noting that a satisfying level of the evaluation
criteria was already achieved when only a few (i.e., five)
principal vectors were used.

Last, the performance of the proposed approach was
evaluated on images containing real occlusions. The experi-
ment was conducted on the AR face database [21], which
contains over 4,000 color images of 126 persons taken during

two distinct photo sessions (separated by two weeks), with
different facial expressions, illumination conditions, and
occlusions (sun glasses and scarf). This database is com-
monly used by researchers for performance evaluation of
robust face recognition algorithms and, therefore, has a
comparative value. Following Martinez and Kak [21], images
of 50 people, in our case, the first 25 males and 25 females,
were taken. In the preprocessing step, the original images
were converted to gray scale, aligned by the eyes, resized,
and cropped to size 100� 52. In the training stage, the images
of neutral, smile, and anger face expressions were used from
both sessions (six images per person, 300 images altogether),
while the images of occlusion by glasses and scarf and images
of the scream face expression were used for testing (also six
images per person). Only those images were taken as the
training as well as the test images that were captured under
the same illumination conditions. Fig. 7a shows examples of
training images for two people from the database, while
Fig. 7b contains the test images for the same people.

First, we visually demonstrate how well the robust
approach copes with occlusion and how well it handles
changes in appearance of the faces due to different facial
expressions. Fig. 8 shows the pixel selection process run on
the test images shown in Fig. 8a. A few iterations of the robust
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Fig. 5. Results on the ORL face database with test images containing different amounts of occlusion and k ¼ 5: (a) Fisher criterion. (b) Recognition
rate.

Fig. 6. Results on the ORL face database with test images containing 10 percent and 50 percent of occlusion for standard LDA approach (NR) and
for the proposed method with different k: (a) Fisher criterion. (b) Recognition rate.



algorithm for estimation of subspace coefficients (see the
Appendix for details) are depicted in Figs. 8b, 8c, 8d, and 8e.
Initially, a number of pixels was chosen randomly (denoted
as light-gray pixels in Fig. 8b). The values of subspace
coefficients were calculated from the selected pixels. These
pixels were then subject to a few �-trimming iterations
(Figs. 8c, 8d, and 8e). Finally, the remaining selected pixels
were used to determine all compatible points (the ones
consistent with the appearance of the training images), which
are shown in Fig. 8f. As one can observe, the pixels on the sun
glasses, scarves, mouth and eyes (in the “scream” test cases)
were discarded since these regions significantly differ from
the appearance in the training images. The subspace
coefficients were afterward calculated, taking into account
only the compatible pixels (Fig. 8g), thus the reconstructed
image (Fig. 8h) is very similar to the training images of the
(correct) subject (Fig. 8i), which results in a reliable classifica-
tion. For comparison, the reconstructed images given by the
standard LDA method and the method of robust coefficient
estimation of [18] applied directly to the LDA basis (which is
the same as taking k ¼ 0 in our extended LDA approach) are

given in Figs. 8j and 8k, respectively. Since these two images
do not resemble the training images of the correct person, the
calculated LDA coefficients subsequently also differ from the
optimal ones and are, as such, more likely to incur
misclassification of the test image. More examples for robust
classification procedure are depicted in Fig. 9.

To quantitatively evaluate the robustness, the proposed
approach was compared to the standard LDA method.
Table 2 shows the results—the values of the Fisher criterion
and the recognition rates for both of the approaches used.
Here, the value for k was set to 37, which ensured the
85 percent variance captured by the eigenvectors. One can
observe that the robust approach significantly outperformed
the standard LDA (denoted as nonrobust in Table 2) in the
case of images of subjects wearing sunglasses and scarves.
The recognition rates differ more than 30 percent in favor of
the proposed approach and the Fisher criterion values are
also much higher for the robust LDA, confirming its stability
also in the presence of real occlusion. For the “scream”
images, both methods perform equally well, which is due to
the following reason: Since the variations of the mouth
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Fig. 7. Images from the AR face database. (a) Training images, from left to right: first three images in both columns are neutral, smile, and anger
expressions from the first session, while the second three images depict these expressions in the same order from the second session. (b) Test
images, from left to right: occlusion by sunglasses, scarf, and an image of a scream face expression from both sessions.

