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Abstract:

Canonical Correlation Analysis is well suited for regression tasks in appearance-based approach
to modelling of objects and scenes. Howewver, since it relies on the standard projection it is
inherently non-robust. In this paper we propose to embed the estimation of CCA coefficients in
an augmented PCA space, which enables detection of outliers and preserves regression-relevant

information enabling robust estimation of canonical correlation coefficients.
1 Introduction

Appearance-based methods have become a popular approach to visual learning and recogni-
tion. Very often subspace methods have been used for building the representations of objects
or scenes from their appearances. Among them, Canonical Correlation Analysis (CCA) [2], is
best suited for regression tasks, such as estimation of objects’ orientation or localization of a

mobile robot.

CCA is a supervised method, which relates two sets of observations, one set being composed
of training images and the other set of the corresponding measurements (e.g., orientations
or positions of an object, see Fig. 1). In the training stage CCA finds pairs of directions
(canonical correlation vectors) that yield maximum correlation between the projections of
input vectors. We can then perform linear regression on the obtained projections (canonical
correlation coefficients). Later, in the regression stage, we can estimate the orientation (or
position) of the object by using canonical correlation coefficients obtained from a novel image

of the object (gray curves in Fig. 1).
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Since CCA relies on the standard projection (dot product), it is inherently non-robust to
non-gaussian noise. An occlusion, for instance, can cause erroneous estimation of CCA coeffi-
cients, and consequently incorrect estimation of orientation (dashed gray curve in Fig. 1). To
overcome this drawback, the algorithm should be able to detect outliers and to estimate CCA
coefficients from inliers only. Such approaches have already been proposed for robust estima-
tion of PCA coefficients [5]. These algorithms take advantage of the reconstructive properties
of PCA, which enable the detection of outliers. However, CCA is not a reconstructive method.
The number of obtained canonical correlation vectors is bounded by the lower dimension of
the observations. Since the second set of observations (orientation, position of the object) is
usually low-dimensional, CCA yields only a few canonical correlation vectors, which do not

enable reconstruction of input images and detection of outliers.
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Figure 1: Principle of CCA.

Several methods for robust canonical correlation analysis have already been proposed [3],
however, all of them address the robustness in the training stage, hence the robust estimation
of canonical correlation vectors. In the training stage the training images are still available
allowing to extract the information, which is necessary for outlier detection. In the regres-
ston stage, only the canonical correlation vectors and very low-dimensional CCA coefficients
are available, thus the detection of outliers becomes practically impossible if no additional

information is provided.

This is exactly what we propose in this paper. We propose to embed the estimation of
CCA coefficients in the PCA space, which enables the detection of outliers. And since the
truncated principal subspace may not contain all information, which is necessary for regression,
we propose to augment the PCA subspace to contain the entire CCA subspace as well. Such
augmented principal subspace therefore preserves information relevant for reconstruction and
regression, which enables detection of outliers and reliable estimation of canonical correlation

coefficients.



2 Basic CCA

We first briefly present the basic concepts of canonical correlation analysis [6] and introduce
the notation.

Given N pairs of mean-normalized observations (X; € R”, y; € R?) , i =1,..., N, aligned in
the data matrices X = [&y,...,%y] € RPN and Y = [§1,...,¥n5] € RN, CCA finds pairs
of directions wy € R? and w, € IR? that maximize the correlation between the projections

T

wy%; and wy§;. CCA maximizes the function

-
w, Cyywy
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\/wx Cxxwxwy Cyywy

p

, (1)

where Cyx, Cyy, Cxy, and Cyx are within-set and between-set covariance matrices of the

input data.

We will refer to the extremum points wj, w of (1) as canonical correlation vectors, whereas
the projections of the input observations onto the canonical correlation vectors will be referred
to as canonical correlation coefficients. The extremum values p* = p(wy, w;) are the canonical

correlations and are as large as possible.

Several approaches to maximization of (1) have been proposed. We use the dual formulation
of CCA [6], which alleviates the computation in the case of high-dimensional data such as

images, and solve the maximization problem with the Rayleigh quotient approach [1].
3 Robust estimation of CCA coefficients

A novel image is a subject of CCA regression, which bases its decision on the canonical
correlation coefficients, i.e. projections (dot product) of the new image onto the CCA vectors.
But in order to calculate the dot product properly, we need to take into account all points in
an image, therefore even a small number of them being corrupted can cause erroneous results,

as shown in Fig. 1.