Fig. 8. Results of the pixel selection procedure. (a) Test image. (b) Random initialization in the pixel selection procedure (light-gray pixels denote the
selected pixels). (c), (d), and (e) A few stages of the �-trimming method. (f) All compatible points. (g) The finally selected pixels used for coefficient
calculation (denoted with the gray-value of the original test image). (h) Reconstructed image. (i) Training image of the person in (a). (j) Reconstructed
image obtained with the standard LDA method. (k) Reconstructed image obtained using naive (k ¼ 0) robust LDA method (see text for details).



regions are already rather large within images of each
person due to different expressions in the training stage, the
LDA training produced a basis that is relatively insensitive
around the mouth region. This explains the rather good
performance of the standard LDA for the “scream” expres-
sion. On the other hand, the nonlocal changes of the faces
prevented the robust method from performing a better
estimation of the coefficients, even if the outliers were
determined correctly (Figs. 8 and 9, bottom row).

This experiment demonstrates the robustness power of
the proposed method also in the case of images containing
real occlusion. Moreover, the visual results in Figs. 8 and 9
show how well the method actually detects the outliers and
how reliable the estimation of coefficients used for
classification is (which is presented in terms of the
reconstructed images in both figures).

6.2 Robust Estimation of CCA Coefficients

In the final experiment, we demonstrate the generality of the
proposed concept by applying it to a regression method,
namely CCA, and show its effectiveness in performing
regression in the presence of outliers. Within this, we want
to elaborate on the following issues: 1) By performing CCA
estimation in the truncated PCA space (using only the first
term in the classification function (9)), some significant
information necessary for regression is lost, 2) to show how
well the robust method performs regression in the case of
occluded objects in images, and 3) to demonstrate how the
robust CCA method behaves for different values of k

(different amount of reconstruction information added to
the CCA basis).

The experiment was performed on a set of 120 images of a
toy fish, which were taken from the views evenly distributed
around the object (some examples are depicted in Fig. 10a)
The task was to learn the relation between the appearances of
the object and their orientations using CCA and then to use
this knowledge to estimate the orientation of the object in a
novel image. Every fourth image (30 images of size 64� 64)
was used for training, while the remaining 90 were used for
testing. For each training image, its orientation (two-dimen-
sional vector indicating the direction from which the image
was taken—sine and cosine of the angle) was known. After
CCA was performed on the training data, the input images
were projected onto the obtained CCA vectors yielding the
corresponding two-dimensional CCA coefficient vectors. A
linear mapping from these coefficients to orientation vectors
was estimated using the least squares minimization method.
This mapping function was then used for estimation of the
orientations of the test images from their canonical correla-
tion coefficients.

To show that performing regression in the truncated
PCA space does not yield reliable results, we first used the
nonoccluded images also in the test stage. The results are
shown in Fig. 11a and Table 3a. The plots show the actual
orientations (abscissa) and the estimated orientations
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Fig. 9. Results of the pixel selection procedure for multiple people. (b)-(f) are obtained in the same way as (g)-(k) in Fig. 8, respectively.

TABLE 2
Results on the AR Database

Fig. 10. (a) Four nonoccluded images. (b) Four occluded test images.



(ordinate) of the object in the training images (denoted with
squares) and test images (circles). The results were far from
the optimal ones when only the truncated vectors of
principal components were used (e.g., for k ¼ 3 or k ¼ 8).
By increasing the number of preserved principal vectors,
the results converged to the optimal ones achieved either by
the proposed extended CCA basis (denoted by CCAaPCA)
or by the standard CCA.

In the second part of the experiment, a square of a random
intensity was added at a randomly chosen position in each test
image (Fig. 10b). The results are presented in Fig. 11b. Here,
k was set to 15 to ensure the 85 percent variance captured by
the PCA basis. When the standard CCA method was used, the
obtained projections of occluded test images were severely
affected by the outlying pixels, thus the estimates were very
inaccurate (denoted by nonrobust). The robust method
performed significantly better. When the positions of outliers
were presumed to be known and the coefficients were
estimated from inliers only (denoted asmiss:pix), the results
wereveryclosetotheoptimalones,while theresultswereonly

slightly worse when the robust method also performed the
outlier detection (denoted as robust).

Table 3b presents mean absolute orientation errors in
degrees for different dimensions of the principal subspace for
the cases where the positions of outliers were assumed to be
known (miss:pix:) and not known (robust). One can observe
that the errors in the first case arevery small even when a small
number of principal components were used. As expected, the
results were slightly worse when the outliers were not known
since they first had to be detected by the robust procedure. In
this case, a higher number of principal components should be
used since the top few principal components do not contain
enough information for a reliable detection of outliers.
However, these results are still significantly better than the
results of the standard nonrobust method.

7 CONCLUSIONS

The importance of the discriminative methods has been
emphasized in the literature for their strong ability of
classification, which is one of the main tasks of computer
vision. However, the fact that they cannot successfully cope
with outliers and occlusions that commonly appear in real-
world settings has severely limited their domain of
applicability. The concept of robust classification using
global subspace methods appears to be an elusive task and,
thus, has rarely been tackled in literature.

In this paper, we proposed a method that is novel in the
area of robust classification/regression. It combines the
properties of both discriminative and reconstructive meth-
ods, preserving the classification power from the former and
enabling robust behavior stemming from the latter. The
robust approach exploits several techniques, i.e., robust
estimation and the hypothesize-and-test paradigm, which,
combined together in a general framework, achieve the goal.
We evaluated the theoretical results on several computer
vision tasks, showing that the proposed method significantly
outperforms the standard discriminative methods. A general
conclusion drawn from these experiments is that our robust
method can tolerate much higher levels of outliers (occlu-
sions) than the standard discriminative methods.
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Fig. 11. Estimation of orientation: Results on (a) nonoccluded images for different k and (b) occluded test images.

TABLE 3
Mean Absolute Orientation Errors:

(a) Nonoccluded and (b) Occluded Test Images



The applications of the proposed method are numerous.
All tasks that can be accomplished by the classical linear
subspace discriminative methods can also be achieved
within the framework of our proposed approach, only more
robustly and on more complex scenes.

APPENDIX

ROBUST COEFFICIENT ESTIMATION

For completeness of the paper, we briefly summarize the
robust coefficient estimation procedure as developed in [18].

Let x 2 IRm be an image vector containing m pixels and
U a basis matrix of a reconstructive model which provides
the approximation of x by its reduced basis:

x � a1u1 þ � � � þ akuk;

where the coefficient vector aK ¼ ½a1; � � � ; ak�T is usually
calculated as aK ¼ ðUT

:KU:KÞ�1UT
:K x. The problem appears

when x contains outliers since the product UT
:Kx takes into

account all pixels, thereby also the corrupted ones, and can
consequently give a wrong value for aK. In order to
overcome this problem, we need to robustly solve the
overdetermined linear system of equations

x1 ¼ a1u
1
1 þ a2u

1
2 þ � � � þ aku1

k

x2 ¼ a1u
2
1 þ a2u

2
2 þ � � � þ aku2

k

..

.

xm ¼ a1u
m
1 þ a2u

m
2 þ � � � þ akumk ;

ð16Þ

where imagei denotes the ith pixel in an image vector.
Hypothetically speaking, if the approximation of x would be
of zero error, only k equations would be needed to calculate
aK. But, since generally the approximation error is not zero,
yet still very small, we could take into account only p, where
k < p� m, equations from (16) to determine the coefficient
vector aK to a satisfactory degree of accuracy. This is because
the methods that provide good reconstruction of the data can
exploit the redundancy present in the visual data.

The robust coefficient estimation procedure is based on a
hypothesize-and-test paradigm using subsets of image
pixels. The basic idea is to randomly choose a set of p pixels
H � fi j i ¼ 1; . . . ;mg; jHj ¼ p, in the image x (each such
choice is called a hypothesis), and take into account only these
pixels when determining the coefficients. The task is to find
values fajgkj¼1 such that the expression

EðHÞ ¼
X
i2H

xi �
Xk
j¼1

aju
i
j

 !2

is minimal. This is achieved by solving the linear
system Ga ¼ d, where G is the k� k matrix with the
entries gij ¼ huHi ;uHj i and d is the vector with entries
dj ¼ hxH;uHj i. Here, xH denotes the pixels in x, which
belong to hypothesis H, i.e., xH ¼ fxi j i 2 Hg. The
obtained coefficients fajgkj¼1 are then used to calculate
the reconstruction in the selected pixels xH. Based on
the error distribution in these points, their number is
reduced by a factor � (�-trimming), until the maximum
error falls below a predefined threshold �. This value is
determined by considering the average reconstruction
error in a single pixel of an image in the training set.

To increase the probability of determining correct coeffi-
cients, h hypotheses are generated. For each hypothesis, the
robust coefficient estimation is performed. Finally, the best
hypothesis is chosen based on the number of compatible
pixels and the related reconstruction errors.
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