Obviously, we would like to detect these points and exclude them from further calculations,
yet still well approximate the CCA coefficients. This will be done by making use of the fact
that the complete PCA basis spans ezactly the same space as the training images, and that
the canonical correlation vectors lie in this space. Therefore, we obtain the same results by
performing CCA learning and regression on the PCA coefficients. For PCA, on the other hand,
it is possible to estimate its coefficients on subsets of points. Since PCA well reconstructs the
data we can efficiently pinpoint the outliers and calculate the coefficients on the rest of the

image to a good degree of accuracy. It is important to note that the smaller the number



(k < N) of principal vectors and coefficients is used (which still yield sufficient reconstruction
of the original data), the less points in an image we need for a robust estimation. However,
making the decision only on & < N coefficients could in fact be disregarding discriminative
information contained in the last N — k of them and would lead to erroneous results. To
overcome this problem we will augment the complete information necessary for CCA to the

PCA truncated basis by adding to it only a small number of additional vectors.

Let Uy € RP”*Y and Uy € R be matrices containing all N principal vectors of X and Y,
respectively, and let A, € RY*Y and A, € RY*¥N be the matrices containing the coefficients
of the training images in the PCA basis, i.e., A, = U] X and A, = U]Y. By performing CCA
on Ay and Ay we obtain N-dimensional canonical correlation vectors (aligned in matrices Vy
and V), which yield the same results as original CCA vectors obtained from X and Y. Next,
let U" € R”** and U, € R7** be the truncated matrices containing only the first k& principal
vectors. Now, the previously obtained canonical correlation vectors may not lie entirely in the
subspace spanned by U.. We will show how to adequately extend this subspace.

Let us first assume that the observations in the second set are only one-dimensional, thus
g = 1. Therefore, CCA on Ay and Ay yields only one pair (¢ = min(p,q) = 1) of canonical
correlation vectors (vy,Vvy). If we keep only k& components of vy (i.e., v, € RF*!), then all
the information, which is contained in the last N — k components of vy and in the last N — k
principal vectors uy; , i = k+1,..., N, is lost!). To preserve this information we append a
new basis vector f next to the first £ principal vectors, thus obtaining a new augmented PCA
basis with £ + 1 basis vectors Ul = [ U, f ] e RP***+) | The vector f is obtained in the

following way:

N 1 N
_ 2 _
Y= Z v , f=- Z UxiUx; -
i=k+1 7 i=k+1

Since f is of unit length and is orthogonal to all k& vectors in U,, the augmented basis U’

forms an orthonormal basis as well. Simultaneously we also extend v by one element -:

/
v . . . . .
v = [ * ] € R*!' . Now, using U” and v”, all necessary regression-relevant information is

Y
preserved.

Next we will extend this approach to the general case where ¢ > 1. In particular, we
will discuss a case which is the most common in the field of computer vision, where one set
of observations contains high-dimensional images (X) and the second set (Y) contains low-

dimensional labels or measurements of the images, thus 1 < ¢ < N < p. Therefore, CCA

DThe boldface characters x or y in subscript indicate that the value is related to the first (X) or to the
second set of observations (Y), while the italic type denotes indices. Thus, vx; denotes i-th element of the

vector vy, while uy ; denotes j-th vector (column) in the matrix Uy,.



yields ¢ = min(N,q) = ¢ pairs of canonical correlation vectors vy;, vy.,i = 1,...,c, aligned
in the matrices V, € RV and V,, € R7*“.

Analogously to the discussion above, all information contained in the last N — k principal
components of all ¢ canonical correlation vectors (vx;,7 = k+1,...,N, j = 1,...,¢) has
been discarded and is not contained in the truncated vectors v;j, j=1,...,c. We will retain
this information by augmenting PCA basis with additional vectors. In this case we need ¢

additional basis vectors, which are obtained in the following way:

N 1 N
— 2 [
V= 2 v o G= o D Uk
i=k+1 Vi i=k+1

where j = 1,...,c¢ . Each of the vectors f} is orthogonal to all k principal vectors, however
they are not mutually orthogonal. They can be orthogonalized with e.g., Gram-Schmidt
orthogonalization method, i.e., F = orth(F') . Thus, after we append these additional basis
vectors to the first k& principal vectors (Ul ), we obtain an orthonormal basis of k + ¢ vectors
Ul=|U, F|eRr®t,

Next we have to extend k-dimensional truncated canonical correlation vectors v’

it =1,...,¢
with ¢ additional elements. In the one-dimensional case, this element () simply represented
the contribution of the appended basis vector f to the linear combination of the basis vectors.
When ¢ > 1 each v; represents the contribution of the corresponding f;. However, since
we have several orthogonalized appended basis vectors, we should calculate the supplements

of each truncated canonical correlation vector by considering all appended basis vectors. We
!

v
extend the matrix V with a new matrix I yielding V7 = I‘X ] € R¥+9%¢ where T € Re*¢

is composed of the following elements v;; = v (f}, f;) = fy;-fin]’- yi=1,...,¢, j=1,...,c.

To summarize the complete procedure: in the learning stage, instead of performing CCA on
the input images X, we can first perform PCA on these images and then CCA on the obtained
coefficient vectors Ax. Then we may retain only the first £ < N principal vectors, providing
that we append additional ¢ = min(p, ¢) basis vectors (obtaining U”), and adequately extend

the canonical correlation vectors (obtaining V).

In the regression stage, first the (k + ¢)-dimensional principal coefficient vector a, in the
augmented PCA basis U is estimated from a novel image X using the subsampling-based
hypothesize-and-select robust procedure [5]. This procedure detects and discards outliers in
the input image and estimates coefficients from inliers only. Then this principal coefficient
vector is projected to all canonical correlation vectors (in augmented PCA basis) to obtain
the canonical correlation coefficients by = VZa,. Since the principal coefficients of the image

are obtained in a robust way, the final canonical correlation coefficients are robust as well.



4 Experimental results

CCA is well suited for regression tasks such as estimation of objects’ orientation or mobile
robots’ location. Due to the limited space we will present one set of experimental results for

the first task only, which clearly demonstrates the advantages of our proposed method.

The experiment was performed on a set of 120 images of a toy fish, which were taken from the
views evenly distributed around the object (see Fig. 2(a)). The goal was to learn the relation
between the appearances of the object and their orientations using CCA in the training stage
and then to use this knowledge to estimate the orientation of the object in a novel image in
the test stage. Every fourth image was used in the training stage, while the remaining 90

images were used for testing.

Figure 2: (a) Four non-occluded images, (b) four occluded test images.

For each training image (x;) its orientation (two-dimensional vector indicating the direction
from which the image was taken - sine and cosine of the angle) was known (y;). We estimated
a linear mapping from the two-dimensional vectors of canonical correlation coefficients to
y; using the least squares minimization method. This mapping function was then used to

estimate the orientations of the test images from their canonical correlation coefficients.

First we used non-occluded images also in the test stage. The results are shown in Fig. 3(a) and
Table 1(a). The plots show the actual orientations (abscissa) and the estimated orientations
(ordinate) of the object in the training images (squares) and test images (circles). The results
were rather poor when we used truncated vectors of principal components (e.g., for k=3 or
k=8). By increasing the number of preserved principal vectors, the results converged to the
optimal result achieved either by using all principal components or augmented PCA basis or

by performing CCA on the original images without the PCA preprocessing.

Then we added a square of a random intensity to a randomly chosen position in each test
image (Fig. 2(b)). The results are presented in Fig. 3(b). When we used a standard non-
robust method the obtained projections of occluded test images were affected by the outlying

pixels, thus the estimates are very inaccurate (denoted by non-robust).

We then applied the PCA preprocessing step and used the robust method for estimation of co-
efficients. First we assumed that the positions of outliers were known; the outliers were consid-

ered as missing pixels and principal coefficients were estimated from inliers only (robustM P).



The results are excellent and are very close to the optimal ones.

Then we considered the test images without any additional information about outliers and
applied the proposed robust method (robustOL). The outliers did not affect the estimation
of the principal coefficients considerably, thus they did not have a significant influence on the
simple projection in the regression stage either. Therefore, the results of the pose estimation

are good; the deviations from the optimal estimates are mostly rather small.
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Figure 3: Results on (a) non-occluded and (b) occluded test images.

Table 1(b) presents mean absolute orientation errors in degrees for different dimensions of the
principal subspace for the cases where the positions of outliers were assumed to be known
(M P) and not known (OL). One can observe that the errors in the first case are very small
even when a small number of principal components were used. As expected, the results were
slightly worse when the outliers were not known, since the robust procedure first had to
detect outliers. In this case a higher number of principal components should be used, since
the top few principal components do not contain enough information for a reliable detection
of outliers. However, these results are still significantly better than the results of the standard
non-robust method.

5 Conclusion

In this paper we presented a novel approach to robust estimation of canonical correlation
coefficients. We proposed to perform CCA regression in an augmented PCA space, which

preserves information relevant for reconstruction (detection of outliers) and regression.

To use PCA as a preprocessing step to other subspace methods has already been proposed



Table 1: Mean absolute orientation errors: (a) non-occluded, (b) occluded test images.

k | error k| MP OL

3| 42.08 3+2 | 2.62 | 20.33

5| 5.17 542 | 2.33 | 14.71

81 3.61 8+2 | 1.72 | 6.81

10 | 2.25 10+2 | 1.56 | 4.51

15| 1.25 15+2 | 1.22 | 3.40

20| 0.97 2042 | 1.14 | 2.56
APCA | 0.67 non-robust | 36.92

(a) (b)

several times in the past. What is new in our approach is that we also propose to extend
the truncated principal subspace with additional basis vectors. They augment the principal
subspace with the information necessary for the particular subspace method (in the case of
CCA this added information is a subspace spanned by canonical correlation vectors). In this
way, all the properties of the subspace method are preserved and no significant information is
lost.

Therefore, while the proposed method enables detection of outliers and consideration of in-
liers only by exploiting the reconstruction capabilities of PCA, it still preserves all necessary
information. As such, the proposed approach can be used as a general tool for robustifying
non-reconstructive subspace methods, such as LDA [4] or linear SVM.
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